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ABSTRACT: Polymer photocatalysts are a synthetically diverse class of materials
that can be used for the production of solar fuels such as H,, but the underlying
mechanisms by which they operate are poorly understood. Time-resolved
vibrational spectroscopy provides a powerful structure-specific probe of photo-
generated species. Here we report the use of time-resolved resonance Raman (TR?)
spectroscopy to study the formation of polaron pairs and electron polarons in one
of the most active linear polymer photocatalysts for H, production, poly(dibenzo-
[b,d]thiophene sulfone), P10. We identify that polaron-pair formation prior to
thermalization of the initially generated excited states is an important pathway for

the generation of long-lived photoelectrons.

he development of scalable photocatalysts that can split

water efficiently by using solar energy would transform
the energy landscape, providing a way to generate hydrogen
sustainably. Historically, research has focused on inorganic
semiconductors, but in the past 12 years there has been a rapid
increase in the study of organic photocatalysts for water
splitting' following studies in 2009 which showed that
graphitic carbon nitride was an effective hydrogen evolution
photocatalyst.” More recently, a wider variety of classes of
organic photocatalysts have been reported including polymeric
networks such as conjugated microporous polymers (CMPs),’
covalent triazine-based frameworks (CTFs),*™® covalent
organic frameworks (COFs),””” and linear conjugated
polymers.'”"" Among these, the linear homopolymer of
dibenzo[b,d]thiophene sulfone (P10, Scheme 1) was shown
to be one of the most active for hydrogen evolution, both when
using a sacrificial electron donor'” and in a z-scheme water
splitting system.'> P10 can also promote oxygen evolution'*
and CO, reduction,'® all under visible light irradiation.

To facilitate the design of polymer photocatalysts and to
truly exploit the synthetic control available, it is important to
understand their underlying photophysics and mechanisms. In
contrast to inorganic semiconductors, where the photo-
generation of free charges occurs with a high efficiency, the
poor dielectric screening of charges in organic absorbers means
that polaron yields are often low; this is a central issue for this
class of materials. Understanding why particular organic
photocatalysts can efficiently generate separated charges
following photon absorption is important. A body of literature
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exists on the underlying mechanisms of ultrafast polaron
formation in organic photovoltaic (OPV) materials'®~"" with
proposed mechanisms including formation via hot and relaxed
exciton dissociation and direct polaron-pair photogeneration.
However, it is not clear if such models are also directly
applicable to polymer photocatalysts where the additional
presence of metal catalysts (e.g., for H, and O, evolution) and
water may play an important role.

Transient absorption (TA) UV—vis spectroscopy is an
established technique that has been widely applied to study
electron—hole dynamics of inorganic and organic solar fuel
materials.”””" TA studies of P10"°7'****® report initial
formation of a broad positive absorption at >700 nm assigned
to a singlet excitonic state that decays on the picosecond time
scale.'”” In the presence of a sacrificial electron donor
(commonly triethylamine (TEA) in a methanol/water solvent,
1:1:1 vol), a long-lived band at 630 nm has been assigned to an
electron polaron (P10(e™)), proposed to form by quenching of
the excitonic state by TEA on a time scale between 1 and 100
ps.”>'? In the absence of a sacrificial electron donor, a 630 nm
TA band is still observed, and this has been proposed to be due
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Scheme 1. Kerr-Gated Time-Resolved Resonant Raman Experiment of P10 (Structure Upper Left)”
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“The laser pump pulse (400 nm) generates photoexcited states that can be subsequently interrogated by the probe pulse (630 nm) which is
delayed with respect to the pump (At). The wavelength of this probe pulse was selected to be resonant with an electronic transition associated with
a transient species observed in the transient absorption spectra of P10. The probe pulse generates both Raman scatter and photoluminescence
(PL). An ~2 ps duration 800 nm high-energy laser pulse induced a transient optical anisotropy which lasts for approximately the duration of the
gating pulse in the CS, Kerr medium. During this period the gate is “opened”, and the polarization of the incident linearly polarized light is rotated
by 90° with respect to its original orientation and passed through the crossed exit polarizer into the spectrometer while the unrotated light is
rejected. Raman scattering is a fast process that occurs on a subpicosecond time scale. By synchronizing the timing of the Raman probe laser pulse
with the gate pulse, it is possible to selectively transmit Raman scattered photons while rejecting the majority of the much longer lived (ns or

greater) PL.

to a polaron pair, a spatially separated weakly interacting
electron and hole, with similar spectral characteristic to the
P10(e”)."”"* The P10(e") is very stable as it is retained on the
polymer chain for ~100 us, despite the presence of residual Pd
in the structure from the polymer synthesis which acts as a
hydrogen evolution catalyst.”> For P10, fast polaron formation
and trapping of the electron on the polymer leads to a high
level of photocatalytic activity, but the chemical nature and
mechanism of polaron formation are unclear.

Interpretation and assignment of TA features can be
challenging due to the number of broad, often overlapped
UV—vis bands. Time-resolved resonance Raman (TR?)
spectroscopy directly probes the vibrational modes of short-
lived intermediates, enabling assignment of nonequilibrium
structures. Raman modes are sensitive to both the local
structure and the intermolecular ordering of polymers, making
TR® a potentially useful way to study the mechanism and site
of polaron formation.”* Time-resolved Raman spectroscopy
has been used to study exciton conformational changes and
polaron formation in OPV materials but has not been
previously applied to study polymer photocatalysts.”*™>
Here we apply TR® to study the mechanisms of P10 polaron
formation.

The ground state Raman spectrum (600—1400 cm™') of
P10 powder (633 nm Raman probe) shows peaks at 1411,
1340, 1301, 1269, and 1145 cm™' (Figure la) and a strong
band at 1596 cm™' (Figure S1) that is outside the spectral
window used for the TR’ experiment. These bands are
assigned to ring/carbon backbone modes except for 1145
cm™!, which has contributions from the sulfone mode through
comparison to Raman spectra predicted by density functional
theory (DFT) calculations (Supporting Information, Figure S2
and Table S1); see section 1.4 of the Supporting Information
for details about the computational method employed. TA
experiments performed on P10 aggregates, formed from a
toluene suspension, are shown in Figure S4. Toluene is used as
an inert, nonpolar solvent to generate a thin layer of P10 for
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Figure 1. (a) Ground state Raman spectrum (633 nm probe) of P10
powder. (b—e) TR® spectra of P10 recorded at the time indicated
after 400 nm excitation of P10 powder by using a 630 nm Raman
probe.

our TA experiment. In agreement with past reports of P10 in
polar solvents,'” the TA spectra of the aggregates recorded
following 400 nm excitation show a weak transient band
between 620 and 660 nm, assignable to either a P10 polaron
pair or the P10(e™) polaron. This assignment is also supported
by the species associated spectra generated through target
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Figure 2. (a) UV—vis spectrum of P10(e”) generated by CW 365 nm illumination of P10 in the presence of TEA/methanol/water (1:1:1). The
red and blue arrows indicate the Raman probe wavelengths used in (b). (b) Raman difference spectrum (using the sample in the dark as a
background) of P10 in the presence of TEA/methanol/water (1:1:1) on and off resonance with the observed feature in the UV—vis spectrum. (c,
d) Comparison between the steady state (d) and TR? Raman data (c, 100 ps) which show the presence of the same species.

analysis fitting of the TA data, based on the kinetic model
derived within this Letter as a result of the TR? data, Figure S5,
and the accompanying text. The TR® spectra of P10 powder
following 400 nm excitation recorded by using a 630 nm
Raman probe that is resonant with the proposed P10 polaron
are shown in Figure 1b—e. In common with many organic
photocatalysts P10 is photoluminescent following excitation at
energies greater than the optical gap (2.61 eV, 1 < 475 nm; see
Figure S3)."” Here we make use of an optically pumped Kerr
gate to remove the majority of the photoluminescence (PL)
background that otherwise masks the weak Raman scatter from
the photogenerated transients (Scheme 1).°*7°° 2 ps after
excitation of P10 the TR® spectrum shows bleaching (a
decrease in scattering intensity) of the ground state Raman
modes of P10, and only broad excited state Raman bands are
present, which are assigned to vibrationally hot photogenerated
state(s) (Figure 1b). Within S ps these begin to cool, and
transient Raman bands are observed. These are centered at
713, 847, and 988 cm™' (weak) and in the region of 1210 and
1110 cm™ (partially overlapped with the ground state
bleaches). The new transient features persist for longer than
1 ns (Figure le).

Two experiments were performed to test the assignment of
the transient Raman bands to either P10(e”) or the polaron
pair. First, we recorded TR® spectra in the presence of a
sacrificial electron donor (TEA/methanol/water, 1:1:1) that
will increase the yield and lifetime of the P10(e”) polaron. For
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a discussion of the implications of P10(e”) accumulation on
the TR® experiment, please refer to the text accompanying
Figure S6. The TR3 spectra show transient bands at 719, 849,
1138, 1262, and 1331 cm™}, in good agreement with the TR3
data recorded in the absence of the sacrificial electron donor
(Figure 1 and Figure S6). The TR® bands at 1262 and 1331
cm™' were not visible in the absence of the electron donor
(Figure 1) due to the overlap with the P10 ground state bleach.
Second, as P10(e”) accumulates under steady state illumina-
tion,”* we have also recorded the Raman spectra under 365 nm
LED illumination using a conventional (steady state) micro-
scope both on resonance (633 nm) and off resonance (532
nm) with the known UV—vis absorption maximum of P10(e")
(Figure 2a, b). The Raman spectrum of the photogenerated
P10(e”) by using a 633 nm probe wavelength shows excellent
agreement with the proposed P10(e”) TR® spectrum (Figure
2c), while the spectrum recorded with a 532 nm probe under
identical conditions shows no bands that can be assigned to a
photogenerated species.

Preresonance”’ and resonance®® Raman spectra for P10,
P10(e”), and one-electron-oxidized P10 (P10(h*)) of the
monomer and oligomers of different length have been
predicted by DFT using the wB97XD exchange-correlation
functional® and the cc-pVDZ basis set.”*** See Figure 3 for a
comparison between the experimental spectra and predicted
(pre)resonance spectra for a P10 hexamer and Figures S7—S10
for all predicted (pre)resonance spectra for the different
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Figure 3. Comparison of the experimental spectra of P10 and the P10
polaron to the predicted (pre)resonance (@B97XD/cc-pVDZ)
spectra of a P10 hexamer in different charge states. All predicted
spectra have been scaled by a factor of 0.943, obtained by aligning the
intense peak in the predicted neutral spectrum to that of the P10
experimental spectrum. The predicted resonance Raman spectra
shown for P10(e”) and P10(h*) are calculated for the intermediate
excited state with a predicted vertical absorption closest to 630 nm.
Similar spectra for other intermediate excited states can be found in
Figure S10. The inset is a schematic of the polaron localization for the
two charged species.

oligomer lengths and those predicted using another functional.
All DFT predicted spectra discussed herein and within the
Supporting Information have been scaled by the same factor,
obtained by aligning the intense predicted P10 peak to that of
experiment. For all oligomer lengths the predicted P10
preresonance Raman spectrum is dominated by a single
intense transition with good agreement to its experimental
counterpart (see Figure 3). The predicted resonance Raman
spectra for P10(e”) and P10(h*) show an increased number of
intense peaks below 1600 cm™" which differ depending on the
excited state the probe wavelength is on resonance with,
complicating our ability to distinguish between the two species.
However, for oligomers it is apparent that the calculations in
the case of P10(e”) consistently reproduce the experimentally
observed red-shift of the strong 1596 cm™' peak of the P10
polaron species. This is not the case for its P10(h*)
counterparts for which the intense peak is predicted to be
unshifted relative to that of P10. Resonance Raman spectra
predicted with a different range-separated exchange-correlation
functional, CAM-B3LYP (see Figure S9) suggest that this red-
shift of the most intense peak in the Raman spectra is
representative of P10(e”) oligomers and the lack of such a shift
typical of their P10(h*) counterparts. In Figure 3, the unpaired
electron density is shown for the P10(e”) and P10(h*)
hexamer species. For both species, the polaron is localized on
the central P10 moieties, with the calculations of P10(e")
showing increased electron density on the thiophene ring.
These results indicate that by using the TR?® experiment we
are measuring the spectrum of either the P10(e™) polaron or

the vibrational modes associated with electron localization
within a polaron pair. We now turn to the rate and mechanism
of polaron formation in the absence and presence of a
sacrificial electron donor (Figure 4). An advantage of the TR?
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Figure 4. (a) Kinetics of P10 polaron Raman band at 847 cm™
following 400 nm excitation. P10 powder (no electron donor) data
are shown with red circles, and data with a MeOH/TEA/H,0O
sacrificial electron donor are shown with black squares. The
parameters of the fit lines are described in the text and Table SS.
The data are normalized (to 0, 1) to allow easy comparison to the
Raman kinetics of P10 in the absence of the sacrificial electron donor.
The kinetics of the 847 cm™ bands are baseline corrected by taking
the difference in Raman scatter at 847 and 928 cm™!, where no
transient bands are present.

experiment is that contributions from other off-resonance
intermediates are minimal, simplifying the analysis of the
transient data. The kinetics of the 847 cm™ Raman band are
studied, but all TR? bands in this spectral region show similar
kinetics. Following excitation of P10 in the absence of a
sacrificial electron donor the decay can be well fitted to a
biexponential function with an initial rise in intensity, which is
close to the instrument response function (7 ~ 3 ps), and a
subsequent slower decay (101 ps) to form a population that
persists until the longest time scales studied (3.4 ns); full fitting
parameters are in Table S5. The slow decay is not due to
electron transfer from the P10 to residual Pd left during
polymer synthesis, as this is known to occur on the
microsecond and slower time scale;*® instead, it is assigned
to recombination of the polaron pair. The fast rise in intensity
of the 847 cm™ band is in line with the observed rate of
vibrational cooling (Figure S11), from which we estimate that
the transient species reach thermal equilibrium by ~10 ps.
After 10 ps, we see no further increase in intensity of the 847
cm™' Raman mode (Figure 4). To probe the lifetime of the
excitonic state, PL. between 634 and 697 nm is measured by
blocking the Raman probe beam during the Kerr gated
experiment (Figure S12). The PL at 657 nm has an amplitude-
weighted average lifetime of 314 ps (Table S6), demonstrating
that the excitonic state of P10 persists at time scales beyond
those where we observe polaron formation. This leads to the
conclusion that polaron formation does not occur at significant
levels from the thermalized exciton state, despite this species
persisting for several hundred picoseconds. Instead, the
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thermalized exciton decays to the ground state, resulting in the
slow recovery of the negative P10 band in the TR? spectrum at
1265 cm™" (Figure S13). In the time-resolved experiment P10
is excited with photon energies ca. 0.5 eV greater than the P10
optical gap;'” this excess energy is important in enabling
P10(e™)/polaron pair formation, with hot exciton dissociation
being the dominant pathway for P10 in the absence of a
sacrificial electron donor. Target analysis of the TA data
(Figure SS and accompanying text) shows that the TA data can
be well fitted to the TR>-derived model with ~95% of the
polaron-pair population being generated with a lifetime of ~4.5
ps directly from the hot excitonic state.

In the presence of the sacrificial electron donor the P10(e")
Raman band (847 cm ™!, Figure 4) shows both a fast initial rise
(7 < 2 ps) and a second slower growth (z ~ 20 ps). The similar
fast lifetime component in the presence and absence of an
electron donor shows that polaron formation occurs both
directly from the hot excitonic state (<2 ps) that is present for
up to 10 ps (Figure S11) and via reductive quenching of the
thermalized exciton by the amine electron donor (~20 ps),
with both processes contributing similar amounts to the overall
amplitude (Table SS). We see only minimal decay of the 847
cm™ band in the presence of the sacrificial electron donor,
suggesting that hole transfer is occurring following the fast
polaron-pair formation. The conclusion that reductive
quenching of the relaxed excitonic state can occur is supported
by PL measurements at 657 nm which show a decreased
amplitude weighted lifetime (67 ps) with a fast decay
component (7 ~ 13 ps) in the presence of the electron
donor mix (Table S6 and Figure S13). A significant PL
population persists to >100 ps, showing that a proportion of
the exciton population is inaccessible to the scavenger. Past
studies have correlated the yield of P10(e”) to the driving
force for hole transfer from the polymer exciton to a sacrificial
electron donor,'” and we confirm the presence of this pathway.
However, the observation that a similar fast rise in the 847
cm™! band is existent in both the presence and absence of the
electron donor suggests that fast exciton dissociation to form
polaron pairs with subsequent electron transfer from the
sacrificial electron donor is also occurring, and this is a major
contributing factor to the high level of measured photocatalytic
activity of P10 for hydrogen evolution.

More widely, hot exciton dissociation is expected to be of
particular importance for other particulate polymer photo-
catalysts which exist as aggregates ranging from several
hundred nanometers to micrometers.'” Most photons will be
absorbed away from the polymer/solvent (water) interface. In
addition to preventing access to the sacrificial electron donor,
the absence of the high-dielectric environment presents a large
barrier to dissociation, with past calculations™ of binding
energies of ~1.2 eV for excitons within the polymer matrix of a
similar linear polymer, as compared to only ~0.17 eV near the
polymer/water interface. In the absence of charge separation
occurring prior to thermalization driven by the excess energy of
the hot exciton, most excitons formed away from the polymer/
interface would be lost via parasitical de-excitation.

In conclusion, we have shown that Kerr gated TR?
spectroscopy enables the study of ultrafast polaron electron
formation in P10, a highly active hydrogen evolution
photocatalyst under sacrificial conditions. More widely, we
propose that it is a valuable technique for the study of
photogenerated transients of polymer photocatalysts and
photoelectrodes and could contribute to the effective design,
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for example, of Z-scheme composite materials for overall water
splitting. A combination of experimental Raman spectroscopy
and DFT calculations supports the assignment of the TR®
spectra, and the calculations indicate that the electron is
predominantly localized on a single P10 moiety, in particular
around the thiophene ring, which is beneficial given the
proposed role of the sulfone groups in enabling water
molecules to localize providing a more polar environment.'”
Past models have focused on P10(e™) formation throuigh hole
transfer from the excitonic state to the sacrificial amine.'” Here
we also show that hole transfer following polaron-pair
formation from hot states is also an important pathway for
forming long-lived P10(e™). It is known from OPV research
that the distribution of excess energy following singlet exciton
formation can have a critical role in facilitating charge
separation, ® and our work also demonstrates the importance
of polaron pair formation prior to thermalization for this
polymer photocatalyst, P10.
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