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Abstract—Large-scale antenna array techniques are key en-
ablers for modern wireless communication systems. Channel state
information (CSI) is indispensable for large-scale multi-antenna
systems, but is challenging to obtain. To tackle this issue, in this
paper we propose a unified precoding and pilot design frame-
work, that allows minimal and precoding-sensitive modified CSI
(mCSI) to be collected. This results in a significant reduction in
the CSI overheads and complexity compared to classical physical
CSI (pCSI) estimation. Based on this unified framework, we
further propose an intelligent pilot (IP) approach that senses
and selects the mCSI to be collected. The IP approach utilizes a
compressive sensing formulation to attach sensing and selection of
significant mCSI to precoding optimization. We apply the above
techniques to the multi-user frequency division duplexing (FDD)
downlink as an example. Our study shows that the advantages
of the IP approach are three-fold. First, in contrast to the pCSI,
precoding-sensitive information is only captured, which reduces
the training and feedback overheads. Second, the precoders are
optimized directly based on the mCSI, which avoids recovering
the pCSI of high-dimension. Third, since the mCSI of reduced
dimension is utilized, the scale of the problem to optimize the
precoder is also reduced and thus it is much easier to solve.

Index Terms—Intelligent pilot design, intelligent modified CSI
selection, precoding and pilot design, contextual bandit learning,
symbol-level precoding, intelligent wireless communication.

I. INTRODUCTION

Its high spectrum and energy efficiency and tolerance to
simple signal processing techniques have established massive
multiple-input multiple-output (MIMO) as a key 5G technolo-
gy [1]. Massive MIMO employs a large number of antennas at
base station (BS) to serve multiple users (UEs) simultaneously.
To reap these benefits of massive MIMO, CSI between BS and
UEs is often indispensable. However, due to the prohibitively
high overhead associated with downlink training and uplink
feedback, the acquisition of downlink CSI is recognized as
a very challenging task for massive MIMO systems. This is
particularly pronounced for the FDD massive MIMO systems,
where the channel reciprocity between uplink channels and
the downlink counterparts cannot be exploited [2].

To overcome these challenges and acquire CSI of massive
MIMO systems with reduced overheads, a variety of methods
have been proposed in the past several years, which roughly
fall into three categories. For the first category, frequency-
independent non-statistical information (e.g., sparsity of high-
frequency channels or angular and delay reciprocities between
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uplink and downlink channels) are exploited to acquire CSI,
so as to reduce the training overhead [3]–[5]. For the second
category, channel statistics (e.g., channel correlation or channel
covariance matrix) are exploited to acquire CSI with lower
overheads [6]–[10]. Recently, machine learning (in particular,
deep learning) has inspired learning-based CSI acquisition
methods, which constitute the third category [11]–[13].

As an effective means to improve the system performance,
precoding has always been an active research area in wireless
communications. Given that perfect CSI is available, various
precoding algorithms have been proposed [14]–[18]. Note that
in classical approaches, interferences are often regarded as a
limitation and are suppressed as much as possible. However,
seen from an instantaneous point of view, interferences can be
constructive and can also be exploited through symbol-level
precoding (SLP). The concept of constructive interference (CI)
was exploited to improve the system performance in [19]–
[23]. In particular, a low-complexity vector precoding scheme
was proposed in [23] for limited feedback downlink multi-user
MISO systems, which is the first work on optimization based
CI precoding. This was followed by [24] first proposing an
explicit precoding optimization based on CI with strict angle
constraints, and in [25] extended to a CSI-robust CI precoder
with a relaxed optimization. The idea of CI exploitation has
been extended to various scenarios/applications [26]–[32].

For most precoding algorithms, perfect pCSI is assumed,
which is, however, challenging (and even impossible) to obtain
in practice. To deal with this issue, robust precoding algorithms
have been proposed in [25], [33]–[35]. Note that in relevant lit-
eratures, desired performance metric unidirectionally depends
on CSI estimation (via precoder optimization). Typically, C-
SI acquisition and precoding optimization are often tackled
separately. On the one hand, various algorithms have been
proposed to estimate pCSI as accurately as possible, however,
without considering the subsequent precoding design. On the
other hand, precoders are optimized under the assumption
that estimated or even perfect pCSI is available. However,
the conventional unidirectional and separate design paradigm
not only increases design complexity, but also may lead to
some performance loss. Firstly, the overheads of training and
feedback are prohibitively high, which makes it challenging to
obtain complete pCSI. Secondly, the complete pCSI may not
be a necessity (e.g., it may consist of superfluous information).
Thirdly, because of the unidirectional dependency relationship,
the desired or required pCSI, however, may not be estimated.
Finally, it is challenging to realize a scalable tradeoff between
a performance metric of interest (PMoI) and the training and/or
feedback overheads.
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To simplify system design and improve the PMoI, algo-
rithms that directly employ the mCSI to design precoders have
been proposed in millimeter wave (mmwave) communications,
by exploiting channel sparsity [36]–[38]. In particular, CSI
acquisition (via beam training and tracking) and precoding
optimization were jointly considered in [37] for multi-user
mmwave communication systems. The joint design of CSI
acquisition and precoding optimization in mmwave commu-
nication relies heavily on the fact that the power angular
spectrum (PAS) of mmwave channels is discrete. It is prob-
lematic to directly extend these algorithms to FDD massive
MIMO communications, because the PAS of FDD channels is
often continuous and may have a large angle spread. The joint
design becomes more challenging when it comes to multi-user
FDD downlink communications, since the overhead of CSI
acquisition increases as more served users are involved. For
this reason, efficient algorithms have not been investigated for
the FDD downlink multi-user systems. As for more general
correlated channels, both theoretical feasibility and effective
algorithms are still unavailable.

To tackle the aforementioned issues, we propose a unified
precoding and pilot design optimization (UPPiDO) framework
and further implement it via IP in this paper. Within the
framework, PMoI determines and guides mCSI estimation, and
only significant and desired mCSI can be identified, selected,
estimated and fed back. To fulfill the framework, we propose
two support techniques, i.e., mCSI based precoding and pilot
design (mCSI-PPD) and significant mCSI intelligent sensing
and selection (mCSI-ISS). Based on the framework, we pro-
pose IP-based algorithms to jointly acquire CSI and optimize
precoders with CI exploitation for FDD downlink multi-user
systems. The proposed IP-based algorithms make full use
of spatial correlation to reduce overheads of training and
feedback. The other advantages are as follows. Firstly, only
precoding-sensitive mCSI is captured, and thus the training
and feedback overheads can be greatly reduced. Secondly,
there is no need to reconstruct the original pCSI to design
precoders, which simplifies system operations. Thirdly, since
the precoders are optimized directly based on the mCSI of
much reduced dimension, the scale of the problem to optimize
the precoders is much smaller than that of the original opti-
mization problem with complete pCSI, which is much easier
to solve. Instead of using the complete (but inaccurate) pCSI,
the use of a small amount of inaccurate significant mCSI helps
to achieve a robust performance. The main contributions are
summarized as follows:

• We propose a unified precoding and pilot design opti-
mization (UPPiDO) framework implemented via IP. An
algorithm designed based on the framework only esti-
mates required mCSI, and the selection and identification
of the required mCSI are implemented via designing
precoders to optimize the PMoI.

• To implement the framework, we propose the mCSI-PPD
technique, which enables to optimize pilot and precoder
with training- and feedback-efficient mCSI. Particularly,
we prove theoretically that for a major class of special
precoding schemes, where the channel vectors and pre-

coding vectors take the form of inner product, precoding-
sensitive mCSI can be used instead to design precoders,
which provides the theoretical foundation for UPPiDO.

• To obtain more efficient mCSI, we propose the mCSI-ISS
technique, where significant mCSI is sensed and selected
intelligently, using a compressive sensing formulation. In
particular, automatic model selection technique via the L1
regularization is proposed to induce sparsity and select
significant mCSI. To adapt to complex environments, we
employ contextual bandit learning to design a learning-
based algorithm to choose the regularization parameter.

• We take the challenging FDD downlink multi-user system
as an example and propose both heuristic and learning-
based algorithms to construct efficient IPs. Based on the
IPs, we further propose an efficient SLP algorithm which
jointly acquires mCSI and optimizes precoders.

• Comprehensive simulation results are provided to demon-
strate the effectiveness and superiorities of the proposed
algorithms, including: a more robust performance under
inaccurate mCSI, a lower computational complexity (de-
pending on the length of the IP, rather than the number of
antennas), and a scalable tradeoff between performance
of interest and training/feedback overhead.

The remainder of this paper is organized as follows. System
model of FDD downlink multi-user CI-based SLP problem
is described in Section II. Taking the FDD downlink multi-
user CI-based SLP as an example, the mCSI-PPD and mCSI-
ISS techniques are elaborated in Section III and Section IV,
respectively. The simulation results are provided in Section V,
and conclusions are given in Section VI.

Notations: Bold uppercase A and bold lowercase a denote
matrices and column vectors, respectively. Without particular
specification, non-bold letters A, a denote scalars. Caligraphic
letters A stand for sets. E(·) and (·)H denote the mathematical
expectation and Hermitian operators, respectively. I{·} and
card(A) represent the indicator function and the cardinality
of A, respectively. (·)? represents an optimal quantity, e.g.,
an optimal solution of an optimization problem. CN (m,R)
stands for a complex Gaussian random vector with mean m
and covariance matrix R.

II. SYSTEM MODEL

Consider an FDD downlink multi-user communication sys-
tem, which consists of one BS equipped with N transmit
antennas and U single-antenna users (UEs), as illustrated in
Fig. 1. The set of the U UEs is denoted by U = {1, 2, · · · , U}.
The UEs are randomly distributed in U regions. Without loss
of generality, uniform linear array (ULA) is considered in this
paper. The developed algorithms are also applicable to other
antenna array geometries (e.g., uniform planar array - UPA).
In fact, it is sufficient to reconstruct a corresponding codebook
(e.g., by uniformly sampling a rectangular beam space for
UPA) when applying to another antenna array geometry.

Under the assumption of ULA, the channel vector between
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Fig. 1. Illustration of an FDD downlink multi-user communication system.

the BS and each UE u ∈ U can be expressed as [7], [11]

h̄u =

∫
θ∈Au

gu(θ)a(θ)dθ

=

∫ θ̄u+∆u

θ̄u−∆u

|gu(θ)|ejφu(θ)a(θ)dθ, (1)

where Au = [θ̄u−∆u, θ̄u+∆u] represents angle spread (AS)
of UE u with ∆u denoting single-side AS. |gu(θ)| and φu(θ)
in (1) represent attenuation (amplitude) and random phase of
signal ray from θ, respectively. a(·) represents array response
vector and takes the form

a(x) =
1√
N

[
1, ejx

2π
λ d, ejx

2π
λ 2d, · · · , ejx 2π

λ (N−1)d
]
, (2)

where λ and d denote the signal wave-length and the distance
between any two adjacent antennas, respectively. Note that
for more general or complex channel models, e.g., channel in
(1) with multiple AS intervals or larger ASs, the developed
algorithms can also be applied directly.

Without loss of generality, the PSK modulation (with con-
stellation Su of size Ku for UE u) is considered in this paper.
Nevertheless the developed algorithms are also applicable to
other modulations [39] 1. Let su = ejξu ∈ Su be the intended
PSK information symbol for UE u (with ξu the argument of
su) and x be the transmitted signal. Then, the signal received
at each UE u can be written as

yu = h̄H
ux + nu, (3)

where nu ∼ CN (0, σ2
N) denotes random noise.

With the aim of improving energy efficiency, the idea of
CI is exploited. For the PSK modulation, the key of the CI
design principle can be captured by the following constraints
(∀u ∈ U) [25]∣∣Im(h̄H

uxe−jξu)
∣∣ ≤ (Re(h̄H

uxe−jξu)− γu
)

tan(π/Ku), (4)

where γu is an SNR metric that measures the quality of
received signal of UE u. The above design constraints enforce
that the CI pushes the received signal away from the decision
boundaries of the PSK constellation. The reader is referred to

1For an arbitrary modulation mode (e.g., QAM and APSK), the problem of
precoding design can almost always be formulated as an optimization problem,
which is often a special case of the general problem in (7). The algorithms
in this paper (e.g., Algorithm 3 or 4) are developed to address the general
problem in (7), which can also be applied to address a special case.

[40] for more details. Next, we adopt the power-minimization
SLP as an example, which can be formulated as [25]

min
x

‖x‖2

s.t.
∣∣Im(h̄H

uxe−jξu)
∣∣ ≤(

Re(h̄H
uxe−jξu)− γu

)
tan(π/Ku), (∀u ∈ U).

(5)

It is not difficult to solve problem (5), if the pCSI, i.e.,
{h̄u}, is available. In fact, problem (5) is a second-order cone
programming [23], which can be efficiently solved via convex
optimization tools, such as CVX or CVXOPT. However, it is
difficult to obtain highly-precise CSI in practice. In particular,
in contrast to TDD, where the downlink CSI can be obtained
from the uplink counterpart by using the channel reciprocity,
the downlink CSI is conventionally obtained via downlink
training and uplink feedback for an FDD system. However,
the overheads of both downlink training and uplink feedback
are prohibitively high for a large-scale antenna array system.
Furthermore, the CSI feedback is subject to quantization and
noise errors. Next, we will address this issue via IP.

III. MODIFIED CSI BASED PILOT AND PRECODING
DESIGN

The implementation of the UPPiDO framework incorporates
two key support techniques, i.e., mCSI-PPD and mCSI-ISS.
The individual roles of the two techniques are as follows:
• mCSI-PPD: The key to reduce the overheads of training

and feedback is to exploit channel sparsity. However,
pCSI is often not sparse. To obtain sparsity, mCSI-PPD
jointly optimizes pilot and precoder in another domain,
where the corresponding mCSI is sparse. The sparsity of
mCSI enables efficient training and feedback, and helps
to achieve a robust performance.

• mCSI-ISS: Even though the mCSI is sparse, it may
still contain redundant and/or inaccurate information. To
this end, we propose to identify and select significant
mCSI. However, a heuristic method inevitably incurs a
performance loss. To address this issue, automatic model
selection via the L1 regularization is utilized to induce,
identify and select significant mCSI.

In this section, we elaborate on the mCSI-PPD technique.
Specifically, we first provide mathematical foundation for
mCSI-PPD. Then, we propose two efficient heuristic methods
to construct IPs for the FDD downlink multi-user system.

A. Mathematical Foundation of mCSI-PPD
Let h̄u and vu ∈ Cn denote physical channel vector and

precoding vector of UE u, respectively. For convenience, let
{h̄H

uvw} collect all terms that take the form of inner product
between the channel vectors and precoding vectors, i.e.,{

h̄H
uvw

}
=
{
h̄H
uvw |u ∈ U , w ∈ U

}
. (6)

In general, the problem of precoding design can be formulated
as

min
{vw}

f
(
{h̄H

uvw}
)

s.t. hi
(
{h̄H

uvw}
)

= 0, (i = 1, · · · , I)

gj
(
{h̄H

uvw}
)
≤ 0, (j = 1, · · · , J),

(7)
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where hi(·) = 0 (i = 1, · · · , I) are equality constraints, and
gj(·) ≤ 0 (j = 1, · · · , J) are inequality constraints.

It should be highlighted that in problem (7), none of the
physical channel vectors {h̄u} emerges alone. They always
take the form of inner product with the precoding vectors. It
seems that this requirement is restrictive. However, the form
in problem (7) is very general and contains many precoding
designs of interest, e.g., the linear precoding. In fact, the
only requirement is that {h̄u} and optimization variables of
interest satisfy the form of inner product, e.g., problem (5) is
an example. 2. Another example is the classical problem of
maximizing the system sum-rate, i.e.,

max
{vu}

∑
u∈U

log

(
1 +

∣∣h̄H
uvu

∣∣2∑
w 6=u

∣∣h̄H
uvw

∣∣2 + σ2

)
s.t.

∑
u∈U
‖vu‖2 ≤ Pm,

(8)

where σ2 and Pm represent noise power and transmit power
budget, respectively.

The following theorem provides theoretical foundation for
mCSI-PPD, i.e., to optimize pilot and precoder via mCSI.

Theorem 1. Let F be a matrix such that the set of all column
vectors of F, denoted by F , spans vector space CN . Then, the
problem in (7) is equivalent to the following problem

min
{yw}

f
(
{h̄H

uFyw}
)

s.t. hi
(
{h̄H

uFyw}
)

= 0, (i = 1, · · · , I)

gj
(
{h̄H

uFyw}
)
≤ 0, (j = 1, · · · , J).

(9)

Specifically, let set {y?w} be an optimal solution of problem
(9). Then, the set {v?w = Fy?w} is an optimal solution of
problem (7).

Proof: See Appendix A.
Theorem 1 indicates that to solve problem (7), it is sufficient

to solve the equivalent optimization problem in (9). Compared
to the original problem in (7), the advantage of the equivalent
problem in (9) is that there is no need to estimate the original
pCSI {h̄u}. Instead, if the mCSI, defined as {hu = FHh̄u},
is available, an efficient precoder can still be obtained. More
importantly, by designing F (or F) elaborately, the acquisition
of {FHh̄u} may be much easier, e.g., less training overhead.
For example, via appropriate design, {FHh̄u} may be sparse,
and thus CSI acquisition becomes feedback-efficient.

Remark 3.1 Although precoding optimization in the beam
domain was considered in [36], [37], theoretical feasibility and
optimality were not provided. Theorem 1 not only theoretically
confirms the feasibility and optimality, but also greatly extends
original special cases (e.g., using DFT codebooks) to consid-
erably general cases. In particular, Theorem 1 points out that
only the very week condition is required to optimize pilot and

2The precoded transmit vector x in a MU-MISO system takes the form
x = [v1,v2, · · · ,vK ]s = Vs, where s is transmitted data vector. From the
view of system implementation, we are more concerned about x. In classical
precoding, each precoding vector vk is optimized explicitly and shared by all
data vectors, based on which x can be obtained easily. In SLP, each component
of s is chosen from a constellation of finite size, which enables us to directly
optimize x, instead of V.

precoder via mCSI, without loss of optimality. Theorem 1 lays
the foundation of the UPPiDO framework.

Since F plays the role of estimating the mCSI, it can be rea-
sonably referred to as pilot. However, F itself often provides
redundant or needless information and thus is inefficient. To
alleviate the difficulty of acquiring and feeding back the mCSI,
all that is needed is a small subset F0 ⊂ F chosen carefully
from F which can capture sufficient channel information and
enable to design an efficient precoder. If such a subset F0

exists, it is referred to as an IP, which is defined as follows.

Definition 1 (Intelligent Pilot). A subset of F is referred to
as an IP if it has the following properties or features:
• The IP can sense and capture precoding-sensitive infor-

mation (PSI) with low training overhead. Moreover, the
PSI can also be fed back from UEs to the BS efficiently.

• With the PSI available, the BS can design efficient pre-
coders of interest directly. In particular, there is no need
to reconstruct complete physical channels.

The set F in Definition 1 is referred to as pre-pilot or pre-IP.
Note that the IP in Definition 1 is defined from the perspective
of efficiently sensing and capturing PSI to design precoders.
In the next section, we will pay more attentions to design IPs
which can adapt to channel environments.

B. IP Design for FDD Downlink Multi-User System

As an application of Theorem 1, we propose two heuristic
methods to construct IPs for the FDD downlink multi-user
system. The first step is to choose an appropriate pre-pilot
F (or F). In view of the channel model in (1), the widely
used DFT codebook is chosen as the pre-pilot F , which
is constructed by uniformly sampling the entire beam space
[−1, 1], i.e.,

CDFT = {ai |ai = a(−1 + 2i/N), i = 0, · · · , N − 1}.

Another typical choice is dense codebook (DC), obtained by
sampling the beam space more densely. 3 If the size of a DC
is L times as large as that of the standard DFT codebook (of
size N ), the DC is referred to as L-DC and denoted by CL-DC,
i.e.,

CL-DC =
{
ai
∣∣ai = a

(
− 1 + 2i/(LN)

)
, i = 0, · · · , LN − 1

}
.

Next, we construct an IP for each UE, and without loss of
generality, we focus on UE u. To construct an IP, we shall first
analyze the channel covariance matrix. The downlink channel
covariance matrix of UE u can be written as

Ru =

∫
θ∈Au

E
[
|gu(θ)|2

]
a(θ)aH(θ)dθ

=

∫ θ̄u+∆u

θ̄u−∆u

Su(θ)a(θ)aH(θ)dθ, (10)

where Su(θ) = E[|gu(θ)|2] is the PAS function of channel h̄u
and characterizes the channel power distribution in the angular
domain [7], [41]. Note that Su(θ) is continuous and compactly

3To obtain more efficient IPs, the pre-pilot F should be optimized as well.
Due to space limitation, this is deferred to our future work.
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supported in Au = [θ̄u−∆u, θ̄u+∆u], i.e., Au is the support
(i.e., non-zero region) of the function Su(θ).

Let Fu be the set of beams such that the main-lobe of each
element of Fu is within the support of Su(θ), i.e.,

Fu = {a(θ) ∈ F |Su(θ) ≥ ε > 0}, (11)

where the pre-pilot is chosen as CDFT or CL-DC (i.e., F = CDFT
or F = CL-DC) and ε is a small real number. Then, an efficient
IP can be constructed as

Pθ =

U⋃
u=1

Fu. (12)

The IP in (12) constructed based on the PAS functions {Su(θ)}
is denoted by Pθ. Accordingly, the matrix that collects all
vectors in Pθ is denoted by Pθ.

Each element or codeword in Pθ is referred to as a pilot
beam. Given Pθ, the physical channel vector h̄u can be
mapped into the beam (or angular) domain, i.e.,

hu = PH
θ h̄u. (13)

It is observed that compared to the original physical channel
vector h̄u, the dimension of hu has been reduced, and thus hu
is feedback-efficient. Similarly, to estimate hu, it is sufficient
to transmit all pilot beams in Pθ, which implies that Pθ is
training-efficient. Note also that {hu} can be used to design
efficient precoders, as shown in the next subsection. According
to Definition 1, Pθ can be referred to as an IP. Accordingly,
{hu} are the PSI corresponding to Pθ.

In some cases, the IP Pθ may be very large, which may
lead to a prohibitively large overhead in terms of both training
and feedback. Next, we further propose a superposed multiple
beam (SMB) technique to alleviate this issue. Via appropriate
user scheduling, it is not difficult to guarantee that the supports
of PASs of U UEs are non-overlapping, i.e.,

Au ∩ Av ≈ ∅, (∀u 6= v, u ∈ U , v ∈ U).

In this case, the array response vectors constructed from the
supports of any two UEs are approximately orthogonal, i.e.,

|aH(θu)a(θv)| ≈ 0, (∀ θu ∈ Au, θv ∈ Av, u 6= v). (14)

For convenience, each set Fu can be explicitly written as

Fu =
{
a(θu,1),a(θu,2), · · · ,a(θu,Iu)

}
, (15)

where Iu = |Fu| represents the size of Fu.
Let Θ collect all angle values, i.e., Θ = {θu,i | 1 ≤ u ≤

U, 1 ≤ i ≤ Iu}. The SMB technique essentially divides set Θ
into several subsets D1, · · · ,DK such that Θ = D1∪· · ·∪DK
holds (but Di ∩Dj 6= ∅ may hold). Then, another IP, denoted
by P ′θ, can be defined as

P ′θ =

{
pk =

∑
θ∈Dk

a(θ)

}
. (16)

For each subset Dk, the superposed beam is constructed as

pk =
∑
θ∈Dk

a(θ). (17)

To reduce interferences among multiple beams within each
superposed beam pk, the SMB technique makes full use
of a basic property of general antenna arrays, i.e., if the
distance 4, denoted by δ(·, ·), between two angle values is
large, the mutual interference between the two correspond-
ing beams is small. Based on this property, we propose
two principles to divide Θ to further construct IPs: (1)
card(Fu ∩ Dk) ≤ 1 (∀u and k), i.e., each superposed beam
consists of at most one beam from an arbitrary user; (2) Let
d(Dk) = minθi 6=θj ,θi∈Dk,θj∈Dk δ(θi, θj), i.e., the minimum
distance between any two different elements in Dk. Then,
min {d(D1), · · · , d(DK)} should be maximized, so as to
reduce the interferences.

Based on the above two principles, we can construct an
efficient IP for a general antenna array geometry or channel
model. In particular, with the assumption that I1 = I2 = · · · =
IU holds and the angle values {θu,i} satisfy the following
inequalities

θ1,1 < θ1,2 < · · · < θ1,I1 <

θ2,1 < θ2,2 < · · · < θ2,I2 <

· · ·
θU,1 < θU,2 < · · · < θU,IU ,

(18)

the IP can be explicitly constructed as

P ′θ =

{
pi =

U∑
u=1

a(θu,i)

∣∣∣∣∣ i = 1, · · · , IU

}
. (19)

Similarly, the matrix collecting all vectors in P ′θ is denoted
by P′θ. Note that compared to Pθ, each element in P ′θ (e.g.,
pi ∈ P ′θ), in fact, corresponds to multiple beams (or peaks),
as shown in Fig. 2. Moreover, the overhead of training or
feedback of P ′θ has become 1/U of that of Pθ.
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Fig. 2. An illustration of IP design via superposed multiple beam sensing.

Based on the above discussion, we can present an efficient
algorithm to construct IPs for the FDD downlink multi-user
system, which is summarized in Algorithm 1 for clarity. The

4The distance should characterize or measure the interference between two
beams, which often depends on the antenna array geometry. We take the
ULA as an example. The distance between two angle values x1 and x2 can
be defined as d(x1, x2) = minm,n |x1 mod 2mπ − x2 mod 2nπ|.
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Algorithm 1: IP for FDD Downlink Multi-user System

1: input: codebook C and support of PAS of each UE

2: construct training beam set Fu for each UE u

according to its PAS support Au
3: construct IP Pθ according to (12) or (P ′θ using the

SMB technique according to (19))
4: transmit signals with each pilot beam pi ∈ Pθ (or

pi ∈ P ′θ)
5: process received signals and feed them back to BS
6: design a precoder and perform data transmission

BS first estimates the PAS support of each UE and ensures that
the supports of the served UEs are non-overlapped. In step 2,
the BS constructs beam training set Fu according to (11). An
IP can be constructed according to (12) (or (19) by using the
SMB technique) in step 3. Then the BS transmits signals based
on the constructed IP (in step 4). Via appropriate processing,
the UEs feed back the PSI to the BS. Although there may
exist other more efficient methods to obtain PSI (i.e., to design
neural networks), in this paper we only consider the simplest
method (i.e., the UEs simply quantize the received signals and
then feed them back to the BS), so as to simplify the operations
of UEs. Finally, the BS regards the received signals as the PSI
and uses them to design a precoder to transmit effective data.
More details will be provided in the next subsection.

The PAS supports required by Algorithm 1 can be estimated
by using the algorithm in [7]. However, the heuristic construc-
tion of Pθ and P ′θ inevitably leads to a performance loss. To
alleviate the requirement of estimating the PAS supports and
further improve the system performance, we will propose the
mCSI-ISS technique to intelligently sense, identify and select
significant mCSI. But, before that, we shall first propose an
efficient SLP algorithm to show how to exploit the PSI.

C. Symbol-Level Precoding via IP
To design a precoder, we require the following corollary,

which can be directly obtained from Theorem 1.

Corollary 1. The problem in (5) is equivalent to the following
optimization problem

min
d

‖Fd‖2

s.t.
∣∣Im(h̄H

uFde−jξu)
∣∣ ≤(

Re(h̄H
uFde−jξu)− γu

)
tan(π/Ku), (∀u ∈ U).

(20)

Corollary 1 indicates that to design an efficient precoder
via solving problem (5), it is sufficient to solve the equivalent
problem in (20), for which we only need to estimate the mCSI
{hu = FHh̄u}. Note that {hu} can be estimated via IPs. We
take P ′θ as an example, and it is similar for Pθ.

Let P′θ = [p1, · · · ,pIU ] with each pi ∈ P ′θ. Instead of
estimating {h̄u}, an estimation of {P′θ

H
h̄u} can be obtained.

A simple method is as follows. The BS sends training signal
s = 1 along each pilot beam defined in P ′θ. For each pi ∈ P ′θ,
the signal received by UE u can be written as

yu,i = h̄H
upis+ nu,i = h̄H

upi + nu,i, (21)

where nu,i is the noise variable. Then, each UE u quantizes the
received signals {yu,i | i = 1, · · · , IU}, which yields quantized
signals {ŷu,i | i = 1, · · · , IU}. The quantized signals (i.e., PSI)
are fed back to the BS by each UE.

Let Θ = {θj |a(θj) ∈ F}. Then, with the PSI {ŷu,i | i =
1, · · · , IU} available, {hu} can be estimated as follows

hu(j) ≈

{
h̄H
ua(θu,i) ≈ h̄H

upi ≈ ŷu,i θj = θu,i

0 otherwise,
(22)

where hu(j) denotes the j-th component/element of the vector
hu. Let ĥu represent the estimation of hu. The SLP problem
in (20) can be rewritten as

max
d

‖Fd‖2

s.t.
∣∣Im(ĥH

ude−jξu)
∣∣ ≤(

Re(ĥH
ude−jξu)− γu

)
tan(π/Ku), (∀u ∈ U).

(23)

Let matrix A collect all beams in all sets {Fu} of all UEs.
Similarly, h′u = AHh̄u can also be estimated based on {ŷu,i}.
For convenience, h′u is still denoted by hu. Then, the SLP
problem in (5) or (23) can be equivalently written as

max
d

‖Ad‖2

s.t.
∣∣Im(ĥH

ude−jξu)
∣∣ ≤(

Re(ĥH
ude−jξu)− γu

)
tan(π/Ku), (∀u ∈ U).

(24)

Note that the dimension of the optimization variable in prob-
lem (24) (i.e., the scale of the optimization problem) is much
lower than that of problem (5), and thus the computational
complexity to solve problem (24) has been greatly reduced.
This is another important advantage of the IP approach.

Algorithm 2: Symbol-Level Precoding Design via IP

1: input: PAS supports of U UEs

2: construct an IP to estimate PSI (via Algorithm 1)
3: construct optimization problem (23) or (24)
4: solve the constructed problem to obtain a precoder
5: perform data transmission by the precoder

Note that both problem (23) and problem (24) are convex
and can be efficiently solved via interior-point methods. For
clarity, the SLP algorithm is summarized in Algorithm 2. We
first construct an IP according to Algorithm 1 and use the IP
to obtain required PSI (in step 2). In step 3, we construct an
optimization problem based on the estimated PSI. By solving
the constructed optimization problem (in step 4), we can obtain
a precoder and use it to transmit data (in step 5).

IV. LEARNING-BASED UNIFIED PRECODING AND
INTELLIGENT PILOT DESIGN

In the previous section, the mCSI is identified and selected
heuristically. Moreover, only information of PAS supports of
UEs has been utilized, while other useful information (e.g.,
shape of the PAS function) has been discarded. In this section,
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we propose the mCSI-ISS technique to intelligently sense and
select significant mCSI, which has three appealing advantages.
Firstly, the most significant mCSI is automatically identified
and selected, without explicitly estimating the PAS function
(and the PAS support). Secondly, the mCSI-ISS technique can
make full use of the PAS information, including the shape of
the PAS function. Finally, the IP approach incorporating the
mCSI-ISS technique can adapt to channel environments.

A. Intelligent Sensing and Selection of Significant mCSI

To reap the aforementioned benefits, we need to reformulate
problem (20) (in Corollary 1) as follows

min
d

‖Fd‖22 + ρ‖d‖1

s.t.
∣∣Im(h̄H

uFde−jξu)
∣∣ ≤(

Re(h̄H
uFde−jξu)− γu

)
tan(π/Ku), (∀u ∈ U).

(25)

where ρ > 0 denotes regularization parameter. Compared to
the previous optimization problems, e.g., problem (23), an L1
regularization term ρ‖d‖1 is introduced. Because of the L1
regularization term ρ‖d‖1, solving problem (25) will induce a
sparse solution, based on which the significant mCSI can be
identified/determined. This technique is referred to as mCSI-
ISS.

Remark 4.1 It is crucial to introduce the L1 regularization
term. On the one hand, from the perspective of machine learn-
ing, the regularization term plays the role of automatic model
selection. Hence, the most significant mCSI required to design
precoders can be automatically identified and selected by solv-
ing problem (25). On the other hand, from the perspective of
optimization theory, the regularization term (which should be
referred to as penalty term in this case) facilitates to generate
a sparse solution automatically. Accordingly, the training and
feedback overheads can be reduced. This automation process
avoids explicitly accessing to the PAS function (or its support)
and possible performance loss (due to an inaccurate estimation
or inappropriate use of the PAS).

Remark 4.2 In fact, the IP design is often a combinational
optimization problem, which is difficult to tackle. In general,
only heuristic solutions can be obtained. However, via the
reformulation in (25), it is cast into a continuous optimization
problem, which can be solved efficiently. A large number
of simulation experiments show that the mCSI-ISS technique
offers very good performance and indeed significantly out-
performs the state of the art, e.g., in terms of training and
feedback overheads.

Remark 4.3 It is important to distinguish between com-
pressive sensing (CS) based channel estimations and the
mCSI-ISS technique. The objective of the CS-based methods
is to recover the complete pCSI by using as few measurements
as possible. However, the goal of the mCSI-ISS technique is
to capture PSI to design precoders at a minimum cost.

Before proceeding, we show how to extend the formulation
in (25) to the general problem of precoding design in (9). In
fact, by using the mCSI-ISS technique, problem (9) can be

reformulated as

min
{yw}

f
(
{h̄H

uFyw}
)

+ ρ
∑
w

‖yw‖1

s.t. hi
(
{h̄H

uFyw}
)

= 0, (i = 1, · · · , I)

gj
(
{h̄H

uFyw}
)
≤ 0, (j = 1, · · · , J).

(26)

As an example, the classical sum-rate maximization problem
in (8) can be expressed as

max
{yu}

∑
u∈U

log

(
1 +

∣∣h̄H
uFyu

∣∣2∑
w 6=u

∣∣h̄H
uFyw

∣∣2 + σ2

)
− ρ

∑
u

‖yu‖1

s.t.
∑
u∈U
‖Fyu‖2 ≤ Pm.

(27)

Note that with the formulation in (26) available, Algorithms
3 and 4 can be employed directly.

Temporarily, we assume that an optimal value of the regu-
larization parameter, denoted by ρ?, has been obtained. Later,
we will propose a learning-based algorithm to find the optimal
value. With ρ? available, we can design an efficient algorithm
to determine an IP automatically. First, we use all beams in
F to sweep the beam (or angular) space 5, and we can obtain
an estimation of each hu = FHh̄u, which is denoted by ĥu.
Then, we construct the following optimization problem

min
d

‖Fd‖22 + ρ?‖d‖1

s.t.
∣∣Im(ĥH

ude−jξu)
∣∣ ≤(

Re(ĥH
ude−jξu)− γu

)
tan(π/Ku), (∀u ∈ U).

(28)

By solving problem (28), we can obtain an optimal solution
d?, which is sparse. Let the index set of non-zero components
(or the components whose absolute values are greater than a
small threshold value ε > 0) of vector d? be I(d?), i.e.,

I(d?) = {i | 0 < |d(i)|} (or I(d?) = {i | ε < |d(i)|}).

To improve reliability, in practice the above operations can be
repeated K times, and the final index set is the union of the
K index sets. Then, the components of each ĥu whose indices
are within I(d?) are the required PSI, and the beams used to
estimate the PSI constitute an IP. For clarity, the approach to
design an IP is summarized in Algorithm 3.

Algorithm 3: IP via Automatic Pilot Beam Selection

1: input: regularization parameter ρ

2: sweep beam space with F to estimate {ĥu}
3: construct optimization problem (28) with {ĥu}
4: solve optimization problem (28) =⇒ index set I1
5: repeat operations of step 2 to step 4 K times

=⇒ index sets Ik (k = 2, · · · ,K)

6: output: IP P = {ai | i ∈ I0 = I1 ∪ · · · ∪ IK}

5In practice, we can use other information (e.g., UE locations) to determine
a small subset of F , which can further reduce the training overhead.
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Note that in Algorithm 3 (and Algorithm 1), it is implicitly
assumed that channel covariance matrix and PAS change
slowly, which has been verified. In fact, they are typical long-
term information and have been widely exploited [6], [7]. In
Algorithm 3, once an IP is available, we can use it to acquire
instantaneous PSI and further design precoders. In a long time,
there is no need to acquire an IP again.

B. Optimal IP Design via Contextual Bandit Learning
Next, we tackle the issue of finding an optimal regulariza-

tion parameter ρ?. The selection of ρ is important. If ρ is
set too large, important mCSI is not effectively captured and
fully exploited, which inevitably leads to a bad performance.
On the other hand, if ρ is set too small, the IP is not sparse,
which leads to large training and feedback overheads. Since
the optimal ρ? depends on many factors (e.g., transmit power,
QoS requirement, external environments, and so on), it is very
difficult to derive an analytical selection criterion.

Next, we propose a learning-based solution to tackle this
issue. More specifically, we employ contextual bandit (CB)
learning to design an efficient algorithm. CBs are lightweight
reinforcement learning (RL) problems which have no persis-
tent state. At each step, the BS (i.e., agent in RL) is presented
with a context X and a choice of one of several possible
actions a. Since different actions yield different unknown
rewards, the BS shall choose the action that yields the highest
expected reward. The reader is referred to [42] for more details
of CB.

The core of employing CB is to formulate the problem of
interest (e.g., parameter optimization in this paper) as a CB
problem, namely to define rewards, contexts, action space and
bandit model. To reduce computational complexity, the time-
scale of optimizing the learning module is larger than that of
the precoding module, i.e., the learning module is optimized
every K(K > 1) time-slots (which is referred to as a time-
unit) while the precoder is updated each time-slot. The details
of the problem formulation are as follows.

1) Action Space: To obtain an appropriate value of ρ, it is
initialized by a random or fixed value (e.g., ρ = 10.0). Then,
during the process of learning, it is adjusted to an appropriate
value. The action space is defined by a set of constants

A = {a1 > 0, a2 > 0, · · · , a|A| > 0}, (29)

which indicate to increase or decrease the value of ρ. If the
value of ρ in time-unit t is ρt and ai ∈ A is chosen, then the
value of ρ in time-unit t+ 1 is ρt+1 = aiρt.

2) Rewards: The reward r is often a PMoI. Since the focus
of this paper is SLP, the reward can be a linear combination
of symbol error rate (SER), transmit power, training overhead,
and feedback overhead. In this paper, the reward is defined as
a linear combination of the SER and training overhead, i.e.,

rt = −C log(max{bt, c0})− |P|, (30)

where C > 0 is a constant (introduced to adjust the dynamic
range of the rewards), bt is the SER at time-unit t, and |P|
(the size or cardinality of the pilot P) characterizes the training
overhead. Since the SER may be zero, a small value c0 > 0
is introduced in (30) to avoid the invalid value ∞.

3) Contexts: The context Xt reflects important states and/or
changes of the communication system. It consists of elements
that affect the system PMoI. Let X ′t represent the system state
in time-unit t, which is defined as

X ′t =
(
‖ĥ1‖2, · · · , ‖ĥU‖2, ‖ĥ1‖0, · · · , ‖ĥU‖0,

γ1, · · · , γU , ‖d‖2
)
, (31)

where {‖ĥu‖0} are included to measure pilot overhead. The
context Xt is defined by c successive system states, i.e.,

Xt = (X ′t, X
′
t−1, · · · , X ′t−c+1). (32)

The reason that the contexts are defined by successive system
states is that each single state only describes static properties of
the system. However, the decisions (i.e., to increase/decrease
ρ) are made according to the changes of the system.

To complete CB modeling, we need to build a model
r(X, a) of distribution of the rewards conditioned on the
context and action. With this model available, the BS can
choose actions. In view that the communication environment
is often dynamic and complex and simple models (e.g., linear
model) are insufficient to make wise decisions because of the
limited representative power, neural networks (NNs), which
are sufficiently flexible, are considered here. Then, the model
can be denoted by r(X, a|w), where w represents the param-
eters of the NN (i.e., the weights and biases). The details of
the NN (i.e., input, output and loss function) are as follow:
• Network structure: Without loss of generality, the com-

monly used forward/fully-connected NN is considered for
simplicity. The number of neurons of the output layer is
|A|, i.e., the size of the action space A.

• Input and output: The input and output of the NN are the
contexts and rewards, respectively. The output of the NN
is of dimension |A|, and the i-th neuron of the output
layer predicts the reward corresponding to action i.

• Loss function: Let X and NNet(X) represent the input
and output of the NN. The loss function is the square
of the L2 distance, i.e., ‖y − NNet(X)‖2, where y (of
dimension |A|) is the label output corresponding to X . 6

A fundamental issue of bandit learning is to balance the
tradeoff between exploitation (to pick the best known action)
and exploration (to pick potentially sub-optimal exploratory
actions). However, the previous model is deterministic, based
on which it is difficult to derive a good policy that well
deals with the dilemma of exploration and exploitation. To
tackle this issue, the Bayes idea is incorporated into the NN,
which yields the Bayesian NN (BNN) [43]. Specifically, all
weights and biases of the BNN are represented by probability
distributions over possible values, rather than having a single
fixed value. BNN can represent uncertainties intrinsically.
Instead of training a single network, an ensemble of infinite
networks are trained. To obtain a BNN, we place a prior P (w)

6The label output is constructed as follows. In the CB problem (and also all
bandit problems), given a context X , one and only one action can be picked.
Hence, if an action ai ∈ A is chosen and the resultant reward is ri, the label
output corresponding to X and ai is constructed as y = [0i−1, ri,0|A|−i],
i.e., the i-th component is ri and the other components are zero.
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on w, and the prior P (w) is updated into a posterior P (w|D)
when a training dataset D is available. However, due to a large
number of parameters and the complex functional form of the
NN, an exact inference of the posterior P (w|D) is intractable.

Fortunately, although an exact inference is intractable, an
approximate solution to P (w|D) obtained via variational
inference (VI) often meets practical requirement [43]. VI is
a powerful approximate inference approach, which has been
widely used in machine learning and signal processing [44].
As a deterministic approximate inference technique, the basic
idea of VI is to pick an approximation to the distribution of
interested from some tractable distribution family, and then
to try to make this approximation as close as possible to the
true posterior P (w|D). This reduces an intractable inference
problem to a tractable optimization problem.

Let {Q(w|ξ)} be a distribution family parameterized by ξ.
Similar to [43], diagonal Gaussian distribution family is cho-
sen in this paper, i.e., ξ incorporates mean and variance vec-
tors. Specifically, w is distributed as w ∼ CN (µ,Λ), where
µ and Λ (a diagonal matrix) are mean and variance vectors,
respectively. The Kullback-Leibler (KL) divergence is often
utilized to measure the distance between two distributions. To
transform the inference problem into an optimization problem,
VI tries to find the optimal parameter ξ? by minimizing the
KL divergence between the variational distribution and the true
Bayesian posterior P (w|D), i.e.,

ξ? = arg min
ξ

KL(Q(w|ξ)‖P (w|D))

= arg min
ξ

∫
Q(w|ξ) log

(
Q(w|ξ)

P (w)P (D|w)

)
= arg min

ξ
KL(Q(w|ξ)‖P (w))− EQ(w|ξ)[logP (D|w)].

Equivalently, the loss function to train the NN is given by

KL(Q(w|ξ)‖P (w))− EQ(w|ξ)[logP (D|w)]. (33)

Before proceeding to details of optimizing ρ via learning,
we first point out how to compute the loss in (33). The
calculation of the first term, i.e., KL(Q(w|ξ)‖P (w)), depends
on the assumptions on Q and P , which, in general, cannot be
computed analytically. To simplify the calculation (typically,
to compute it analytically), the prior P (w) is simply set to
be N (0, I) in Section V of this paper. Similarly, the diagonal
Gaussian distribution is chosen as the variational posterior,
i.e., Q(w|ξ) = N (ζ,Λ), where ζ and Λ are the mean vector
and covariance matrix (a diagonal matrix), respectively. Then,
KL(Q(w|ξ)‖P (w)) can be analytically calculated as

KL(Q(w|ξ)‖P (w))

=0.5
(
tr(Λ) + ζTζ − log det(Λ)− d

)
,

(34)

where d denotes the dimension of w. As for the second term,
i.e., EQ(w|ξ)[logP (D|w)], it can be estimated via the Monte-
Carlo sampling.

Now, we can present an efficient algorithm to find ρ?. The
designed algorithm is based on the Thompson sampling (TS)
[42]. The basic idea of TS is to choose an action to play
according to its probability of being the best action. At each
step, TS draws a new set of parameters and then picks the

action relative to those parameters. This can be seen as a kind
of stochastic hypothesis testing: more probable parameters are
drawn more often and thus refuted or confirmed the fastest.
TS repeats the following operations: (1) sample a new set
of parameters for the model; (2) choose the action with the
highest expected reward according to the sampled parameters;
(3) update the model and goto step (1). Please refer to [42] for
more details of TS. For clarity, the algorithm that incorporates
both parameter optimization and IP search is summarized in
Algorithm 4.

Algorithm 4: Environment-Sensing IP via CB Learning

1: input: action space A = {a1, a2, · · · , a|A|}; update
frequency of NN F ; number of successive states c

2: initialize prior P (w); experience memory D = ∅;
regularization parameter ρ0; let t = 1

3: repeat for each time-unit
(a) construct context Xt according to (31) and (32)
(b) sample P (w|D) =⇒ NN parameters w′

(c) compute y = NNet(Xt) with input X and
NN parameters w′

(d) find out optimal action a?t with a?t given by
a?t = argmaxa∈A{ya | a = 1, · · · , |A|}

(e) update value of ρ, i.e., ρt = a?t ρt−1

(f) invoke Algorithm 3 to search IP
(g) receive reward rt (from external environment)
(h) update memory D: D ← D

⋃
{(Xt, a?t , rt)}

(i) if tmodF = 0, update NN via VI with D
(j) let t← t+ 1

end

To use the algorithm, we need to construct an action space
{a1, · · · , a|A|}. Then, we initialize the prior of the parameters
w of the underlying NN. For simplicity, the prior placed on
w is given by w ∼ CN (0, σ2

wI) with σ2
w a constant. The

experience memory is emptied and the counter is set to 1.
Next, in each time-unit we repeat the following operations.
In step (a), the context Xt is constructed based on the
information collected within c successive time-units up to t. In
step (b), the concrete parameters w′ and thus a concrete NN
are obtained by sampling the posterior P (w|D). Since the
posterior is unavailable at the beginning stage (e.g., t = 1),
the prior P (w) can be used instead. By feeding Xt to the
NN, the predicted expected rewards, the picked action a?t and
regularization parameter ρt can be obtained in steps (c), (d)
and (e), respectively. With ρ?t available, the IP search method
in Algorithm 3 can be invoked in step (f). The BS receives the
reward from the external environment and updates the memory
in steps (g) and (h), respectively. In step (i), with sufficient
experiences available, the NN can be updated. At the end of
each time-unit, the counter is increased by 1.

V. SIMULATION RESULTS

In this section, simulation results are provided to demon-
strate the performance of the proposed algorithms. Without
loss of generality, the uniform linear array is considered. Two
types of typical PAS functions are chosen to evaluate different
algorithms, i.e., PAS with the uniform distribution denoted by
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Suni(θ) and PAS with the Laplacian distribution denoted by
Slap(θ) [7], which are respectively given by

Suni(θ) =
1

2∆
, ∀ θ ∈ [θ̄ −∆, θ̄ + ∆], (35)

Slap(θ) =
1√
2∆

e−
√

2|θ−θ̄|/∆. (36)

During the process of estimating PSI and feeding it back
to the BS, it is inevitable to incur two types of noise, i.e., the
Gaussian noise (when estimating the PSI) and the quantization
noise (when quantizing the PSI). Let ĥu denote the estimation
of accurate mCSI hu. Similar to [25] and for simplicity, ĥu
and hu are assumed to satisfy

hu = ĥu + ∆hG
u + ∆hQ

u, (37)

where ∆hG
u and ∆hQ

u denote the Gaussian noise and quanti-
zation noise, respectively. ∆hG

u is distributed as CN (0, σ2
gI),

while the distribution of ∆hQ
u depends on the quantization

method and the number of quantization bits. The simplest uni-
form element-wise scalar quantization method is chosen in this
paper. The real part and imaginary part of a complex number
are quantized independently. The number of quantization bits
(to quantize a real number) is denoted by Q.

For comparison, the fully-digital SLP (FD-SLP) solution
of [25] and the fully-sweeping SLP (FS-SLP) solution in
[36] (with some modifications) are chosen as benchmarks to
evaluate the algorithms proposed in this paper. Note that the
FD-SLP algorithm requires the (complete) pCSI, i.e., h̄u in
(1), to design a precoder, while the FS-SLP algorithm requires
the complete mCSI, i.e., {FHh̄u}, to design a precoder. Also,
for the pCSI, the relationship between h̄u (perfect pCSI) and
ˆ̄hu (estimated pCSI) takes a similar form in (37).

SER, total transmit power, training/feedback overhead and
throughput are chosen as performance metrics to evaluate
different algorithms. For the sake of convenience, the joint
pilot and symbol-level precoding (JoPiSLP) algorithms in this
paper with the IPs constructed based on the PAS support
directly, by using the SMB technique and the contextual bandit
learning (CBL) method (in Algorithms 3 and 4) are named as
JoPiSLP-PAS, JoPiSLP-SMB and JoPiSLP-CBL, respectively.
Default parameters/settings (e.g., modulation mode) shared by
relevant algorithms are provided in Table I.

TABLE I
DEFAULT PARAMETERS SHARED BY RELEVANT ALGORITHMS

Parameter Value

Number of Served Users U = 3

Number of Transmit Antennas N = 64

PAS Support of User 1 [−33/64,−27/64]
PAS Support of User 2 [−3/64, 3/64]
PAS Support of User 3 [27/64, 33/64]

Modulation Mode (or Constellation) QPSK
Number of States to Construct Context c = 2

Update Frequency of NN F = 10

Firstly, we demonstrate that the mCSI-ISS technique helps
to achieve a scalable tradeoff between a desired performance
metric and the training overhead (measured via the length of
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Fig. 3. The length of IP versus parameter ρ and the tradeoff between the
SER performance and the length of IP: Q = 8, γu = 6dB and Slap(θ).

IP), by adjusting the value of ρ in (25) and using Algorithm
3. As shown in Fig. 3-(a), it is observed that as the parameter
ρ increases the length of IP reduces. It can be observed from
Fig. 3-(b) that even though the available training overhead is
low (e.g., the length of IP is equal to 6), a relatively good
SER performance can still be achieved. One can also observe
that as the training overhead declines, the SER performance
first becomes better and then becomes worse. The reason for
this is as follows. Since the estimated mCSI is inaccurate,
the use of less inaccurate (but significant) mCSI to design a
precoder implies that the noise amplification effect is smaller.
Hence, as the length of IP reduces, the SER performance first
becomes better. However, if the length of IP is too small,
very limited significant mCSI can be captured. As a result, the
SER performance becomes worse as the length of IP further
reduces, which coincides with our intuitions.
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Fig. 4. Constellations (i.e., noise-free received signals) of different SLP
algorithms: γu = 3dB, Q = 6, σg = 0.3 and Suni(θ). “PCICV” is referred
to as probability of CI constraint violation, i.e., the probability that the noise-
free received signals are located in region {z | 1 ≥ |Re(z)| or 1 ≥ |Im(y)|}.

Next, we evaluate the two heuristic algorithms proposed in



11

this paper (i.e., JoPiSLP-PAS and JoPiSLP-SMB) and confirm
the robustness of the IP approach. To demonstrate the advan-
tages of the IP-based algorithms intuitively, the constellations
(i.e., noise-free received signals) of different algorithms are
shown in Fig. 4. It is seen that the noise-free received signals
are roughly located in a semi-infinite rectangular region (i.e.,
taking the form {z |x0 ≤ |Re(z)|, y0 ≤ |Im(y)|} 7). This
attributes to the CI constraints, which force the received signals
to be away from the decision boundaries. It is also observed
from Fig. 4 that for both JoPiSLP-PAS and JoPiSLP-SMB, less
points are located in region {z | 1 ≥ |Re(z)| or 1 ≥ |Im(y)|}
(or close to the coordinate axes). The reason for this is that
only a part (but the most important part) of mCSI is sensed and
used by JoPiSLP-PAS and JoPiSLP-SMB to design precoders,
while the complete pCSI or mCSI is used by FD-SLP or FS-
SLP to design precoders. However, since the pCSI and mCSI
are inaccurate in this case, if less of them are used, the degree
that the CI constraints are violated becomes smaller. Note that
if the noise-free received signals are more close to the axes,
they are more vulnerable to the noise. Therefore, it is expected
that a better SER performance can be achieved by JoPiSLP-
PAS and JoPiSLP-SMB, as shown in Fig. 5.
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Fig. 5. The SER performance of different SLP algorithms: Q = 8, σg = 0.4
and Suni(θ).

TABLE II
TRAINING AND FEEDBACK OVERHEADS (NORMALIZED TO FS-SLP)

Algorithm Training Overhead Feedback Overhead

FD-SLP 1.0 1.0
FS-SLP 1.0 1.0

JoPiSLP-PAS 0.406 0.406
JoPiSLP-SMB 0.188 0.188
JoPiSLP-CBL 0.375 0.375

To show that the superiorities of the proposed approaches
still hold for more general channel models, the PAS support of
UE 3 has been modified as [27/64, 33/64] ∪ [41/64, 45/64],
i.e., the channel consists of two clusters and thus has larger
AS. The SER performance of different SLP algorithms is
shown in Fig. 5. The training and feedback overheads are

7The reason for taking this form is due to the QPSK modulation. [25]

compared in Table II 8. It is not surprising that FD-SLP with
perfect pCSI achieves the best SER performance. However,
the SER performance achieved by FD-SLP (or FS-SLP) with
inaccurate pCSI (or inaccurate and complete mCSI) is worse
than that achieved by JoPiSLP-PAS. The reason for this is
two-fold. On the one hand, significant mCSI is captured by
the constructed IP. On the other hand, insignificant inaccurate
mCSI is discarded, which alleviates the noise amplification
effect. Besides the good SER performance, another important
advantage of JoPiSLP-PAS is that both training and feedback
overheads of JoPiSLP-PAS are much less than those of FD-
SLP and FS-SLP, which is very appealing for FDD systems.

Interestingly, it is observed from Fig. 5 that JoPiSLP-SMB
achieves a better SER performance than both FD-SLP and FS-
SLP when {γu} are relatively small (i.e., γu < 7dB). However,
when γu > 7dB, the SER performance curve becomes flat.
The reason for this is that the use of the SMB technique incurs
more interferences. In fact, each pilot beam in P ′θ corresponds
to multiple beams, and thus the interferences caused by the
sidelobes of other beams within the pilot beam further reduce
the accuracy of the obtained PSI. However, the advantage of
the SMB IP P ′θ is that compared to the PAS IP Pθ, the training
and feedback overheads have been further reduced. Moreover,
when σg is relatively small, the achieved SER performance
can often meet practical requirements.
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Fig. 6. Average total transmit power required by different SLP algorithms:
Q = 8, σg = 0.4 and Suni(θ).

The performance in terms of average total transmit power
required by different SLP algorithms is shown in Fig. 6. It
is seen that compared to FD-SLP and FS-SLP, JoPiSLP-PAS
requires a bit more transmit power for the same γu setting. The
reason for this is that less (equivalent or virtual) antennas are
used by JoPiSLP-PAS, which leads to a small loss of channel
power. More specifically, in contrast to FD-SLP (or FS-SLP),

8Compared to instantaneous CSI/mCSI that changes every time-slot, PAS
is a long-term quantity and varies very slow. Hence, the overheads of training
and feedback caused by beam space sweeping dominate, and the overheads
of acquiring and feeding back PAS information can be omitted. Since the
training overhead is proportional to the number of beams used for sweeping
beam space and the number of beams used by FS-SLP is equal to the size of
the codebook, the training overhead is measured by normalizing to FS-SLP.
Similarly, since the feedback overhead is proportional to the number of used
beams, the feedback overhead is also measured by normalizing to FS-SLP.
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where all components of each h̄u (or each hu = FHh̄u) are
utilized, only a part of the components of each hu are used to
design precoders, while other components are discarded. As a
result, to obtain the same performance, more transmit power
is required to compensate for the channel power loss. It is also
observed that for JoPiSLP-SMB it costs much more transmit
power to achieve the same performance. The reason for this
is that much less PSI is used by JoPiSLP-SMB and the used
PSI is more inaccurate due to the multiple-beam interferences,
which thus requires more transmit power to compensate for
the loss. From the above discussion, we can conclude that the
proposed IP approach can achieve a good tradeoff between
transmit power and a desired performance metric.
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Fig. 7. The SER performance of different SLP algorithms under various
degrees of CSI uncertainties: Q = 8 and Slap(θ). Note that “4dB” and “8dB”
correspond to the settings γu = 4dB and γu = 8dB, respectively.

Fig. 7 further shows the SER performance of different SLP
algorithms under various degrees of CSI uncertainties. It is
seen that for the low SNR setting (i.e., γu = 4dB), JoPiSLP-
SMB achieves a better performance than FD-SLP and FS-SLP.
However, for the high SNR setting (i.e., γu = 8dB), both
FD-SLP and FS-SLP perform better than JoPiSLP-SMB. The
reason for this is that due to the multiple-beam interferences,
the PSI used by JoPiSLP-SMB is less accurate. One can also
observe that for the two SNR settings, JoPiSLP-CBL performs
much better than the other algorithms. The reason for this is
that JoPiSLP-CBL can automatically sense required PSI and
acquire it with the minimal training and feedback cost.

One of the most important advantages of the IP approach
is that it is feedback-efficient. It is assumed that each com-
munication frame consists of LT time-slots and within each
time-slot NU (or ND) bits can be transmitted via the uplink (or
downlink) channel. If NF bits are used to feed back the PSI to
the BS, the number of available time-slots to transmit effective
data is LT − dNF/NUe. In general, if more bits are allocated
for feeding back the PSI to the BS, the PSI is more accurate.
However, less time-slots can be used to transmit effective data.
Throughput is chosen as the performance metric to evaluate
different algorithms [20], which is defined as

C = mU(1− BLER)(1− dNF/NUe/LT), (38)

where BLER represents the block error rate [20], m = log2M

denotes the bit information per symbol for MPSK modulation,
and 1−dNF/NUe/LT is included to incorporate the feedback
overhead.
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Fig. 8. Average throughput vs. Q for different SLP algorithms: σg = 0.24,
γu = 4dB, LT = 256, NU = 32, ND = 128 and Suni(θ).

Fig. 8 shows the throughput performance of different SLP
algorithms under various numbers of quantization bits per real
number. It is observed that as Q (the number of quantization
bits per real number) increases, the throughput first increases
and then declines. The reason for this is that as Q increases, the
obtained PSI becomes more accurate and thus the BLER per-
formance becomes better. Note that the increase of Q implies
that less time resources are reserved for transmitting effective
data. Therefore, when the PSI is sufficiently accurate, the
increase of Q, on the contrary, deteriorates the final throughput
performance. It is not surprising that the IP-based algorithms
perform better than the other two algorithms, because the
IP-based algorithms are both training- and feedback-efficient.
It is also observed that the SLP-based precoding methods
achieve a better throughput performance than the classical
MMSE and ZF precoding methods. In fact, it has already
been established in the literature [22]–[25] that SLP greatly
outperforms conventional precoding schemes.

VI. CONCLUSION

For the FDD downlink multi-user system, we proposed a
unified precoding and pilot design optimization framework,
aiming to reduce the overheads of training and feedback. We
first showed that CSI acquisition and precoding optimization
can be jointly designed, without estimating and reconstruct-
ing the pCSI. We further proposed to employ training- and
feedback-efficient IPs to sense and capture PSI, based on
which the precoders can be optimized directly. Then, we
proposed two heuristic IP construction methods. To enhance
the heuristic methods, we further proposed a learning-based
IP design algorithm. The learning-based algorithm not only
improves the system performance, but also avoids estimating
the PAS information. Finally, simulation results confirmed the
effectiveness and superiority of our proposal.
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APPENDIX A
PROOF OF THEOREM 1

Note that since F spans the linear space CN , for an arbitrary
solution {vw} of problem (7), there exists at least one yw
such that vw = Fyw holds true for each vw, i.e., the set
{yw} is a solution of problem (9). Conversely, for an arbitrary
solution {yw} of problem (9), it can be verified directly that
the set {Fyw} is a solution of problem (7). In particular, if
the set {y?w} is an optimal solution of problem (9), the set
{v?w = Fy?w} is an optimal solution of problem (7). In fact,
for an arbitrary solution {v′w} of problem (7), there exists a
set {y′w} such that {v′w = Fy′w} hold true. The optimality
of {y?w} with respect to {y′w}, along with the relationship (or
form) between problems (7) and (9), implies the optimality of
{v?w} with respect to {v′w}, which completes the proof.
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