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Summary
Background The emergence of fentanyl around 2013 represented a new, deadly stage of the opioid epidemic in the 
USA. We aimed to develop a statistical regression approach to identify counties at the highest risk of high overdose 
mortality in the subsequent years by predicting annual county-level overdose death rates across the contiguous USA 
and to validate our approach against observed overdose mortality data collected between 2013 and 2018.

Methods We fit mixed-effects negative binomial regression models to predict overdose death rates in the subsequent 
year for 2013–18 for all contiguous state counties in the USA (ie, excluding Alaska and Hawaii). We used publicly 
available county-level data related to health-care access, drug markets, socio-demographics, and the geographical 
spread of opioid overdose as model predictors. The crude number of county-level overdose deaths was extracted from 
restricted US Centers for Disease Control and Prevention mortality records. To predict county-level overdose rates for 
the year 201X: (1) a model was trained on county-level predictor data for the years 2010–201(X–2) paired with 
county-level overdose deaths for the year 2011–201(X–1); (2) county-level predictor data for the year 201(X–1) was fed 
into the model to predict the 201X county-level crude number of overdose deaths; and (3) the latter were converted to 
a population-adjusted rate. For comparison, we generated a benchmark set of predictions by applying the observed 
slope of change in overdose death rates in the previous year to 201(X–1) rates. To assess the predictive performance of 
the model, we compared predicted values (of both the model and benchmark) to observed values by (1) calculating the 
mean average error, root mean squared error, and Spearman’s correlation coefficient and (2) assessing the proportion 
of counties in the top decile (10%) of overdose death rates that were correctly predicted as such. Finally, in a post-hoc 
analysis, we sought to identify variables with greatest predictive utility. 

Findings Between 2013 and 2018, among the 3106 US counties included, our modelling approach outperformed 
the benchmark strategy across all metrics. The observed average county-level overdose death rate rose 
from 11·8 per 100 000 people in 2013 to 15·4 in 2017 before falling to 14·6 in 2018. Our negative binomal modelling 
approach similarly identified an increasing trend, predicting an average 11·8 deaths per 100 000 in 2013, up 
to 15·1 in 2017, and increasing further to 16·4 in 2018. The benchmark model over-predicted average death rates each 
year, ranging from 13·0 per 100 000 in 2013 to 18·3 in 2018. Our modelling approach successfully ranked counties by 
overdose death rate identifying between 42% and 57% of counties in the top decile of overdose mortality (compared 
with 29% and 43% using the benchmark) each year and identified 194 of the 808 counties with emergent overdose 
outbreaks (ie, newly entered the top decile) across the study period, versus 31 using the benchmark. In the post-hoc 
analysis, we identified geospatial proximity of overdose in nearby counties, opioid prescription rate, presence of an 
urgent care facility, and several economic indicators as the variables with the greatest predictive utility.

Interpretation Our model shows that a regression approach can effectively predict county-level overdose death rates and 
serve as a risk assessment tool to identify future high mortality counties throughout an emerging drug use epidemic.
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Introduction
The opioid epidemic in the USA caused more than 
400 000 documented opioid overdose deaths between 1999 
and 2018, with 46 000 deaths in 2018 alone.1,2 In particular, 
fentanyl, a synthetic opioid that is about 50 times more 
potent than heroin, emerged in the illicit drug market in 
eastern USA in 2013 as an adulterant of, or substitute for, 
heroin.3–5 In 2012, synthetic opioid overdose resulted in 

fewer than 1 death per 100 000 individuals.6 By 2018, 
synthetic opioids were responsible for nearly 10 deaths 
per 100 000—over 31 000 deaths—accounting for 65% of 
all opioid overdose deaths for that year.6

Rather than a uniform increase in opioid-related mor
tality, the opioid overdose crisis is the latest in a decades 
long series of escalating geographically concentrated, 
time-specific and drug-specific overdose outbreaks dating 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2468-2667(21)00080-3&domain=pdf
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back to at least 1979.7,8 The current crisis has been 
described as a quadruple wave of overdoses due to opioid 
pills, escalating heroin-related overdose, a crescendo in 
synthetic opioid deaths, and, most recently, by an increase 
in synthetic opioid deaths involving stimulants.5,9 In the 
second and third waves, while the national opioid overdose 

death rate rose steadily over the past decade, mortality has 
been concentrated within specific regions—primarily 
the Midwest, Appalachia, and New England.5,6 However, 
increasingly greater synthetic opioid overdose death rates 
are being reported in the West, which is likely to have 
been exacerbated by socioeconomic, health-care, and drug 

Research in context

Evidence before this study
The rapid diversification in synthetic opioids of increased 
potency, the expansion of drug markets via the dark web, 
and the increases in polydrug use associated with higher risk of 
health harms are all contributing to the emergence of 
increasingly rapid and harmful fatal overdose outbreaks in the 
USA. To mitigate future harms, it is crucial to predict where and 
when opioid use-related outbreaks will occur and plan for a 
pre-emptive response. We reviewed the literature to identify 
quantitative studies aimed at predicting public health 
outbreaks associated with opioid use epidemics in the USA by 
searching for the following terms in PubMed on Jan 20, 2021: 
(“Substance-related disorders”[MeSH] OR drug use[tiab] OR 
opioid[tiab]) AND (outbreak[tiab] OR “epidemics”[MeSH] OR 
overdose[tiab]) AND (“statistics as topic”[MeSH] OR “regression 
analysis”[MeSH] OR statistic*[tiab] OR predictive[tiab] OR 
model[tiab]) AND (“United States”). Although the search 
retrieved more than 1000 studies, 46 were directly relevant to 
our research question as most used an explanatory framework 
and few extended it for predictive purposes. An influential US 
Centers for Disease Control study by Van Handel and colleagues 
aimed to assess the risk of injection drug use for outbreaks 
associated with HIV and hepatitis C virus across US counties. 
However, their methods have not been validated and did not 
include fatal overdose as an outcome. A study by Sumetsky and 
colleagues addressed the urgent need for overdose outbreak 
prediction models and tested the performance of two statistical 
methods (standard log–linear vs log–logistic Bayesian 
hierarchical Poisson conditionally autoregressive spatial 
models) in predicting overdose deaths by county in two states 
in 2001–14. Although their findings are promising, they have 
not yet been evaluated across the entire country, which is 
important given the high geographical heterogeneity in 
overdose outcomes in the USA. Another study by Lyle Cooper 
and colleagues used three-degree polynomial models to 
investigate fatal overdose dynamics in 2012–16 by state, 
disaggregating rates by heroin, semi-synthetic, and synthetic 
opioids. They identified states with highest elasticity (ie, rate of 
change over time) for each of the opioid sub-epidemics. These 
findings are useful in terms of improving our understanding of 
different opioid sub-epidemics dynamics; however, there is no 
assessment of the model’s predictive performance and how 
outputs might be operationalised to inform policy. Finally, 
a 2020 study by Campo and colleagues applied a variation of 
the random forest algorithm to predict state and county-level 
overdose death rates, by using concurrent Google search trends 
as model predictors. Predictive performance was high, but they 

used publicly available overdose death data, hiding much of the 
heterogeneity across smaller counties. There remains a need to 
further develop the nascent field of overdose epidemic 
prediction through the design and validation of analytic 
methods that provide actionable information to guide the 
response at national and local levels in the context of emerging 
drug use epidemics.

Added value of this study
In this study, using publicly available predictor data, 
we implemented and validated a mixed-effects negative 
binomial regression method for predicting county-level 
overdose death rates in the subsequent year from the 
emergence of fentanyl in 2013–18, across the contiguous USA. 
We compared our yearly overdose mortality predictions to 
observed data and to a simple predictive benchmark to further 
characterise our model’s predictive value. To produce 
meaningful results to guide policy, we identified counties in the 
top mortality decile and those newly entering that category 
(corresponding to counties with emerging outbreaks). 
We showed that, if our method had been implemented in real 
time, we would have had an improved capacity to identify 
counties at the highest risk of experiencing overdose outbreaks 
throughout the fentanyl wave of the opioid crisis.

Implications of all the available evidence
Taken together, to address the harms of the opioid crisis in the 
USA, it is crucial that available analytic approaches be used to 
identify localities at the highest risk of experiencing an 
overdose outbreak in the near future. Our study contributes 
to ongoing efforts to strengthen our epidemiological toolset to 
inform the opioid response, and the development of further 
quantitative methods, including geospatial, machine learning, 
and dynamic modelling approaches should be encouraged. 
Notably, timely and geographically representative data on drug 
use, associated outcomes, and drug markets are crucial to 
increasing predictive power of these tools. A stronger drug 
market surveillance infrastructure is needed. Further, it is 
important that strategies to disseminate findings to relevant 
stakeholders be implemented. Here, we display our findings 
through an interactive dashboard (ODPredict Explorer) to 
illustrate how such technology can aid in the transparent 
dissemination of predictions. By improving our ability to make 
such predictions and relay this information to appropriate 
stakeholders, we will improve our ability to swiftly and precisely 
allocate resources and implement responses to effectively 
mitigate potential overdose harms.
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market disruptions associated with the COVID-19 pan
demic.10 This situation illustrates the need for the rapid 
development of tools to predict potential overdose out
breaks, particularly in localities that have not yet had 
fentanyl-related overdose outbreaks.

The primary aim of this study was to validate the 
application of a statistical modelling approach for identify
ing counties in the USA at highest risk of a drug over
dose outbreak in the next year, throughout the fentanyl 
epidemic, by predicting county-level overdose death 
rates. Unfortunately, inconsistent and poor reporting of 
drug-specific overdose mortality11 across counties inhibits 
us from modelling fentanyl-specific overdose outbreaks. 
We developed a series of regression models to predict 
county-level overdose death rates in the subsequent year 
in the USA for 2013–18. We validated our predictions 
against existing data on overdose death rates for each year 
to show how such a predictive tool could have been used 
throughout the course of the epidemic.

Methods 
Data preparation 
We aggregated annual, county-level data for both out
comes and predictors for all contiguous state counties in 
the USA (ie, excluding Alaska and Hawaii) for 2010–18.

The primary outcome was county-level crude overdose 
death rate for the next year (ie, predictors from year n are 
paired with overdose death rate from year n+1). This 
outcome was extracted from the US Centers for Disease 
Control and Prevention (CDC) WONDER restricted 
database (using underlying cause of death codes X40-44, 
X60-64, X85, and Y10-14). Due to statistical disclosure 
control, the CDC does not publicly report the number of 
overdose deaths for a given county in a given year if the 
absolute total was less than 10 to protect individual privacy. 
Following the request protocol from the CDC, we were 
given access to the full dataset with overdose death rates 
reported for all counties. To be consistent with CDC’s 
protections, we will not report or reflect on an individual 
county’s overdose death rate. Because this study relied on 
the use of secondary de-identified county-level data, the 
Institutional Review Board of the University of California 
San Diego determined that an ethics review was not 
required.

We obtained predictors included as fixed effects in 
our modelling approach (table 1) from publicly available 
databases reporting county-level estimates throughout the 
study period. They were chosen to be consistent with 
previous analyses modelling risk of overdose in the USA, 
including indicators of health-care access, drug markets, 
socioeconomic indicators, and the geographical spread of 
the epidemic over time.12–15 To estimate the county-level 
availability of opioid use disorder treatment, we included 
the total number of physicians approved to prescribe 
buprenorphine by the Substance Abuse and Mental Health 
Administration for each given year. As well, to opera
tionalise access to emergency health care, we included a 

binary variable measuring the presence of an urgent care 
facility within the given county. We included the county-
level opioid prescription rate per 100 people and the 
state-level count of substances identified as including 
fentanyl in local-level, state-level, and federal-level forensic 
laboratories. We included the log of the jail population and 
socioeconomic indicators, such as unemployment rate, 

Description Source*

Health-care access

Buprenorphine-waivered 
physicians

Crude number of physicians approved to prescribe 
buprenorphine for each given year

SAMHSA

Urgent care presence Presence of an urgent care facility within county HSIP Gold

Drug markets

Opioid prescription rate Opioid prescribing rate per 100 people each year CDC (IQVIA 
Xponent)

Log fentanyl seizure data State-level count of fentanyl tested in local, state, and federal 
forensic laboratories each year

NFLIS

Log jail population size The log of the jail population size VERA

Socioeconomic indicators

High school graduation rate Proportion of people living in the county estimated to have 
graduated from high school or received an equivalent 
certification

ACS

Poverty rate Proportion of households in the county estimated to be living 
at or below the poverty line

ACS

Unemployment rate Proportion of people able to work in the county estimated to 
be unemployed

ACS

Employee capacity difference Difference in the employment capacity (measured as number 
of staff employed) of all companies across industries between 
current and past year in the county

CBP

Payroll difference Difference in payroll (measured in US dollars) of all companies 
across industries between current and past year in the county

CBP

Log median household 
income

The log of the estimated median household income in 
the county

ACS

Proportion of homeowner 
households that spend at least 
35% of income on mortgage

The proportion of homeowner households in the county that 
are estimated to spend at least 35% of their income on their 
mortgage

ACS

Proportion of renter 
households that spend at least 
35% of income on rent

The proportion of renter households in the county that are 
estimated to spend at least 35% of their income on their rent

ACS

Geographical spread of epidemic

Log overdose gravity Continuous variable generated to operationalise overdose 
death rates in neighbouring counties. To derive the gravity 
variable for a given county x in year t, we first identified the set 
of all counties Y within 200 miles of county x. Distances were 
measured from central, internal points in each county and 
were extracted from a dataset created by the US National 
Bureau of Economic Research. Second, for each county y in Y, 
we divided the overdose death rate for county y in the year t by 
the distance between counties x and y, squared. Third, 
we summed the values calculated in the previous step for each 
county y in Y. Finally, we took the natural logarithm of this 
summed value to get the final value

NBER

Urbanicity A six-category variable based on US Office of Management and 
Budget 2013 determination of metropolitan statistical areas, 
coded on a spectrum from most urban (1) to most rural (6)

NCHS

ACS=Census American Community Survey. CBP=County Business Patterns. CDC= Centers for Disease Control and 
Prevention. HSIP=Homeland Security Infrastructure Program. NBER=National Bureau of Economic Research. 
NCHS=National Center for Health Statistics. NFLIS=National Forensic Laboratory Information System. 
SAMHSA=Substance Use and Mental Health Services Administration. VERA=VERA Institute of Justice. *Detailed source 
information for each variable is provided in the appendix (pp 3–5). 

Table 1: Predictors included as fixed effects in the final modeling approach
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extracted from the Census American Community Survey. 
Consistent with health-related machine learning recom
mendations,16 we do not hypothesise whether there is a 
relationship between race and overdose that is not 
mediated or confounded by latent structural racism (such 
as disparate opioid prescription patterns by race);17 thus we 
do not include race as a predictor (appendix p 4). Finally, to 
account for the geographical spread of overdose death, we 
included a categorical measure of county urbanicity and 
a continuous gravity variable accounting for the over
dose death rates of nearby counties. We provide full detail 
on the selection of variables in the appendix (pp 3–5), 
including our assessment of predictor collinearity.

Statistical modelling approach
We applied our modelling approach to predict overdose 
death rates for each year from 2013 to 2018. When predict
ing a given year (eg, 201X), the model is trained on paired 
predictor-death rate data from years 2010 to 2 years before 
the prediction year (201X–2). Predictor data for a given year 
is paired with the crude number of overdoses that occurred 
in the subsequent year as the model outcome. Then, 
predictors from the year before the prediction year (201X–1) 
are fed into the model (which specifies coefficients relating 
each predictor to the outcome) to predict county-level 
crude number of overdose deaths for 201X, which is then 
converted into a population rate (per 100 000).

For example, as shown in figure 1, to predict 
2013 overdose death rates: 1) a model is trained using 
longitudinal predictor data from 2010–11 (paired with 
outcomes for 2011 and 2012, respectively); 2) predictor 
values from 2012 are then fed into the model to pre
dict 2013 overdose death counts; 3) the predicted death 
counts are converted into overdose death rates (ie, deaths 
per 100 000); and 4) the predicted overdose death rates for 
2013 are compared with the actual overdose death rates to 
evaluate predictive accuracy.

For predicting each year’s overdose death rates, we 
applied mixed-effects negative binomial regression. A 
detailed discussion justifying our chosen modelling 

approach can be found in the appendix (p 1). A random 
intercept for each county was incorporated with a random 
slope for year. This model specification accounts for 
two hypothesised relationships within the data: 1) overdose 
death observations from the same county are correlated 
(justifying the random intercept for each county) and 2) 
the rate of change in overdose deaths will be dependent on 
the epidemic stage in a given county (justifying the 
application of random slopes for year). We also included 
an offset term for the log of the population carrying 
capacity, similar to Sumetsky and colleagues.18 We hypoth
esised that as more overdose deaths occur in a location, the 
population of susceptible individuals would diminish. 
Thus, we defined carrying capacity as 5% of the 2010 county 
population minus the number of overdoses in the county 
in the previous 3 years (or the previous available years 
in the data for years 2011 and 2012), setting 50 as the 
minimum possible carrying capacity (appendix pp 2–3). 
The outcome of the model was the number of overdose 
deaths in the subsequent year in each county. We included 
each variable in table 1 as a fixed effect. Given that our goal 
was to simulate real-time prediction and that we cannot 
know the accuracy of model performance a priori, it would 
be unrealistic to choose a set of optimally performing 
fixed effects.

We used the lme4 package in R for all analyses.19,20 
Further details and code for running the analyses are avail
able in the appendix (pp 13–19).

Prediction evaluation approach 
We consider five primary metrics for assessing model 
performance. The first three, mean average error (MAE), 
root mean square error (RMSE), and Spearman’s r, 
measure the accuracy of outcome predictions. The MAE 
is the average magnitude of the difference between the 
predicted and observed overdose death rate for each 
county. The RMSE is the square root of the average magni
tude of the difference squared, therefore is similar to MAE 
but penalises prediction errors with greater magnitude. 
More accurate predictions will result in smaller MAE and 
RMSE. Spearman’s r compares the predicted ranking of 
counties by overdose death rate compared with the actual 
observed rankings; results closer to 1 indicate that the 
model was more effective at rank-ordering counties based 
on overdose death rate.

The final two metrics seek to assess how well the model 
identified counties at highest risk of an overdose outbreak 
in the subsequent year (defined by an overdose death rate 
in the top decile relative to other counties). To do so, we 
first disaggregated the predicted and observed overdose 
death rates into deciles (10th, 20th, […], 100th centile) and 
categorised all counties into their corresponding decile 
for both predicted and observed overdose rates. The first 
metric is the proportion of counties observed in the top 
decile (ie, top 10% of observed overdose death rates) 
that were rightly predicted to be in the top decile. To 
characterise model performance identifying counties 

Figure 1: Workflow of our modelling approach
Predictors from the years 2010 to 201(X–2), paired with respective overdose outcomes from 2011 to 201(X–1) were 
used to train each model. Then, predictors from the year 201(X–1) were fed into the model to predict the overdose 
death rate in 201X. Finally, these predicted rates were compared with the observed rates for 201X to evaluate the 
model’s predictive accuracy.

Predictors in 2010 to 201(X–2)
(eg, 2010 to 2011)
Observed overdose deaths in 201(X–1)
(eg, 2011 to 2012)

Predictors in 201(X–1)
(eg, 2012)

Observed overdose deaths in 201X
(eg, 2013)

Predicted overdose deaths in 201X
(eg, 2013)

1. Build model (training)

2. Apply model

4. Test (validation)

3. Predict

For X=2013 to 2018

See Online for appendix
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with emergent overdose outbreaks, we then defined such 
an emergent outbreak as a county being outside of the top 
decile in the year 201(X–1) and then entering the top 
decile in year 201X. The second metric is the proportion 
of all observed emergent outbreak counties that the 
modelling approach accurately predicted as newly being 
in the top decile in 201X.

To contextualise the results, we generated benchmark 
predictions for comparison. This benchmark strategy 
assumed the change in overdose death rate between years 
201X–2 and 201X–1 would remain the same between the 
years 201X–1 and 201X. We calculated the slope for the 
change in overdose death rate from year 201X–2 to 201X–1 
and added it to the 201X–1 overdose death rate to predict 
the 201X rate. If the value predicted for a county for a 
given year was below 0, we rounded it up to 0. This 
heuristic approach provides a simple, yet intuitive, way to 
predict future overdose death rates; the utility of our 
modelling approach can be understood in comparison to 
the performance of this benchmark approach.

Data exploration application 
To address the challenges in presenting county-level data 
for all of the contiguous USA, we provide a web applica
tion, ODPredict Explorer, that can be used to explore the 
data in various ways. We provide this dashboard as an aid 
to this manuscript and to display how such findings can 
be readily disseminated to appropriate stakeholders. In 
accordance with CDC data protections, we have censored 
data that are not available in the unrestricted CDC 
mortality records.

Post-hoc analyses
It is of interest to understand the contribution of fixed 
effects to the predictive accuracy of the model. When 
making predictions, it is also uncertain what the best set 
of fixed effects will be, given that the model cannot be 
evaluated until after the predicted events occur. We used a 
bootstrapped forward variable selection strategy similar 
to that described by Beyene and colleagues to identify 
the fixed effects with the greatest predictive utility 
(appendix p 6).21 We focus only on predicting overdose 
death rate for the year 2018 and the metric we are seeking 
to optimise is the proportion of counties correctly 
predicted in the top decile.

We ran 100 bootstrap iterations. We display, as the result, 
the proportion of times that each variable was included in 
the final model. Fixed effects that are chosen more 
frequently are considered to have greater predictive value 
than are fixed effects chosen less frequently.

We also used model diagnostics and a sensitivity analysis 
that involved applying the model in the eastern and 
western regions of the USA to confirm its results are robust 
to changes in the model training process (appendix pp 7–10). 
For the sensitivity analysis, we ran the analytic approach 
described separately for counties east and west of the 
Mississippi River, respectively. We evaluated the results to 

determine if the model still performed adequately when 
trained on smaller, distinct regions of the country.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the manuscript.

Results 
Between 2013 and 2018, among the 3106 counties included 
in the study, observed mean county-level overdose death 
rates increased from 11·8 deaths per 100 000 in 2013 to 
15·4 deaths in 2017, before falling to 14·6 deaths in 2018 
(table 2). The benchmark prediction strategy over-
predicted the mean county-level overdose death rate each 
year, increasing from 13·0 deaths per 100 000 in 2013 to 
18·3 deaths in 2018. The negative binomial approach 
predicted a mean 11·8 deaths per 100 000 in 2013, followed 
by a steady increase from 11·5 deaths in 2014 to 15·1 deaths 
in 2017 and 16·4 deaths in 2018. The negative bino
mial approach outperformed the benchmark prediction 
strategy each year, according to MAE, RMSE, and 
Spearman’s r  (table 3). The benchmark MAE increased 
from 10·70 in 2013 to 12·37 in 2018, whereas the MAE of 
the negative binomial approach ranged from 6·58 to 7·73 
for 2013–18. The RMSE of the benchmark approach 
ranged from 18·38 to 20·67 for 2013–18, whereas the 
negative binomial approach RMSE ranged from 10·04 
in 2013 to 11·55 in 2016. The benchmark Spearman’s r 
increased from 0·35 in 2013 to 0·45 in 2018, whereas the 
negative binomial model Spearman’s r was generally 
0·2 greater, increasing from 0·57 in 2013 to 0·65 in 2018.

We divided counties into deciles based on observed and 
predicted overdose death rates (ie, top decile were the 
10% of counties with the highest overdose death rate, 
second decile the next 10%, and so on), to identify if the 
counties predicted to have the highest overdose death 
rates indeed experienced them. The benchmark predic
tion strategy correctly predicted between 89 (29%) and 
132 (43%) of the 310 counties in the top decile for each 
year (table 4). The negative binomial approach gen
erally improved over time, identifying 129 (42%) of the 
310 counties in the top decile in 2013 and 171 (55%) 
in 2018, with a peak of 176 (57%) in 2017. This improvement 

Observed mean 
overdose death rate

Benchmark 
prediction

Negative binomial 
prediction

2013 11·8 13·0 11·8

2014 12·6 14·1 11·5

2015 13·1 14·7 12·3

2016 14·6 15·8 13·3

2017 15·4 18·0 15·1

2018 14·6 18·3 16·4

Table 2: Mean observed, benchmark prediction, and model prediction of 
county-level overdose death rates per 100 000 for 2013–18

For ODPredict Explorer see 
http://overdosepredictiondash 
board.emergens-project.com/

http://overdosepredictiondashboard.emergens-project.com/
http://overdosepredictiondashboard.emergens-project.com/
http://overdosepredictiondashboard.emergens-project.com/
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may indicate that model performance increases in this 
regard given more training data.

The observed number of counties that newly entered the 
top decile fell from 175 counties in 2013–14 to 149 counties 
in 2017–18. The benchmark strategy, at its best in 2018, 
correctly predicted that seven of 149 counties would newly 
enter the top decile, whereas the negative binomial 
approach correctly predicted at least 33 (and up to 46) of 
the counties newly entering the top decile. Overall, our 
modelling approach identified 194 of the 808 counties that 
entered the top decile over the study period, compared with 
only 31 such counties identified by the benchmark 
approach. Although these results indicate further room 
for improvement, they show that the negative binomial 
approach used represents a meaningful predictive improve
ment over our benchmark heuristic of predicting based on 
annual overdose death rate trends.

Finally, we sought to characterise the predictive value of 
each fixed effect in the model via a forward selection 

bootstrapping approach (table 5). The overdose gravity 
variable was included in 81% of simulations, indicating 
that the geospatial dimension of overdose is highly 
predictive of overdose death rate in each subsequent year. 
The opioid prescription rate was included in 66% of 
simulations and the presence of an urgent care facility in 
the county was included 53% of the time, indicating that 
such drug market and health-care indicators are of 
predictive value. The number of buprenorphine provider 
waivers in the county was only chosen 11% of the time. 
Several economic indicators, including changes in county 
payroll, median household income, and changes in 
employee capacity, were all chosen around 50% of the 
time. Diagnostic analyses showed that the model tended 
to underpredict the highest overdose death rates, but 
predictions improved over time. Separately implementing 
the model in the eastern and western regions, resulted 
in similar—although marginally better—performance 
(appendix pp 9–10).

Discussion
This study showed how a statistical modelling approach 
can be used to identify counties at risk of experiencing 
overdose death outbreaks. Our model predicted counties’ 
overdose death rates from 2013 to 2018 with substantially 
greater accuracy than an intuitive benchmark heuristic. 
Most importantly, our model displayed far greater capacity 
than the benchmark for predicting counties experiencing 
emergent drug overdose outbreaks by identifying counties 
newly entering the top mortality bracket. As such, this 
model should be considered when attempting to identify 
which counties are in need of resources to respond 
to potential overdose outbreaks, including counties yet to 
experience them. Further research aimed at improving 
model performance and timely access to data are needed 
to ensure efficacious application. Our post-hoc analysis 
showed that our fixed effects capturing the geospatial 
spread of overdose, opioid prescribing patterns, and 
several economic indicators provided the most pre
dictive utility.

Although similar models have been used to inform 
funding allocation, such as the CDC’s drug-related HIV 
outbreak risk assessment model,12,22 these models have not 
been validated against data and have not been designed to 
provide yearly predictions—studies by Sumetsky and 
colleagues18 and Campo and colleagues23 are two excep
tions. Model validation is key to both ensuring that the 
tools used for policy guidance are providing accurate 
information and to improving our understanding of the 
epidemic processes. Given the changing nature of drug 
use epidemics, tools that capture risk over time are 
needed.

This study has limitations. First, the model performance 
is not optimal. However, predicting overdose outbreaks 
at national level is challenging and such improvements 
over a heuristic benchmark can prevent much harm 
by directing attention towards counties that might not 

Benchmark Negative binomial

Mean average 
error

Root mean 
squared error

Spearman’s 
r value

Mean average 
error

Root mean 
squared error

Spearman’s 
r value

2013 10·70 18·38 0·35 6·58 10·04 0·57

2014 10·92 18·09 0·36 6·70 10·42 0·58

2015 11·18 19·32 0·40 6·74 10·34 0·62

2016 11·72 20·20 0·41 7·66 11·55 0·64

2017 12·34 20·67 0·45 7·52 11·22 0·67

2018 12·37 20·67 0·45 7·73 10·95 0·65

Table 3: Errors of benchmark and negative binomial predictions for 2013–18

Benchmark Negative binomial

Top decile*

2013 102/310 (33%) 129/310 (42%)

2014 89/310 (29%) 145/310 (47%)

2015 104/310 (34%) 158/310 (51%)

2016 111/310 (36%) 154/310 (50%)

2017 132/310 (43%) 176/310 (57%)

2018 122/310 (40%) 171/310 (55%)

Newly in top decile†

2014 8/175 (5%) 46/175 (26%)

2015 6/170 (4%) 40/170 (24%)

2016 6/165 (4%) 37/165 (22%)

2017 4/149 (3%) 38/149 (26%)

2018 7/149 (5%) 33/149 (22%)

Data are n/N (%). *The number of counties in the top decile (n=310) that were 
accurately predicted (ie, true positives) are shown for each year by approach. 
The number of false positives (ie, counties incorrectly predicted to be in the top 
decile) can be calculated by subtracting the number of true positives from 310. 
†The number of counties that newly entered the top decile (ie, were not in the top 
decile the year before) that were accurately predicted are shown for each year 
by approach.

Table 4: Number of total and new counties in the top decile of overdose 
death rates correctly predicted by the benchmark and model each year
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otherwise have been considered to be at risk. Although it 
was not possible to do so in this study, comparing the 
performance of our model with that of other models 
introduced in the literature (such as that by Sumetsky and 
colleagues,18 Campo and colleagues,23 and Lyle Cooper and 
colleagues24) might advance the broader effort to develop 
better performing models. Further, given that this is a 
nascent line of research, we highlight the importance of 
evaluating the performance of various modelling strate
gies. To our knowledge, this study is the first to apply a 
mixed-effects negative binomial regression strategy to 
predict overdose deaths. Previous works have applied 
Bayesian spatial-temporal models, polynomial functions, 
and a variation of the random forest algorithm.18,23,24 Future 
research should aim to replicate and compare these 
methods to identify strengths of each approach, which can 
inform future model development.

Second, longitudinal predictive studies require the 
consistent and timely dissemination of data. Thus, the 
outcome and predictors need to be available for the same 
localities (ie, counties), same time periods, and same time 
steps (ie, years or months) to be used. Such requirements 
restrict the pool of available variables to include as pre
dictors. For example, although we incorporated estimates 
of opioid prescription rates per county and fentanyl 
seizures by state to capture changes in drug markets, these 
indicators provide only partial information as they do not 
tell us about drug volume or potency. Having county-level 
seizure data would probably improve model performance. 
Similarly, we included active buprenorphine providers per 
year by county as a measure of drug treatment coverage. 
However, there is high variation in the number of patients 
seen by each provider and regulations on the limit of 
patients per provider have been relaxed over time.25

Third, we took a simple approach for identifying the 
susceptible population in each county. Most people in 
each county are not at risk of experiencing an overdose. 
Sumetsky and colleagues provide an example of a more 
computationally intensive calculation of county carrying 
capacity.18 Future research should seek to design and 
validate approaches aimed at quantifying this county-level 
susceptible population.

Finally, the timeliness of data availability shapes the 
utility of the method. As of April, 2021, the restricted 
overdose death data from the CDC were available to 2019. 
Future applications of this or other predictive modelling 
approaches require more rapid dissemination of data 
to ensure the timely access of evidence-based guidance 
among relevant stakeholders. Increasingly, individual 
states and counties’ public health departments are imple
menting web-portals, such as the Opioid Overdose 
Surveillance Dashboards for California, Rhode Island, and 
Michigan,26–28 where preliminary data are made publicly 
available on a quarterly, biannual, and near-real time basis, 
respectively. States with more rapid data dissemination 
might apply this method for their specific locality. Analytic 
approaches can be modified to make predictions several 

years into the future but given the rapidly changing nature 
of drug use epidemics, the timely availability of data 
promises to provide greater predictive benefit. This is 
particularly true in the context of the COVID-19 pandemic, 
which has affected and will continue to shape drug use-
related behaviours and harms.29,30

Based on these findings, we provide directions for 
future research and endeavours that can improve the 
utility of this modelling approach. First, as highlighted in 
the limitations section, better and more timely data of 
both drug use patterns and drug markets are needed to 
enable rigorous analyses of drug use epidemics and 
prediction analyses. This need could be met through more 
timely and granular accessibility to National Forensic 
Laboratory Information System data and through 
establishing free and accessible drug testing programmes 
in collaboration with harm reduction organisations.5 
Publicly available data on prescription drugs is also key to 
evaluating risk in a population. Local data on the number 
and socio-demographic characteristics of people who use 
drugs could be systematically collected and linked through 
coordinated collaboration with primary and emergency 
medical services, law enforcement institutions, and harm 
reduction organisations. A 2020 study by Campo and 
colleagues showed that concurrent Google search trends 
might be an effective strategy for making real-time, 
dynamic predictions of county-level overdose death rates, 
given the immediate availability of this data.23

Second, to use prediction to mitigate the harms of the 
opioid crisis, it is crucial to swiftly communicate pre
dictions to appropriate stakeholders; this communication 
is especially important considering how rapidly US drug 

Percentage of times chosen

Log overdose gravity 81%

Opioid prescriptions per 100 individuals 66%

Payroll difference 54%

Urgent care presence 53%

Median household income 48%

Employee difference 43%

Urbanicity 40%

Proportion of renter households that 
spend at least 35% of income on rent 

39%

Log NFLIS 35%

Proportion of homeowner households 
that spend at least 35% of income on 
mortgage 

32%

Poverty rate 25%

High school graduation rate 20%

Log jail population 17%

Buprenorphine provider waivers 11%

Unemployment rate 10%

Data are ordered from most frequently included to least. We did 100 simulations. 
NFLIS=National Forensic Laboratory Information System. 

Table 5: Percentage of bootstrap simulations in which each fixed effect 
was selected
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markets are understood to change.31 The development of 
dashboards can facilitate the application of these peer-
reviewed methods in a way that allows for the rapid 
dissemination of results. We provide a dashboard at 
ODPredict Explorer where the results of this study can be 
explored. This dashboard represents a model for how this 
method can be applied to inform relevant stakeholders in 
making decisions about overdose prevention measures. 
Through such platforms, stakeholders can access predic
tion results and use the findings to inform resource 
allocation and overdose response initiatives. Although this 
study focuses on the accuracy and validity of the approach 
employed, we expect to extend it to produce future 
predictions, depending on data availability.

In summary, our statistical model more effectively 
rank-orders counties based on the predicted overdose 
death rates for the subsequent year and is able to predict 
substantially more counties that will experience emergent 
increases in overdose mortality, compared with a heuristic 
model based on previous year trends in overdose mortality 
only. This study provides the first rigorously validated tool 
to inform policy planning in the context of overdose 
epidemics driven by emerging drugs and sets a new 
standard for the development of a data driven response to 
drug use epidemics.
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