
cells

Review

Exosomes in Ageing and Motor Neurone Disease: Biogenesis,
Uptake Mechanisms, Modifications in Disease and Uses in the
Development of Biomarkers and Therapeutics

Ekene Anakor 1,†, Laura Le Gall 1,2,† , Julie Dumonceaux 1,2 , William John Duddy 1 and
Stephanie Duguez 1,*

����������
�������

Citation: Anakor, E.; Le Gall, L.;

Dumonceaux, J.; Duddy, W.J.;

Duguez, S. Exosomes in Ageing and

Motor Neurone Disease: Biogenesis,

Uptake Mechanisms, Modifications in

Disease and Uses in the Development

of Biomarkers and Therapeutics. Cells

2021, 10, 2930. https://doi.org/

10.3390/cells10112930

Academic Editor: Pascal Colosetti

Received: 6 September 2021

Accepted: 25 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute,
Ulster University, Derry-Londonderry BT47 6SB, UK; Anakor-E@ulster.ac.uk (E.A.); l.gall@ucl.ac.uk (L.L.G.);
j.dumonceaux@ucl.ac.uk (J.D.); w.duddy@ulster.ac.uk (W.J.D.)

2 NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, Great Ormond Street
Hospital NHS Trust, University College London, London WC1N 1EH, UK

* Correspondence: s.duguez@ulster.ac.uk
† These authors contributed equally to this work.

Abstract: Intercellular communication between neurons and their surrounding cells occurs through
the secretion of soluble molecules or release of vesicles such as exosomes into the extracellular space,
participating in brain homeostasis. Under neuro-degenerative conditions associated with ageing, such
as amyotrophic lateral sclerosis (ALS), Alzheimer’s or Parkinson’s disease, exosomes are suspected
to propagate toxic proteins. The topic of this review is the role of exosomes in ageing conditions and
more specifically in ALS. Our current understanding of exosomes and exosome-related mechanisms
is first summarized in a general sense, including their biogenesis and secretion, heterogeneity, cellular
interaction and intracellular fate. Their role in the Central Nervous System (CNS) and ageing of
the neuromotor system is then considered in the context of exosome-induced signaling. The review
then focuses on exosomes in age-associated neurodegenerative disease. The role of exosomes in ALS
is highlighted, and their use as potential biomarkers to diagnose and prognose ALS is presented.
The therapeutic implications of exosomes for ALS are considered, whether as delivery vehicles,
neurotoxic targets or as corrective drugs in and of themselves. A diverse set of mechanisms underpin
the functional roles, both confirmed and potential, of exosomes, generally in ageing and specifically
in motor neurone disease. Aspects of their contents, biogenesis, uptake and modifications offer many
plausible routes towards the development of novel biomarkers and therapeutics.

Keywords: extracellular vesicle; exosome; CNS; neuromuscular disease; neurodegenerative disease;
ageing; biomarkers; therapeutic

1. Introduction

Mechanisms involving chemical messengers, the extracellular matrix, gap junctions,
tunnelling nanotubes and extracellular vesicles exist in cells for communication and ex-
change of bioactive materials including organelles, genetic materials, pathogens and mis-
folded proteins [1]. Based on characteristics of their production and release from cells,
classes of extracellular vesicles include exosomes, microvesicles and apoptotic bodies [2].
The use of the term “exosomes” can be traced to a 1981 paper where the writers proposed
that exfoliated membrane vesicles be referred to as exosomes [3]. In 1983, two independent
studies reported that the maturation of reticulocytes into erythrocytes involved the release
of transferrin receptors via 50 nm vesicles [4,5]. Four years later, the term exosome was
used by Rose Johnstone to refer to vesicles released into the extracellular space following
fusion of the multivesicular bodies (MVBs) with the plasma membrane [6]. For the purpose
of this review, and in line with the International Society for Extracellular Vesicles (ISEV)
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designation [7], the term small EVs (sEVs) will be used interchangeably with exosomes.
Exosomes can be released by different cell types in vitro and can be detected in biological
fluids in both pathological and physiological contexts.

Intercellular communication between neurons [8] and their surrounding cells [9–11]
in the central nervous system occurs through the secretion of soluble molecules or re-
lease of vesicles such as exosomes containing neuroprotective factors in the extracellular
space [12,13], participating in the maintenance of the brain homeostasis [14,15]. Under
neurodegenerative conditions associated with ageing, such as amyotrophic lateral sclerosis
(ALS), Alzheimer’s or Parkinson’s disease, exosomes are suspected to propagate toxic
proteins [16–19].

After summarizing exosome biogenesis, exosome heterogeneity and their fate and
impact on recipient cells, this review will then focus on the role of sEVs in ageing con-
ditions and more specifically on Amyotrophic Lateral sclerosis (ALS), a multisystemic
condition [20] that is associated with ageing. Thereafter, we will discuss whether exosomes
could be used as therapeutic tools and/or as biomarkers for ALS.

2. Exosome Biogenesis and Secretion

During exosome biogenesis, early endosomes mature into late endosomes where
intralumenal vesicles (ILVs) are formed and accumulate in their lumen. The process of
exosome formation includes (1) the clustering of sorted cargo at the membrane of the
MVBs, forming microdomains, and (2) subsequent membrane curvature and fission of
vesicles. Generally, the fate of MVBs is to fuse with lysosomes for degradation of their
content. However, MVBs can also be targeted to the plasma membrane of the cell where
ILVs are released into the extracellular space as exosomes upon membrane fusion [21]. The
role of endosomal sorting complexes required for transport (ESCRT) proteins in exosome
biogenesis has been investigated using a variety of approaches such as proteomics and
RNA silencing screening analysis [22,23]. The depletion of the four ESCRT complexes
involved in exosome biogenesis did not totally abrogate exosome formation, indicating
the existence of other mechanisms [23,24]. Two different pathways are described for sEV
formation (Figure 1), summarised below.

2.1. ESCRT-Dependent Mechanism

The ESCRT proteins can cluster into four complexes: ESCRT-0, I, II and III [25] and are
involved in the sorting of ubiquitinated cargo into ILVs (Figure 1). The ESCRT-0 complex
is composed of HRS (Hepatocyte growth factor-regulated tyrosine kinase substrate) and
STAM (Signal transducing adapter molecule) proteins and is recruited to the endosomal
membrane via ubiquitinated cargo and phosphatidylinositol 3-phosphate (PI3P). HRS
recognizes ubiquitinated protein–ubiquitin acting in this context as a targeting signal for
the specific incorporation of molecules in ILVs- and binds to PI3P [26,27]. The HRS/STAM
complex recruits ESCRT-I via TSG101/VPS28 (two components of the ESCRT-I complex)
to the endosomal membrane and forms an ESCRT-0/ESCRT-I complex. The ESCRT-I
complex contains one copy each of TSG101, VPS28, VS37 [26] and MVB12. Its recruitment
at the endosomal membrane is enhanced by ubiquitinated transmembrane cargo. Similar
to ESCRT-0, it is also involved in the clustering of selected ubiquitinated cargo into mi-
crodomains and mobilizes the ESCRT-II complex. The ESCRT-II complex is a heterodimer
comprising one copy each of VPS36 and VPS22 and two VPS25 subunits [28]. Together
with the ESCRT-I complex, the ESCRT-II complex initiates the negative curvature of the
emerging ILV at the MVB membrane and the uptake of cytosolic cargo [27]. Finally, the
association of ESCRT-I and –II recruits the ESCRT-III complex at the ILV biogenesis site
via ALIX or through a direct interaction with VPS25 from ESCRT-II. The components of
the ESCRT-III complex polymerize into filaments after recruitment at the MVB membrane
with two protein complexes, VPS2-VPS24 and VPS20-SNF7 [28,29]. ESCRT-III inside the
nascent neck of the ILV leads to the closure and detachment of vesicles containing specific
cargo within the MVB lumen [26,27].
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Figure 1. Biogenesis and secretion of exosomes. Schematic representation of exosome formation and release in the
extracellular space. (1) Exosomes are produced as ILVs by inward budding of the endosomal membrane and accumulate in
the lumen of the endosome. (2) Several mechanisms are involved in the biogenesis of exosomes such as ESCRT protein-, lipid-
raft- and tetraspanin microdomain-dependent pathways. Whether one or multiple pathways are required simultaneously
by one population of MVBs, or if each pathway is specific to one population of MVB, is still not clear. ESCRT-dependent
pathways: (A) the most described mechanism involved in the biogenesis of exosomes is the ESCRT-dependent pathway
requiring proteins of the ESCRT family. Specific transmembrane ubiquitinated cargo is recruited and clustered at the MVB
membrane by the ESCRT-0 complex, subsequently binding to the ESCRT-I structure. The ESCRT-II complex is activated and
together with ESCRT-I will create and/or stabilize the vesicle neck. Finally, ESCRT-III and its associated proteins will drive
neck constriction. (B) The second ESCRT-dependent biogenesis pathway is the syntenin/ALIX pathway. The formation
of syndecan-enriched microdomains leads to syndecan cleavage and the formation of syntenin/syndecan complexes that
interact with ALIX. The syntenin–syndecan–ALIX complex then favours the recruitment of the ESCRT-III complex to
support the MVB membrane curvature and abscission. ESCRT-independent pathways: (C) Ceramide- and phosphatidic
acid-dependent pathways are based on the formation of lipid-rafts where sphingomyelin is converted to ceramide or
phosphatidylcholine is converted to phosphatidic acid. The ceramide- and phosphatidic acid-enriched rafts induce the
inward curvature of the MVB membrane. (D) Similarly, tetraspanin-enriched microdomains can induce a negative curvature
in the MVB membrane. (3) MVBs will either fuse with lysosomes for degradation or with the plasma membrane, which will
consequently release exosomes into the extracellular space (4). Several proteins have been identified in the transport and
fusion of the MVB to the plasma membrane, such as proteins from the Rab protein family and SNARE complexes.

Another ESCRT-mediated exosome biogenesis involves the interaction of ESCRT-
III/ALIX with the transmembrane proteoglycan receptor, syndecan, and its binding partner
syntenin [30]. Syndecans assemble at the MVB membrane, followed by cleavage of the syn-
decan auto-repulsive domain. They remain clustered at the membrane allowing syntenin
to bind to the syndecan bundle. Consequently, syntenin interacts with ALIX, recruiting
the ECRT-III unit with VPS4 and leading to endosomal membrane inward budding and
abscission. ALIX initiates a de-ubiquitination step that occurs before the incorporation of
proteins into the ILV and before the closure of the latter [26].
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2.2. ESCRT-Independent Mechanisms
2.2.1. Lipid-Mediated Biogenesis

Exosomes are enriched in cholesterol, sphingolipids and ceramide. ESCRT-independent
ceramide-mediated exosome biogenesis requires the conversion of sphingomyelin into
ceramide through neutral sphingomyelinase 2 and the conversion of phosphatidylcholine
into phosphatidic acid (PA) by Phospholipase D2 (Figure 1) [31]. Subsequently, ceramide
and PA generated at the limiting membrane of the MVBs form a cone-shaped structure that
may contribute to the negative curvature of the endosomal membrane, leading to inward
budding and ultimately the formation of ILVs that are released as sEVs [32].

2.2.2. Tetraspanin-Mediated Biogenesis

The tetraspanin family are regulators of non-ESCRT dependent exosome biogenesis
(Figure 1). Tetraspanin proteins possess four transmembrane domains resulting in two
extracellular and three intracellular regions [33]. Tetraspanin proteins are glycosylated to
various degrees [33], forming oligomers and a protein-enriched microdomain at the plasma
membrane [34]. The role of glycosylation modifications of tetraspanins is still unknown
but it possibly contributes to tetraspanin complex formation [35]. Due to their cone-
shaped conformation and their ability to cluster into microdomains, tetraspanins could
induce inward budding of the late endosomal membrane and exosome formation [36].
Tetraspanins are highly enriched within exosomes and have been specifically used as
exosomal biomarkers over the years (see Table 1). Among them CD63, CD81, CD82 or CD9
are particularly used as exosome markers.

Table 1. Exosomes released by cells in the central nervous system and by the neuromuscular system.
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A
LI

X

C
D

9

C
D

63

C
D

71

C
D

81

C
D

82

Fl
ot

il
li

n-
1

H
sp

70

H
sp

90

La
m

p1

La
m

p2

R
ab

7

R
ab

11

Ts
g1

01

C
al

ne
xi

n

Ref

Cortical neurons +++ + +++ ++ [8,37–39]
Microglial cell ++ ++++++++ +++++++ + +++ + +++ + + + + [11,40–50]

Oligodendrocytes ++++++ + ++ +++ − − − − [10,12,13,51–53]
Schwann cells +++ ++ ++++ + ++++ + +++ [54–59]

Astrocytes +++ ++++ + +++ ++ + ++++ [9,60–66]
Hippocampal neurons + + [67]

Motor neurons + + + [68]
Skeletal muscle cells +++++++++ + +++++ + +++++ ++ + ++ ++++++ − − − [69–79]

Non-exhaustive list of different cell types secreting exosomes including neuronal cells (cortical neurons and neuroglial cells) and skeletal
muscle cells. The classic exosome markers used to identify and characterize isolated vesicles (ALIX, CD9, CD63, CD81, Flotillin, Hsp70 and
Tsg101) are shown. Each “+” or “−” sign represents a paper reporting sEVs harbouring typical exosomes markers (“+”) or absence of the
endoplasmic reticulum marker, calnexin (“−”).

2.3. Release of Exosomes in the Extracellular Space

MVBs are directed either to lysosomes for degradation or to the plasma membrane to
release exosomes into the extracellular space (Figure 1). The secretion requires cytoskeleton
network-associated molecular motors, small GTPases and fusion machinery including
SNARES and tethering proteins [2,80]. Small GTPase Rab and SNARE protein families are
particularly required for the transport of MVBs towards the cell periphery and their docking
and fusion with the plasma membrane [81]. Exosome secretion is mediated by different
Rabs that are preferentially associated with early (Rab11 [82] and Rab35 [83]) or late (Rab27)
endosomes. The subsequent fusion of the MVB-limiting membrane with the plasma
membrane requires soluble factors (NSF and SNAP), SNAP-attachment protein receptor
(SNARE) protein complexes and protein from the synaptotagmin family [81,84]. The v-
SNARE complex in the vesicle membrane interacts with the t-SNARE complex located at
the cell membrane. The SNARE proteins form bridges between opposing membranes that
brings them sufficiently close to induce fusion of both lipid layers. Consequently, ILVs
present in MVBs are released into the extracellular space as exosomes.
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3. Heterogeneity in the Exosome Population

Exosomes are heterogeneous and have been categorized according to size [84], mor-
phology [85,86] or buoyant density [87–89]. Heterogeneity can be attributed to exosome
biogenesis occurring at different locations along the endosome, plasma membrane or the
apical or cortical regions of the cell [85,87–93].

3.1. Exosome Membrane Composition

Lipid bilayer membrane delimited-exosomes are enriched in ceramide, cholesterol,
phosphatidylserine, phosphatidic acids, sphingomyelin, fatty acids, prostaglandins,
leukotrienes and sphingolipids that provide rigidity and structural stability [94]. The
exosome membrane also contains tetraspanin membrane organisers-CD9, CD81, CD63
and CD82 [27,81,84,95,96], transmembrane proteins (lipid-rafts or the tetraspanins), fusion
proteins (cytoskeletal, annexins or flotillin) and adhesion molecules (integrins and lactad-
herins) [97–99]. The membrane composition varies depending on the biogenesis pathway,
leading to the release of different exosome subpopulations [89,99]. Table 1 summarizes the
proteins commonly detected by Western blot or immunostaining in exosomes secreted by
different cell types in the central nervous system and by the muscle cells.

3.2. Exosome Lumen Content

The lumen composition of exosomes varies depending on the site of formation and
the biogenesis pathway [89,99] and on the physiological and pathological context. In this
section, the general content and sorting processes will be described. The composition of
exosomes in the context of ageing and ALS will be described in Sections 5 and 6.

3.2.1. Proteins

The most abundant proteins identified in the lumen of exosomes include proteins
required for the biogenesis and function of exosomes such as ESCRT and associated
proteins (ALIX and TSG101, see Table 1) [27,84,100] that are shared across different exosome
subpopulations. The exosome lumen also contains functional enzymes such as lipolytic
enzymes implicated in intraluminal vesicle formation and eicosanoid biosynthesis [101,102].
Protein cargo sorting inside sEVs is controlled by specific machinery with post-translational
modifications (PTM) acting as a sorting signal [99].

Protein ubiquitination is an important sorting signal involved in ESCRT protein
machinery recruitment. Likewise, ESCRT-independent mechanisms involve PTMs such
as SUMOylation, phosphorylation, citrullination or oxidation [99,103]. For example, α-
Synuclein, a presynaptic neuronal protein linked genetically and neuropathologically
to Parkinson’s disease, once SUMOylated, is incorporated into sEVs, released into the
extracellular milieu and readily internalised by other cells in the central nervous system,
transferring toxic alpha synuclein oligomers in a cell-to-cell manner [104].

While ubiquitination and SUMOylation are involved in targeting proteins to MVBs
and their subsequent release via exosomes, others such as acetylation and ISGylation drive
modified proteins into MVBs directed towards lysosomal degradation [105], suggesting
that PTM could serve as a mechanism to direct potentially toxic proteins into sEVs for
clearance.

It is noteworthy that not all exosomal protein cargo is modified and that not all
modified proteins are sorted into exosomes. Other processes such as ESCRT-independent
pathways involving the tetraspanins (eg CD63), ceramide and lipid raft domains also have
a role in protein cargo sorting in sEVs [106].

To date, it is not clear whether all protein sorting machineries overlap or are completely
independent and/or specific to a sub-type of ILVs. Further studies are required to better
understand the sorting of specific PTM proteins into the exosomes.
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3.2.2. Nucleic Acid

Depending on the cell type and the state of the secreting cell, the lumen of exosomes
contains nucleic acids including genomic and mitochondrial DNA [107] and different types
of RNAs [108]. The exact mechanism(s) by which nucleic acids, especially miRNAs, are
loaded into exosomes are not fully understood, but potential modes of sorting have been
postulated [109]. To illustrate exosome heterogeneity in RNA content, a single copy of a
given miRNA (e.g. miR-126, miR-223 and miR-720) was observed in only one exosome out
of one hundred [90], an indication that the RNA sorting process and content in sEVs might
not be reproducible.

Numerous studies report the presence of diverse nucleic acids in sEVs such as microR-
NAs (miRNA), messenger RNAs (mRNAs), transfer RNA (tRNA), vault RNAs, circular
RNAs, long non-coding RNAs (lncRNAs) and small nucleolar RNA (snoRNA) [110,111],
as well as mitochondrial and genomic DNA [9,112]. The RNA composition of sEVs is
currently being explored in depth. Similar to protein cargo sorting, the mechanisms of
RNA sorting have been widely studied, especially for miRNAs (see [113,114] for review).
Numerous mechanisms for miRNA sEV sorting have been identified, such as (1) the
miRNA-induced silencing complex (miRISC) pathway that co-localises with MVBs and
involves proteins such as AGO2 [109]; (2) the ESCRT-independent pathway requiring neu-
tral sphingomyelinase 2 [115]; (3) miRNA motifs and sumoylated heterogeneous nuclear
ribonucleoproteins (hnRNPs)-dependent sorting that requires the presence of a GGAG (EX-
Omotifs) or GGCU sequence (hEXO motifs) to bind and load miRNAs into sEVs [103,116];
(4) membrane proteins involved in ESCRT biogenesis such as Vps4A, which modulates the
sorting of microRNAs into sEVs [117,118]. Other mechanisms of sorting of miRNAs and
other types of RNA species such as mRNAs, lncRNAs, tRNAs and circRNAs that include
SUMOylation [103], and raft-based microdomains requiring the presence of a lipid-bilayer
binding motif within specific RNA sequences [114,119]. In addition, other RNA-binding
proteins including YB-1, NSUN2, MEX3C, Major Vault Protein 4(MVP4), La protein, MTR4,
and Anexin-2 can sort RNA species into sEVs by recognizing and binding specific RNA
sequences [106].

The mechanisms sorting DNA species into sEVs have not been directly explored and
remain relatively unknown, although the ESCRT family proteins and mitochondria-derived
vesicles generated in response to oxidative stress and targeted to the endolysosomal system
may play a role in sorting [120,121]. Interestingly, it has been suggested that most of the
DNA associated with sEVs is not localised within the intraluminal space but on the outer
membrane of the vesicles [122,123].

3.3. Heterogenous Buoyant Properties

Buoyant properties will vary according to the exosome composition and size, with
small vesicles (~60 nm) reaching their density equilibrium faster than large vesicles
(~100 nm) [87,88]. Two types of sEVs were identified following sucrose gradient ultracen-
trifugation: low-density exosomes with density of 1.12–1.19 g/mL and size distribution
between 75–200 nm and high-density exosomes with density of 1.26–1.29 g/mL and size
distribution < 100 nm [88]. Table 2 collates data from different studies of exosomes secreted
by neuronal and glial cells, which suggest that most sEVs from these cells present a diame-
ter between 70–75 nm, and a low density (between 1.13–1.16 g·mL−1). sEVs secreted by
adult muscle cells have a higher diameter, around 100 nm.

Although heterogeneous exosome populations are secreted by cells, most of the studies
analyse exosomes as bulk isolates, masking vesicle subpopulations and the physiological
or pathological effects of these subpopulations.
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Table 2. Vesicle heterogeneity in size and variability in buoyant densities in isolated sEV populations.

Exosome Origin Ref Exosome Marker Density (g.mL−1)
1.07 1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.2

Rat primary cortical neurons [8]

ALIX

100
Murine oligodendrocytes [10] 55
Oligodendrocyte cell line [12] 95
Oligodendrocyte cell line [52] 75
Murine neuroglial cells [124]

Tsg101
70

Oligodendrocyte cell line [52] 75
Murine neuroglial cells [124] Hsc70/

Hsp70
70

Oligodendrocyte cell line [12] 95
Murine neuroglial cells [10]

Flotillin
70

Oligodendrocyte cell line [52]
Human embryonic myotubes [72] CD63 70
Human embryonic myotubes [72] CD81 70 70
Human embryonic myotubes [72] CD9 70 70

Human adult myotubes [69] CD63 100
Human adult myotubes [69] CD82 100

This table summarizes studies conducted on vesicles originating from cell culture. Exosomes are ranked depending on their buoyant properties (in sucrose in g/mL) and associated with the mean vesicle size in
nm as measured by electron microscopy (EM) or nanoparticle tracking analysis (NTA) methods. Exosome markers used to identify exosome populations on density gradient separation for each study are listed in
the second column. The grey backgrounds indicate the flotation of vesicles.
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4. Exosomal Interaction with Recipient Cells and the Fate of Exosomes

Understanding whether exosomes communicate with the recipient cell in a specific
and controlled or stochastic process is the first step in unravelling exosome-cell interac-
tion [125,126]. Intercellular communication mediated by secreted exosomes occurs either by
direct interaction with recipient cell with or without the uptake of exosomes and/or indirect
interaction facilitated by cleaved transmembrane ligands (proteins or lipids). This section
addresses the types of interactions between exosomes and the recipient cell (Figure 2).
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and (5) lipid-raft dependent endocytosis. To release their content into the cytoplasm, secreted exosomes can directly fuse
with the plasma membrane. The vesicle–cell interaction generates distinct cellular responses. Communication mediated by
ligand signalling, Juxtacrine signalling or direct fusion with the plasma membrane possibly results in intercellular signalling
pathway activation. On the other hand, once endocytosed by the cells, exosomal contents are systematically released to
the endocytic compartments and are more likely to undergo degradation via fusion of endosomes with lysosomes. Some
vesicles, however, have been described to escape degradation by back fusion of the exosomes containing MVB with the PM
or by transport of exosomes towards the Golgi apparatus. MVB: Multivesicular bodies.

4.1. Ligand–Receptor Interaction (Cell-Surface and Exosome-Surface Receptors)

Exosome–recipient cell interaction requires a combination of specific molecules present
on the surfaces of the cell and on the exosome including proteins (glycoproteins, integrins
or tetraspanins), sugar (heparan sulfate proteoglycans) and lipids. Table 3 reports some of
the ligands on the surface of exosomes and the targeted cells that are known to interact
with each other.
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Table 3. Summary of ligand–receptor interaction in exosomes/cell communication.

Exosome Ligand Target Cell Ligand Ref

Glycoproteins

Fibronectin Heparin sulfate proteoglycans
(HSPGs) [127]

Fibronectin Integrins [128]

ICAM (CD54) LFA-1 [129–131]

MUC1 DC-SIGN [132]

Integrins

β1 and β2 integrins ICAM-1

[133]β1 and β2 integrins Collagen-I

β1 and β2 integrins Fibronectin

Integrin α4β1 Fibronectin [134]

αvβ3 / αvβ5 integrins MFG-E8 [135]

CD47 SIRPα [136]

Lectin

C-type lectin Mannose-rich C-type lectin
receptor [137]

Galectin 5 Glycoproteins (CD7,
α5β1-integrin, or laminin) [138]

Galectin 9 Tim 3 [139]

Tetraspanins Tspan8-CD49d ICAM-1 (CD54) [140]

Lipid rafts

Phosphatidylserine Tim-1/4 [96]

Phosphatidylserine MFG-E8 [135]
Phosphatidylethanolamine MFG-E8

Annexin 2 Lipid raft domain [141]

Sugar α2,3-linked sialic acids sialoadhesin (CD169) [142]
Known ligand/receptor interactions are listed and categorized according to the molecular origin of the ligand.
ICAM: InterCellular Adhesion Molecule, LFA-1: Lymphocyte Function-associated Antigen 1, MFG-E8: Milk Fat
Globule-EGF factor 8 or lactadherin protein, SIRPα: SIgnal Regulatory Protein α, DC-SIGN: Dendritic Cell-Specific
Intercellular adhesion molecule-3-Grabbing Non-integrin C type lectin receptor.

Several studies have investigated how exosomes could specifically target different
cells under physiological and pathological conditions [136,143,144]. Among the list of
known ligand–receptor interactions, protein–protein interactions are the most abundant
for sEVs. For example, the pre-treatment of ovarian cell-derived exosomes with proteinase
K or trypsin to degrade exosomal transmembrane protein abolished their uptake by cancer
cells [136,145,146]. Inhibiting specific interactions using antibodies or soluble ligands prior
to treatment of cells with exosomes has enabled the discovery of many specific ligand–
receptors involved in exosome uptake [147]. The various specific ligand–receptors suggest
that some sEVs may target specific cells and/or may have different effects on different
cells. Once an exosome docks at the surface of the recipient cells, four scenarios can
occur. The exosome binds to cell surface receptors eliciting intracellular responses in the
recipient cell [148]; it fuses with the plasma membrane releasing its contents directly into the
cytosol [149]; it is internalized by the recipient cell via the endosome machinery [150,151];
or it crosses the cell and is re-released intact to target other cell types [152].

4.2. Indirect Communication: Soluble Ligand Mediated Signalling

Exosomes can mediate intercellular communication without direct contact with the
recipient cell by producing soluble ligand resulting from the cleavage of transmembrane
protein–ligand that will then interact with its receptor at the surface of the targeted cell and
activate multiple signalling pathways (Figure 2–ligand signalling). For example, as part
of the complement activation pathway, CD46 has been identified as one of the mediators
of complement resistance of malignant cells by inactivating C3b and C4b molecules [148].
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CD46 can shed from the tumour cells via exosomes and is cleaved by metalloproteinases to
produce soluble forms in ovarian cancer cells [148].

4.3. Fusion of Exosomes with the Plasma Membrane

The fusion of the exosome and recipient cell membranes requires several events includ-
ing insertion of hydrophobic fusogenic proteins into the recipient cell, lipid reorganisation,
protein restructuring to fusion-competent forms and membrane dimpling [149]. Syncytin-1
and -2, exosomal transmembrane proteins, bind to syncytin-specific receptors, MFSD2a
and ASCT2 located on the recipient cell surface [153]. Interestingly, these surface pro-
teins are known to be expressed by glial and neuronal cells, with syncytin-1 expressed in
microglial cells [154] and associated with neuroinflammation [155], MFSD2a expressed
by the endothelial cells at the blood–brain barrier [156] and ASCT2 expressed by both
astrocytes and neurons [157,158]. Following binding, the exosome membrane fuses with
and is inserted within the plasma membrane, resulting in the release of exosomal contents
into the cytoplasm of targeted cells [149].

The pH of the extracellular space also plays an important role in the vesicle–cell fusion
process, as exosome fusion was enhanced by acidic pH while pre-treatment with proton
pump inhibitors, which reduces extracellular space acidity, reversed this phenomenon [159].
The brain extracellular pH is locally and tightly regulated by astrocytes following significant
release of acid by neurons [160]. An imbalanced local pH regulation may not only affect
neuronal functions, but also the interactions between neurons and sEVs.

4.4. Endocytosis

Exosome interaction with recipient cells can occur through the endocytic pathways
including clathrin- or caveolin- dependent endocytosis, macropinocytosis, phagocytosis,
and lipid-raft mediated endocytosis.

4.4.1. Clathrin-Mediated and Caveolin-Dependent Endocytosis

Various studies have highlighted the possibility of exosomes to be internalized by
energy-dependent mechanisms involving the cytoskeleton of the recipient cells [138,161]. A
well-known pathway is clathrin-mediated endocytosis [162]. The deformation of the cell
membrane induced by the clathrin protein leads to the formation of inward buds growing into
a larger vesicle that will mature and pinch off (see [163] for review). The exosomal content can
then be delivered into the recipient cells, as observed with rat pheochromocytoma tumour
cell-derived exosomes absorbed by bone marrow-derived mesenchymal stromal cells (BMSCs)
via clathrin-dependant endocytosis and delivering miR21 [150].

Caveolae are well known to be involved in the endocytic pathway and could be
involved in the absorption of circulating sEVs. They are invaginations in the plasma
membrane enriched in glycoproteins and cholesterol [164]. Three caveolins, cavelonin-
1,-2 and -3, can form oligomeric complexes that are stabilized by cavin proteins [165].
Caveolin rafts are then internalized by the cell through dynamin activity [147]. However,
while epithelial cells uptake exosomes via clathrin and caveola-dependant pathways [151],
HCT116 cells [166] and BMSCs [150] are not able to internalize exosomes via caveolae.
These different studies highlight that the recipient cells and the exosome origin may
influence the pathway used for the absorption of circulating vesicles.

4.4.2. Macropinocytosis and Phagocytosis

Exosomes can be secreted as a cluster [67], thus affecting incorporation through the
classic clathrin- and caveolin-dependent mechanisms. In this context, both pinocytosis and
phagocytosis pathways can form large vacuoles [167] and can engulf large exosome clusters
and aggregates. Despite their similarity, phagocytosis and pinocytosis occur through two
distinct cellular machineries.

Macropinocytosis is characterized by the formation of ruffled extensions from the
plasma membrane around the extracellular space including the extracellular fluid and
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components that will be further internalized by the cell. Macropinocytosis machinery
requires multiple mediators such as PAK1 kinase, rac1, ras and src, cholesterol, cytoskeleton
actin protein and a Na+/H+ exchanger [167]. It occurs constitutively and requires the
protein-dependent formation of cytoskeletal actin [52].

Phagocytosis relies on the association between the receptor from the plasma mem-
brane and the vesicle’s ligand [52]. The co-localization of exosomes with phagolysosome
maturation markers (e.g., LBPA, Rab7 and LAMP proteins) strongly suggests the ability of
macrophages to internalize exosomes via phagocytosis, forming large exosome-containing
vacuoles that are targeted towards lysosomes [168]. This requires the formation of mem-
brane invagination around the targeted cargo to be internalized and involves the actin
cytoskeleton, PI3K, dynamin and phosphatidylserine (PS) [147,169]. Phagocytic cells
mainly use phagocytosis for the capture of exosomes [168].

4.4.3. Lipid-Raft-Mediated Endocytosis

The colocalization of exosomes with a lipid raft marker pointed towards the role of
lipids in the uptake of exosomes and was confirmed when exosome uptake was successfully
inhibited with cholesterol-depletor, Methyl-β-cyclodextrin added to glioblastoma cells, or
when lipid-raft dependent endocytosis inhibitor drugs were used [147,170]. Lipid rafts
are formed by cholesterol and sphingolipid-rich microdomains and are rich in protein
receptors [147]. However, lipid-raft mediated endocytosis may represent a small portion
of exosome uptake as only a small region of the plasma membrane is rich in sterols and
sphingolipids, and this region may also be involved in various cellular processes [171].

4.5. Fate of Exosomes within Targeted Cells

The fate of sEVs following entry into the recipient cell is still being investigated and not
fully understood. Three destinies can be observed: (1) recycling/degradation, (2) delivery
of functional content and (3) crossing the cells and being released intact to other cell types
where they can exert their action.

Following internalisation, exosomes are most likely integrated into the endocytic
pathway and those directed to the late endosome are degraded within the lysosome with the
release of materials that can be used by the recipient cell [172]. However, internalised sEVs
maybe be able to escape degradation via recycling of endosomes or the trans-Golgi network.
More specifically, the late endosome can accumulate vesicles that contain molecules not
destinated to be degraded by lysosomes [173], and will release functional content into
the cytoplasm. Consequently, the functional nucleic acids and proteins delivered to the
recipient cells could have an impact on cellular pathways causing cellular reprogramming,
epigenetic changes or modulation of the phenotype [110].

The recipient cell may not be the final destination for sEVs. As observed in neurons,
sEVs can hijack the endosomal pathway and be transported with endogenous exosomes
to neighbouring or distant cells. Using a microfluidics setup, PKH-67-labelled exosomes
from the brain of Tau transgenic rTg4510 mice were internalised by the endosomes of
cultured mcherry-cd9 labelled neurons that re-released a mixed exosome population (red
and green labelled exosomes) to neighbouring neurons [152]. This highlights the property
of exosomes to engage in long-distance communication with intact sEV content containing
toxic proteins, as observed in sEVs implicated in neurodegenerative diseases [152].

5. Exosome-Induced Signaling in CNS; Role in Ageing and in the Neuromotor System

sEVs can play important roles in neuronal plasticity, neuron-glia communication,
muscle-neuron communication, homeostasis, protection from cellular stress and synaptic
regulation. Presynaptic and post-synaptic secretion of neuronal exosomes mediates neuron–
neuron and neuron–glia communication [8,67,174]. Exosome-mediated neuron–neuron
communication is involved in neuronal growth and differentiation [37] and suppression of
dendritic growth [175] as well as homeostatic regulation of synaptic plasticity [176–178].
Neuronal exosomes can also promote microglial synaptic pruning of neurites by upregula-
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tion of pro-phagocytic genes [179], while exosomes secreted by glial cells can protect and
ensure neuronal integrity and survival [174,179–181]. For example, sEVs secreted by oligo-
dendrocytes not only regulate myelination and neuronal survival [13,51], but also act as a
metabolic support under stress conditions [12] via the delivery of enzymes (catalase, SOD1)
and phosphorylation of signaling proteins such as CREB, GSK-3α/β, GSK-3β and JNK
within neurons [13]. Astrocyte-derived exosomes promote neuron survival and protection
under oxidative stress conditions, containing molecules such as apolipoprotein E [182],
apolipoprotein D [183], neuroglobin [65] and gap junction protein [184] that are associated
with neuronal repair, survival and anti-apoptosis. Similarly, microglia-derived exosomes
are important for neuronal homeostasis and provision of metabolic support [11,39]. N9-cell
lines and primary microglia cultures secrete exosomes containing enzymes associated with
glycolysis and lipid metabolism that may supplement neuronal metabolic support [11].

Skeletal muscle-derived exosomes are secreted by both myoblasts and myotubes [69,185]
and may be involved in neuronal cell survival [186], myogenesis and muscle regenera-
tion [73,187] as well as in myoblast differentiation [71,79] or during muscle ageing [188].
C2C12 myotube-derived exosomes reduced myoblast proliferation and induced differentia-
tion while negatively regulating Sirt1 expression in C2C12 myoblasts, further supporting
the existence of myoblast-myotube crosstalk mediated by exosomes [71,79].

These studies highlight the contributions of exosomes derived from motor neurons,
glial cells and skeletal muscles to neuromuscular system functioning and the cross talk that
is persistent within and between different cell types.

5.1. Impact of Ageing on Cell–Cell Communication

Neuronal and non-neuronal cells including the skeletal muscles are impacted by
normal ageing. For example, ageing motor neurons that are post-mitotic undergo an analo-
gous senescence requiring P53 activation that results in cellular stress, aberrant neuronal
health and an enhanced vulnerability to further pathological insult [189]. Skeletal muscle
undergoes structural and functional changes with ageing, with resident skeletal muscle
adult stem cells (satellite cells) exhibiting age-associated loss of regenerative capacity due
to defects in activation, proliferation and self-renewal [188,190]. Alteration of the intrinsic
properties of ageing cells may affect their local niche [191], affecting the cell secretome
and thus communication from cell to cell [188] and may have a role in ageing-related pro-
cesses such as neuroinflammation [155], inflammaging [192] or neurodegeneration [193],
processes also known to be involved in ALS.

sEV biogenesis and secretion are altered with ageing, leading to an increased secre-
tion of sEVs with smaller size and modified miR profiles that may have an impact on
macrophage phagocytosis [194]. sEVs also present a dramatic increase in the expression of
exosomal markers CD63 and LAMP2 with ageing [195].

5.2. Secretion of sEVs by Senescent Cells

The degree of increase in sEV secretion is dependent on the cell type origin and their
senescence level [196]. In senescent cells, sEV biogenesis and secretion are upregulated by
p53 acting as a transcription factor (see [197] for review) and by the Ras-related RAB family
of small GTPase genes [198,199]. Furthermore, P53 upregulates neutral sphingomyelinase-
2 [200], while DNA damage, which is a key trigger for the induction of senescence, activates
ceramide biosynthesis that results in biogenesis of senescent-associated sEVs [201].

The accumulation of senescent cells with age can influence the release and contents of
circulating sEVs. Senescence-associated secretory phenotype (SASP) components such as
interleukins, intercellular adhesion molecule 1 and Cell-free telomeric repeats containing
RNA (cfTERRA) are present in sEVs from different senescent cell types [202], and miRNAs
involved in senescence pathways have been identified in sEVs, with a capacity to affect
cellular functions in the body [194] in an autocrine and/or paracrine fashion.

Although extracellular vesicles are involved in senescence and ageing, evidence for
the role(s) of sEVs in physiological ageing and neurodegeneration is in its infancy, and
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the mechanisms and/or signaling involved in specific tissues such as neural and skeletal
tissues still need to be elucidated. For example, primary human myoblasts undergoing
premature senescence showed a five-fold increase in sEV secretion, with gene expression
analysis showing a four-fold increase in transforming growth factor-β (TGF-β) within
secreted sEVs [203]. These aged skeletal muscle-derived sEVs increased the expression
of senescence markers and reduced proliferation in endothelial cells [203]. Furthermore,
sEVs from aged C2C12 myotubes show age-associated significant enrichment in miR-34a
that induces cellular senescence in bone marrow mesenchymal stem cells [204] and in
miR-29b-3p that is efficiently transferred to neuronal cells, inhibiting genes associated with
neuronal differentiation while decreasing neurite length and outgrowth [205]. Recently it
has been suggested that sEVs containing SASP components activate transcription factors
involved in the canonical NF-κB pathway and are reliant on the IKK Complex, a central
regulator of NF-κB activation to drive senescence [206].

Overall, as senescence drives ageing and DNA damage accumulation is widespread in
aged brains and is higher in pathological brains, the presence of SASP components within
isolated sEVs suggests a role of EVs in communication with the cellular microenvironment
and possible contribution to age-related tissue and organ dysfunction.

Interestingly, while the concentration of sEVs in peripheral circulation is increased in
age-related diseases [207], there is no clear evidence as to whether senescence-associated
sEVs in peripheral circulation increase with age. While no correlation was found between
blood sEV concentration and healthy human aging as well as frailty status [208], the
sEV concentration in plasma decreasing with advancing age could be due to increased
internalization by leukocytes [209]. Together, these studies suggest that while senescent
cells in vitro may provoke an increase in sEV secretion, circulating sEVs either remain the
same or are decreased with ageing.

5.3. Proteins and miRNAs Associated with Senescence Contained within sEVs

Ageing affects the RNA and protein composition of sEVs. Galectin-3 is reduced in
plasma sEVs of elderly subjects [210], and several sEV-associated miRNAs have been
implicated in brain ageing. When sEVs from young rats that are enriched in miR-129 are
applied to aged rats, there was increased myelination and a reduction in the functional
decline of the brain [211].

Senescent cell-derived sEVs that are enriched in miR-23a-5p and miR-137 can bring
about telomere dysfunction, confer anti-apoptotic properties and induce cellular senescence
in recipient cells [212,213].

5.4. sEV Therapeutics in Ageing

sEVs mediate the systemic delivery of biologics that counteract age-associated func-
tional decline in target tissues including the hypothalamus and hippocampus [214]. Ex-
tracellular nicotinamide phosphoribosyl transferase (eNAMPT) is a nicotinamide adenine
dinucleotide (NAD+) biosynthetic enzyme that declines with age in humans. The ad-
ministration of sEVs isolated from the plasma of young mice and containing eNAMPT
improved the wheel-running activity and increased lifespan of aged mice, suggesting the
utility of young sEVs as a potential anti-ageing intervention [215]. Similarly, hypothalamic
neural stem cell (NSC)-derived sEVs possess anti-ageing effects that are mediated in part
by miRNAs. The administration of NSC-derived sEVs to the hypothalamic third ventri-
cle of ageing animal models reduced hypothalamic inflammation and slowed down the
age-associated detrimental outcomes [211].

sEVS extracted from human iPSCs [216], embryonic stem cells [217], primary fibrob-
lasts of young human donors [218], mesenchymal stromal cells [219] and human embryonic
stem cell-derived MSCs [220] have all been described to attenuate senescence and cell aging
in vitro and in vivo and to extend health span. Together, these studies suggest that sEVs could
be beneficial for age-related pathologies and can be used as a potential therapeutic strategy.
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6. Exosomes in Neurodegenerative Disease Associated with Ageing: ALS

Motor neuron disorders are a heterogeneous group of diseases characterised by the
progressive and fatal degeneration of upper and/or lower motor neuron [221,222]. Amy-
otrophic lateral sclerosis (ALS) is the most frequent of the motor neuron diseases, with
reported incidence varying between 1 and 2.6 per 100,000 persons per year in different pop-
ulations [222], with approximatively 10% of cases being familial and 90% being sporadic
cases [20,223].

The aetiology of ALS is not fully understood with cellular, environmental and genetic
factors thought to play a role [20]. The most frequent gene mutations associated with ALS
are copper- and zinc-containing antioxidant superoxide dismutase 1 (SOD1), Fused in
Sarcoma (FUS), C9orf72 and TAR DNA-binding protein 43 (TARDBP/TDP43) [222]. Several
pathways associated with cellular dysfunction are often described in the nervous or muscle
tissues of ALS patients including glutamate toxicity, oxidative stress, mitochondrial dys-
function, axonal transport impairment, protein aggregation, endoplasmic reticulum stress,
abnormal RNA processing and neuroinflammation [224]. The contribution of exosomes to
ALS pathology by propagating misfolded proteins or toxic aggregates is increasingly being
investigated [225–227], as well as their use as prognostic or diagnostic biomarkers.

6.1. Detection of ALS Proteins in Exosomes: Potential Role of Exosomes in the Propagation of ALS

Aggregation of misfolded proteins may participate in disease propagation [228]. While
the exact mechanism(s) for the spread of neurodegeneration is not fully understood in ALS,
extracellular secretion of misfolded or aggregated proteins via exosomes may contribute
to ALS pathogenesis. In this context, the role of exosomes as carriers of toxic elements to
neighbouring and distant cells is increasingly being investigated.

Mutant proteins associated with ALS including SOD1, Valosin-containing protein
(VCP), FUS, TDP43, other RNA-binding proteins and dipeptide repeats (DPRs) resulting
from C9orf72 expansions are present in exosomes derived from cells overexpressing these
proteins [227,229,230]. While overexpression studies provide a model to study the conse-
quences of disease-associated proteins and the possible relationship between misfolded
or mutant protein secretion and contribution to pathology, it is unclear whether protein
overexpression causes the preferential accumulation of ALS-associated proteins within
exosomes in these studies.

SOD1 is responsible for the clearance of reactive oxygen species (ROS) in cells. Exo-
somes containing mutated or misfolded SOD1 are reportedly secreted by motor neurons,
astrocytes and microglia [43,229–231] and are detected in the brain and spinal cord of
human SOD1G93A mice [18]. Mutated or misfolded SOD1 decorates the surface of exo-
somes [18,232] and can transfer these toxic elements to healthy cells, as observed with
exosomes carrying HuSOD1G127X or misfolded SOD1 [232], suggesting the capacity for
mutant and/or misfolded SOD1 containing exosomes to participate in the spread of ALS.

VCP, an AAA-ATPase involved in ubiquitin-dependent protein degradation and
autophagy and also associated with ALS [233], has been detected in exosomes secreted by
astrocytes overexpressing SOD1G93A [230].

The DNA/RNA-binding proteins including TDP43, FUS and Matrin 3 can be observed
in exosomes and are known to be involved in various aspects of RNA metabolism and
processing, with mutations in these proteins affecting pathways in RNA processing [234].
TDP43 cytoplasmic inclusions are a pathological hallmark of ALS [235] with exosomes
containing oligomeric TDP43 or its C-terminal fragments causing cytoplasmic TDP43
redistribution and aggregation in recipient cells [236,237] as well as neuronal soma-to-soma
and bi-directional (anterograde and retrograde) axonal TDP43 transmission [226]. Similar
to SOD1, the presence of TDP43 was observed on the membrane of secreted vesicles. Taken
together, these studies corroborate the possible involvement of exosomal TDP43 or its
fragments in intercellular trafficking and spread of toxicity, while raising questions about
the significance of SOD1 and TDP43 on the surface of exosomes.
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The presence of the FUS protein within exosomes suggests a contribution to FUS
pathology and that exosomes may mediate propagation of mutated FUS and hence, ALS
toxicity. Kamelgarn’s group revealed an interaction between FUS, Matrin-3 and hnRNPA1
(FUS interaction partners) and the presence of wild and mutant FUS within exosomes from
neuronal cells [238]. FUS and its partner RPL5 and caprin-1 were also detected in exosomes
secreted by ALS skeletal muscle stem cells that were toxic toward human iPSC-derived
motor neurons [70].

Finally, the dipeptide repeat species (DPRs) generated by the hexanucleotide repeat
expansions in c9orf72 [239] can be detected in exosomes secreted by DPR-transfected
neuronal cells and were present as cytoplasmic aggregates when transferred to healthy
cortical neurons [227].

In light of these data, exosomes could be seen as a protective proteostasis mechanism
that ensures cell survival by conveying toxic materials including misfolded proteins out of
the cell [240]. However, several studies highlight protein cargo in exosomes as a mechanism
for cell–cell spread of toxicity and potential propagation in ALS and may explain ALS
pathogenesis [225–227,230,241].

6.2. Potential Role of Exosomes to Modify Pathways in Recipient Cells in ALS

MiRNAs are small non-coding RNAs responsible for the precise control of transcrip-
tional and post-transcriptional gene regulation, highlighting their epigenetic potential [242]
with roles in neuronal communication [243], myogenesis and muscle homeostasis [242].
Two ALS genes, FUS and TARDBP, are essential for miRNA biogenesis and pre-miRNA
processing [234], with mutations in these genes correlating with dysregulated RNA process-
ing and metabolism in ALS cells or tissues [224]. RNA dysregulation has been implicated
in the disease with numerous studies supporting a role for miRNAs in ALS [243–248].

MiRNAs packed within exosomes exhibit increased stability and protection from
RNAse [249] and can be transferred between cells [110], suggesting that exosomal transfer
of miRNAs could represent an epigenetic mechanism causing changes within ALS pathways
and contributing to disease pathology. Exosome miRNA expression profiles are functionally
different from those of the parent cells [109], with significant differences observed in the
miRNA profiles of mouse astrocyte-derived exosomes compared to astrocytes [62].

The capacity for exosomal miRNAs to modify ALS pathways in recipient cells was
demonstrated in cells expressing SOD1 and c9orf72 mutations [68,250]. For example,
miR-124 is enriched in exosomes derived from motor neurons expressing mutant SOD1.
These exosomes promote the expression of pro-inflammatory miRNAs (miR-155) while
reducing the expression of anti-inflammatory miRNAs, consequently leading to microglia
proinflammatory M1 activation [68,251,252]. On the other hand, Varcianna and colleagues
recently identified 13 dysregulated miRNAs including miR-494-3p that are associated with
axonal guidance and maintenance pathways in sEVs derived from C9orf72 astrocytes [250].
Furthermore, miR-494-3p was the most dysregulated miRNA and is associated with the
regulation of semaphorin 3A-an axon guidance protein that is increased in the motor cortex
and decreased in the spinal cord of ALS patients [253,254].

Thus, ALS exosomes are a possible conduit for dysregulated miRNAs that could con-
tribute to epigenetic or functional changes in near or distant recipient cells, facilitating the
neurodegenerative process seen in ALS including inflammation and motor neuron death.

7. Use of Exosomes in Therapeutic Strategies for Neurodegenerative and
Neuromuscular Conditions
7.1. Unmodified Exosomes as Therapeutics in Motor Neuron Disease

In their native state and without modification of either surface receptors or proteins,
exosomes from different cell types possess reparative, regenerative and restorative effects in
different diseases [255]. Exosomes from healthy adipocytes [256–258] rescued the ALS phe-
notype observed in SOD1-mutated neuronal cells with the following: 1- restitution of the
mitochondrial respiratory function [257] and mitochondrial transcription factor (p-CREB
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and PGC-1α) expression [256]; 2- prevention of oxidative damage in SOD1G93A [256–258]
SOD1G37R and SOD1A4V [258] neuronal cells; and 3- a significant decrease in SOD1 ag-
gregates two and six days after exosome treatment [256]. Proteomics analysis of healthy
adipose-derived exosomes revealed the presence of 189 proteins implicated in Bcl-2α
protein upregulation, cell adhesion and negative regulation of the apoptotic process, sug-
gesting they could be neuroprotective when applied to mutated SOD1 neurons [259].
Similar results were obtained with exosomes derived from healthy mesenchymal stem
cells (MSCs), neural crest-derived human dental pulp stem cells (hDPSC) and human
bone-marrow mesenchymal stem cells (hBM-MSC) acting through anti-apoptotic and
anti-necrotic mechanisms as well as by enhancing the endogenous neuronal survival fac-
tors of recipient cells [260]. Importantly, the number of cell passages prior to exosome
isolation appears to be important for exosome cargo and function [261] with an inverse
relationship established between passage number and exosome neuroprotection [262].
Exosomes derived from early passages (P3 and P5) of rat bone MSCs were more efficient at
neuroprotection compared to later passages (P8), this being mediated via anti-apoptotic,
anti-necrotic and antioxidant mechanisms [262].

Recently, and as a first proof of in vivo use of exosomes in ALS, adipose-derived stem
cell (ASC-) exosomes administered intravenously and intranasally at the clinical onset
of the disease to hSOD1G93A mice improved motor performance, protected spinal MN
and muscle fibres from degeneration, preserved the neuromuscular junction by slowing
axonal detachment from muscles and reduced astroglial activation [263]. Interestingly,
intranasal administration demonstrated the capacity for the exosomes to target injured
areas of the ALS mice brain, indicating possible tissue tropism [264]. Surprisingly, at time
points > 17 weeks (late phase of the disease), the neuroprotection and improved motor
performance associated with ASC-exosomes disappeared, irrespective of administration
route, raising questions relating to exosome dosage and exosome effectiveness at a late
stage of the disease.

7.2. The Possibility to Use Modified Exosomes as Therapeutic Vehicles: Lessons from Other
Neurodegenerative and Neuromuscular Conditions

Exosomes are attractive as vehicle systems for small therapeutic molecules and/or
biomolecules including nucleic acids and proteins because of their lipid nature, presence of
specific surface ligands (CD11b and CD18 receptors, integrins, tetraspanins) and ability
to cross the blood–brain barrier [265]. When compared to other drug delivery systems,
exosomes have the distinct advantages of blood–brain barrier penetrance, longer duration
in systemic circulation, tissue specificity that minimizes unwanted toxicity or off-target
effects, stability of content, desirable biocompatibility and minimal toxicity issues [266].
Techniques such as fusion expression, exosome membrane surface display and anchoring
platforms have been used to attach peptides and biological ligands of interest to adhesion
molecules, tetraspanins or integrins on exosome surface to ensure targeted delivery and
enhanced uptake into desired cells [265,267,268].

In diseases characterized by motor neuron degeneration, modified exosomes have
been used to deliver specialized molecules to specific cell types. A popular example and
the earliest use of modified exosome therapeutics is the rabies viral glycoprotein (RVG)-
exosomes isolated from genetically engineered cells expressing lamp2b fused with a neuron-
specific peptide and used to deliver functional cargo to organs expressing acetylcholine
receptors [126]. The administration of RVG-exosomes containing β-site amyloid precursor
protein cleaving enzyme (BACE1) siRNA in wild-type mice significantly reduced mRNA
and protein levels of BACE1, a key target for therapeutic inhibition of β-amyloid production
in Alzheimer’s disease [269]. In addition, RVG-exosomes containing α-synuclein specific
DNA aptamers [270] or anti-α-synuclein short hairpin RNA mini circles [271] decreased
gene and protein expression of misfolded α-synuclein for prolonged periods in animal
models of Parkinson disease and alpha-synucleinopathy, respectively. These modified
exosomes were preferentially targeted to specific cells (neurons and glial cells) and regions
of the brain, releasing their content and mediating a decrease in aggregated proteins,
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suggesting the utility of this strategy to target neurodegeneration. Furthermore, skeletal
muscle targeting was successfully achieved in a murine model of Duchenne Muscular
Dystrophy using modified exosomes bearing CP05 (a specific CD63 exosomal anchor
peptide) and M12 (muscle targeting peptide) and containing dystrophin splice–correcting
morpholino oligomer with a reported increase in dystrophin expression in skeletal muscles
and functional rescue without associated oligomer toxicity [272].

8. Exosomes as Molecular Biomarkers for ALS

Presently, no single diagnostic test exists for the diagnosis of ALS, with clinicians
relying on a combination of history, physical examination, neuroimaging, electrodiagnostic
and laboratory findings [20,222]. ALS shares certain overlap with other neurodegenerative
diseases, which makes diagnosis difficult with a reported lag of 12 months between the
onset of symptoms and neurological diagnosis [222]. Biomarkers provide opportunities to
improve diagnosis, monitor disease progression, gauge prognosis, aid patient stratification
and response to therapy [20,273], and exosomes may be well suited for these roles. Molec-
ular biomarker development for ALS is at an all-time high with investigated biomarkers
cutting across proteins, miRNAs, mRNAs and metabolites from cerebrospinal fluid (CSF)
and blood (extensively reviewed in [20]).

The investigation of sEVs as diagnostic and/or prognostic biomarkers for ALS has
been increasingly investigated during the last decade. Disease pathology affects the
composition of exosomes [274] as well as their secretion and/or accumulation [275,276].
Advantageously, proteins and RNAs associated with a disease and enclosed in exosomes
exhibit stability in biological fluids as they are protected from degradation by the double
membrane structure of the sEVs and can be stored for long periods before analysis [277,278].
This would suggest that the content could be sensitively detected if appropriate isolation
protocols that ensure near-pure sEVs are utilised.

Exosomes and their contents as molecular biomarkers for ALS have been investigated
in cerebrospinal fluid [279,280], plasma ([281–283] and serum [284] (Table 4). One of the
earliest studies observed, in serum-derived exosomes from patients, that miR-27a-3p was
significantly downregulated when compared to controls [284]. In addition, proteomics
analysis of exosomes from cerebrospinal fluid identified 334 proteins including Novel
INHAT Repressor (NIR) that were increased in sEVs from sporadic ALS cohorts [279].
NIR protein is associated with nucleolar stress, a major contributor to c9orf72-linked
neurodegeneration [285]. An apparent drawback with using sEVs from biological fluids
is that they may suffer from “contamination” arising from plasma proteins, which is
contingent on the sEV isolation protocol used.

A different approach to plasma or serum biomarker studies is to consider plasma
and/or serum as a mix of exosomes secreted from multiple cell sources and implementing
a strategy that allows for the isolation of exosomes from a specific cell population such as
neurons, glial cells or even myoblasts. Using LCAM1 immunoprecipitation after exosome
isolation from plasma to obtain neuron-specific exosomes, microarray analysis revealed
30 dysregulated exosomal miRNAs even though a small sample size was used [283],
while a follow-up study using a larger sample size and validated by qPCR identified
eight miRNAs that consistently and significantly differentiated ALS cohorts from healthy
controls [286]. Similarly, biotinylated glutamine aspartate transporter (ACSA-1) antibody
immunoprecipitation following exosome isolation from plasma yielded astrocyte-derived
sEVs with interleukin 6 (IL6) content elevated in sALS cohorts and positively correlated
with rate of disease progression and disease duration less than 12 months [282]. Although
not entirely specific to ALS, as interleukin 6 is elevated in other neurodegenerative diseases,
it could still be a useful marker for neuroinflammation and disease progression. Table 4
summarizes the studies discussed above and highlights the source of biological fluids,
exosome parameters, methods for analysis of the respective biomarkers and significance of
the studies.
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Table 4. Studies evaluating sEVs as molecular biomarkers for diagnosis in Amyotrophic lateral sclerosis (ALS).

Biofluid sEV Isolation
Technique

Exosome Parameters
(Size, Exosome

Marker).
Study Design Exosome Origin &

Analysis Study Summary Possible Biomarker Ref

Plasma

Polymer-based
precipitation and
immunoaffinity

purification using
anti-CD-171

102 nm,
CD63(+), TSG101(+),

Calnexin (−)
Neural Markers:

L1CAM (+), NCAM 1
(+), MAPT (+), GRIA

1 (+), PLP 1 (+)

HC: 20
ALS: 20

Type: Not disclosed
Age ≥ 18 yrs. old

ALSFRS-R > 25 and FVC
score ≥ 60%.

Neuron-derived
exosomes

Next generation
sequencing (NGS)

analysis, then
downstream qPCR

3 miRNAs downregulated and 5
miRNAs upregulated consistent
and significant in ALS cohorts

miRNA
fingerprinting for

early ALS diagnosis
[286]

Plasma

Polymer-based
precipitation and
immunoaffinity

purification using
anti-CD-171.

150 nm
CD81(+), CD63(+)

SNAP25 (+)
Synaptophysin (+)
[Neuron specific

markers].

HC: 5
ALS: 5

Type: Sporadic ALS
Age and Sex matched.

Neuron-derived
Exosomes

Microarray analysis.

30 differentially regulated miRNAs
in ALS.

miRNA upregulated (ALS): 13
miRNA downregulated

(ALS): 17

miRNAs within
neuron-derived

exosomes might be
clinically

advantageous in ALS
diagnosis.

[283]

Plasma

Polymer-based
precipitation and

immunoprecipitation
with biotinylated

mouse anti-human
glutamine aspartate

transporter (ACSA-1)
antibody.

100 nm
CD63 (+),

Calnexin (−)

Recruitment:
HC: 40
ALS: 39

For Study:
HC: 12
ALS: 15

Type: Sporadic ALS
(Bulbar onset:12; Limber

onset: 28).
ALSFRS-R: 39.83 ± 1.08
Age and Sex matched.

Astrocyte-derived
Exosomes

Enzyme-linked
immunosorbent
assay (ELISA)

Interleukin-6 (IL-6) levels increased
in all ALS subgroups with no

significant difference.
Positive correlation between IL-6

levels and disease progression rate
but not with total ALSFRS-R scores,

diagnosis delay or patient age.
For ALS < 12 months, Positive

correlation between IL-6 levels in
ADEs from ALS patients and rate of

disease progression

IL-6 possible
biomarker?

Need for further
studies and larger

sample size.

[282]

Plasma

Heat Shock Protein-
Vn96 synthetic peptide
isolation followed by

Centrifugation.

Nil parameters
presented

HC: 12
ALS: 14

Type:
Sporadic ALS (5M, 7F)
Familial ALS (1M, 1F)

ALSFRS-R: 26.23 ± 8.09

droplet digital
PCR-based miRNA

quantification

27 differentially regulated miRNAs
in ALS.

miR-15a-5p and
miR-15a-5p/miR-181b-1-5p

combination show diagnostic
potential.

miR-193a-5p distinguishes PALS
with low and high ALSFRS-R scores.

miR-15a-5p and
miR-193a-5p can be
aid diagnosis and

monitor ALS
progression.

[281]
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Table 4. Cont.

Biofluid sEV Isolation
Technique

Exosome Parameters
(Size, Exosome

Marker).
Study Design Exosome Origin &

Analysis Study Summary Possible Biomarker Ref

Serum

Polymer-based
precipitation

OR
membrane affinity

isolation

CD63 (+)

HC: 20
ALS: 10

Nil information on age
matched or ALFRS score

Serum Exosomes
Quantitative

real-time PCR
(qRT-PCR)

Downregulated expression of
miR-27a-3p in ALS group that was

statistically significant.

miR-27a3p as a
reference for ALS

diagnosis.
[284]

CSF

Sample concentration
followed by Size

Exclusion
Chromatography

and/or
Ultracentrifugation.

30–150 nm,
CD81 (+), CD9 (+)

HC (iNPH): 3
ALS: 3

Type: Sporadic ALS
Age and Sex matched.

ALSFRS-R: 42.00 ± 1.00

CSF-exosomes
(exosome-enriched
fractions from CSF)

Proteomics

334 proteins were identified
including NIR (Novel INHAT

Repressor) which was significantly
increased in exosomes.

NIR as ALS
biomarker and role in

pathogenesis
[279]

CSF Centrifugation
186 nm± 70.4 nm
CD9 (+), CD81 (+)

Flotillin-1 (+)

HC: 4
ALS: 4

Type: Sporadic ALS
Age and Sex matched.

ALSFRS-R: 41–45
Disease duration:

0.5–5 years

Neuronal-derived
Exosomes

Next-generation
sequencing and

qRT-PCR

543 genes were significantly
changed between HC and ALS

groups.
Genes upregulated (ALS):133

Genes downregulated (ALS): 410

CUEDC2 (most
increased exosomal
mRNA in CSF from

ALS group)

[280]

This table highlights the biological fluid used; sEV isolation protocol and parameters as well as the method of analysis used in identifying the proteins or nucleic acids contained within the sEVs. The significance
of the study is also highlighted. +: marker expressed in sEV studied, −: marker absent in the sEV studied.
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9. Conclusions

Taken together, these studies highlight the diverse set of mechanisms underpinning
the functional roles, both confirmed and potential, of exosomes, generally in ageing and
specifically in motor neurone disease. Aspects of their contents, biogenesis, uptake and
modifications offer many plausible routes towards the development of novel biomarkers
and therapeutics. Native exosomes are increasingly implicated in pathological mechanisms,
and both modified and unmodified exosomes have potential in the treatment of diseases
associated with neurodegeneration or skeletal muscle dysfunction, making them potentially
suited for deployment in motor neurone disease.

Despite their reported and documented roles in the pathology of ageing-related
diseases, emerging studies highlight the neuroprotective and regenerative properties of
sEVs in improving ageing and functional or cognitive decline. Although the use of exosome-
based therapy in clinics is limited, preclinical studies would suggest that sEVs from young
cohorts hold beneficial effects in age-associated diseases that could be translated. It would
be interesting to investigate the capacity for modified exosomes to target toxic or misfolded
proteins (SOD1, TDP43, FUS, dipeptide repeats) implicated in ALS by serving as conduits
for new pharmacological agents or biologicals to improve therapeutic outcomes. As our
understanding of the complex pathology of ALS and contribution of exosomes increases,
the use of modified exosomes presents an exciting opportunity for new therapeutics in
ALS. Similarly, as the role of exosomes in this disease is increasingly explored, the potential
for therapeutic targeting of neurotoxic exosomes should be tested.

In addition, exosomes are a promising and potential source of biomarkers for ALS
prognosis and patient stratification. Since exosomes secreted by motor neurons, glial
and inflammatory cells, and skeletal muscles enter systemic circulation (plasma or CSF),
exosome-associated proteins or nucleic acids that reflect the status of these cells will be
particularly useful considering the multicellular and multisystem nature of ALS. It will be
interesting to see more studies focused on isolating cell-specific exosomes from biological
fluids of ALS cohorts. However, technical issues relating to the isolation process that
retains sEV purity and integrity, contaminant elimination, cohort study size, validation
and cost-effectiveness need to be addressed.
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