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The kidney is an organ of key relevance to blood pressure (BP) regulation, 
hypertension and antihypertensive treatment. However, genetically mediated renal 
mechanisms underlying susceptibility to hypertension remain poorly understood. We 
integrated genotype, gene expression, alternative splicing and DNA methylation 
profiles of up to 430 human kidneys to characterize the effects of BP index variants 
from genome-wide association studies (GWAS) on renal transcriptome and 
epigenome. We uncovered kidney targets for 479 (58.3%) BP-GWAS variants and 
paired 49 BP-GWAS kidney genes with 210 licensed drugs. Our colocalization and 
Mendelian randomization analyses identified 179 unique kidney genes with evidence 
of putatively causal effects on BP. Through Mendelian randomization, we also 
uncovered effects of BP on renal outcomes commonly affecting hypertensive 
patients. Collectively, our studies identified genetic variants, kidney genes, molecular 
mechanisms and biological pathways of key relevance to the genetic regulation of BP 
and inherited susceptibility to hypertension. 
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Persistently elevated blood pressure (BP)—hypertension—is one of the most common 
complex human diseases1. Hypertension is a key driver of coronary heart disease (CHD) 
and stroke and the single most important cause of disability and premature death 
worldwide2. The individual predisposition to hypertension and its main cardiovascular 
complications have a strong genetic component encapsulated (at least in part) in variants 
uncovered by genome-wide association studies (GWAS)3-6. While the chromosomal 
landscape of >800 BP-GWAS loci is very well characterized, the identity of mediator genes 
and the downstream biological pathways responsible for these associations remain elusive. 
The majority of single nucleotide polymorphisms (SNPs) uncovered by GWAS map to non-
coding segments of DNA of no apparent biological relevance to BP regulation6. Some of 
these variants operate as expression quantitative trait loci (eQTLs)4,5, but it is becoming 
increasingly clear that other molecular mechanisms (i.e. DNA methylation or alternative 
splicing) not captured by cis-eQTL effects may explain a number of GWAS signals7-11. 
However, the relevance of these mechanisms to BP and hypertension has not been 
extensively examined within the most relevant human tissues, i.e. the kidney. 

Here we have established one of the largest repositories of human kidneys using 
samples collected after elective nephrectomies or prior to renal transplantation12-14. Through 
the integrated analysis of their genome, transcriptome, and	DNA methylome, we uncover 
connections between 1,038 kidney genes and 479 signals of associations to BP from 
previous GWAS. Using variants implicated in these analyses, we also demonstrate effects of 
BP on several kidney outcomes known as complications of human hypertension. We further 
show that some kidney gene targets of BP-GWAS variants are druggable, and we highlight 
those of potential relevance to treatment of hypertension. Finally, our analyses identify 179 
kidney genes with putatively causal effect on BP, and map many of these genes onto novel 
regulatory pathways and biological processes. 
 
Results 
Kidney cis-expression quantitative trait locus analysis. Through integration of matched 
kidney genomes and transcriptomes from 430 white-European individuals (Supplementary 
Table 1), we generated information on 6,461,055 SNPs and 18,201 kidney genes. After 
correction for multiple testing, 903,870 genetic variants had at least one expression target in 
cis and 7,348 kidney genes had at least one SNP partner (kidney eSNPs and kidney 
eGenes, respectively) with 1,464,131 eSNP-eGene pairs (kidney eQTLs) (Fig. 1a and 
Supplementary Table 2). Further adjustment for inter-individual differences in cellular 
heterogeneity between samples (using cell-type proportions de-convolved from single-cell 
map of human kidney15-17 in cis-eQTL analysis) had very little effect on cis-eQTL analysis—
there was 95% consistency in kidney eGenes identity with the baseline analysis 
(Supplementary Table 3).  

Next, we examined how 1,037 kidney eGenes identified by the Genotype-Tissue 
Expression (GTEx) project18 in 65 renal cortex samples map onto our kidney eGene 
repository. We discovered that 787 GTEx kidney eGenes were available for a look-up in our 
dataset and that 669 (85%) of them were kidney eGenes in our cis-eQTL analysis. 

We then quantified the degree of overlap in cis-eQTL output between our dataset 
and 244 glomerular and 314 tubulointerstitial transcriptomes from the NEPTUNE study19. Of 
6,120 available kidney eGenes identified in our discovery analysis, 4,368 (71.4%) showed 
an overlap with eGenes in at least one of the two histological compartments of the 
NEPTUNE resource (Fig. 1b and Supplementary Table 4).  

These data show an abundance of genetic effects on transcriptional programs 
operating in the human kidney. We also demonstrate the robustness of our eGene discovery 
in the context of cellular heterogeneity (inherent to transcriptome profiling of bulk tissue 
samples) and a high degree of replication in independent kidney datasets. 
 
BP-GWAS variants and kidney gene expression programs. A total of 885 SNPs were 
associated with at least one of BP-defining traits (systolic BP (SBP), diastolic BP (DBP), 
pulse pressure (PP)) in previous GWAS5,20-26 (Supplementary Table 5). Of those, 821 
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independent sentinel BP-GWAS SNPs were available in our dataset (Supplementary Table 
6).  

We determined that 252 (30.7%) independent BP-GWAS loci contain kidney eSNPs 
(Fig. 1c). We identified 418 targets of BP-GWAS kidney eSNPs (BP-GWAS kidney eGenes) 
forming 424 unique BP-GWAS kidney eSNP-eGene combinations (BP-GWAS kidney cis-
eQTLs) (Fig. 1c and Supplementary Table 7). Several of the identified kidney eGenes 
mapped onto the classical pathways of BP regulation (AGT, REN, ACE, UMOD, DDC, 
ADRA2B, GUCY1A3, PDE5A), but a majority had no prior biological connection with 
hypertension. 

We then compared the enrichment for kidney eSNPs in BP-GWAS SNPs versus 
SNPs identified in non-BP-GWAS. We reasoned that BP-GWAS variants should be enriched 
for kidney eSNPs given a well-established role of the kidney in hypertension27. We found 
that SBP and DBP ranked as the top traits with the most significant enrichment among 24 
GWAS phenotypes examined (Fig. 1d).  

Next, we explored tissue-specificity of the identified BP-GWAS kidney e-signals 
taking advantage of cis-eQTL repositories for 48 non-renal GTEx tissues. Of 251 BP-GWAS 
kidney eSNPs available for analysis in GTEx, 81 (32.3%) showed kidney-specific effects on 
the target genes (Fig. 1e and Supplementary Table 8). 

We then assessed whether BP-GWAS cis-eQTL were specifically expressed in major 
kidney cell types using 41,778 cells and 27,240 genes from a single-cell dataset of human 
kidney15. We first defined 13 different cell types (Fig. 1f), largely consistent with the 
annotations provided in the original study15 and clustered by histological location (Fig. 1f). 
We confirmed that 389 (93%) BP-GWAS kidney eGenes identified in our study were 
expressed in the single-cell dataset (Supplementary Table 9). Of those, 69 (18%) showed 
cell-type specific expression28,29 (Supplementary Table 10). For example, GUCY1A3 showed 
highest expression in juxtaglomerular apparatus cells, while UMOD was expressed 
predominantly within the loop of Henle cells (Fig. 1g and Supplementary Note). 

Taken together, our results demonstrate a particular significance of kidney cis-eQTLs 
as the genetic component of BP regulation. We uncover gene expression targets for 
approximately one third of BP-GWAS variants and characterize their tissue specificity. 
Finally, through single-cell transcriptomics, we map many of these genes to specific cell 
types and functional compartments of the human nephron. 
 
Alternative splicing of kidney genes and BP. Using Leafcutter and our collection of 430 
renal transcriptomes, we identified a total of 241,390 intron excision isoforms (IEIs) within 
50,982 intron excision clusters (IECs) (Supplementary Note). We then combined the 
uncovered kidney IEIs with genotypes of 6,461,055 SNPs in cis-sQTL analysis and detected 
17,673 unique IEIs mapping onto 5,365 genes (sGenes) as kidney targets for 724,178 SNPs 
(sSNPs) (Fig. 2a and Supplementary Table 11). A comparable magnitude of cis-sQTL 
discovery was reported in studies of other human tissues with similar sample size30 

(Supplementary Note and Supplementary Figs. 1-3). We then overlapped the catalog of 
724,178 kidney sSNPs with all BP-GWAS SNPs and their proxies to identify which of them 
may operate through alternative splicing mechanisms in the kidney. We found that 189 
(23%) of BP-GWAS kidney loci contain sSNPs and that these BP-GWAS kidney sSNPs 
targeted 829 kidney IEIs (with 47,974 unique BP-GWAS kidney sQTL pairs) (Fig. 2b). A total 
of 828 BP-GWAS kidney sIEIs were annotated to 318 genes (BP-GWAS kidney sGenes) 
(Fig. 2b and Supplementary Table 12). Some of the uncovered BP-GWAS kidney sGenes 
had prior connection to BP regulation (FGFR1)31 or kidney disease (AKR1B10)32 or their 
alternatively spliced isoforms were linked to disease (NDUFAF6)33. However, the majority of 
these genes had no established physiological role in BP regulation, and 50 of them were 
non-coding. We noted that protein-coding BP-GWAS kidney sGenes expressed in the 
kidney produce an average of 6.5 protein-coding transcripts per gene—a 1.38-fold (95%CI: 
1.26-1.50, P < 1 x 10-6) excess when compared to random sets of protein-coding genes 
expressed in the kidney (4.7 protein-coding transcripts per gene on average). This suggests 
that an average BP-GWAS kidney sGene is a potentially stronger contributor to protein 
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diversity in the kidney than an average gene expressed in renal tissue. We then conducted a 
biological annotation analysis on all BP-GWAS kidney sGenes using DAVID and found 
enrichment for 10 different functional categories. As expected, the top two enriched 
categories were directly related to alternative splicing, while others (i.e. nucleotide-binding, 
magnesium) replicated the categories enriched for GWAS cis-sQTLs in other human tissues 
(Fig. 2c)34. The enrichment for mitochondria revealed through this analysis (Fig. 2c) is in line 
with the increasingly recognized role for this organelle in shaping the mRNA expression 
programs and alternative splicing35.  

Next, we investigated the extent to which kidney sSNPs operate separately from 
kidney eSNPs within the BP-GWAS loci. We observed that 63 BP-GWAS loci (33.3% of all 
BP-GWAS loci with a splicing signature) contain variants operating exclusively as kidney 
sSNPs and not as eSNPs. This indicates that approximately 8% of all BP-GWAS loci 
associated with changes in splicing do not display a concomitant change in total gene 
expression in the kidney; this is slightly higher than the percentage of blood GWAS sSNPs 
that are not eSNPs34. For example, BP-GWAS variant, rs4750358, identified as the best 
sSNP for one of the IEIs of BEND7, was not associated with the total renal expression of the 
gene (Extended Data Fig. 1 and Supplementary Note). In line with previous studies, only a 
very small proportion (0.2%) of the BP-GWAS kidney sSNPs mapped directly onto known 
splicing sites30,34. However, we determined that BP-GWAS kidney sSNPs showed 
approximately 2.9-fold (P = 0.0086) enrichment for intron branch point locations when 
compared to one million permuted samples from our collection of autosomal imputed SNPs 
used in QTL analysis. 

In summary, these data reveal that approximately one in four BP-GWAS signals is 
associated with alternative splicing mechanisms operating in the kidney and that a 
significant proportion of the relevant cis-sQTLs are not captured through the cis-eQTLs. We 
also demonstrate that while BP-GWAS kidney sGenes and sSNPs collectively exhibit some 
typical molecular characteristics expected of those involved in alternative splicing, they do 
not usually map in proximity to BP-GWAS sentinel variants or the classical splice sites. This 
suggests that a majority of genetic associations between BP and renal alternative splicing 
operate through more complex, subtle and distant regulatory elements and networks. 
 
Kidney DNA methylome and BP. Our previous studies showed that the transcriptomic 
footprint of apparently healthy tissue collected from kidneys after cancer nephrectomies is 
similar to that of renal tissue samples from individuals who did not have cancer36. We 
conducted a similar type of a comparative experiment at the kidney epigenome level and 
found that the kidney DNA methylation profiles of samples collected from healthy (cancer-
unaffected) parts of the kidney after cancer nephrectomies cluster with those from non-
cancer kidney biopsies (conducted prior to transplantation) (Fig. 2d). Through the analysis of 
195 available kidney DNA-wide methylation profiles, we identified 374,826 CpG sites. Of 
those, 32.6% mapped onto known CpG islands. Our cis-mQTL analysis uncovered 
1,556,997 SNPs (mSNPs) as partners of 34,913 CpG sites with a total of 4,600,245 mSNP-
CpG pairs (Fig. 2e and Supplementary Table 13). On average, each kidney mSNP was 
associated with three CpG sites, while each renal m-target (CpG) was partnered with an 
average of 132 mSNPs; this is most likely a reflection of LD in examined regions37. The 
median distance between the best mSNP to its CpG target was calculated at 8,648 bp, and 
38.4% of mCpG sites were located within the promoter sequences of the respective genes 
(Fig. 2f). The best kidney mSNPs were mapped more frequently to the transcriptional start 
site (TSS) proximity than non-mSNPs (Fig. 2g). We also detected that a majority of kidney 
mCpG sites mapping onto the promoter sequences were associated with a negative effect 
on the respective gene’s expression (Fig. 2h). This is consistent with the known role of DNA 
methylation in the initiation of transcription and the repressive effect of hyper-methylated 
promoters on mRNA expression14,37. We detected an overlap between kidney mSNPs and 
variants acting on transcriptional activity in the renal tissue—34.6% and 27.6% of kidney 
mSNPs were identified as kidney eSNPs and sSNPs, respectively. These values are 
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comparable to data from other human tissues38. A total of 19.8% of kidney mSNPs received 
both additional e- and s- annotation.  

The joint analysis of all kidney mSNPs and the catalog of BP-GWAS SNPs (and their 
proxies) uncovered that 391 (47.6%) independent BP-GWAS loci show at least one kidney 
cis-mQTL signature (Fig. 2i and Supplementary Table 14). Of 1,204 BP-GWAS kidney CpG 
sites partnering with BP-GWAS mSNPs, 920 (76.4%) were annotated to 578 known genes 
(BP-GWAS kidney mGenes) (Fig. 2i). Several of these genes (i.e. EDN1)39 are well-known 
contributors to BP regulation and the development of hypertension. Others were implicated 
in syndromes that affect the function/structure of the kidney (WDR73) or diseases co-
existing with hypertension, i.e. diabetes (KCNJ11)40. Some were also mapped to potential 
drug targets; for example, cg04510874 (the CpG partner of rs4932373BP-GWAS kidney 
mSNP) is within the CpG island and the promoter sequence of FES (a gene target for 
naproxen—a non-steroidal anti-inflammatory medication with high BP known as one of its 
side effects)6 (Extended Data Fig. 2 and Supplementary Note). 

A large proportion of BP-GWAS kidney mSNPs overlapped with both BP-GWAS 
kidney eSNPs, sSNPs or both (Supplementary Fig. 4). Further analysis centered on 
common target/common variant revealed that, within 87, 63 and 30 loci, the BP-GWAS 
kidney mSNP shared the same identity and the same target with the BP-GWAS kidney 
eSNP, BP-GWAS kidney sSNP or both, respectively (Supplementary Note and 
Supplementary Fig. 5). 

In summary, we detect an abundance of kidney DNA methylation signatures within 
loci associated with BP in previous GWAS and demonstrate that approximately half of them 
map onto regions in the TSS vicinity. We also show clustering of kidney DNA methylation 
with gene expression and alternative splicing across a large number of BP-GWAS loci, 
suggesting that these interact together in regulatory processes shaping up the cellular and 
clinical BP phenotype. 
 
Insights from Mendelian randomization analyses with kidney SNPs. Previous 
Mendelian randomization (MR) studies reported causal effects of BP on several 
cardiovascular and kidney outcomes, including CHD, stroke and urinary albumin to 
creatinine ratio (UACR)41. We sought to investigate how genetic instruments for BP, 
partitioned on presence/absence of kidney eSNPs, sSNPs and mSNPs, would influence 
causal associations with these outcomes using two-sample MR42 (Supplementary Table 15). 
We observed significant effects of higher SBP, DBP and PP on increased risk of CHD, 
ischemic stroke and heart failure, which were consistent when using genetic instruments 
derived from kidney SNPs or not. We also observed causal association between higher SBP 
and increased UACR as well as increased risk of microalbuminuria when using genetic 
instruments derived from kidney SNPs. Kidney-derived causal effects on these outcomes 
were stronger (P < 0.05) than those observed when considering genetic instruments derived 
from SNPs with no apparent functional relevance to the kidney (Supplementary Fig. 6). The 
effects of DBP and PP on UACR and microalbuminuria were less significant but were also 
stronger when using genetic instruments derived from kidney SNPs. We also detected 
statistically significant effects of DBP and SBP on hypertensive renal disease and of DBP on 
chronic kidney disease (CKD) when using the genetic instruments selected from kidney 
SNPs. However, for hypertensive renal disease and CKD, there was no significant difference 
in the causal effect size between genetic instruments derived from kidney SNPs or not.  
Taken together, these results suggest putatively causal effects of BP on a range of 
cardiovascular and renal outcomes commonly affecting hypertensive patients and the 
importance of BP-GWAS kidney SNPs in detecting these relationships. 
 
BP-GWAS kidney eGenes, mGenes and sGenes as therapeutic targets. We then sought 
to investigate new therapeutic opportunities for hypertension through exploiting the concept 
of the ‘druggable genome’43 by pairing BP-GWAS kidney genes (renal targets of BP-GWAS 
kidney eSNPs, sSNPs and mSNPs) with pharmacological agents and chemical compounds. 
We identified 210 unique licensed drugs that target 49 kidney gene products 
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(Supplementary Tables 16-19). Each drug was then assigned to one of three tiers 
corresponding to positions in the drug development pipeline (Supplementary Tables 18 and 
19)44. Several of these associations were concordant with the clinical indications. For 
example, KCNJ11 was identified as a target for minoxidil and diazoxide (antihypertensive 
medications), while GUCY1A3 was identified as a target for nitrates and riociguat 
(medications with known BP lowering effect) (Supplementary Tables 16-19).  

Three of the detected gene-drug associations were clinically discordant 
(Supplementary Table 19). Of those, bepotastine and entinostat have observational 
evidence of putative effects on BP regulatory systems from pre-clinical models45,46. 
Topiramate (approved for treatment of tonic-clonic seizures and migraine prophylaxis47) was 
reported to reduce BP concomitantly with body weight in clinical studies in hypertensive and 
diabetic patients48,49.  

Taken together, these data show that an integration of pharmacological resources 
with genome, transcriptome and epigenome from tissues of key relevance to BP regulation 
can verify the expected gene-drug associations and generate therapeutically relevant 
observations on potential drug repurposing. 
 
Colocalization of BP-GWAS and kidney QTL signals. We further deployed colocalization 
to explore whether the overlapping BP-GWAS signals and kidney cis-QTL indeed track the 
same genetic variant. We detected colocalization between BP and kidney cis-QTL in 221 
(27%) of independent GWAS loci, with 358 genes implicated as potential drivers of these 
signals (Supplementary Fig. 7 and Supplementary Tables 20-22). In 193 GWAS loci, the 
signals of colocalization between BP and kidney cis-QTL pointed to single genes (as 
exemplified in Fig. 3a-c).  

Through summarized chromatin states of adult human kidney derived from RoadMap 
Epigenomics, we then explored whether BP-GWAS kidney e/s/m-SNPs with evidence of 
colocalization are over-represented in functionally relevant genomic regions. When 
compared to 1,000 randomly selected sets of matched autosomal SNPs, the colocalized BP-
GWAS kidney SNPs showed approximately 3.0-, 2.5- and 3.6-fold enrichment for 
transcription start sites, transcribed regions, and enhancers, respectively, while being 
generally depleted in transcriptionally quiescent states (Fig. 3d). A very similar pattern of 
enrichment emerged from the comparison of the colocalized variants to non-BP-GWAS 
SNPs and all BP-GWAS SNPs (Fig. 3d). We then used Combined Annotation-Dependent 
Depletion (CADD) scores to see whether the colocalized SNPs are enriched for 
deleteriousness when compared to randomly selected sets of matched autosomal SNPs and 
GWAS variants. This analysis revealed a statistically significantly increase in median phred-
scaled CADD scores for the colocalized variants than those for the comparators (Fig. 3e). 

In summary, our data demonstrate that approximately one in three BP-GWAS loci 
contain a colocalized kidney QTL and BP-GWAS association and that these signals are 
enriched for functional chromatin annotations and genetic deleteriousness.  
 
MR analysis of kidney eGenes, sGenes and mGenes and BP. We then employed MR to 
further investigate putatively causal effects of renal gene expression, alternative splicing and 
methylation signals on BP (Supplementary Note). We uncovered 309 molecular (expression, 
splicing or methylation) targets (mapping to 179 kidney genes) with causal evidence of 
association with BP after correction for multiple testing (Fig. 3f). These MR signals were 
apparent in 125 BP-GWAS loci (Supplementary Tables 23-25, Supplementary Note, and 
Supplementary Fig. 8). 

A total of 91.6% of the kidney genes showing causal association with BP were 
protein-coding (Supplementary Table 26). Of these, 7.8% had prior connection to BP 
regulation or human hypertension (Fig. 3f), and for the vast majority (78.6%), the directional 
effect on BP in MR was consistent with that expected from their biological function 
(Supplementary Table 26). For example, the reduced kidney expression of GUCY1A3 (a 
mediator of nitric oxide effects on the target cells and tissues) was causally associated with 
increased BP in MR (Supplementary Table 26). A total of 11.2% of the genes had an 
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established role/association with renal physiology or pathology (Supplementary Table 26). 
Others represented different biological themes underpinning basic housekeeping biological 
processes and cellular functions, intracellular degradation of proteins, mitochondrial energy 
balance and different dimensions of metabolism (Fig. 3f and Supplementary Table 26).  

In summary, we found that 15% of BP-GWAS signals may be driven by a kidney 
gene at a different level of molecular regulation (expression, alternative splicing or DNA 
methylation). The vast majority of these genes had no established physiological connection 
to BP, human hypertension or the kidney, but many play essential biological roles of yet 
unknown relevance to cardiovascular and renal systems. This signifies the existence of 
novel uncharacterized regulatory networks connecting BP and the kidney with the molecular 
determinants of human health and disease.	
 
Discussion 
GWAS have uncovered hundreds of loci associated with different complex traits and 
diseases. Yet, despite discovery of new loci, the investments in these studies have not fully 
matched the high expectations of the research community and the general public, partly 
because the causal genes and the downstream molecular pathways through which GWAS 
signals operate have not been uncovered. Indeed, only a few of >800 variants associated 
with BP in GWAS have been mapped to coding regions of the human genome and/or 
assigned a putative molecular mechanism5,20-26. By exploring the effects of BP-associated 
genetic variants on molecular targets operating at the intersection of the kidney 
transcriptome and the epigenome, our data help to bridge the existing knowledge gap 
between the “sequence” (discoveries from GWAS) and “consequence” (human 
hypertension).  

We document an enrichment of transcriptionally active variants operating in the 
kidney for SNPs associated with BP in GWAS and the abundance of kidney genes whose 
expression, splicing or methylation shows putatively causal relationship with BP. We 
further demonstrate that many of these kidney genes are targets for drugs with proven 
therapeutic potential. Finally, through utilizing kidney SNPs as genetic instruments in MR, 
we reveal causal effects of BP on clinical kidney outcomes, including UACR, 
microalbuminuria and CKD. To this end, our data fill an important information vacuum 
driven by the absence of human renal samples in post-GWAS analyses50, and provide 
evidence for the role of the kidney as the tissue mediator of common genetic effects on 
BP and potentially causal role of BP in the development of renal disease (Supplementary 
Note). 

Our results demonstrate the importance of characterizing multiple molecular layers 
within existing repositories of human tissue for post-GWAS discoveries. Indeed, by 
integrating kidney gene expression data with alternative splicing and renal DNA methylation, 
we increased the discovery of kidney genes with evidence of a causal effect on BP by 
approximately two-fold. The genome-wide evidence for the role of DNA methylation in BP 
regulation and human hypertension has only recently started to emerge through studies in 
the most accessible tissues (blood), but there has been no comprehensive analysis of the 
kidney DNA methylome in post-GWAS BP analyses51,52. We also demonstrate that 
genetically mediated changes in kidney expression of alternatively spliced isoforms may 
have potentially causal contributions to BP regulation across loci identified by GWAS. 
Several of these BP-associated splicing isoforms overlapped with signals of expression 
and/or DNA methylation within the same kidney genes. This not only strengthens the 
evidence for the associations between these genes and BP but also indicates the existence 
of interactions between the kidney epigenome and transcriptome in shaping the molecular, 
cellular and clinical BP phenotype (Supplementary Note).  

Although the vast majority of the novel kidney genes showing causal association with 
BP were protein-coding, 84.4% of them had no prior connection to hypertension or kidney 
physiology or pathology. However, many of them have very well established biological roles 
in human health and diseases yet without immediately obvious direct involvement of 
cardiovascular or urogenital systems (Supplementary Note).  
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In conclusion, our study has provided translation of the loci identified by GWAS of BP 
into specific renal RNA isoforms, methylation sites, genes and biological themes that 
represent plausible molecular mechanisms through which individual GWAS variants may act 
on the risk of hypertension. This functional interpretation of GWAS is a critical step for 
genomics to converge with medicine, more precise definition and classification of the 
disease, and the development of new therapeutic avenues for hypertension. By elucidating 
the molecular mechanisms of hypertension embedded in the kidney, our study will ultimately 
lead to advancements in patient-centered diagnostic accuracy in hypertension and new 
targeted strategies to BP lowering, thereby accelerating progress in precision medicine.  
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Fig. 1 | cis-eQTL analysis of the human kidney and genetic variants identified in 
genome-wide association studies of blood pressure (BP-GWAS SNPs). a, The 
discoveries from cis-eQTL analysis of 430 human kidneys. SNPs, single nucleotide 
polymorphisms; eSNPs, genetic variants with at least one renal expression target 
(eGene); eQTLs, pairs of kidney eSNPs and their target eGenes. b, The extent of 
replication for kidney eGenes identified in the analysis of 430 kidneys in an independent 
resource of 244 glomerular and 314 tubulointerstitial transcriptomes (top row, available for 
analysis; bottom row, replicated genes), data are counts and percentages (in brackets). c, 
The extent of overlap between 821 BP-GWAS sentinel SNPs (and their 26,197 proxies) 
and kidney cis-eQTL. d, GWAS trait enrichment in the human kidney. The enrichment 
estimate is expressed as a log-odds ratio (with 95% confidence intervals shown as error 
bars) for the association between trait-associated variants in GWAS and kidney eSNPs. 
Points are colored by log-odds ratio from white (lowest enrichment) to blue (highest 
enrichment). e, The proportions of BP-GWAS kidney eSNPs showing tissue-specificity; data 
are counts and percentages (in brackets); 1, kidney-exclusive BP-GWAS eSNPs (with 
expression targets operating as eGenes only in the kidney tissue); 2, kidney-exclusive BP-
GWAS eSNP-eGene pairs (eGene targets are different between renal and non-renal 
tissues); 3, BP-GWAS eSNP-eGene pairs with kidney specific allelic direction (the direction 
of the association with eGene is different between renal and non-renal tissues); 4, BP-
GWAS eSNPs showing no kidney specificity. f, t-SNE representation of cells from normal 
kidney tissue. Cells are colored and labelled by cell-type, as identified from gene expression 
of canonical markers and single cell clustering; t-SNE, t-distributed stochastic neighbor 
embedding. g, Heatmap of cell-type specific expression of BP-GWAS eGenes. Normalized 
gene expression is shown in shades of blue and red, from lowest expression (dark blue, 3 
standard deviations below the mean) through mean expression (white) to highest expression 
(dark red, 3 standard deviations above the mean).
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Fig. 2 | cis-sQTL and cis-mQTL analysis of the human kidney and variants identified in 
genome-wide association studies of blood pressure (BP-GWAS SNPs). a, The 
discoveries from cis-sQTL analysis of 430 human kidneys. IEIs, intron excision isoforms; 
sQTL pairs, pairs of single nucleotide variants and partnering renal IEIs (sIEIs); sSNPs, 
single nucleotide variants with at least one target IEIs in the kidney. b, The flowchart and 
outcomes from the analysis of overlap between BP-GWAS SNPs and kidney sSNPs. c, 
Network representation of 10 DAVID categories statistically enriched in BP-GWAS kidney 
sGenes (Fisher’s exact test, all results PB-H < 0.05). Nodes are sized according to the 
number of BP-GWAS sGenes that fall into that category; larger nodes contain more genes. 
Edges represent an overlapping percentage of genes greater than 70% between two 
categories, thicker edges represent greater overlap. d, Hierarchical clustering of Euclidean 
distances derived from 90 human kidney DNA methylome profiles. Blue, TRANSLATE 
nephrectomy samples; green, non-cancer kidney biopsies prior to transplantation; red, 
kidney cancer samples. e, The discoveries from cis-mQTL analysis of 195 human kidneys. 
CpGs, DNA methylation probes; mQTLs, pairs of single nucleotide variants and their target 
kidney CpGs (mCpGs); mSNPs, single nucleotide variants with at least one target CpG in 
the kidney. f, Distribution of kidney mCpGs in relation to distance to the nearest TSS. 
mCpGs, DNA methylation probes associated with at least one single nucleotide variant; 
TSS, transcription start site; blue, gene body; yellow, 3’ untranslated region; green, 5’ 
untranslated region; light blue, first exon; light orange, promoter (≤ 200bp); orange, promoter 
(200-1,500 bp). g, Comparison of distance from TSS between kidney best mSNPs and non-
mSNPs (chi-squared test). mSNPs, single nucleotide variants with at least one target CpG in 
the kidney; non-mSNPs, single nucleotide variants with no target CpG in kidney cis-mQTL 
analysis; light blue, > 100 kb; dark blue, 10-100 kb; very light blue, 5-10 kb; blue, 3-5 kb; 
light green, 1-3 kb; green, 0-1 kb. h, Comparison between the observed and expected 
percentage of kidney mCpG sites mapping onto the promoter sequences associated with the 
negative effect on the respective gene expression (binomial test). i, BP-GWAS SNPs as 
kidney mSNPs and their DNA methylation target genes (mGenes) in renal tissue.
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Fig. 3 | Colocalization and Mendelian randomization analyses. a-c, Examples of loci 
where a cis-eQTL, cis-sQTL and cis-mQTL signal colocalizes with the BP-GWAS signal, 
pointing to single genes. The x-axis shows the negative log10 P-value of the GWAS 
association (linear mixed model), and the negative log10 P-value for the QTL signal (linear 
regression) is shown on the y-axis. The most significant colocalizing SNP is shown in 
purple and is labelled with its refsnp ID. Other SNPs are colored by their r2 with the most 
significant SNP. d, Heatmap of statistically significant enrichment of “best” colocalizing 
SNPs in summarized chromatin states from adult human kidney tissue (permutation test). 
Enrichment is shown in shades of red, from the least significant enrichment (pale red) to the 
most significant enrichment (dark red). Depletion is shown in shades of blue from the least 
significant depletion (pale blue) to the most significant depletion (dark blue). Non-significant 
results are shown in dark grey. Matched SNPs, autosomal variants matched for proximity 
to genes, number of LD buddies and proximal SNP density; non-BP-GWAS SNPs, a 
collection of non-BP-GWAS SNPs from GWAS Catalog; BP-GWAS SNPs, the catalog of 
BP-GWAS SNPs and its proxies. e, Permutation-based enrichment analysis (permutation 
test) for phred-scaled CADD scores (numeric measure positively correlated with the 
deleteriousness of a SNP). The median CADD score for the “best” colocalizing SNPs is 
shown as a red line. Density plots summarize 1 million permutations of the equally sized 
sets of SNPs drawn from Matched SNPs (yellow), non-BP-GWAS SNPs (red), and BP-
GWAS SNPs (blue). f, Circular representation of information on 179 putative causal 
genes for BP. Genes are grouped by their biological theme, and this grouping is shown as 
colored regions. From outermost to innermost data circle: cis-eQTL, cis-sQTL and cis-
mQTL causal association signals (colored blue, green and red, respectively), established 
role in the kidney (black), established role in BP regulation (black), and specific 
expression in one or more kidney single cell types (black if specific to one or more cell-
type). 
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Methods 
 
Repository of variants associated with BP in previous GWAS. We used information 
provided by Evangelou et al.4 as the resource with most comprehensive and up-to-date 
information on variants associated with BP-defining traits in GWAS at the time the current 
project commenced. From this resource (generated using information from 1,006,863 
participants), we selected a set of 885 sentinel single nucleotide polymorphisms (SNPs) 
showing association with at least one of BP-defining traits (SBP, DBP, PP) at the GWAS 
threshold of statistical significance (P < 5 x 10-8) in either one of the previous GWAS 
(discovery or meta-analysis) or the combined meta-analysis conducted by Evangelou et al.4 
(Supplementary Table 5). Out of the 885 sentinel variants, 822 were available for analysis in 
the panel of SNPs used for the purpose this project. These 822 variants were then pruned to 
821 independent SNPs (based on an r2 threshold of 0.2). Using LD information provided by 
Google Genomics 

(https://googlegenomics.readthedocs.io/en/latest/use_cases/linkage_disequilibrium/public_ld
_datasets.html?highlight=linkage), we then obtained 26,197 proxies for the 821 sentinel BP-
GWAS variants under the threshold of r2 ≥ 0.80 (Supplementary Table 6). 
 
Populations. The TRANScriptome of renaL humAn TissuE Study (TRANSLATE) study 
recruited patients of white European ethnicity diagnosed with unilateral non-invasive renal 
cancer, eligible for elective nephrectomy and with no previous personal history of primary 
nephropathy36,53. Every participant underwent standardized phenotyping, which consisted of 
taking personal history (using anonymized questionnaires), height, weight, waist 
circumference and BP measurements36,53. Different types of biological material (including 
blood, urine and kidney samples) were secured for further biochemical and molecular 
analysis36,53. The renal tissue specimens were taken directly from the healthy (unaffected by 
cancer) pole of the kidney immediately after nephrectomy and immersed in RNAlater and 
formalin (for the purpose of renal histology)14. A recent extension of the TRANSLATE study 
(TRANSLATE-T) conducted “zero time” pre-implantation biopsy from deceased donors’ 
kidneys prior to transplantation54, as reported before13. Needle biopsy samples were 
collected within 6–28 h after the extraction time (donation after brain death)54 and the 
material from each kidney biopsy sample was then used for further molecular processing13. 
The basic clinical information about the donors was collected from available hospital 
documentation13. 

MoleculAr analysis of human kiDney-Manchester renal tIssue pRojEct (ADMIRE) is a 
resource of human kidney tissue developed in Manchester Biomedical Research Centre 
Biobank (MBRCB). Eligible for inclusion were individuals undergoing elective surgical 
removal of the kidney because of kidney cancer. Similar to the TRANSLATE Study, 
specimens were secured immediately after nephrectomy from healthy (unaffected by 
cancer) part of the kidney through immersion into RNAlater, formalin and/or snap-freezing. 
Additional (blood, urine) biological materials were also collected for the purpose of 
biochemical analyses. The demographic and clinical information was retrieved 
retrospectively from the clinical files. 

Renal gEne expreSsion and PredispOsition to cardiovascular and kidNey Disease 
(RESPOND) is an on-going project that recruits patients diagnosed with kidney cancer 
referred for an elective nephrectomy. The renal tissue samples were taken from the healthy 
(unaffected by cancer) pole of the kidney after surgical removal of the organ and processed 
through the pipeline developed earlier in the TRANSLATE study. Each individual provided a 
blood and urine sample for the downstream analyses, including standard blood 
biochemistry. The demographic and clinical information was collected using purpose-
designed anonymized questionnaires; all patients were of white European ancestry. Basic 
anthropometry and blood pressure measurements were also conducted in line with the 
guidelines55. 

In Molecular analysis of mechanisms regulating gene expression in post-ischemic 
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injury to renal allograft (REPAIR), kidney specimens were collected from renal grafts prior to 
the organ transplantation. All grafts were retrieved from deceased donors after brain death 
and cold-stored (8.2 h to 26.8 h of cold ischemia time). Two core needle (16Gx10mm) 
biopsy specimens were then taken from the upper pole of the kidney and immediately fixed 
in RNAlater or formalin for further analyses. Each donor was of white European ancestry; 
their medical history and clinical data were obtained from available medical documentation.  

The Cancer Genome Atlas (TCGA) is a National Institute of Health (NIH)-funded 
resource of human tissues (including the kidney) collected from over 10,000 individuals with 
cancer. The tissue samples were collected after elective surgical procedures for the purpose 
of molecular studies56. Apart from tissue taken from the kidney tumor, a healthy (cancer-
unaffected) sample was also secured as “companion normal tissue specimen” from adjacent 
normal renal tissue at the time of nephrectomy57. The biological materials were flash-frozen 
prior to further processing57. Only basic demographic information (ethnicity, age and sex) is 
available for patients recruited in TCGA. These samples have been used as a source of 
information on normal kidney transcriptome in both our and others’ studies13,36,58. 
 
Ethical compliance. The studies adhered to the Declaration of Helsinki and were 
approved/ratified by the Bioethics Committee of the Medical University of Silesia (Katowice, 
Poland), Bioethics Committee of Karol Marcinkowski Medical University (Poznan, Poland), 
Ethics Committee of University of Leicester (Leicester, UK), University of Manchester 
Research Ethics Committee (Manchester, UK) and National Research Ethics Service 
Committee North West (Manchester, UK). Informed written consents were obtained from all 
individuals recruited (for the deceased donors, the consent was obtained in line with the 
local governance; e.g. from the family members). 
 
DNA analysis – extraction, genotyping, imputation, quality control, and principal 
components. In TRANSLATE, TRANSLATE-T, ADMIRE, RESPOND and REPAIR studies, 
DNA was extracted from the secured apparently normal kidney samples (upon prior 
homogenization) using Qiagen DNeasyBlood and Tissue Kit. The extracted DNA was then 
hybridized to the Infinium® HumanCoreExome-24 beadchip array composed of 547,644 
variants. Genotype calls were made using GenomeStudio13,14. 

In TCGA, DNA was extracted from blood samples using QiAAmp Blood Midi Kit 
(CGARN, 2016) and hybridized with probes on the Affymetrix SNP 6.0 array (composed of 
906,600 probes); genotype calls were made using the Birdseed algorithm 
(https://www.broadinstitute.org/birdsuite/birdsuite-analysis). The TCGA genotype data were 
downloaded from the GDC Portal’s legacy archive. A total of 525 cases/files were initially 
identified using the following query criteria: “project name”—“TCGA”, “primary site”—
“kidney”, “sample type”—“solid tissue normal”, “race”—“white”, “data category”—“simple 
nucleotide variation”, “data type”—“genotypes”, “experimental strategy”—“genotyping array” 
and “access”—“controlled”. We downloaded the data for 110 individuals who had matching 
RNA-seq-derived information on the transcriptome of normal kidney tissue. 

We applied the same set of quality control filters to genotyped variants and 
individuals in all datasets using the following packages/software: PLINK59, KING (cryptic 
relatedness)60 as well as SNPWeights61 and EIGENSTRAT62 (genetic ancestry). We 
excluded individuals with: (i) genotyping rate < 95%, (ii) heterozygosity rate outside ±3 
standard deviations from the mean, (iii) cryptic relatedness to other individuals, (iv) 
discordant sex information (mismatch between reported sex and genotyped sex), and (v) 
genetic ancestry other than white-European, as reported before. At the variant level, we 
excluded genetic variants with: (i) genotyping rate < 95%, (ii) genomic location mapped to 
the sex chromosomes or mitochondrial DNA, (iii) ambiguous genomic location, (iv) Hardy-
Weinberg equilibrium (HWE) P < 1 x 10−3, and (v) minor allele frequency (MAF) < 5%. After 
quality control, there were 660,208 variants remaining for TCGA and 268,549 variants in the 
populations genotyped using Infinium® HumanCoreExome-24 BeadChip array.  

Genotype imputations were carried out separately on the Michigan Imputation Server 
(MIS)63 using 1000 Genomes Project Phase 3 data as the reference panel applied to all 
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genotyped variants that passed quality control. MIS uses minimac363 to perform imputations 
with the default phasing software Eagle v2.3. At the post-imputation quality control level, we 
excluded variants with: (i) duplicate genomic locations, (ii) imputation score < 0.40, (iii) MAF 
< 5%, and (iv) HWE P < 1 x 10−6. A total of 6,461,055 variants common for all populations 
remained after the imputation quality control. 

Genotype principal components were derived from genotyped autosomal variants 
that passed all genotyping quality control filters using EIGENSTRAT62 and SNPWeights61. 
 
RNA analysis – extraction, RNA-sequencing, data processing and gene expression 
normalization. In 76% of TRANSLATE, 16% of TRANSLATE-T, and 68% of ADMIRE 
samples, RNA was extracted from kidney tissue using RNeasy Kits (Qiagen). The remaining 
samples from these studies together with all RESPOND and REPAIR samples were 
subjected to an RNA extraction method using miRNeasy Mini Kit (Qiagen). Upon checking of 
RNA purity and integrity, 1 μg of kidney RNA extracted from each sample was processed 
through Illumina TruSeq RNA Sample Preparation protocol with poly-A selection. All the 
libraries were then sequenced using either 100-bp reads (on an Illumina HiSeq 2000) or 75-
bp paired-end reads (on an Illumina NextSeq or HiSeq 4000), producing an average of 32 
million paired reads and 5.5 Gb per sample. The base call and sequence quality across all 
generated FASTQ data was evaluated using FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc).  

In TCGA, kidney RNA was extracted from snap-frozen samples using a modification 
of the DNA/RNA AllPrep Kit (Qiagen, https://brd.nci.nih.gov/brd/sop/show/1450). The mRNA 
libraries were sequenced with 50-bp reads on a HiSeq 2000, yielding an average of 80.6 
million paired reads and 7.9 Gb per sample. Data were downloaded from the GDC Portal 
using the following query criteria: “project name”—“TCGA”, “primary site”—“kidney”, “sample 
type”—“solid tissue normal”, “race”—“white”, “data category”—“raw sequencing data”, “data 
type”—“aligned reads” and “experimental strategy”—“RNA-Seq”. In total, 112 cases/files 
were identified; 103 of them had matching array-based DNA information that passed all DNA 
quality control filters. 

In all studies, the input library complexity was assessed using RNA-SeQC64. The pre-
processing of reads for adapter trimming was conducted by Trimmomatic65. The reads were 
then pseudoaligned to the GRCh38 Ensembl transcriptome reference (Ensembl release 83) 
using Kallisto66. The expression of genes was quantified in transcripts per million (TPM) at a 
transcript level using Kallisto66. Transcript expression values were then summed to give 
gene-level expression values. A gene was selected for downstream analyses if its 
expression in at least 20% of kidney samples within each population was > TPM of 0.1 and 
the read count was ≥6. Genes not meeting the above expression criteria or those with either 
location on sex chromosomes or whose expression interquartile range was equal to zero 
were excluded from further analyses. After applying these quality control filters, 18,201 renal 
genes (common for all datasets) were identified as suitable for further analyses. All RNA-
sequenced samples were examined using several quality control filters including: (i) number 
of total reads (> 10 million reads), (ii) D-statistic test (a normalized measure of within tissue 
sample inter-correlation, D > 0.75)67, (iii) sex compatibility check (consistency between the 
reported sex and gene expression sex, determined based on XIST and male-specific region 
of the Y-chromosome gene expression), (iv) verification of sample code based on comparing 
variant calls obtained from RNA-seq using GATK and DNA genotype calls, and (v) visual 
inspection of principal component plots of processed TPM data. The final number of 
samples that passed all RNA-seq sample quality control filters and had matching genotype 
data was 430 (332 in the non-TCGA resources and 98 in TCGA).  

Gene expression data from all samples that passed quality control underwent 
normalization prior to any statistical analysis. The gene expression values underwent log2-
transformation (logarithm to base 2 of TPM (plus an offset of 1)) followed by quantile 
normalization (first within each study or sequencing batch and then across studies). We 
used robust quantile normalization, which uses the medians of quantiles rather than the 
means68. The quantile-normalized data were then standardized using rank-based inverse 
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normal transformation. To account for unmeasured variation in the RNA-seq data, we used 
probabilistic estimation of expression residuals (PEER)69 as reported13. Briefly, PEER 
estimates hidden factors that account for global variation in the RNA-seq, datasets70. The 
optimal number of hidden factors (119) was determined based on the smallest number that 
maximizes the number of eGenes in the eQTL results, a strategy recommended by 
GTEx18,70-72. 
 
Identification, quantification and normalization of intron usage. All 430 kidney samples 
that passed quality control filters for RNA-seq-derived gene expression quantification and 
had matching genotype information were included in this analysis. Of these, 332 were from 
non-TCGA resources and 98 from TCGA.  

We used LeafCutter73 to quantify intron usage levels. Briefly, this method defines 
intron excision clusters using information from intron spanning reads aligned to the human 
genome reference sequence. First, we used STAR74 to align reads to the GRCh38 genomic 
reference sequence producing a bam file for each sample. The output bam files were then 
converted into intron junction files (.junc) using CIGAR string data. Intron excision clusters 
were selected for further analysis if within introns that: (i) contained at least 10 aligned 
reads, (ii) were below 500 kb in size, (iii) were located on autosomes, and (iv) were present 
in more than 40% of all samples. Individual introns with a standard deviation of their intron 
excision ratios (across all samples) of < 0.005 were removed.  

To obtain the normalized intron usage ratio as the phenotype data for the cis-splicing 
QTL-mapping (cis-sQTL) analysis, we used the phenotype preparation script provided by 
LeafCutter, which computed the intron usage ratio by standardizing the intron reads across 
samples and quantile normalizing the standardized values across all introns. The locus of 
each intron was converted from GRCh38 to GRCh37 using CrossMap75. To capture the 
unmeasured confounders, we calculated the hidden factors from the normalized intron 
usage ratios using PEER69. The optimal number of PEER factors was calculated at 65, using 
the strategy proposed in GTEx70. We also applied the above computational pipeline on RNA-
seq data from 355 blood samples available in GTEx for the purpose of comparing the 
outputs from Leafcutter-based analysis of the kidney with those conducted in another human 
tissue.  
 
DNA methylation – sample and array processing, quantification, quality controls and 
normalization. In non-TCGA studies (TRANSLATE, TRANSLATE-T, and REPAIR), we 
used DNA extracted from homogenized renal tissue samples. A total of 192 available kidney 
DNA samples underwent first bisulphite treatment to convert cytosine to uracil while leaving 
5-methylcytosine (5-mC) intact and differentiate unmethylated from methylated cytosines. 
Briefly, 750 ng of high-quality kidney DNA underwent bisulphite conversion using the Zymo 
EZ DNA Methylation Kit (Zymo Research, USA). Conversion was conducted according to 
the manufacturer’s guidelines using the alternative incubation conditions for the Illumina 
methylation arrays. Bisulphite-converted kidney DNA was then hybridized with the Infinium 
HumanMethylation450 BeadChip (Illumina) (96 samples) or MethylationEPIC BeadChip 
arrays (96 samples) as per the manufacturer’s guidelines. The Infinium Methylation450 
BeadChip provides a comprehensive DNA methylation status of over 485,000 CpG sites 
spanning 99.9% of Refseq genes (with an average of 17 CpG sites per gene region 
distributed across the promoter, 5’ untranslated region, first exon, gene body and 3’ 
untranslated region). Apart from a vast majority of CpG islands (covered in 96%), the array 
provides coverage for island shores and the regions flanking them. MethylationEPIC 
BeadChip arrays provide coverage for over 850,000 methylation sites, including CpG islands 
of RefSeq genes, promoter regions of microRNAs, FANTOM5 promoters, and ENCODE 
enhancers as well as transcription factor binding sites. The content of the array covers 90% 
of CpG sites of Infinium Methylation450 BeadChip, with an additional targeting of regulatory 
regions characterized by FANTOM576 and ENCODE projects77. All samples were then 
processed through Illumina iScan to deliver rapid, high-resolution imaging of the data.  
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All TCGA kidney DNA samples were processed using Methylation450 BeadChip 
arrays. The data were downloaded from GDC’s legacy portal (https://portal.gdc.cancer.gov/) 
using the following criteria: “project name” – “TCGA”, “primary site” – “kidney”, “sample type” 
– “solid tissue normal”, “race” – “white”, “ethnicity” – “not Hispanic or Latino”, “data category” 
– “raw microarray data”, “data type” – “raw intensities”, “experimental strategy” – 
“methylation array”, “data format” – “idat”, “platform” – “Illumina Human Methylation 450”.  

The data from all populations were merged using R package minfi78. The extent of 
regional methylation was quantified in M-values; the latter corresponds to the ratio of 
methylated to unmethylated intensity and have a statistical advantage over β-values79. 
Samples were excluded based on the following criteria: (i) sample label mix-ups, (ii) 
unavailability of the matching genotype information that passed all quality control filters, (iii) 
the overall methylation rate < 95% (sample contains > 5% CpG probes that failed signal to 
noise detection, determined by detection P-values with a threshold of 1 x 10-16). Of 192 non-
TCGA samples (96 processed using Illumina Methylation450 BeadChip array and 96 using 
EPIC array), 177 samples (149 from TRANSLATE, 10 from TRANSLATE-T, 17 from 
REPAIR and 1 from RESPOND) passed quality control and were included in further 
analyses. Of 126 TCGA samples, two were excluded because of label mix-ups and 106 
because their corresponding genotype data were either unavailable or failed quality control 
filters. The final combined dataset consisted of 195 samples (177 from non-TCGA studies 
and 18 from TCGA). 

Of 452,567 CpG probes common for both types of arrays, excluded were those: (i) 
with a high detection P-value (an indicator of poor signal intensity and general measure of 
poor probe performance)80, (ii) mapping onto the sex chromosomes, (iii) showing cross-
reactivity to more than one genomic location, and (iv) overlapping with SNPs (MAF > 1%). 
After these quality control filters, 374,826 CpG sites were available for further analysis. 
All M-values were normalized using the “dasen” method from the wateRmelon R package81. 
This corrects for differences between Type I and Type II probes and applies quantile 
normalization within each probe type separately. 
 
Cis-expression quantitative trait locus (cis-eQTL) analysis – discovery. We combined 
430 samples with informative genotype and transcriptome information from all studies in cis-
eQTL analysis to investigate the effects of common genetic variation on kidney gene 
expression. This analysis brought together 6,461,055 genetic variants and 18,201 kidney 
genes common for all studies. The normalized expression of each kidney gene was 
regressed against alternative allele dosage, age, sex, source of tissue indicator 
(nephrectomy/kidney biopsy), the top three principal components derived from genotyped 
autosomal variants, genotyping array and 119 hidden factors estimated using PEER. Only 
variants within 1 Mb from the transcription start site of a gene were considered, and the 
analysis was carried out using FastQTL82. 

The correction for multiple testing was conducted in two stages. First, correction for 
testing each gene against its cis variants was conducted based on the analysis of permuted 
datasets the number of permutations was determined by FastQTL and was permitted to vary 
between 1,000 and 10,000. For each gene 𝑔, permutations were used to derive an 
approximate empirical distribution of the smallest P-value under the null hypothesis of no 
association modelled using a beta distribution: 𝑃!,#$% ∼ 𝐵𝑒𝑡𝑎(𝑎)! , 𝑏,!). The adjusted P-value 
for a gene 𝑔 was then generated as 𝑃!,&'()*+,' = 𝐹!,#$%(𝑃!,#$% ≤ 𝑃!,%-#$%&.. Secondly, 
correction for simultaneously testing thousands of genes was performed by applying 
Storey’s method83 (http://www.bioconductor.org/packages/release/bioc/html/qvalue.html) to 
the adjusted P-values to calculate false discovery rates (FDR). Genes with FDR ≤ 5% were 
declared as eGenes (genes whose expression is regulated by at least one genetic variant). 
Since more than one variant can be associated with the expression of a particular gene, 
nominal P-value thresholds were derived for each eGene as 𝑃!,+/0,*/-.' = 𝐹!,#$%12 (𝑃+), where 
𝑃+ is the adjusted P-value closest to FDR of 5%. All variants with nominal P-values below the 
threshold for a given gene were declared as transcriptionally active variants (eSNPs). 



 23 

 
Overlap with independent kidney eQTL datasets. We first obtained summary statistics 
from cis-eQTL analysis conducted by GTEx in kidney cortex samples from individuals of 
white-European ancestry 
(https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_Analysis_v8
_eQTL_EUR.tar). Briefly, their cis-eQTL analysis was conducted using information on 
expression of 24,049 autosomal genes, >46 million SNPs and was adjusted for sex, 
sequencing protocol, sequencing platform, first 5 PCs and 15 PEER factors18. The correction 
for multiple testing was conducted by FDR with a corrected threshold of statistical 
significance of qval ≤ 0.05).	

We then used a collection of kidney tissue from Nephrotic Syndrome Study Network 
(NEPTUNE) cohort. Briefly, kidney biopsy samples collected from patients with nephrotic 
syndrome were microdissected into glomeruli and tubulointerstitium19 and underwent whole 
genome sequencing (WGS) and RNA-sequencing. 

WGS (30x) was conducted using the Illumina HiSeq system. Alignment and variant 
calling was performed using default settings of GotCloud with the GRCh37 human genome 
reference84. Using VCFtools, PLINK and the HardyWeinberg R (v3.5.1) package, the 
following quality control filters were applied on variants85-87: (i) multi-allelic variants were 
converted to bi-allelic, (ii) variants with GQ < 20 and AB < 0.2 or > 0.8 were set to missing, 
(iii) variants with genotyping rate < 0.85, MAF < 0.01 and inbreeding coefficient < -0.3 were 
removed, and (iv) variants failing HWE (P < 1 x 10-6), in either European or African 
subsamples were removed. After quality controls, a total of 12,481,386 and 11,956,449 
variants remained in glomeruli and tubulointerstitial analyses, respectively.  

Total RNA from glomerular and tubulointerstitial biopsies were extracted, and 
libraries were prepared using the Clontech SMARTSeq v4 kit. Samples underwent 
sequencing using Illumina HiSeq 2500, resulting in 150-bp paired-end reads. Reads found in 
fastq files underwent quality control filtering and trimming using fastQC, fastQScreen 
(https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen), and picardtools 
(https://broadinstitute.github.io/picard). Trimmed reads were then aligned to the human 
genome (GRCh37) with STAR 2.6.0a74. Read counts for each sample were obtained using 
HTSeq version 0.9.188. Read counts for each sample were initially normalized and converted 
to counts per million (CPM) then log2-transformed. Normalization was performed using the 
trimmed mean of M-values (TMM) method of the edgeR package89. Genes with 0.3 CPM in 
at least 20% of the samples were kept. This filtering resulted in 19,912 and 19,922 genes in 
glomeruli and tubulointerstitial compartment, respectively. Since sample normalization 
depends on the genes included, read counts for these selected genes were extracted and 
underwent normalization again using the TMM method. Finally, log2 CPM expression values 
were normalized across genes using rank-based inverse normalization in R. Only protein-
coding RNAs and lincRNAs were considered for downstream analyses, resulting in 16,481 
glomeruli and 16,435 tubulointerstitial expressed genes. 

After all quality controls, a total of 244 and 314 of glomeruli and tubulointerstitial 
samples with matched informative genome and transcriptome were included in the cis-eQTL 
analysis, respectively. Matrix eQTL was used with a window of 500 kb from the gene 
boundaries adjusting for age, sex, four PCs, and PEER factors (30 in glomeruli, 45 in 
tubulointerstitial)90,91, correcting for multiple testing using FDR. PCs for genetic ancestry 
were calculated on LD-pruned WGS data using PLINK. PEER factors were calculated with 
the PEER framework adjusting for age, sex, and batch. We used Bayesian fine mapping and 
eGene discovery through the TORUS/DAP pipeline described previously19, accounting for 
distance to the genes TSS and LD. A total of 4,324 eGenes (those with at least one variant 
in cis with FDR < 0.05) were identified in the glomerulus and 6,951 in the tubulointerstitium. 
We then examined (i) proportion of kidney eGenes identified in the discovery resource that is 
expressed in the replication dataset and (ii) the overlap between the kidney eGenes 
uncovered in the discovery sample (available for lookup) and the eGenes identified in the 
replication datasets.  
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Analysis of cellular heterogeneity in the human kidney transcriptome and its effect on 
the cis-eQTL analysis. To account for heterogeneity resulting from variance in cell-type 
proportions between kidney samples, we used computational deconvolution combined with 
single-cell renal gene expression profiling. Briefly, single-cell gene expressions from 3,448 
normal kidney cells were first obtained from Young et al.15. These profiles were generated 
from FACS-sorted single-cell suspensions of 30 mm3 kidney tissue samples; cDNA libraries 
were created by the 10X Genomics Chromium single-cell platform and sequenced on an 
Illumina HiSeq4000. The expression profiles were then normalized, clustered and cell types 
identified using the Seurat R package16. For the purpose of this analysis, we identified 10 
distinct cell-type clusters in these cells. We then used non-negative least squares 
multivariate regression on the single-cell data to determine cell-type specific gene 
weightings (by prioritizing genes that show stable expression across individuals as well as 
within cell-type clusters) using MuSiC R package17. We applied these gene weightings to all 
our bulk tissue sample gene expression profiles and de-convolved the cell-type proportions 
in each sample. We conducted the sensitivity cis-eQTL analysis using the parameters 
specified above plus 10 variables illustrating proportions of cell types in each of 430 kidney 
samples as additional covariates in the regression models. We then estimated an effect of 
adjustment for inter-individual differences in cellular heterogeneity on the outputs from our 
cis-eQTL analysis (through measuring the percentage of initially identified kidney eGenes 
that retained their significant associations with the partner eSNPs after the adjustment). 
 
Kidney eQTL GWAS traits enrichment analysis. To investigate whether the identified 
kidney eQTLs are enriched for variants identified before in BP-GWAS, we used a 
computational framework known as TORUS92. Briefly, the enrichment calculated by TORUS 
is the logistic regression coefficient for association between absolute Z scores from a given 
GWAS and the probability of genetic variants being causal eQTLs. The coefficient is 
expressed on log-odds scale and is used to rank GWAS traits within a specific tissue; it is 
not sensitive to the sample sizes of the compared GWAS traits92. The positive enrichment 
indicates that variants with stronger evidence for association in a GWAS (higher absolute Z 
scores) are more likely to be causal eQTLs in the tissue of interest. The sources of 
information on 25 GWAS used in this analysis are listed in Supplementary Table 27. 
 
Analysis of tissue-specificity of the kidney BP-GWAS eQTLs. We compared the results 
of our kidney BP-GWAS cis-eQTL studies against the outputs generated by cis-eQTL 
analyses across 48 non-kidney GTEx tissues to explore the renal tissue specificity of the 
uncovered BP-GWAS kidney eQTL signals18,70-72,93. A BP-GWAS kidney eQTL was 
considered as tissue-specific if it fulfilled one the following criteria: (i) kidney-exclusive BP-
GWAS eSNPs (variants with the expression targets operating as eGenes only in the kidney 
tissue), (ii) kidney-exclusive BP-GWAS eSNP-eGene pairs (variants whose eGene targets 
are different between renal and non-renal tissues), and (iii) BP-GWAS eSNP-eGene pairs 
with kidney specific allelic direction (variants whose eGene partner overlap between the 
kidney and other tissues but the allelic direction of association with a given eGene is 
different between renal and non-renal tissues). 
 
Single-cell analysis of BP-GWAS kidney eGenes. Single-cell RNA-seq data for the 
human kidney was obtained from Young et al.15 and imported into R. This study profiled 
72,501 cells from kidney samples, including those of cancer origin, but for the purpose of 
this analysis only cells derived from normal kidney tissue were retained in the dataset 
(41,778 cells). Cell-level quality control included: removing cells with less than 200 or more 
than 8,000 unique molecular identifiers (UMIs), as well as those with more than 20% of UMIs 
coming from mitochondrial genes. Gene expression values were next normalized to the total 
number of UMIs per cell, log-transformed, and scaled using standard Seurat parameters16. 
This was followed by PCA using the highest variable genes in the dataset. Based on the 
percentage of variance explained, we determined that the first 30 PCs captured most of the 
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variability in the data. Thus, we embedded the first 30 PCs in two dimensions using t-
distributed stochastic neighbour embedding (tSNE) with a perplexity value of 3094. 

In order to identify distinct kidney cell types, we performed unsupervised clustering 
using Seurat’s sNN algorithm. We used the first 30 PCs as input to sNN, and a resolution of 
0.6. Based on this approach, we identified 23 distinct cell clusters. We then combined the 
cluster specific gene expression with known markers of immune and kidney cell types 
reported in the literature. This led to collapsing the 23 clusters into 13 cell types of known 
renal and immune identity and expressing canonical cell type markers. We then verified that 
these cell types also clustered by histological location in the tSNE space.  

Next, we calculated the proportions of kidney eGenes and BP-GWAS kidney eGenes 
(identified at previous stages of the project) in the single cell-type dataset. For BP-GWAS 
kidney eGenes with confirmed presence in the single cell dataset, we calculated the average 
expression in each cell-type (normalized UMIs per cell) (Supplementary Table 9). We then 
examined if any of these eGenes showed cell-type specific expression. Thus, we intersected 
our kidney eGenes with the computational markers identified for each cell-type. To define 
these markers, we used Seurat with previously verified criteria: (i) expression in > 25% of 
the total cells in the given cell-type; and (ii) log-fold change in expression > 0.25 in the 
specified cell-type when compared to all other cell-types28,29. 

To determine if there was enrichment for cell type-specific genes in any particular cell 
type, we compared all kidney cell type-specific BP-GWAS kidney eGenes to 1,000 
numerically equivalent random sets of non-BP-GWAS kidney genes and determined the 
proportion of cell type-specific genes across all 13 different renal cell types. The statistical 
significance of this difference was examined using the chi-squared test. 
 
Cis-splicing quantitative trait locus (cis-sQTL) analysis in kidney and blood. The cis-
sQTL analysis was performed in FastQTL using normalized intron usage ratios calculated by 
LeafCutter73 from 430 kidney samples and a common panel of 6,461,055 genetic variants. 
The cis-region was specified as ±1 Mb from the middle point of each intron. All the 
regression analyses (whereby normalized intron usage ratio was regressed against 
alternative allele dosage) were conducted under additive model and adjusted for age, sex, 
source of tissue indicator (nephrectomy/kidney biopsy), genotyping array, the top three 
genotype PCs from autosomal DNA, and 65 hidden factors estimated using PEER69. The 
multiple testing correction followed the principles of the two-stage strategy used in cis-eQTL 
studies. Briefly, at the first stage we calculated the corrected P-value by applying the ‘qvalue’ 
method83 to the Beta-approximated permuted P-value from FastQTL (in agreement with that 
used in cis-eQTL analysis). Introns with adjusted FDR < 5% were declared cis-splicing intron 
excision isoforms (sIEIs, introns whose usage ratios is regulated by at least one variant in 
cis). Clusters with at least one sIEIs were declared cis-splicing intron excision cluster 
(sIECs), and genes overlapping at least one sIEC were declared cis-sGenes (sGenes). The 
genetic variants associated with sIEIs at the level of significance below the nominal P-value 
threshold (calculated by the inverse quantile Beta-approximation) were declared as sSNPs.  

In the absence of publicly available cis-sQTL resources using LeafCutter from other 
human tissues, we conducted de novo analysis of 355 GTEx blood samples using the 
strategy reported above. Included in this analysis were 39,459,042 common genetic variants 
derived from WGS and 41,933 IECs containing 198,715 IEIs generated by LeafCutter from 
RNA-seq reads provided as BAM files. The cis-sQTL analysis was conducted in FastQTL 
with the window parameters used in the kidney resource and adjusted for age, sex, top three 
genotype PCs, and 54 hidden factors estimated using PEER69. The correction for multiple 
testing was conducted in agreement with that used in cis-sQTL analysis of the kidneys. 
 
Functional characterisation of kidney sSNPs and sGenes. Comparative analysis of BP-
GWAS kidney sGenes with expressed kidney genes. We examined the average number of 
protein-coding transcripts per gene for 254 protein-coding BP-GWAS sGenes and 10 million 
randomly selected sets of 254 expressed protein-coding kidney genes. We quantified the 
latter through counting the number of times the mean number of protein-coding transcripts 
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from each permutation exceeded the mean for the BP-GWAS sGenes. The statistical 
significance of this difference was calculated by dividing the number of times the BP-GWAS 
sGenes mean was exceeded by the number of permutations performed. This analysis was 
performed in R using the “future.apply” package (https://CRAN.R-
project.org/package=future.apply). The 95% confidence interval of the observed enrichment 
was calculated as the 2.5% and 97.5% percentiles of the distribution of enrichment values 
calculated from 1 million bootstrap resamplings of the original data. 

Functional categories annotation to BP-GWAS kidney sGenes. We used DAVID to 
examine whether BP-GWAS kidney sGenes are enriched for functional annotations95. The 
latter is a web-based interface that stores and calculates enrichment for a wide variety of 
gene annotations. We submitted 318 BP-GWAS kidney sGene symbols (276 were matched 
by DAVID) and used all human genes as the background comparator. The fold-enrichment 
were calculated by a Fisher’s exact test and the correction for multiple testing was calculated 
using the Benjamini-Hochberg method. 

BP-GWAS kidney sSNPs and intron branch points – enrichment analysis. We 
compared 9,326 BP-GWAS kidney sSNPs with 1 million permuted samples of 9,326 SNPs 
drawn from our set of imputed autosomal SNPs (as used in the QTL analyses). We counted 
the number of SNPs that overlapped with 63,734 branch point locations from Supplementary 
Table 1 of Taggart et al.96 in each of our SNP groups. Intron branch points are one of the 
key sequence-based regulators of splicing outside of intron-exon junctions96. The statistical 
significance of the difference in branch point overlap was calculated as the proportion of 
permuted samples that contained more branch point overlaps than the BP-GWAS kidney 
sSNPs divided by the number of permutations performed (1 million). This analysis was 
performed in R using the “future.apply” package (https://CRAN.R-
project.org/package=future.apply). 

BEND7 mRNA isoform quantification. In order to accurately quantify the BEND-002a 
and BEND7-002b transcripts, we created a custom Kallisto66 transcriptome based on the 
standard Ensembl v83 transcriptome but with a single manual addition of the BEND7-002b 
cDNA sequence. The Kallisto66 gene expression quantification process was then repeated 
exactly as previously described for the standard RNA-sequencing but using the custom 
transcriptome instead of the standard Ensembl v83 transcriptome. BEND7 transcript 
abundances were then extracted and summarised for all samples. 

BEND7 analyses in silico. BEND7-2a and BEND7-2b exons were extracted from the 
Ensembl97 release 97 ENSG00000165626 entry. Both sequences of concatenated exons 
were computationally translated using all possible translation frames 
(https://web.expasy.org/translate/)98, and the most likely ORFs were selected. The translated 
BEND7-2a protein sequence was confirmed to be identical to the Ensembl 
ENSP00000367868.3 sequence. BEND7-2a and BEND7-2b protein sequences were 
analysed with InterProScan (https://www.ebi.ac.uk/interpro/beta/)99,100 in order to identify 
functional domains. PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/)101, Quick2D 
(https://toolkit.tuebingen.mpg.de/tools/quick2d)102 and NetSurfP 
(http://www.cbs.dtu.dk/services/NetSurfP/)103 were used to analyze the physicochemical 
properties of the protein sequences, including their propensities for secondary structure 
elements and disordered regions. The absence of signal peptides and transmembrane 
helices was confirmed with SignalP (http://www.cbs.dtu.dk/services/SignalP/)104, TargetP 
(http://www.cbs.dtu.dk/services/TargetP/)105, TMHMM 
(http://www.cbs.dtu.dk/services/TMHMM/)106 and TOPCONS 
(http://topcons.cbr.su.se/pred/)107. Finally, NetPhos 
(http://www.cbs.dtu.dk/services/NetPhos/)108,109 was used to identify possible 
phosphorylation sites in the protein sequences as well as the protein kinases responsible for 
the attachment of the phosphoryl groups. 
 
Hierarchical clustering of Euclidean distances derived from human kidney DNA 
methylome profiles of different origin. We examined kidney methylome of 90 samples 
from three different sources of human renal tissue: (i) apparently normal tissue collected 
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from cancer-unaffected pole of the kidney after cancer nephrectomy (nephrectomy group, n 
= 57), (ii) non-cancer kidney samples from biopsies conducted prior to the transplantation 
(biopsy group, n = 27) and (iii) kidney cancer (cancer group, n = 6). Kidney DNA extracted 
from these samples was processed using the biochemical and bioinformatic pipelines 
established for methylome profiling and reported above. We then calculated Euclidean 
distances between all kidney DNA methylation profiles across all three groups of samples 
using the “dist” function in R. Hierarchical clustering of these values was performed by R 
(https://www.r-project.org/) and visualized using FigTree v1.4.2 

(http://tree.bio.ed.ac.uk/software/figtree). 
 
Cis-methylation trait locus (cis-mQTL) analysis in the kidney. Our cis-mQTL analysis 
was performed on 195 samples kidney DNA samples by FastQTL82. We used normalized M-
values (as the dependent variable) and genotype information for all genotyped and imputed 
variants surviving the quality control filters as an independent covariate under an additive 
mode of inheritance. Included in the regression model as additional covariates were age, 
sex, genotyping array, source of tissue indicator (nephrectomy/kidney biopsy), the top three 
PCs derived from genotyped autosomal variants (genotype PCs), and six PCs derived from 
the methylation array control probes (methylation PCs) as the independent variables. The 
latter set of PCs was derived from the PCA of 220 Illumina HumanMethylation450 array 
control probes based on the approach of Lehne et al.110 and Schulz et al.111 (to account for 
unmeasured confounding). The FastQTL cis-region was specified as ±1 Mb from each 
tested CpG position. The correction for multiple testing was conducted using the principles 
similar to those used in the cis-eQTL analysis. We defined a significant CpG as the DNA 
methylation site associated with at least one SNP in cis after the correction for multiple 
testing (FDR < 0.05). Given that more than one variant can be associated with a particular 
CpG, nominal P-value thresholds were derived for each significant CpG using the same 
method as for identifying eGenes. All variants with nominal P-values below the threshold for 
a given CpG were declared as mSNPs. We mapped all significant CpG sites to the closest 
gene using annotation from the IlluminaHumanMethylation450kanno.ilmn12.hg19 R 
package 

(https://bioconductor.org/packages/release/data/annotation/html/IlluminaHumanMethylation4
50kanno.ilmn12.hg19.html) and defined genes that the significant CpG was mapped to as 
kidney mGenes. 
 
Functional characterization of kidney DNA methylation targets. Positional 
characteristics of kidney mSNPs and CpG sites under genetic control of mSNPs. We 
characterized the distribution of CpGs partnering with mSNPs across six categories of 
location in relation to the closest gene (gene body, 3’ untranslated region, 5’ untranslated 
region, first exon, proximal promoter (≤ 200 bp), distal promoter (200 bp-1,500 bp)) using 
information from the Illumina annotation file. We compared the differences in the categories 
pertaining to the distance from transcription start site (> 100 kb, 10-100 kb, 5-10 kb, 3-5 kb, 
1-3 kb, 0-1 kb) between kidney best mSNPs and non-mSNPs. The statistical significance of 
the difference was assessed by Fisher’s exact test. 

Analysis of the effect of kidney mCpG sites in promoter sequences on renal gene 
expression. We examined how the location of mCpG sites in promoter sequences affects the 
expression of kidney genes. First, we generated residuals of methylation and expression of 
the mapped gene from regression models adjusted for age, sex, source of tissue indicator 
(nephrectomy/kidney biopsy), top three PCs derived from genotyped autosomal variants, 
genotyping array, and corresponding hidden factors from the respective cis-QTL analysis. 
Second, the residuals of gene expression were regressed on the residuals of methylation. 
We only examined genes whose association between methylation and expression survived 
the statistical significance after correction for multiple testing (FDR < 0.05). Then, we applied 
the binominal test to compare the statistical significance of the distribution in directionality of 
association between promoter methylation and kidney gene expression (positive versus 
negative). 



 28 

 
Analysis of potentially causal effects of BP on clinical outcomes using kidney SNPs 
as instruments. We obtained DBP, SBP and PP association summary statistics for lead BP 
SNPs from the ICBP Genetics Consortium4. We performed a lookup of association summary 
statistics for these SNPs across a range of clinically relevant cardiovascular and kidney 
outcomes from public resources. Cardiovascular outcomes included: coronary heart disease 
(60,801 cases and 123,504 controls, published data from the CardiogramplusC4D 
Consortium112), heart failure (ICD10 I50, 5,901 cases and 446,363 controls, extracted from 
UK Biobank using GeneATLAS113) and ischemic stroke (10,307 cases and 19,326 controls, 
published data from the MEGASTROKE Consortium114). Kidney outcomes included: CKD 
(12,385 cases and 104,780 controls, published data from the CKDGen Consortium115), 
eGFR from creatinine (133,814 individuals, published data from the CKDGen 
Consortium115), eGFR from cystatin C (33,152 individuals, published data from the CKDGen 
Consortium115), hypertensive renal disease (ICD10 I12, 1,663 cases and 450,601 controls, 
extracted from UK Biobank using GeneATLAS113), UACR (46,061 individuals without 
diabetes mellitus, published data from the CKDGen Consortium116) and microalbuminuria 
(55,390 individuals, published data from the CKDGen Consortium116).  

We performed two-sample MR to identify putatively causal effects of each BP trait on 
each cardiovascular and kidney outcome. The lead BP SNPs were not in LD with each 
other, so that their effects on BP traits and cardiovascular and kidney outcomes were 
uncorrelated. Analyses were performed separately for two sets of genetic instruments; (i) all 
kidney eSNPs, mSNPs and sSNPs, and (ii) all other SNPs with no apparent functional 
relevance to the kidney. For each analysis, we first accounted for heterogeneity in causal 
effects via modified Q-statistics117, implemented in the R package RadialMR, which identified 
outlying SNPs that were removed from the genetic instruments to reduce the impact of 
pleiotropy. Our primary MR analysis was then performed using inverse variance weighted 
(IVW) regression118, implemented in the R package TwoSampleMR119. We also assessed 
the evidence for causal association using two additional approaches that are less sensitive 
to heterogeneity (although less powerful) and implemented in the R package 
TwoSampleMR119: weighted median regression120 and MR-EGGER121. Differences in causal 
effects from the IVW meta-analysis between instruments with or without functional relevance 
in kidney were assessed using a Z-test. The significance threshold was set at P < 0.00093 
based on Bonferroni correction for three exposures, nine outcomes and two instruments (i.e. 
54 tests). 
 
Druggability analyses. We identified 479 informative genetic variants partnering with 918 
protein-coding kidney e-, s- and mGenes. We then mapped the proteins encoded by these 
genes onto a set of licensed drugs or compounds with bioactivities against these targets in 
silico. Briefly, gene annotations from Ensembl version 79 were extracted and filtered 
followed by identification of drug targets from ChEMBL 20 and DGIdb (accessed June 
2019). We stratified druggable genes into three tiers corresponding to position in the drug 
development pipeline, as per Finan et al.44. Tier 1 included efficacy targets of approved 
small molecule and bio-therapeutic drugs as well as clinical-phase candidates (e.g. KCNJ11, 
EDNRA and ADRA2B). Tier 2 comprised genes encoding targets with known bioactive drug-
like small molecules binding partners, as well as those with ≥ 50% identity (over ≥ 75% of 
the sequence) with approved drug targets (e.g. PDE1A, CDK14 and TERT). Tier 3 contained 
genes encoding secreted or extracellular proteins, proteins with more distant similarity to 
approved drug targets, and members of key druggable gene families not already included in 
Tier 1 and Tier 2 (GPCRs, nuclear hormone receptors, ion channels, kinases and 
phosphodiesterases). Any drugs not falling into one of the three tiers were excluded from 
further analysis. We conducted manual classification of all drugs with an in silico evidence 
for targeting kidney eGenes/mGenes/SGenes into the following categories: (i) disease 
association and treatment indication precisely concordant; (ii) disease association and 
treatment indication concordant within the same disease area; (iii) disease association 
corresponding to a mechanism-based adverse effect; (iv) disease association with a known 
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biomarker of therapeutic efficacy that can also be responsible for mechanism-based side-
effects; (v) discordant disease association and target indication considered to imply a 
potential repurposing opportunity; (vi) discordant disease association and target indication 
considered to imply either a repurposing opportunity or mechanism-based side effect 
depending on the direction; and (vii) unclassified (no clear relation between gene expression 
and blood pressure). Information on drug indication and adverse effects were obtained from 
Drug Bank122, CheMBL 21123, first drug bank database (http://www.fdbhealth.co.uk) and Side 
Effect Resource (SIDER) database124. The analyses of directionality were conducted when 
there was uncertainty about whether discordance represented a repurposing opportunity, or 
an unrecognized mechanism-based adverse effect. Directionality plots of gene expression 
against BP were plotted and the effect of drug on the gene was determined using DGIdB 
database125. If a drug inhibited a gene associated positively with BP then it represented a 
repurposing opportunity, while if a drug was an agonist for such a gene it was considered to 
represent a mechanism-based adverse effect, and vice-versa.  

We also conducted two-sample MR (IVW method) to determine whether discordant 
drugged genes in categories v and vi may potentially have a causal influence on BP. Each 
MR analysis of the putative causal effect of a drugged renal gene on BP was based on a 
selected set of independent (r2 < 0.2) instrumental SNPs showing a significant (P < 0.05) 
association with the renal gene in a respective cis-eQTL analysis. The summary statistics for 
outcome (BP) were derived from the meta-analysis summary of the associations between 
the instrumental SNPs and SBP/DBP, calculated from UK Biobank and ICBP data across 
750k individuals. Nominal P < 0.05 was considered as the level of statistical significance in 
two-sample MR results.  
 
Colocalization analysis. Using the R package moloc126, we examined pairwise 
colocalization between BP defining traits and kidney cis-QTLs. We defined the test regions 
as genetic regions with a distance of 200 kb on each side of the sentinel BP-GWAS SNPs. 
In each of these test regions, as an input into the analysis we used summary statistics 
(estimated SNP effects and their standard errors) for all overlapping SNPs included in both 
BP-GWAS and kidney cis-QTL (eQTL, sQTL or mQTL) analyses. As the method requires 
dense genotype information, regions with sparse (≤ 30) SNPs were excluded from the 
analysis. The prior probability of a SNP being causal to BP and to a kidney QTL were both 
set to 1 x 10-4 by default. The prior probability of this SNP being a shared causal variant for 
both BP and a QTL trait was set to 1 x 10-5. Therefore, the overall probability of a SNP that is 
causal to BP also being causal to a QTL trait is 0.1; this is also true for the inverse situation. 
On the basis of the posterior probabilities (PP), regions with PP(1 shared or 2 distinct causal 
SNP(s)) > 0.9 and PP(1 shared causal SNP):PP(2 distinct causal SNPs) > 3127 were 
considered as showing evidence for colocalization if the best causal SNPs were also the BP-
GWAS SNPs or their proxies (r2 > 0.8). Within each BP-GWAS locus, we then identified and 
selected best independent colocalization signals through filtering out those that are a result 
of correlation between the tested clinical phenotypes (between SBP, DBP and PP) or 
molecular traits (i.e. between CpG sites or sIEIs) or those that do not map to any known 
coding or non-coding genes. We then classified the colocalization signals as those pointing 
out to single or numerous genes. We visualized the colocalization using an R package 
LocusCompareR (https://github.com/boxiangliu/locuscomparer). For each test region, in 
addition to a Manhattan plot for each trait, this software also provides –log10(P-value) plots 
for each pair of traits. SNPs were marked in different colours depicting the strength of LD (r2) 
between the lead SNP and other SNPs. 
 
In silico functional annotations of variants implicated in colocalization studies. Gene 
biotype, location and description data for all expressed kidney genes was obtained from 
Ensembl BioMart release 83 (https://www.ensembl.org/biomart). To functionally characterize 
colocalized BP-GWAS kidney QTL SNPs, we first generated the 15-state chromatin 
segmentation in adult kidney tissue using ChIP-seq signal data for four different histone 
modifications (H3K4me1, H3K4me3, H3K36me3, H3K9me3) from Roadmap Epigenomics 
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GEO Series GSE19465. The input bed files were binarized (using the background input 
signal) and combined into a single chromatin state segmentation using 
ChromHMM128 following the standard Roadmap Epigenomics protocol129 for the 15-state 
segmentation. The 15-state model file from Roadmap 
(http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state) was 
used for the final segmentation by ChromHMM. We grouped the 15 chromatin states into 6 
summarized states using a combination of histone mark specificity (Supplementary Table 
28) and the 15-state clustering as reported by Roadmap Epigenomics in Extended Data 
Figure 2129. The chromatin state annotations for colocalized BP-GWAS kidney SNPs were 
compared to (i) 1,000 sets of matched autosomal SNPs, (ii) all SNPs from our catalogs of 
BP-GWAS SNPs and their proxies, (iii) a collection of 202,511 GWAS SNPs for non-BP 
traits from GWAS catalog. Each summarized state was tested individually for each of the 
comparators. The enrichment fold-change and level of statistical significance were 
determined using Fisher’s exact test, and P-values were corrected for multiple testing by 
FDR130. We used phred-scaled CADD scores extracted from the v1.4 GRCh37 CADD 
release to assess enrichment of functional potential in our colocalizing BP-GWAS SNPs. 
CADD score enrichment was calculated by permutation; first, we calculated the median 
phred-scaled CADD score for all colocalized BP-GWAS SNPs; second, we calculated the 
number of times this value was exceeded in 1 million randomly sampled and equally sized 
sets of SNPs drawn from each of our three comparators (1,000 sets of matched autosomal 
SNPs, BP-GWAS SNPs and non-BP-GWAS SNPs). The P-value was calculated as the 
number of times the colocalized BP-GWAS SNP median was exceeded by the comparator 
median, divided by the number of random permutations performed (1 million). This analysis 
was performed in R using the “future.apply” package (https://CRAN.R-
project.org/package=future.apply). 
 
Analysis of causal effect of BP-GWAS kidney genes on BP using MR. We used two-
sample MR to identify BP-GWAS eGenes, sGenes and mGenes (collectively referred to as 
xGenes) with putatively causal effect on BP. MR is a common approach to causal inference; 
the analytical design mimics a randomized controlled trial, where exposure associated SNPs 
are used as instruments to investigate if the exposure is causally associated with an 
outcome of interest131. In our MR analysis, kidney molecular targets (those emerging from 
renal expression, splicing and methylation analyses) were exposures of interest. Mutually 
independent SNPs (eSNPs, sSNPs and mSNPs) that were associated with the respective 
kidney molecular targets were selected as instruments. BP-defining traits (SBP and DBP) 
were used as the outcomes. Included in these analyses were genes that fulfilled the 
following criteria: (i) evidence of colocalization between BP and kidney cis-QTL analyses 
and (ii) molecular targets mapped to known protein-coding or non-coding kidney genes. 

We applied several MR methods; the IVW method and penalized weighted median 
method132 were used to quantify putatively causal effects of kidney molecular targets on SBP 
and DBP. Each MR analysis of the putative causal effect of a kidney molecular target on BP 
was based on a selected set of independent (r2 < 0.2) instrumental SNPs showing a 
significant (P < 0.05) association in a respective cis-QTL analysis. We excluded kidney 
targets with fewer than 15 available and valid instrumental SNPs. As an input to each MR 
analysis we used: (i) meta-analysis summary of the associations between the instrumental 
SNPs and SBP/DBP, calculated from UK Biobank and ICBP data across 750K individuals4; 
and (ii) summary of the associations between the same SNPs and the respective kidney 
molecular targets generated in kidney cis-QTL studies. Point estimates and standard errors 
were calculated for each method separately. MR-Egger regression was then used to detect 
horizontal pleiotropy132. As an additional sensitivity analysis, we evaluated individual 
instruments (e-, s- and mSNPs) for potential violation of the assumptions of our MR 
analyses by using the Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-
PRESSO) method. MR-PRESSO is capable of detecting and removing instruments that 
show evidence of horizontal pleiotropy or may otherwise be acting as outliers133. The 
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correction for multiple testing was calculated using the Benjamini-Hochberg FDR, and the 
threshold of corrected statistical significance was established at FDR < 0.05. 

We set the following criteria for the indication of a positive finding of causality: (i) 
causal effect estimates from the two main MR methods (the IVW method and penalized 
weighted median) must be significant after a correction for multiple testing, (ii) there is no 
evidence of horizontal pleiotropy in MR-Egger and (iii) signals identified through (i) and (ii) 
must be significant in MR-PRESSO after a correction for multiple testing. 

To examine the relationships between kidney DNA methylation, alternative splicing 
and gene expression in a specific locus with multiple signals of causality mapping onto one 
gene (i.e. FES), we further used MR Steiger tests134 to infer the direction of putatively causal 
effect between molecular traits (gene expression, CpGs and sIEIs) and then conducted 
robust IVW to quantify a potentially causal effect on signals identified by MR Steiger tests. 
Each MR Steiger test was based on independent (r2 < 0.2) SNPs significantly associated (P 
< 0.001) with a kidney molecular target and each robust IVW test was based on a set of 
independent SNPs significantly associated (P < 0.05) with a kidney molecular target. 
Bonferroni-adjusted P-value was used to correct for multiple testing. MR Steiger tests were 
performed using the R package TwoSampleMR119. All other MR analyses were conducted 
using the R package MendelianRandomization135. 
 
Biological characterisation of kidney genes with a causal effect on BP. All genes with 
evidence of a causal effect on BP underwent initial functional characterization via manual 
inspection of data available on PubMed, OMIM and GeneCards. Based on the revision of 
the collected information, each gene was assigned into one of the key biological themes 
(acid-base balance, cell cycle, cell growth and proliferation, cellular architecture, cell-cell 
contact, ciliogenesis, intracellular signalling, intracellular processing and degradation of 
proteins, immunity, metabolism, mitochondria and energy metabolism, sympathetic nervous 
system, vascular tone/sodium reabsorption, transcription). Each gene was also classified 
using the following categories: (i) prior evidence of connection to blood 
pressure/hypertension, (ii) prior evidence of role in kidney physiology/pathology, (iii) 
evidence of specificity to single kidney cells. For genes with prior evidence of relevance to 
BP regulation/hypertension, we further examined whether the direction of expected effect on 
BP/hypertension based on the available information is consistent with that observed in our 
eQTL dataset. 
 
Data availability 
The data supporting the results presented in this article are available either in the 
Supplementary Information (Supplementary Tables, Supplementary Note) or can be 
obtained from the authors upon reasonable request. The normalized gene expression, splice 
junction usage and DNA methylation data are archived at the Dryad digital repository 
(https://doi.org/10.5061/dryad.15dv41nvx). The e-, s- and mQTL summary statistics are 
available in the Supplementary Tables. 
 
Code availability 
Our studies make use of well-established computational and statistical analysis software and 
these are fully referenced in the Methods. All custom code used to orchestrate these 
analyses are available on request.  
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