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Segmentation of vestibular 
schwannoma from MRI, an open 
annotated dataset and baseline 
algorithm
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Automatic segmentation of vestibular schwannomas (VS) from magnetic resonance imaging (MRI) 
could significantly improve clinical workflow and assist patient management. We have previously 
developed a novel artificial intelligence framework based on a 2.5D convolutional neural network 
achieving excellent results equivalent to those achieved by an independent human annotator. Here, 
we provide the first publicly-available annotated imaging dataset of VS by releasing the data and 
annotations used in our prior work. This collection contains a labelled dataset of 484 MR images 
collected on 242 consecutive patients with a VS undergoing Gamma Knife Stereotactic Radiosurgery 
at a single institution. Data includes all segmentations and contours used in treatment planning and 
details of the administered dose. Implementation of our automated segmentation algorithm uses 
MONAI, a freely-available open-source framework for deep learning in healthcare imaging. These data 
will facilitate the development and validation of automated segmentation frameworks for VS and may 
also be used to develop other multi-modal algorithmic models.

Background & Summary
Vestibular schwannoma (VS) is a benign tumour arising from the nerve sheath of one of the vestibular nerves. 
The incidence of VS was previously estimated to be between 14 and 20 cases per million per year1 but has risen 
significantly in recent years with approximately 1600 new patients now diagnosed every year in the UK.2. At cur-
rent rates approximately 1 in 1000 people will be diagnosed with a VS in their lifetime3,4. As access to diagnostic 
Magnetic Resonance Imaging (MRI) has become more available, a greater number of asymptomatic patients with 
small tumours are being diagnosed with VS1. For smaller tumours, expectant management with lifelong imaging 
is often advised5,6. However, patients with larger tumours who undergo stereotactic radiosurgery (SRS) or con-
ventional open surgery also require a prolonged period of surveillance after treatment.

In 2003, the international Consensus Meeting on Systems for Reporting Results in Vestibular Schwannoma 
agreed that the size of a VS should be defined by the tumour’s maximal linear dimension6. However, several 
studies have demonstrated that a volumetric measurement is a more accurate and sensitive method of calcu-
lating a vestibular schwannoma’s true size and is superior at detecting subtle growth7,8. Implementing routine 
volumetric measurements would therefore enable clinicians to offer earlier appropriate intervention. The princi-
pal reason such volumetric methods have not been widely implemented is because the currently available tools 
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make calculating tumour volume assessment a labour-intensive process, prone to variability and subjectivity, 
with no dedicated software readily available within the clinical setting. An automated segmentation tool would 
also improve clinical workflow during the planning of SRS. It could for example be used as an initialisation step 
in the planning process, saving clinicians significant time, reducing cost and enabling more patients to be treated.

We have previously developed a novel artificial intelligence (AI) framework based on a 2.5D convolutional 
neural network (CNN) able to exploit the different in-plane and through-plane resolutions encountered in stand-
ard clinical imaging protocols9,10. In particular, we embedded a computational attention module to enable the 
CNN to focus on the small VS target and included a supervision on the attention map for more accurate seg-
mentation. The method was trained and validated using contrast-enhanced T1-weighted and high-resolution 
T2-weighted images from a dataset of 242 consecutive patients treated with Gamma Knife SRS. Excellent accu-
racy scores were achieved (Mean Dice scores > 93%) comparable to repeated measurements performed by 
clinicians10.

In this work, we provide the first publicly-available imaging dataset of VS by releasing the data used in our 
prior work (Example dataset illustrated in Fig. 1). The release of this dataset and baseline segmentation code 
will facilitate the development and validation of automated segmentation frameworks for VS as well as support 
the development of novel applications. For example, more work is needed to enable our network to achieve 
a similar clinically-acceptable performance on general surveillance MRI scans rather than tightly controlled 
radiosurgery planning MRI protocols. The release of this dataset will support ongoing collaborative work in this 
area. This multi-modal imaging dataset will also facilitate algorithmic research relating to both multi-modal and 
modality-specific segmentation networks, to investigate methods of domain adaptation11 and to develop new 
methods of synthesising imaging data. Finally, by including each patient’s radiation treatment data, this dataset 
will support work relating to the planning and delivery of radiation treatment including automated segmentation 
of organs at risk and automated dose planning.

Methods
Data overview.  This collection contains a labelled dataset of 484 MR image sets collected on 242 consecutive 
patients (Male:Female 95:147; median age: 56, range: 24–84) with a VS undergoing Gamma Knife Stereotactic 
Radiosurgery (GK SRS) at a single institution. The treatment-planning MRI included in this dataset comprise 
contrast-enhanced T1-weighted (ceT1) images and high-resolution T2-weighted (hrT2) images acquired in a 
single MRI session prior to and typically on the day of the radiosurgery. Each imaging dataset is accompanied by 
the patient’s radiation therapy (RT) dataset including the RTDose, RTStructures and RTPlan DICOM files and the 
accompanying contours.json and affines.tfm files. All structures were manually segmented in consen-
sus by the treating GK SRS neurosurgeon, neuroradiologist and physicist using both the ceT1 and hrT2 images.

Data were obtained from the Queen Square Radiosurgery Centre (Gamma Knife). Imaging data from con-
secutive patients with a single sporadic VS treated with GK SRS between October 2012 and January 2018 were 
screened for the study. All adult patients older than 18 years with a single unilateral VS treated with GK SRS were 
eligible for inclusion in the study, including patients who had previously undergone operative surgical treatment. 
In total, 248 patients met these initial inclusion criteria including 51 patients who had previously undergone 
surgery. None of the patients received prior radiation treatment. Patients were only included in the study if their 

Fig. 1  Illustrative example dataset of a patient with a right sided vestibular schwannoma (VS). (a) Contrast-
enhanced T1-weighted MRI (ceT1); (b) High-resolution T2-weighted MRI (hrT2); (c) ceT1 MRI with 
annotated segmentation of VS; (d–f) corresponding images after obscurification of facial features. The six white 
dots in each image are fiducials of the Leksell Stereotactic System MR Indicator box used for image  
co-registration.
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pre-treatment image acquisition dataset was complete; 6 patients were thus excluded because of incomplete data-
sets. All details are included in the meta-data.

All contributions to this study were based on approval by the NHS Health Research Authority and Research 
Ethics Committee (18/LO/0532) and were conducted in accordance with the 1964 Declaration of Helsinki. Data 
were fully de-identified by removing all health information identifiers and by applying a de-facing algorithm as 
described hereafter. All data were visually inspected before release. Because patients were selected retrospectively 
and the MR images were completely de-identified before analysis, informed consent from individual participants 
was not required for the study. In addition, the terms of the data sharing agreements were approved by the Joint 
Research Office at University College London.

DICOM RT-objects.  Three DICOM RT-objects were included for each MR image in this dataset: RT 
Structure Set, RT Plan and RT Dose. RT-objects were introduced in the DICOM standard to facilitate the 
exchange of specific information generated at different stages of the radiation therapy work flow. Specifically, 
these three RT-objects are created during the treatment planning phase based on the acquired images and using a 
treatment planning software. Each RT-object in this dataset refers to one MR image and its associated coordinate 
system. The RT Structure Set defines areas of significance such as the VS on the day of the Gamma Knife treat-
ment. For some patients, organs at risk are also included, for example the cochlea. Each area is defined by a set 
of closed polygonal planar contour lines, which in turn are defined by the 3D-coordinates of their vertices. The 
RT Plan contains information about the treatment plan created for the patient, which includes the placement of 
the radiation beam, prescription and the patient setup. The RT Dose describes the predicted distribution of the 
radiation dose based on the treatment plan. For a more detailed description of the RT-objects and their integra-
tion in the radiation work flow, the reader is referred to the introduction to the DICOM-RT standard provided 
by Law et al.12.

Image acquisition.  All stereotactic images were obtained on a 32-channel Siemens Avanto 1.5T scanner 
using a Siemens single-channel head coil. Contrast-enhanced T1-weighted imaging was performed with an 
MPRAGE sequence with in-plane resolution of 0.4 × 0.4, in-plane matrix of 512 × 512, and slice thickness of 
1.01.5 (TR = 1900ms, TE = 2.97 ms, TI = 1100 ms). High-resolution T2-weighted imaging was performed with a 
3D CISS sequence in-plane resolution of 0.5 × 0.5, in-plane matrix of 384 × 384 or 448 × 448, and slice thickness 
of 1.0–1.5 mm (TR = 9.4 ms, TE = 4.23 ms).

Segmentation of tumours and other structures.  Following acquisition of the stereotactic MRI scans, 
the image sequences were imported into the Gamma Knife planning software (Leksell GammaPlan software 
version 11.1, Elekta, Sweden). The stereotactic space was defined using the fiducial box coordinate system and 
once the image quality and stereotactic accuracy were verified the patient’s external contour (Skin) was created 
using the automatic image segmentation tool. The target tumour volume (TV) and organs at risk (OAR) such as 
the brainstem and cochlea were delineated by the treating GK SRS neurosurgeon, neuroradiologist and physicist. 
All segmentations (RT Structures) were performed using the GammaPlan software that employs an in-plane 
semi-automated segmentation method. Using this software, delineation was performed on sequential 2D axial 
slices to produce 3D models for each structure. Typically, the tumour was segmented on the ceT1 image and 
refined using the registered hrT2 image. In some cases where the tumour borders were better delineated on the 
hrT2, this image was used as the primary image for segmentation purposes. The cochlea was typically segmented 
on hrT2 image due to improved visualisation on this sequence.

The median target tumour volume (TV) within the dataset was 1.36 cm3 (range 0.04–10.78 cm3, IQR 0.63–
3.17 cm3). The dataset includes 49 post-surgical cases (20%).

Details of radiation treatment.  Once all segmentations were approved, a forward treatment planning 
approach was initiated by the medical physicist under the guidance of the treating clinician. Individual isocentres 
with varying positions, weightings and beam collimator configurations were placed into stereotactic space on 
different regions within the target. The median VS treatment dose was 13 Gy (used in 211 87% of cases). 12 Gy 
was used in 29 cases (12%) with 11 Gy and 15 Gy was used in one case each. The aim was to achieve adequate 
coverage of the TV by the prescription isodose (typically higher than 95%) whilst maintaining minimum spillage 
into surrounding tissue. Particular attention was placed to the anterior and medial surfaces of the target with the 
aim of achieving a high degree of conformity and steep dose fall-off. Attempts to reduce the dose to cochlea were 
also performed by blocking beam sectors that contributed dose to this OAR. The resulting treatment plan and 
isodose distributions were reviewed and manipulated until they were considered acceptable for delivery by the 
prescribing physician. Once the delivery platform passed the daily quality assurance checks, the treatment plan 
was exported to the treatment console for delivery.

Data transmission and de-identification.  De-identified data was submitted to The Cancer Imaging 
Archive (TCIA) through its established selection and governance processes13. To obscure facial features in 
the MR images, a face masking algorithm14 was applied to all images. Setting the T1 image as a reference for 
co-registration and a choosing grid step coefficient of 1.0 led to sufficient obscurification of facial features.

Data Records
The images and associated files are publicly available on The Cancer Imaging Archive15 (TCIA: https://doi.
org/10.7937/TCIA.9YTJ-5Q73)16. The archive data can be organized in the convenient folder structure shown in 
Box 1 with a script from our code repository (https://github.com/KCL-BMEIS/VS_Seg). Alternatively, we provide 
a script to organize the archive data according to the Brain Imaging Data Structure (BIDS) specification17.
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The VS image files are provided in DICOM format and the radiation therapy data in the DICOM-RT files 
RTDOSE.dcm, RTPLAN.dcm, and RTSS.dcm. The segmentation of the tumour is contained in the RTSS file.

The .tfm files are text files specifying affine transformation matrices that can be used to co-register the 
T1 image to the T2 image and vice versa. The file format is a standard format defined by the Insight Toolkit 
(ITK) library. The matrices are the result of the co-registration of fiducials of the Leksell Stereotactic System MR 
Indicator box into which the patient’s head is fixed during image acquisition. The localization of fiducials and 
co-registration is performed automatically by the Leksell GammaPlan software.

The two files named contours.json in the T1 and T2 folder contain the contour points of the segmented 
structures in JavaScript Object Notation (JSON) format, mapped in the coordinate frames of the T1 image and 
the T2 image, respectively.

In most cases, the tumour was segmented on the T1 image while the cochlea was typically segmented on 
the T2 image. This meant that some contour lines (typically for the tumour) were coplanar with the slices of 
the T1 image while others (typically for the cochlea) were coplanar with T2 slices. After co-registration, the 
(un-resampled) slices of the T1 and T2 image generally did not coincide, e.g. due to different image position and, 
occasionally, slice thickness.

Therefore, the combined co-registered contour lines were neither jointly coplanar with the T1 nor with the 
T2 image slices. This complicates the discretisation to a binary labelmap in either image space. Upon export of 
the segmentations in a given target space, the GammaPlan software interpolates between the original contour 
lines to create new slice-aligned contour lines in the target image space (T1 or T2). This results in the interpolated 
slice-aligned contour lines found in the RTSS.dcm files. In contrast, the contours in the JSON files were not 
interpolated after co-registration, and therefore describe the original (potentially off-target-space-slice) manual 
segmentation accurately.

Discretisation of the slice-aligned interpolated contour lines into a binary labelmap can be performed on a 
slice-by-slice basis with a simple 2D rasterisation algorithm. However, as shown in Fig. 2, when discretized to the 
target voxel grid space, starting from slice-aligned interpolated contours can result in unexpected behaviour such 
as the exclusion of entire slices of the segmentation at the top and bottom of a structure.

An alternative is to use an advanced discretization algorithm that can work directly from off-slices contours, such 
as that of Sunderland et al.18. This algorithm is available in the open-source software 3D Slicer19 (www.slicer.org)  
with the extension SlicerRT20. It handles issues such as keyhole contours, rapid changes, and branching. 
We applied the same SlicerRT implementation of the algorithm of Sunderland et al.18. to discretize both the 
slice-aligned interpolated contours and the original potentially off-slice contours. As it bypasses the proprietary 
interpolation performed by the closed-source GammaPlan software, starting from the original uninterpolated 
contour lines offers additional traceability of the discretisation process and offers a more transparent conversion. 
We observed that it results in a binary labelmap with a higher number of foreground pixels, as shown in Fig. 2. 
Due to the increased openness and consistency advantage, this approach was taken for the discretization of the 
manual segmentations into label maps used to train our automated segmentation algorithm.

Technical Validation
The quality of the images in this dataset and their co-registration were assessed by radiologists during treatment 
planning. To verify the accuracy of the contours in the JSON file, they were compared to the contours stored 
in the RTSS files by converting both sets of contours into binary labelmaps using 3D Slicer, and calculating the 
Dice coefficient between them. The average Dice coefficient was 99.9 ± 0.2% for T1 images and 97.6 ± 2.2% for 
T2 images. All Dice coefficients were larger than 88%. The worst-case example is shown in Fig. 2. Any deviations 
from a perfect Dice coefficient of 100% are due to the interpolation of contours in the RTSS files.

Visual inspection was performed on all cases after applying the de-facing algorithm to ensure satisfactory 
obscurification of facial features.

For further validation, an automatic segmentation algorithm was trained and tested on the dataset. The 
comparison between predicted and manual segmentations showed high agreement with average Dice scores of 
94.5 ± 2.2% for T1 images and 90.7 ± 3.6% for T2 images. This is comparable to the inter-observer variability 

Box 1 Folder structure of the data set.
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between clinical annotators whose segmentations led to an average Dice score of 93.82 ± 3.08%. Interobserver 
variability testing between clinical annotators recorded a Dice score of 93.82% (SD 3.08%), an ASSD score of 
0.269 (SD 0.095) mm, and an RVE of 5.55% (SD 4.75%) between the 2 sets of manual annotations.

A comparison between the 2.5D UNet on which our implementation is based and a 3D UNet as well as 
other baseline neural networks without attention module and/or hardness-weighting was published in9, showing 
improvements in Dice score of more than 3%.

Usage Notes
To view the DICOM images we recommend 3D Slicer’s DICOM viewer (https://www.slicer.org), which is a free 
and open source platform for medical image informatics, image processing, and three-dimensional visualization. 
To load the RT Structure Set and overlay the image with the segmentation, the extension SlicerRT is required, 
which can be added through 3D Slicer’s extension manager. The .tfm files can also be opened with 3D Slicer or by 
directly using the ITK library. However, we also provide a script that performs the image registration and conver-
sion from contours to binary labelmaps as described in the following section.

Code availability
We have released a code repository for automated segmentation of VS with deep learning (https://github.com/
KCL-BMEIS/VS_Seg). The applied neural network is based on the 2.5D UNet described in9 and10 and has been 
adapted to yield improved segmentation results. Our implementation uses MONAI, a freely available, PyTorch-
based framework for deep learning in healthcare imaging (https://monai.io). This new implementation was 
devised to provide a starting point for researchers interested in automatic segmentation using state-of-the art 
deep learning frameworks for medical image processing.

To apply the algorithm to the VS dataset, we randomly split the final 242 patients into 3 non-overlapping 
groups: 176 for training, 20 for hyperparameter tuning, and 46 for testing, with median tumour volumes of 
1.37 cm3 (range 0.04–9.59 cm3, IQR 0.64–3.14 cm3), 0.92 cm3 (range 0.12–5.50, IQR 0.51–2.40 cm3), and 1.89 cm3 
(range 0.22–10.78, IQR 0.74–4.05 cm3), respectively. Thirty-four patients (19%) in the training dataset had under-
gone previous surgery compared with 2 patients (2%) in the hyperparameter tuning set and 14 patients (30%) 
in the testing dataset. The algorithm leads to excellent average Dice scores between predicted segmentations and 
ground truth (see Technical Validation). To apply the released code to the VS data set, the DICOM images and RT 
Structures have to be converted into NIfTI files. The repository includes a script and instructions for this purpose.
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