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Abstract 

Several Alzheimer’s disease (AD) atrophy subtypes were identified, but their brain network 

properties are unclear. 

We analyzed data from two independent datasets, including 166 participants (103 AD/63 

controls) from the DELCODE and 151 participants (121 AD/30 controls) from the ADNI 

cohorts, aiming to identify differences between AD atrophy subtypes in resting-state 

functional MRI intra-network connectivity (INC) and global and nodal network properties.  

Using a data-driven clustering approach, we identified four AD atrophy subtypes with 

differences in functional connectivity, accompanied by clinical and biomarker alterations, 

including a medio-temporal-predominant (S-MT), a limbic-predominant (S-L), a diffuse (S-

D) and a mild-atrophy subtype (S-MA). S-MT and S-D showed INC reduction in the default 

mode, dorsal attention, visual and limbic network, and a pronounced reduction of global 

efficiency and decrease of the clustering coefficient in parietal and temporal lobes. Despite 

severe atrophy in limbic areas, the S-L exhibited only marginal global network but substantial 

nodal network failure. S-MA, in contrast, showed limited impairment in clinical and 

cognitive scores but pronounced global network failure.  

Our results contribute towards a better understanding of heterogeneity in AD with the 

detection of distinct differences in functional connectivity networks accompanied by CSF 

biomarker and cognitive differences in AD subtypes. 
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Introduction 

Alzheimer’s disease (AD) shows considerable heterogeneity in central disease characteristics 

among individual patients, who may differ in their cognitive profiles [1] and biomarker 

patterns [2] . Postmortem studies separating groups with distinguishable atrophy patterns and 

histopathological features [3, 4] suggest the existence of biologically distinct AD subtypes, 

supported by evidence from magnetic resonance imaging (MRI), tau positron-emission-

tomography (PET)[5] and clinicopathological research [6].  

 An MRI-based classification of subtypes can be achieved by visual atrophy ratings [7, 

8] or data-driven methods [9-13]. Most studies, including those in prodromal disease [14], 

subdivide AD atrophy patterns into (i) a typical subtype with accentuated pathology of the 

hippocampus and association cortex; (ii) a limbic predominant subtype with atrophy 

comprising the limbic system, including the hippocampus; (iii) a hippocampal sparing 

subtype; and (iv) a minimal atrophy subtype [15]. These AD subtypes differ in their clinical 

progression rate, neurocognitive scores, years of education, disease duration, genotype and 

cerebrospinal fluid (CSF) biomarker profiles [14, 15]; further research is warranted to better 

characterize the underlying pathophysiological differences. To our best knowledge, 

differences in functional connectivity of resting-state networks between AD subtypes 

together with neurocognitive and biomarker data have not been explored yet. Furthermore, 

most previous studies classified patients based on clinical data rather than biomarker 

information, resulting in heterogeneous datasets. Here we minimized heterogeneity and 

potential misdiagnoses by using a biomarker-based classification scheme informed by clinical 

diagnoses [16]. 

 The widespread loss of cortical neuronal connections in AD causes disruptions of 

brain connectivity [17]. Resting-state functional MRI can quantify the degeneration of the 

cerebral functional architecture and is widely used to investigate intrinsic large-scale neural 
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networks [18]. Coherent patterns in spontaneous fluctuations of the blood oxygen level 

depended (BOLD) signal represent temporarily stable and reproducible intrinsic brain 

networks, overlapping with individual cognitive and behavioral characteristics [19]. The 

decline in functional connectivity is associated with disease progression and is found 

typically in AD in the default mode network (DMN), linked to episodic memory processing 

[20] and covering hotspots of amyloid-β (Aβ) and tau pathology [21].  

 Graph theory is a framework used to characterize the behavior of complex brain 

networks [22]. Connectome-based analyses allow measuring network segregation (i.e. 

clustering coefficient, modularity and transitivity) and integration (i.e. global efficiency and 

degree). Global efficiency, modularity and transitivity relate to large-scale networks, whereas 

clustering coefficient and degree characterize network properties at a local level [23, 24]. On 

a nodal level, highly connected regions, referred to as hub regions, are of primary interest. 

Regions with a high number of connections can be detected by calculating the degree [25]. 

Previous studies in AD revealed decreased network segregation measures [24] and increased 

measures of network integration compared to controls [26]. Additionally, clustering 

coefficient and modularity are decreased in AD [27].  

 Recently, differences in structural connectivity [7] and cognitive performance [14] 

between different AD subtypes have been characterized. However, alterations in functional 

connectivity remain to be explored. Here, we aimed to explore heterogeneity in network 

properties in the DMN and other resting-state networks between distinct AD subtypes and to 

investigate how cognitive and AD biomarker differences are associated with these functional 

network alterations.  
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Methods and materials 

Data included in this study originate from datasets of two independent study cohorts. The 

first dataset was obtained from the AD Neuroimaging Initiative (ADNI) launched in October 

2004 (ClinicalTrials.gov IDs: NCT02854033, NCT01231971). The second dataset was 

obtained from the Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)-

Longitudinal Cognitive Impairment and Dementia Study (DELCODE), an observational 

brain imaging cohort (German Clinical Trials Register: DRKS00007966). Per ADNI and 

DELCODE protocols, all procedures performed in studies involving human participants were 

in accordance with the ethical standards of the institutional and/or national research 

committee. Experiments were undertaken with the understanding and written consent of each 

subject. All local institutional review boards and ethical committees approved the study 

protocol [28]. 

 

Participants 

The AD and control groups were defined considering Aβ status and clinical dementia rating 

(CDR) score. Participants were included based on the availability of T1-weighted structural 

MRI, resting-state functional MRI and Aβ status information.  

The participants in the ADNI dataset were recruited for the ADNI2, ADNI-go and ADNI3 

convenience cohorts, details about the general ADNI inclusion and exclusion criteria can be 

found in the ADNI procedures manual available online (https://adni.loni.usc.edu/wp-

content/uploads/2008/07/adni2-procedures-manual.pdf). Aβ-positivity in ADNI was defined 

according to established cut-points as CSF Aβ1-42 concentration<980 pg/mL [29], or 18F-

AV-45 or 18F-Florbetaben Aβ-PET normalized composite score with a cutoff>1.11 or>1.08 

standardized uptake value ratio (SUVR) respectively [30], resulting in the ADNI dataset of 

n=160. After quality assessment and preprocessing of the MRI data, n=9 participants did not 

https://www.drks.de/drks_web/setLocale_EN.do
https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf
https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf
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meet the predefined image quality criteria (for details section MRI preprocessing) and were 

excluded from the subsequent analyses, resulting in a final dataset of n=151 participants 

(mean age=75 years, 84 females, including n=121 Aβ-positive and clinical dementia rating 

(CDR)≥0.5 AD patients (mean age=75 years, 63 females) and n=30 Aβ-negative and CDR=0 

controls (mean age=77 years, 21 females).  

171 participants in the DELCODE dataset met the inclusion criteria. N=5 participants did not 

meet the predefined image quality criteria and were excluded from all further analyses, 

resulting in a final cohort of n=166 (mean age=72 years, 93 females). Aβ-positive 

participants with CSF Aβ1-42<496 pg/ml [31] and CDR≥0.5 were defined as AD (n=103, 

mean age=74 years, 57 females), whereas Aβ-negative participants were defined as healthy 

controls (HC) with CSF Aβ1-42>496 pg/ml and CDR=0 (n=63, mean age=69 years, 32 

females). 

 

MRI acquisition 

The subjects included in the present study were scanned at various sites with 3T MRI 

scanners manufactured by GE Healthcare (Chicago, Illinois, United States), Philips Medical 

Systems (Hamburg, Germany) or Siemens Healthineers (Erlangen, Germany). The 

Alzheimer's Disease Neuroimaging Initiative (ADNI) MRI protocol is reported elsewhere 

(http://adni.loni.usc.edu/methods/mri-tool/mri-acquisition/). DZNE-Longitudinal Cognitive 

Impairment and Dementia Study (DELCODE) MRI scanning was performed at nine different 

DZNE imaging sites on Siemens Healthineers 3T MRI scanners, using synchronized 

acquisition parameters. We included T1-weighted MPRAGE sequences (repetition time (TR), 

2500  ms; echo time (TE), 4.37  ms; flip angle (FA), 7 degrees; isotropic voxel size, 1 mm) in 

our analyses. FMRI imaging was performed using the following parameters: DELCODE: 180 

volumes; FoV, 224x224x165 mm; TR, 2580 ms; TE, 30 ms; FA, 80°; isotropic voxel size, 
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3.5 mm; 7 min 54 s and ADNI: 200 volumes; FoV, 220x220x160mm; TR, 3000 ms; TE, 30; 

FA=90°; isotropic voxel size: 3,4 mm; 10 min. 

 

MRI preprocessing 

Every scan was visually inspected by an experienced radiologist for completeness, cuts, 

subject motion and other artefacts (e.g., “blurring”, “echoes”, “ghosting”). Following this 

step, the image was classified as "usable, questionable, unusable". We included only images 

classified as usable in the analysis. 

Brain atrophy was analyzed using FreeSurfer version 6 (http://surfer.nmr.mgh.harvard.edu/). 

All T1-weighted images were processed in the FreeSurfer segmentation recon-all pipeline 

[32] Segmentations were visually checked for accuracy and corrected if necessary. 

 Functional connectivity analysis was performed using the CONN-fMRI Functional 

Connectivity Toolbox (V17, www.nitrc.org/projects/conn) and SPM 12 

(www.fil.ion.ucl.ac.uk/spm/). The default preprocessing pipeline for volume-based analyses 

was used, comprising realignment, slice-time correction, segmentation and structural and 

functional normalization, ART-based outlier detection and functional smoothing using a 6 

mm kernel (https://web.conn-toolbox.org/fmri-methods/preprocessing-pipeline). Temporal 

filtering was performed to remove physiological noise. Assessment of motion in both cohorts 

revealed comparable results (DELCODE: 0.01+-0.12 (79.6% match with null hypothesis; 

ADNI: 0.02+-0.12 (80.1% match with null hypothesis). (After preprocessing, region-of-

interest (ROI)-based intrinsic connectivity was obtained with bivariate correlation matrices in 

cortical and subcortical ROIs, using the multimodal Brainnetome (BN) atlas [33], registered 

to the functional image. Correlation coefficients were Fisher-r-to-z-transformed 

consecutively.  

 

http://www.nitrc.org/projects/conn
http://www.fil.ion.ucl.ac.uk/spm/
https://web.conn-toolbox.org/fmri-methods/preprocessing-pipeline
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AD atrophy subtype identification 

For subtype classification, individual cortical surfaces obtained from each participant’s T1-

weighted MRI using FreeSurfers recon-all were registered to the FreeSurfer standard subject 

template (fsaverage6) and resampled to 40,962 vertices for each hemisphere to account for 

inter-subject variability of brain shapes and size [13]. Subsequent analyses were performed 

using in-house MATLAB (The MathWorks, Inc.) scripts in both cohorts.  

 To obtain an atrophy z-score vector, representing the atrophy pattern of each AD 

subject, the mean cortical thickness value from every vertex in the AD subjects was 

subtracted from the cortical thickness values of every vertex in the controls divided by the 

standard deviation in both hemispheres. Atrophy z-score vectors were consecutively 

concatenated and a similarity matrix of correlation coefficients between the obtained atrophy 

z-score vectors of any two AD subjects was calculated.  

 To identify atrophy subtypes in the AD cohorts based on the correlation of atrophy 

pattern between any two subjects, an unsupervised cluster detection approach using the 

Louvain community analysis method implemented in the brain connectivity toolbox was 

applied [34]. This subtyping approach uses the similarity correlation matrix and has 

previously shown high reproducibility and strong associations with cognitive performance 

[13]. This unsupervised clustering approach is suggested to be less vulnerable to sampling 

bias compared to hierarchical clustering approaches. The outcomes in hierarchical clustering 

tend to cluster based on the overall similarity of the cortical thickness rather than cortical 

atrophy patterns so that the chosen approach is suggested to be more sensitive to cortical 

atrophy [13]. Additionally, the approach showed excellent reproducibility and the Louvain 

method was shown to be suitable for high-dimensional data [35].  

To determine the ideal cluster number, we tested three-cluster and four-cluster solutions 

where four-cluster solutions were generally more suitable to subtypes previously found in 

https://de.wikipedia.org/wiki/The_MathWorks
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neuroimaging datasets [7, 14, 36], with several studies report four subtypes in a recent review 

by Ferreira et al. [14, 15]. 

 

We modified the approach using a consensus community structure approach to obtain stable 

results through 1,000 iterations with a correction of individual-level modular decomposition 

[28]. The level of subtyping can be controlled by the gamma value, a resolution parameter of 

the Louvain community structure analysis controlling the number of clusters, with a smaller 

value resulting in a smaller number of subtypes [35]. The gamma value was controlled, 

obtaining subtyping results equivalent to previous imaging and postmortem studies [3, 6, 14]. 

 

Dice overlap 

To quantify the overlap of atrophic regions between the two datasets, we compared the 

regions after setting the threshold level of uncorrected log-p>1.31 (p<0.05) on vertex-wise 

overlay imaging data derived from the statistical comparison with controls. We calculated 

dice coefficients between atrophy subtypes from both datasets in MATLAB.  

 

Functional connectivity analysis 

We analyzed functional connectivity characteristics of the atrophy subtypes in seven cortical 

intrinsic functional connectivity networks [19]. Within each network, intra-network 

connectivity (INC) composite score was calculated by averaging the network ROIs (based on 

the cortical Brainnetome atlas parcellation) functional connectivity Fisher-r-to-z-transformed 

correlation values [37]. The ROIs with the nodes used for the functional network analysis are 

presented in Supplementary Figure 1 and Supplementary Table 2.  To investigate the 

global and local network properties and differences between the different subtypes in the 

resting-state brain networks, we performed a graph theory network analysis. An undirected 
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network was constructed from the functional connectivity correlation values with subsequent 

analysis of graph metrics comparing each subtype using permutation-based ANCOVA 

statistics with Benjamini and Hochberg false discover rate (FDR) correction to control for 

multiple comparisons in the GraphVar toolbox [38]. The following graph metrics were 

calculated on a global level: (i) global transitivity (referred to as global clustering 

coefficient), (ii) global efficiency, (iii) modularity using the Louvain method and (iv) global 

strength. On a local level (i) local efficiency, (ii) degree (iii) clustering coefficient, and (iv) 

betweenness centrality were investigated [34]. The visualization of the global and local 

network properties was obtained using ggplot2 in R (https://www.r-project.org/) and 

BrainNetViewer [39]. We showed our findings on the median threshold.  

 

Clinical characteristics and CSF biomarkers 

The severity of dementia symptoms was quantified using the CDR sum of the boxes (CDR-

SoB) score. The cognitive performance was assessed using established cognitive composite 

scores for memory (MEM) and executive functions (EXEC) in the DELCODE [31] and 

ADNI [40, 41] datasets. Additionally, the Mini-Mental-State Examination (MMSE) score is 

reported given its high relevance in everyday clinical practice. CSF biomarkers were assessed 

in both cohorts using established commercially available analysis kits, following standardized 

procedures [31]. The CSF concentrations in the ADNI cohort for Aβ-42, p-tau181 was 

quantified in aliquoted samples, analyzed using the electrochemiluminescence immunoassay 

(ECLIA) Elecsys on a fully automated Elecsys cobas e 601 instrument (Roche Diagnostics 

GmbH, Penzberg, Germany) using a single lot of each reagent for each of the 3 measured 

biomarkers. In the DELCODE cohort, V-PLEX Aβ Peptide Panel 1 (6E10) Kit (K15200E) 

and V-PLEX Human Total Tau Kit (K151LAE) (Meso Scale Diagnostics LLC, Rockville, 

https://www.r-project.org/
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MD, USA) and Innotest Phospho-Tau(181P) (81581; Fujirebio Germany GmbH, Hannover, 

Germany) were used. 

 

Statistical analysis 

Statistical differences between AD atrophy subtype groups and HC in each dataset were 

tested on cortical z-score maps using two-tailed, two-sample unpaired n=1,000 permutation-

based t-tests in FSL-PALM (Permutation Analysis of Linear Models)[42], applying 

Threshold Free Cluster Enhancement (TFCE) and controlling for family-wise error rate 

(FWE); additionally, uncorrected contrasts are reported (both p<0.05).  

 SPSS (IBM, v25) and R (https://www.r-project.org/) were used for statistical analyses. 

Subtype group differences in relevant confounding variables (age, gender, APOE genotype and 

educational years) were compared with Kruskal-Wallis-tests. We detected significant 

differences in relevant covariates between the subtype groups in the pooled dataset for 

educational years and gender but not for age or APOE genotype. All consequent subtype group 

comparisons were therefore adjusted for gender and educational years. All fcMRI analyses 

were adjusted to account for different imaging acquisition sites using several MRI vendors with 

harmonized protocols in different cohorts. Functional connectivity scores, neurocognitive 

scores and CSF biomarker scores were compared in the entire cohort as well as between 

subtypes using Analysis of Covariance (ANCOVA). Post-hoc pairwise comparisons were 

Bonferroni corrected as appropriate. Results were considered significant at p<0.05 (two-tailed). 

Deviation from normal distribution was assessed by visual inspection of the data distribution 

and Shapiro-Wilk-test. Deviations from the normality distribution were detected for the 

functional connectivity and CSF biomarker scores. We transformed these variables into normal 

scores of ranks using the Rankit`s method [43]. Cognitive composite scores and CSF 

https://www.r-project.org/
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biomarkers were z-transformed within each cohort to compare the results independent of the 

measuring scale. 

 Comparisons of network properties between the subtypes were performed in the 

GraphVar Toolbox [38] using non-parametric permutation tests at a range of network 

thresholds (min=0.1 to max=0.4) with a 0.02 interval. Non-parametric analyses were conducted 

testing against shuffled data with n=1,000 permutations. A median threshold of 0.24 was used 

for comparisons of network measures. There is currently a no broader consensus on what 

threshold should be reported in graph-based analyses [44]. Our decision to report a median 

threshold was based on the idea to provide the reader with the most representative number as 

an overview. A random networks/groups FDR correction for multiple permutation comparisons 

was used at p<0.05 (two-tailed) for global and nodal measures at various network densities.  

 

Data Availability Statement 

All ADNI data is deposited in a publicly accessible repository and can be accessed at 

adni.loni.usc.edu. For the DELCODE dataset, anonymized data analyzed in the current study 

will be made available upon reasonable request from qualified investigators. 
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Results 

Characteristics of the cohorts 

The characteristics of the ADNI and DELCODE cohorts are presented in Table 1. The AD 

participants in both cohorts demonstrated comparable sociodemographic and neurocognitive 

measures, except for years of education, with more years in ADNI. In DELCODE, controls 

were younger and included a lower proportion of female participants compared to ADNI 

controls.  

 

Atrophy pattern in AD subtypes 

In both datasets (DELCODE and ADNI), similar four subtypes were identified, including (i) 

a medio-temporal predominant subtype (S-MT); (ii) a limbic predominant subtype (S-L); (iii) 

a diffuse subtype (S-D); and (iv) a mild atrophy subtype, with relative parahippocampal 

sparing (S-MA). The differences between the four subtypes within the AD group and 

compared to the HC are shown in Figure 1A for the ADNI dataset and Figure 1B for the 

DELCODE dataset. S-MT showed atrophy mainly in the (medial) temporal lobe, while S-L 

had an atrophy pattern, including the cingulate cortex and parahippocampal brain areas. In 

contrast, S-D was associated with a diffuse atrophy pattern, including large areas of the 

neocortex comprising the parietal lobe. The S-MA subtype was characterized by patchy 

cortical atrophy with a relatively low degree of parahippocampal atrophy. Importantly, 

cortical atrophy in each of the four subtypes followed a similar pattern in both datasets, with 

overall more severe atrophy across all subtypes in DELCODE. The spatial overlap of the 

atrophy subtypes between the two datasets was evaluated using the dice coefficient (DCE), 

showing good overlap for S-MT (DCE=0.44), S-L (DCE=0.51) and S-D (DCE=0.64) and 

less pronounced overlap for S-MA (DCE=0.07), most likely explained by the patchy pattern 

with less atrophy overall. 
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Clinical, Cognitive and CSF biomarker differences between the atrophy subtypes 

Similar differences in clinical and cognitive scores and CSF biomarkers between the four 

subtypes were observed in both datasets. Dementia severity measured by CDR was highest in 

the S-MT and S-D subgroups with lower scores in S-L and S-MA and HC. Concordantly, 

cognitive performance measured by the MMSE was lowest in S-MT and S-D with higher 

scores in S-L and S-MA and HC (Table 2). Since the atrophy subtypes showed good overlap 

and similar clinical characteristics across DELCODE and ADNI, we pooled the participants 

in each sub-group across the datasets for all subsequent analyses as shown before [14].  

 ANCOVA test revealed significant differences between the subtypes and HC for 

MEM (p<0.001), EXEC (p<0.001), CSF t-tau (p<0.001) and p-tau181 (p<0.001) and Aβ1−42 

(p<0.001). For MEM, post-hoc pairwise comparisons showed lower z-scores in S-MT and S-

D compared to S-L and S-MA and HC. A similar pattern was found for EXEC, with lower z-

scores in S-MT and S-D compared to S-L and S-MA and HC. CSF t-tau was higher in S-MT 

and S-D compared to S-L and S-MA and HC; similar differences were also observed for p-

tau181 with higher z-scores in S-MT and S-D compared to S-L and S-MA and HC (Figure 

2A). APOE genotype did not differ between the subtypes. In the comparison between 

subtypes, hippocampal atrophy was most prominent in S-MT and S-D. Differences in 

participant’s characteristics, cognitive composite, hippocampal volume, and CSF biomarker 

z-scores between the subtypes are presented in Table 2. Independent analysis results for both 

cohorts are shown in Supplementary Table 1.  

 

Intra-network resting-state functional connectivity differences  

Following FDR correction for multiple comparisons assessing the INC in seven resting state 

networks, differences between the subtypes and HC in the DMN (p=0.035), LN (p=0.035), 
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dorsal attention network (DAN) (p=0.035) and visual network (VN) (p=0.007) but not in the 

frontoparietal network (CON) (p=0.28), salience network (SAL) (p=0.18), somatosensory 

network (SMN) (p=0.89) and were detected using ANCOVA test. Subsequent post-hoc 

comparisons revealed a higher INC of the DMN in S-L vs. S-MT (p=0.01) and S-L vs. S-D 

(p<0.001) and S-L vs. S-MA (p<0.02), higher INC in the DAN in HC vs. S-MT (p=0.003), 

HC vs. S-D (p=0.001) and HC vs. S-MA (p=0.04). In the LN, higher INC was revealed in S-

MT vs. S-D (p=0.03) and S-L vs. S-MA (p=0.03) and HC vs. S-MA (p=0.01). In the VN  

INC was higher in HC vs. S-MT (p<0.001), HC vs. S-D (p=0.001), S-L vs. S-MT (p=0.01) 

and S-L vs. S-D (p=0.04).  Z-score differences between the subtypes and HC in the pooled 

dataset are presented in Figure 2B and Table 3. INC differences between HC and subtypes 

for both cohorts independently are shown in Supplementary Table 3 and Supplementary 

Figure 2. 

 

AD subtype characteristics in global network analysis  

In a graph theory analysis of global network properties on whole-brain level, significant 

differences between the subtypes in global efficiency (p<0.001), strength (p<0.001) and 

transitivity (p<0.001), but not in modularity (p=0.68) were revealed. On a network level, 

DMN but not LN showed significant differences between the subtypes for global efficiency 

(p<0.001), strength (p<0.001) and transitivity (p<0.006), but not modularity (p=0.61). 

 In post-hoc pairwise comparisons on a global level, S-L showed higher global 

efficiency and transitivity vs. S-MT, S-D. Both were lower in S-MT than in S-MA. Moreover, 

S-L exhibit lower transitivity vs. S-MA, and S-MT lower global efficiency than S-D. Global 

strength was lowest in S-MT and highest in S-L, with S-L significantly higher than S-MT and 

S-D and S-MA higher than S-MT, but lower than S-L. 
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Within the DMN, S-L showed the highest global efficiency vs. S-MT, S-D and S-MA. 

Global efficiency was higher in S-MA than in S-MT. Additionally, S-L had higher transitivity 

in comparison with S-MT and higher transitivity vs. S-D and S-MA. Again, global strength 

was lowest in S-MT and highest in S-L, with S-L significantly higher than S-MT and S-D 

and S-MA. (Table 4 and Figure 3).  

 

AD subtype characteristics in nodal network analysis  

Addressing the main research question of this study (i.e., how local changes in network 

properties of subtypes are related to characteristics of atrophy patterns), we calculated the 

nodal measures of betweenness centrality, degree, clustering coefficient and local efficiency 

on whole-brain level (median threshold=0.24). Differences in degree (a measure of 

integration and one of the most important measures of network structure) are shown in 

Figure 3. The S-L subtype showed a reduced degree in the cingulate gyrus vs. S-MT, S-D 

and S-MA. S-MT exhibited a reduced degree in the caudal area of the right parietal and left 

temporal lobe vs. S-L. Clustering coefficient (indicating resilience against random network 

damage) was reduced in S-MT vs. S-L in multiple ROIs comprising the frontal, temporal, 

parietal and occipital lobe. A similar pattern, with pronounced changes in lateral temporal 

and frontal regions, comprising fewer significant ROIs was observed comparing S-D and S-

L. S-MA showed reduced clustering coefficient in frontal and temporal regions vs. S-L. 

Significant differences between the subtypes in clustering coefficient are shown in Figure 3.  

 

 To compare the differences of nodal measures within RS networks between the 

subtypes, we selected the nodes belonging to the DMN, LN and VN, as these networks show 

significant differences in functional connectivity between the subtypes. Within nodes of the 

DMN, differences between the subtypes were found for local efficiency, comprising multiple 
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ROIs in the frontal, temporal and parietal lobe as well as cingulate gyrus and precuneus 

reduced in S-L and S-MA compared to S-MT with a similar pattern in S-L vs. S-D. Local 

efficiency was reduced in the frontal, parietal and temporal lobe, including the precuneus in 

S-MA vs. S-L. Clustering coefficient was significantly lower in S-MT and S-D vs. S-L in the 

frontal and temporal lobe, the gyrus cinguli and the precuneus. However, clustering 

coefficient in S-L differs with S-MA in the frontal and temporal lobes. Degree was lower in 

the posterior temporal lobe in S-MT vs. S-L and S-MA. Betweenness centrality was reduced 

in the cingulate gyrus in S-L vs. S-MT. Nodes belonging to the LN showed significant 

reductions in local efficiency in the frontal and temporal lobe and the fusiform and 

parahippocampal gyrus. Nodes belonging to the VN showed in S-MT vs. S-MA reduced local 

efficiency but increased local efficiency in S-L vs. S-D in several regions. Clustering 

coefficient was reduced in S-MT vs. S-L, comprising mainly parietal and occipital lobes as 

well as fusiform, parahippocampal and cingulate gyri; but increased in S-L vs. S-D in 

parahippocampal and cingulate gyri.  Results of nodal graph measures on a network level for 

the DMN, LN and VN are summarized in Table 5.  

 



Rauchmann et al., 

 

 

19 

Discussion 

Substantial differences between individual AD patients can exist on clinical, cognitive and 

biomarker levels. Only recently, the unsupervised classification of atrophy patterns emerged 

as an approach allowing to distinguish separate AD subtypes with distinct cognitive and 

biomarker profiles [14]. However, until now, there was no evidence on brain functional 

network differences between the subtypes, limiting conclusions about their functional 

relevance. We addressed this key question by analyzing differences in resting-state functional 

connectivity networks and graph theory-based brain network measures on a global and nodal 

level. In addition, we explored biomarker and cognitive differences between atrophy subtypes 

in two independent datasets from the prospective DELCODE and ADNI cohorts.  

 The main findings of our study are: (i) in line with previous research, using an 

unsupervised similarity-based clustering algorithm, we identified four distinct subtypes in 

two independent datasets exhibiting similar brain atrophy patterns as well as clinical and 

cognitive characteristics; (ii) INC exhibit a heterogeneous alteration pattern for the different 

subtypes compared among each other and to HC, with district INC reductions in S-MT and S-

D and most deviant results in the S-L in most RS networks (iii) the S-MT, S-D and S-MA 

subtypes showed reduced global network efficiency compared to the S-L subtype; (iv) on a 

nodal level, network analysis revealed reduced degree and clustering coefficient in regions 

highly overlapping with the atrophy pattern of the particular subtype; and (v) CSF biomarkers 

were substantially more pathological in all subgroups compared to HC, among subgroups S-L 

exhibited the lowest tau elevations. (vii) Cognitive scores were reduced in all subgroups 

compared to HC, with S-MT and S-D revealing pronounced descent with a lesser degree in 

LN and S-MA. 

 To the best of our knowledge, this is the first study to assess functional network 

connectivity changes between different atrophy subtypes in AD. We report differences 
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between subtypes for INC in the DMN, VN and the LN. Previous research described the 

DMN as one of the networks most vulnerable to degeneration in AD [20, 21]. A study 

comparing multiple imaging biomarkers and intrinsic functional connectivity networks in AD 

demonstrated substantial overlap between atrophic changes and INC in the anterior LN 

followed by the DMN [45].  

 Considering the atrophy pattern, clinical and neurocognitive scores and CSF 

biomarkers using a two-dimensional framework including typicality and severity, S-MT and 

S-D can be characterized along the severity dimension, whereas S-L and S-MA appear to be 

different AD entities along the typicality dimension, exhibiting divergent network features 

with smaller cognitive differences [15]. The pattern of INC changes between the subtypes 

accordingly suggests advanced network degeneration within the DMN in S-MT and S-D 

along the severity dimension. The S-L subtype, however, exhibits the most deviant alteration 

pattern in INC over several resting-state networks, including the DMN. Compared to healthy 

controls, an increased INC was detected in the DMN. Interestingly, the S-MA subtype 

exhibits a decrease of INC in the LN and DAN compared to healthy controls, a distinct 

elevation of tau biomarkers and hippocampal atrophy despite very limited cortical atrophy 

and significant but modest cognitive changes. Atrophy patterns and functional connectivity 

changes are related, but as functional connectivity reflects the correlation of BOLD 

fluctuations between regions not necessarily directly connected by structural tracts, the 

resulting changes in functional connectivity are not identical to atrophy, emphasizing the 

need to study both variables to gain a better characterization of the derived subtypes. 

All atrophy subtypes show some limbic involvement in the cortical atrophy pattern 

when compared to HC, but not when compared to each other. A similar atrophy pattern has 

been found in a recent publication in prodromal and early AD patients, where limbic 

involvement was also revealed for all subtypes vs. HC but not when comparing the subtypes 
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with each other [14]. Limbic structures are reported to be involved in tau pathology early in 

the disease [46]. In PET studies, severe hypometabolism was reported in AD and MCI 

patients in a network comprising structures of the limbic system, including hippocampus, 

thalamus and the posterior cingulate cortex [47]. These findings emphasize the importance of 

structures of the limbic systems and the associated limbic network system. Interestingly, the 

limbic atrophy subtype, despite pronounced atrophy in the limbic system, shows higher INC 

in the DMN and LN compared with HC, suggesting that atrophy is not directly correlated 

with functional connectivity on the network level. In synopsis with the CSF biomarker 

results, it appears that the moderate changes in cognition in S-L might be mainly associated 

with changes in INC and point to a significant impact of network disturbances over 

neurodegeneration traits in this subtype. 

 Differences between the four subtypes were consistently present on measures of 

global network properties. Our results suggest that measures of global network integration, 

most importantly global efficiency, are reduced in the S-MT and S-D subtypes along the 

severity dimension and strongly associated with cognitive performance, in line with the well-

studied disconnection syndrome in AD [48]. Differences in cognitive performance between 

the subtypes were previously shown [49]. In comparison, the S-L, and to a lesser extent the 

S-MT, subtypes showed less severe disconnectivity on a global network level in conjunction 

with pronounced network changes on a nodal level (degree), suggesting a more localized 

underlying network pathology in these subtypes.  

 Nodal network changes in graph theory analysis showed a noticeable spatial overlap 

with the characteristic atrophy pattern of the corresponding subtype as measured by degree, 

expressing the number of links connected to a node as a reflection of the importance of a 

particular node in the network [34]. In contrast, clustering coefficient, a measure of the extent 

of the local density or cliquishness of a network, was mainly reduced on a nodal level in the 
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S-MT and S-D subtypes, following a typical distribution pattern of neurodegeneration in 

clinical and prodromal AD [50].  

 Even though the S-MA subtype exhibits a pattern of sparse atrophy with better 

cognitive and clinical scores compared to the other subtypes, INC was reduced to a 

comparable degree as in S-MT and S-D. Additionally, on a nodal level clustering coefficient 

was decreased in frontal and temporal regions, and local efficiency was reduced in areas 

belonging to the DMN. These changes on a local level might reflect ongoing pathological 

changes in the absence of clinical or neurocognitive symptoms. Compared to S-L, S-MA 

demonstrates no difference in Aβ but increased CSF t-tau and p-tau levels. Therefore, 

patients in the S-MA subgroup may have lower cognitive reserve [8] and be more likely to 

express AD pathology as network disruptions. Previously, the minimal atrophy pattern was 

shown to be associated with reduced metabolism in the parietal cortex [51] and a higher rate 

of cerebral amyloid angiopathy [52], causing network disruptions. Consistent with this 

finding, we observed a locally reduced local efficiency in this area, accompanied by network 

disruption in the DAN and LN. High vulnerability within nodes of the DMN and other brain 

network regions in structural graph theory analysis in the S-MA subtype was previously 

demonstrated [7]. 

Compared with results from the literature, this study did not show differences between 

subtypes and HC in the DMN. In numbers, S-L showed increased INC, and in contrast to the 

other subtypes, decreased INC compared to HC. We speculate that It is possible that the 

results of the comparison in DMN functional connectivity between controls and AD patients 

might vary depending on the proportion of S-L subtype in a particular cohort. Another factor 

that needs to be considered is that the selected patients represent a spectrum of AD patients 

included MCI and AD participants. A recent meta-analysis shows that depending on the 

clinical disease stage of the disease, hyper- or hypoconnectivity can occur in the DMN [53]. 
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The question of how differences in neuropathology among subtypes affect INC changes 

depending on the AD stage should be addressed in further research. 

 There are potential limitations of our study. First, pathological data to verify the 

clinical diagnoses were not available; however, we selectively included participants in the 

AD groups of both datasets following a biomarker-based diagnostic scheme including only 

Aβ-positive individuals with CDR≥0.5, according to the ATN classification system following 

the recommendations of the NIA-AA Research Framework [16], minimizing heterogeneity 

and potential misdiagnosis. Second, the dice overlap in the minimal atrophy subtype was 

comparatively low; this can be partly explained by the low number of vertices with reduced 

thickness in participants belonging to this group with a high probability of unequal 

distribution, although the clinical and neurocognitive scores showed high similarity. Third, 

the atrophy similarity clustering method could detect clinical AD stages rather than distinct 

subtypes. Indeed, this is likely the case for the S-MA and the S-D subtypes, however, the S-L 

and the S-MA subtypes exhibit aberrant network properties and CSF biomarker 

concentrations and are most likely entities along the typicality and not the severity dimension. 

Future investigations should consider tau PET as an additional imaging parameter to gain 

important information about spatial associations between tau distribution and network 

degeneration particularly in the S-MA subtype. Finally, the controls in the DELCODE dataset 

were younger compared to the AD patients, which may have resulted in more severe atrophy 

measures in this cohort; however, it is unlikely that this difference affected the resulting 

atrophy patterns and therefore the main results of the study. 

 In conclusion, we demonstrate a robust detection of different AD subtypes using a 

similarity-based clustering approach. These subtypes show distinct differences in functional 

connectivity networks and network properties on the local and global levels, accompanied by 

CSF biomarker and cognitive differences. Our study contributes toward a better 
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understanding of heterogeneity in AD, with important ramifications for a more individualized 

approach to diagnosis and treatment. A better characterization of the heterogeneity of 

functional connectivity changes in AD subtypes lays the foundation for advanced 

neuromodulatory non-invasive brain stimulation, pharmacological treatment or tailored 

cognitive interventions aimed at modifying functional connectivity networks. Known 

differences in patterns of network degeneration may lead to a better-informed, individualized 

treatment strategy. Follow-up studies should address the longitudinal consequences of the 

identified heterogeneity. 
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Tables 

Table 1. Characteristics of the two study cohorts (ADNI and DELCODE). aKruskal-Wallis-test; bChi-squared-test; p-value of differences 

between the AD groups in both datasets. cMissing data for n=4 participants. dMissing data for n=1 participant. 

 DELCODE ADNI 

 AD (N=103) HC (N=63) AD (N=121) HC (N=30) p between AD 

groups 

p between 

HC groups 

Age, mean (SD) 74 (6) 69 (5) 75 (8) 77 (8) 0.33a <0.001a 

Sex, no. female %, (SD) 57 (55) 32 (49) 63 (52) 21 (70) 0.72b <0.001b 

Years of education, mean (SD) 14 (3) 14 (3) 16 (2) 16 (3) <0.001a 0.07a 

MMSE, mean (SD) 26 (3) 29 (1) 25 (4) 29 (1)d 0.36a 0.06a 

CDR-SoB, mean (SD) 2.7 (2.2) 0 3.2 (2.6) 0 0.06a 1a 

APOE, no. (%) ε4 allele carrier 

(SD) 
66 (64)d 9 (14) 68 (56)c 6 (21) 0.39b 0.64b 

Abbreviations: AD, Alzheimer’s disease; HC, healthy controls; CDR-SoB, Clinical Dementia Rating Sum of the Boxes; MMSE, Mini Mental 

State Examination; DELCODE, DZNE-Longitudinal Cognitive Impairment and Dementia Study; ADNI, Alzheimer's Disease Neuroimaging 

Initiative; APOE, apolipoprotein ε4 genotype. 
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Table 2. Differences in sociodemographic characteristics, APOE genotype, Alzheimer’s disease severity, cognitive performance and CSF 

biomarker levels between the atrophy subtypes in the pooled dataset. Analysis of covariance with adjustments for age, sex, sites, APOE 

genotype and years of education, post-hoc pairwise comparisons Bonferroni corrected; dChi-squared test; eAnalysis of covariance with 

adjustments for age, sex, APOE genotype, sites and years of education; f CSF biomarker data in n=19 participants were missing (n=8 in S-MT, 

n=3 in S-L, n=6 in S-D, and n=2 in S-MA). *Significant difference p<0.05 in post-hoc tests.  

 HC 

(n=93

) 

S-MT 

(n=57) 

S-L 

(n=41) 

S-D 

(n=78) 

S-MA 

(n=48) 

p-value 

(overall) 

S-MT 

vs. HC 

S-L vs. 

HC 

S-D vs. 

HC 

S-MA 

vs. HC 

S-MT 

vs. S-L 

  

S-

MT  

vs. 

S-D 

S-MT  

vs. S-

MA 

S-L  

vs. S-D 

S-L  

vs. S-

MA 

S-D  

vs. S-

MA 

       Post hoc comparison p-value 

Age, mean 

(SD)b  
72 (7) 73 (8) 75 (6) 75 (6) 74 (7) 0.01 

0.54 0.02* 0.01* 0.06 

0.3 0.17 0.5 0.7 0.56 0.9 

Sex, no. 

female (%)c 
53 

(57) 

40 

(70.2) 

18 

(43.9) 

39 

(50) 

23 

(47.9) 0.052 

- - - - 

- - - - - - 

Years of 

education, 

mean (SD)b 15 (3) 14 (3) 15 (3) 15 (3) 16 (3) <0.001 

0.01* 0.45 0.47 0.01* 

0.5 0.2 

<0.001

* 0.6 0.002* 0.002* 

APOE, no. 

(%)c ε4 

allele 

carriera 
15 

(16) 

32 

(60) 

21 

(53) 

50 

(64) 31 (65) <0.001 

<0.001

* 

<0.001

* 

<0.001

* 

<0.001

* 

0.41 0.65 0.65 0.19 0.22 0.95 

CDR-SoB, 

mean (SD)e 0 (0) 

3.39 

(3.02) 

2.1 

(1.78) 

3.66 

(2.46) 

2.02 

(1.52) <0.001 

<0.001

* 

<0.001

* 

<0.001

* 

<0.001

* 0.11 

0.01

* 0.12 0.01* 0.93 0.01* 

MMSE, 

mean (SD)e 29 (1) 

24.84 

(4.3) 

26.95 

(2.65) 

24.44 

(4.35) 

27.48 

(2.44) <0.001 

<0.001

* 

<0.001

* 

<0.001

* 

<0.001

* 0.03* 0.71 0.002* 0.01* 0.4 

<0.001

* 

CSF 

Aβ1−42, z-

scoref (SD)e 0 (1) 

-2.19 

(0.42) 

-2.09 

(0.47) 

-2.11 

(0.40) 

-2.00 

(0.52) <0.001 

<0.001

* 

<0.001

* 

<0.001

* 

<0.001

* 

0.51 0.4 0.18 0.93 0.5 0.49 
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CSF p-

tau181, z-

scoref (SD)e 

0 (1) 3.28 

(2.96) 

1.23 

(2.17) 

4.50 

(3.96) 

4.40 

(5.01) 

<0.001 <0.001

* 

0.02* <0.001

* 

<0.001

* 

0.01* 0.06 0.37 <0.001

* 

<0.001

* 

0.4 

CSF t-tau, 

z-scoref 

(SD)e 

0 (1) 2.83 

(2.67) 

1.57 

(2.44) 

4.49 

(4.13) 

4.22 

(4.76) 

<0.001* 0.001* 0.09 <0.001

* 

<0.001

* 

0.11 0.01

* 

0.21 <0.001

* 

0.01* 0.25 

Mean 

Hippocamp

al volume, 

z-score 

(SD)e 

0 (1) -0.90 

(1.98) 

0.24 

(2.10) 

-0.48 

(2.05) 

-0.78 

(1.25) 

0.001* 0.03* 0.32 0.12 0.001* 0.01* 0.47 0.24 0.02* <0.001

* 

0.047* 

MEM,  z-

score (SD)e 

0 (1) -4.22 

(2.29) 

-2.76 

(1.85) 

-3.75 

(2.17) 

-1.56 

(1.68) 

<0.001* <0.001

* 

<0.001

* 

<0.001

* 

<0.001

* 

<0.001

* 

0.16 <0.001

* 

0.01* 0.3 <0.001

* 

EXEC,  z-

score (SD)e 

0 (1) -2.94 

(1.75) 

-2.19 

(1.54) 

-2.83 

(1.71) 

-1.11 

(1.51) 

<0.001* <0.001

* 

<0.001

* 

<0.001

* 

<0.001

* 

0.02* 0.94 <0.001

* 

0.01* 0.01* <0.001 

Abbreviations: HC, healthy controls; S-MT, medio-temporal predominant subtype; S-L, limbic predominant subtype; S-D, diffuse subtype; S-

MA, mild atrophy subtype; CDR-SoB, Clinical Dementia Rating Sum of the Boxes; MMSE, Mini Mental State Examination; MEM, composite 

score for memory domain; EXEC, composite score for executive function domain; CSF, Cerebrospinal fluid; Aβ, amyloid β; p-tau, 

phosphorylated-tau; t-tau, total-tau; APOE, apolipoprotein ε4 genotype. 
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Table 3. Adjusted group means of intra-network connectivity scores of the pooled dataset. ˠp<0.05 in Analysis of covariance -with adjustments 

for age, sex, APOE genotype and years of education - between any atrophy subgroup DELCODE vs ADNI. 

RSN HC S-MT S-L S-D S-MA   S-MT vs. 

HC 

S-L vs. 

HC 

S-D vs. 

HC 

S-MA vs. 

HC 

S-MT vs. 

S-L 

S-MT vs. 

S-D 

S-MT vs. 

S-MA 

S-L vs. 

S-D 

S-L vs. 

S-MA 

S-D vs. 

S-MA  
Mean (SE) P 

(overall) 

P FDR 

corrected  

P post hoc comparisons  

DMN -0.01 

(0.11) 

-0.18 

(0.14) 

0.38 

(0.16) 

-0.27 

(0.12) 

-0.12 

(0.15) 

0.02* 0.035* 0.36 0.054 0.11 0.57 0.01* 0.58 0.78 <0.001* 0.02* 0.40 

DAN 0.01 

(0.12) 

-0.58 

(0.15) 

-0.37 

(0.17) 

-0.58 

(0.12)ˠ 
-0.42 

(0.16) 

0.01* 0.035* 0.003* 0.07 0.001* 0.04* 0.36 1.00 0.48 0.32 0.83 0.43 

CON -0.06 

(0.12) 

-0.24 

(0.15) 

0.25 

(0.17) 

-0.16 

(0.12) 

-0.09 

(0.16) 

0.24 0.28 0.33 0.15 0.55 0.88 n.a. n.a. n.a. n.a. n.a. n.a. 

SAL -0.02 

(0.14) 

0.12 

(0.18) 

0.53 

(0.20) 

0.13 

(0.15) 

0.47 

(0.19) 

0.13 0.18 0.57 0.03* 0.51 0.05 n.a. n.a. n.a. n.a. n.a. n.a. 

LN -0.04 

(0.10) 

-0.10 

(0.13) 

0.07 

(0.15) 

-0.32 

(0.11) 

-0.52 

(0.14) 

0.02* 0.035* 0.76 0.53 0.08 0.01* 0.18 0.03* 0.53 0.40 0.03* 0.25 

VN 0.02 

(0.12) 

-0.74 

(0.14) 

-0.14 

(0.16) 

-0.55 

(0.12) 

-0.32 

(0.15)ˠ 
<0.001* 0.007* <0.001* 0.41 0.001* 0.08 0.01* 0.30 0.05 0.04* 0.42 0.24 

SMN -0.06 

(0.10) 

-0.02 

(0.13) 

-0.03 

(0.15) 

0.04 

(0.11) 

-0.13 

(0.14) 

0.89 0.89 0.78 0.84 0.49 0.72 n.a. n.a. n.a. n.a. n.a. n.a. 

Abbreviations: RSN, Resting-state Network; DMN: Default-mode network, DAN, dorsal attention network; CON, frontoparietal network; SAL, 

salience network; LN: Limbic network; VN, visual network; SMN, sensorimotor network; HC, healthy controls; S-MT, medio-temporal 

predominant subtype; S-L, limbic predominant subtype; S-D, diffuse subtype; S-MA, mild atrophy subtype *two-tailed p<0.05. 
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Table 4. Adjusted group means of graph theory derived global network properties on a whole brain level and within the default mode network, 

the limbic network, and visual network. 

Group 

means 

 S-MT S-L S-D S-MA P (overall) S-MT vs. 

S-L 

S-MT vs. 

S-D 

S-MT vs. 

S-MA 

S-L vs. 

S-D 

S-L vs. 

S-MA 

S-D vs. S-

MA 

Global 

network 

Efficiency 0.23 0.26 0.24 0.25 <0.001* <0.001* 0.02* <0.001* <0.001* 0.06 0.1 

Modularity 0.4 0.4 0.4 0.4 0.68 - - - - - - 

Strength 5266 6130 5541 5745 <0.001* <0.001* 0.05 0.002* 0.001* 0.03* 0.18 

Transitivity 0.21 0.25 0.22 0.23 <0.001* <0.001* 0.11 0.04* <0.001* 0.01* 0.46 

Within 

default mode 

network 

Efficiency 0.3 0.34 0.31 0.32 <0.001* <0.001* 0.17 0.02* 0.001* 0.03* 0.21 

Modularity 0.31 0.29 0.31 0.31 0.61 - - - - - - 

Strength 199 225 203 207 <0.001* <0.001* 0.41 0.24 <0.001* 0.006* 0.56 

Transitivity 0.46 0.52 0.47 0.47 0.006* 0.004* 0.84 0.74 0.001* 0.001* 0.86 

Within limbic 

network 

Efficiency 0.21 0.22 0.21 0.21 0.25 - - - - - - 

Modularity 0.37 0.36 0.38 0.37 0.30 - - - - - - 

Strength 68 73 68 65 0.12 - - - - - - 

Transitivity 0.25 0.27 0.24 0.22 0.14 - - - - - - 

Within visual 

network 

Efficiency 0.28 0.31 0.3 0.35 0.08 - - - - - - 

Modularity 0.33 0.34 0.33 0.3 0.28 - - - - - - 

Strength 160 175 172 167 0.16 - - - - - - 

Transitivity 0.39 0.43 0.42 0.4 0.33 - - - - - - 

Abbreviations: S-MT, medio-temporal predominant subtype; S-L, limbic predominant subtype; S-D, diffuse subtype; S-MA, mild atrophy 

subtype; *two-tailed permutation-based FDR-corrected p<0.05. 
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Table 5. Summary of changes in nodal topography in regions of interest (ROIs) associated with the default mode network (top) and limbic 

network (bottom) at a median threshold of 0.24. Permutation FDR p<0.05 (two-tailed). 

 
Betweenness 

centrality 

Degree Clustering coefficient Local Efficiency 

DMN     

S-MT vs. S-L CG ↑ pSTS ↓ SFG, MFG, IFG, OrG, STG, 

MTG, ITG, PCun, CG ↓ 

SFG, MFG, IFG, OrG, STG, MTG, ITG, pSTS,IPL, PCun, CG ↓ 

S-MT vs. S-D - - - 
 

S-MT vs. S-MA - - - IFG, OrG, STG, MTG, pSTS, IPL, CG ↑ 

S-L vs. S-D - - SFG, IFG, OrG, MTG, ITG, 

PCun, CG ↑ 

SFG, MFG, IFG, OrG, STG, MTG, ITG, pSTS, IPL, PCun, CG ↑ 

S-L vs. S-MA - - SFG, OrG, MTG, ITG ↑ SFG, IFG, OrG, MTG, ITG, PCun ↑ 

S-D vs. S-MA - - - - 

LN     

S-MT vs. S-L - - MFG, OrG, ITG ↓ MFG, OrG, STG, ITG, FuG, PhG  ↓ 

S-MT vs. S-D - - - - 

S-MT vs. S-MA - - - STG, ITG, PhG ↓ 

S-L vs. S-D - - MFG, OrG, ITG ↑ MFG, OrG, STG, ITG, FuG, PhG  ↑ 

S-L vs. S-MA - - - - 

S-D vs. S-MA - - - - 

VN     

S-MT vs. S-L - - FuG, PhG, IPL, CG, LOcC  ↓ - 

S-MT vs. S-D - - - - 

S-MT vs. S-MA - - - FuG, PhG, IPL, CG, MVOcC, LOcC  ↓ 

S-L vs. S-D - - PhG, CG  ↑ FuG, PhG, IPL, PCun, CG, MVOcC, LOcC  ↑ 

S-L vs. S-MA - - - - 

S-D vs. S-MA - - - - 
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Abbreviations: S-MT-S-MA, Subtype 1-4; DMN, Default Mode Network; LN, Limbic Network; VN, visual network; SFG, Superior Frontal 

Gyrus; MFG, Medial Frontal Gyrus; IFG, Inferior Frontal Gyrus; OrG, Orbitofrontal Gyrus; STG, Superior Temporal Gyrus; MTG, Medial 

Temporal Gyrus; ITG, Inferior Temporal Gyrus; pSTS, posterior Superior Temporal Sulcus; PCun, Precuneus; CG, Cingulate Gyrus; FuG, 

Fusiform Gyrus; PhG, Parahippocampal Gyrus IPL, Inferior Parietal Lobule; MVOcC, Medial Ventral Occipital Cortex; LOcC, Lateral 

Occipital Cortex. 
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Figure legends 

Figure. 1. Atrophy regions in Alzheimer’s disease subtypes vs. healthy control subjects 

across atrophy subtypes in the ADNI (A) and DELCODE (B) dataset. *uncorrected p<0.05; 

**FWE-corrected p<0.05.  

Abbreviations: S-MT, medio-temporal predominant subtype; S-L, limbic predominant 

subtype; S-D, diffuse subtype; S-MA, mild atrophy subtype. 
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Figure 2. A) Boxplots of the mean cognitive composite and cerebrospinal fluid biomarker 

normalized scores +/- 95% confidence interval (CI) (in z-scores). B) Spider plot of the 

estimated mean z-scores of intra-network connectivity in the resting-state networks. Z-scores 

of the healthy controls are shown for comparison. Lines show significantly differing 

subgroups in post-hoc tests when two-tailed-p<0.05. Abbreviations: MEM, memory 

composite score; EXEC, executive functioning composite score; Aβ42, amyloid-β42; tTau; 

total tau; pTau; phosphorylated tau; INC, intrinsic network connectivity; DMN: Default-

mode network, DAN, dorsal attention network; CON, frontoparietal network;  SAL, salience 

network; LN: Limbic network; VN, visual network; SMN, sensorimotor network; HC, 

healthy controls; S-MT, medio-temporal predominant subtype; S-L, limbic predominant 

subtype; S-D, diffuse subtype; S-MA, mild atrophy subtype; Sig., Significant; *p 

(overall)<0.05. 
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Figure 3. Differences between subtypes in degree and clustering coefficient in Brainnetome 

atlas derived regions of interest. Permutation based FDR-corrected two-tailed p<0.05 are 

shown.  

Abbreviations: S-M, medio-temporal predominant subtype; S-L, limbic predominant subtype; 

S-D, diffuse subtype; S-MA, mild atrophy subtype. 

  

 


