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Abstract. Endoscopic ultrasound (EUS) is a challenging procedure that requires 

skill, both in endoscopy and ultrasound image interpretation. Classification of 

key anatomical landmarks visible on EUS images can assist the gastroenterolo-

gist during navigation. Current applications of deep learning have shown the abil-

ity to automatically classify ultrasound images with high accuracy. However, 

these techniques require a large amount of labelled data which is time consuming 

to obtain, and in the case of EUS, is also a difficult task to perform retrospectively 

due to the lack of 3D context. In this paper, we propose the use of an image-to-

image translation method to create synthetic EUS (sEUS) images from CT data, 

that can be used as a data augmentation strategy when EUS data is scarce. We 

train a cycle-consistent adversarial network with unpaired EUS images and CT 

slices extracted in a manner such that they mimic plausible EUS views, to gener-

ate sEUS images from the pancreas, aorta and liver. We quantitatively evaluate 

the use of sEUS images in a classification sub-task and assess the Fréchet Incep-

tion Distance. We show that synthetic data, obtained from CT data, imposes only 

a minor classification accuracy penalty and may help generalization to new un-

seen patients. The code and a dataset containing generated sEUS images are 

available at: https://ebonmati.github.io. 
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1 Introduction 

 

Endoscopic Ultrasound (EUS) is a minimally-invasive procedure to assess the gastro-

intestinal tract including pancreatobiliary disorders such as pancreatic cancer. It is a 

complex procedure that combines ultrasound and endoscopy, requiring advanced cog-

nitive and technical skills, such as ultrasound image interpretation [1].  
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 Recent advances in machine learning have made it feasible to automatically clas-

sify images and identify standard planes, which can improve ultrasound (US) image 

interpretation and assist clinicians during navigation with the aim to make the diagnosis 

more accurate. However, the success of deep-learning based applications relies on the 

acquisition of a large, well-curated dataset with enough quality to be representative and 

useful. This is a big challenge in US applications as often training data is limited and 

models tend to have overfitting problems [2]. Data acquisition during EUS procedures 

is especially difficult and demanding due to the disruption caused and time required by 

real-time labelling, as well as the inaccuracies associated with retrospective labelling, 

because it is difficult to confidently identify landmarks without the 3D spatial and tem-

poral context. 

Medical image synthesis using convolutional neural networks (CNN) has been 

shown to be able to successfully translate Magnetic Resonance Imaging (MRI) to Com-

puted Tomography (CT) [3] and to translate US to MRI [4]. In this work, we evaluate 

the use of a cycle-consistent adversarial network (CycleGAN) [5] to perform CT-to-

EUS image translation to generate synthetic EUS (sEUS) images for the purpose of 

data augmentation. As an example, CycleGANs have been used before to improve the 

realism in US simulation from CT in a ray-casting approach, or to generate labelled US 

images from musculoskeletal US as a data augmentation strategy [6, 7]. The CycleGAN 

approach is of particular interest for our clinical application as no commercially avail-

able endoscopes exist capable of acquiring paired US/CT data, making endoscopy train-

ing and patient navigation difficult. The aim of our study is: 1) to assess the similarity 

between real (EUS) and synthetic (sEUS) images, and 2) to evaluate the use of sEUS 

images as a data augmentation strategy in a clinically relevant EUS classification task. 

2 Methods 

2.1 Data 

CT data. CT data from five patients was obtained, four were from the MICCAI 2015 

workshop and challenge: Multi-Altas Labelling Beyond the Cranial Vault [8]. CT slice 

dimensions were 512×512 with pixel sizes from 0.59 mm to 0.73 mm. Slice thicknesses 

were 3 mm, with volume depths from 393 mm to 444 mm. We also included a CT 

volume of size 512×512×229 with pixel dimensions of 0.55×0.55 mm and a slice thick-

ness of 1 mm. Segmentations of the following structures were available for this study: 

stomach, pancreas, liver and aorta. 

EUS data. EUS images were obtained from five patients who underwent an EUS-

guided examination at University College Hospital London. Data were acquired from 

a Hitachi Preirus EUS console and a Pentax EG-3270UK or EG-3870UTK US linear 

video endoscopes with a 7.5 MHz probe. EUS images were collected from video frames 

of each examination recorded with a resolution of 720×480 pixels at imaging depths 

from 4 mm to 6 mm and cropped to 522×200 pixels, removing identifiable text and 

depth-attenuated regions. Anatomical landmarks were identified by an expert and rec-

orded during the procedure. EUS images containing the three clinically relevant ana-

tomical landmarks: pancreas, liver and aorta, were manually identified and collected. 
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Assorted images outside of these labels were also collected for a background class used 

in the classification subtask. Images from four patients were used for CycleGAN and 

classifier training. Data from the remaining patient were used to evaluate classification 

performance. Table 1 shows a summary of the number of images and available labels 

from each patient. 

Table 1. Summary of EUS images collected for training the CycleGAN and classifier, and for 

evaluation of the classifier. 

Patient Task Images 
Labels 

Aorta Liver Pancreas Background 

EUS1 train 3299 0 0 1694 1605 

EUS2 train 4758 767 0 3991 0 

EUS3 eval 4451 1301 729 2421 0 

EUS4 train 4996 1126 1485 2385 0 

EUS5 test 1933 141 503 1289 0 

2.2 EUS/CT image-to-image translation 

Synthetic EUS images were generated using CycleGANs trained to translate 2D CT 

image planes into sEUS images (Fig. 1). The CT plane locations, orientations and 

bounding dimensions approximated real EUS views. Candidate sEUS locations were 

automatically identified in CT volumes using the associated CT segmentation labels. 

Points were randomly sampled along the outer surface of the CT stomach segmentation. 

Realistic sEUS probe orientations were identified at each point by randomly generating 

poses within a 30° cone normal to the stomach and retaining only poses where the view 

intersected an anatomical label of interest (i.e., aorta, liver or pancreas) as shown in 

Fig. 2. These poses were recorded as transformation matrices and saved to file. 

During CycleGAN training, 2D CT images were sliced from CT volumes on the fly 

using a previously reported simulation pipeline [9]. The framework extracted a sEUS 

field of view, defined by a transformation matrix, in the CT volume. The CT planes 

were then passed to the CycleGAN with randomly selected EUS images as an unpaired 

input dataset. 

The CycleGAN was based upon a previously described implementation comprising 

a generator and adversarial discriminator for each imaging modality [5]. Paired EUS 

and CT plane images were passed to their respective generators, which were trained to 

map their input modality into synthetic images (i.e., CT to sEUS and EUS to sCT). 

These synthetic images were subsequently passed to the relevant generator for mapping 

back to their original modalities. Training was governed by adversarial losses calcu-

lated at each discriminator and by cycle consistency losses comparing input images to 

those mapped to a synthetic modality and then remapped back to their original. 

A small pre-trained Gaussian denoising network was added before each discrimina-

tor to prevent the generator from embedding information capable of facilitating loss 

minimization without improving image-to-image translation [10, 11]. 
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2.3 Implementation Details 

Three CycleGANs were trained, one for each of the three labels: aorta, liver, and pan-

creas. A batch size of 1 was used for 200 epochs, where the number of iterations per 

epoch was limited by the relevant EUS dataset size. Other hyperparameters were set to 

the defaults used in the original implementation [5]. Adam optimization was used on 

discrimination and generation networks with a learning rate of 0.0002 that decayed lin-

early after 100 epochs [12]. Image intensity values were normalized between –1 and 1. 

Data augmentation was applied to all images, incorporating random horizontal flips  

and random cropping within a 40 pixel margin. The CT plane slicer and CycleGAN 

frameworks were run simultaneously on a single 16GB NVIDIA Quadro P5000 GPU. 

CT slices were selectively generated so that EUS images were paired only with CT 

slices containing >1000 labelled pixels and < 50 pixels with high Hounsfield Units, 

indicative of bone. For each epoch, a 90/10 training/validation split was randomly ap-

plied to the dataset. Losses were plotted against epoch and inspected to ensure conver-

gence was achieved. All models were implemented in TensorFlow 2.2 and CUDA 

Toolkit 10.1 [13]. Synthetic data for the classifier evaluation sub-task was created using 

the trained CT-sEUS generator network from each CycleGAN. Open-source code was 

used where possible and is available at: https://ebonmati.github.io. 

2.4 Evaluation 

Evaluating GANs remains an open challenge, as there is no concrete way to quantify 

how realistic and diverse the synthetic images are, and no ground truth exists. Often, 

models are evaluated in a subjective and quantitative manner by asking several observ-

ers to rate the images [14]. In this work, we used the Fréchet Inception Distance and a 

classification sub-task to evaluate our model, as described below. 

 

Fréchet Inception Distance. To quantitatively evaluate the quality of the synthetic im-

ages, we calculated the Fréchet Inception Distance (FID) [15]. FID is a widely used 

metric for evaluating the similarity between the generated images (synthetic) and the 

real images. FID uses the activation distributions of the Inception-v3 model [16] to 

calculate the distance between real and synthetic images. We used the pre-trained In-

ception-v3 model available in Keras [16] to obtain the activation distributions for our 

real and synthetic images, where the FID score was then calculated as follows: 

                             𝐹𝐼𝐷 =  ‖𝜇𝑋 − 𝜇𝑌‖2 + 𝑇𝑟 (Σ𝑋 + Σ𝑌 − 2√Σ𝑋Σ𝑌), (1) 

where 𝜇𝑋 and 𝜇𝑌 are the mean of the feature vectors for the real and synthetic images, 

respectively; Σ𝑋 and Σ𝑌 are the covariance matrix for the real and synthetic images, 

respectively; ‖𝜇𝑋 − 𝜇𝑌‖2 refers to the sum squared difference between the two mean 

vectors, and 𝑇𝑟 is the trace. A lower FID indicates better-quality synthetic images; con-

versely, a higher score indicates a lower-quality image. An FID of 0 demonstrates that 

the activation distribution of the synthetic images is identical to that of the real images. 

FID is also capable of detecting intra-class mode dropping (i.e., a model that generates 
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only one type of image for each landmark or class), noise, blurring, and other systematic 

distortions. 

 

Classification sub-task. We evaluate the use of the synthetic EUS images in a classi-

fication sub-task. The aim here is to: 1) evaluate the use of synthetic EUS images to 

classify real EUS images, and 2) to use the synthetic EUS images as a data augmenta-

tion strategy. As summarized in Table 2, the number of real training images for each 

class was: 3,194 aorta, 2,214 liver and 10,491 pancreas. A fourth background class was 

added in training only, incorporating 1,605 EUS images from a mix of indiscernible 

anatomy and poor quality images. To achieve this, we implemented a simple VGG-16 

classification model to classify EUS into the following classes: aorta, liver and pan-

creas. We used the pre-trained weights from ImageNet, a batch size of 64, a learning 

rate of 1e-7 and 100 epochs. As loss function, we used a weighted categorical cross 

entropy with the weights of 4.23, 4.40, 4.48, and 2.78 for aorta, background, liver and 

pancreas, respectively. We trained the model using 5 different ratios of synthetic/real 

images: 0% synthetic + 100% real, 25% synthetic + 75% real, 50% synthetic + 50% 

real, 75% synthetic and 25% real. For each synthetic ratio, we report the accuracy, pre-

cision, recall and F1-measure. Pairs of classifier models were compared using 

McNemar tests to assess whether differences in accuracy were significant. 

 

Qualitative evaluation. We are also interested in the visual explanation and spatial 

localization of important regions in the EUS and sEUS images that were used to predict 

the corresponding class. We used the Gradient-weighted Class Activation Mapping 

(Grad-CAM) to generate the class activation maps for each sample [17]. These maps 

provide an insight into the model interpretation by backpropagating the gradients from 

the last convolutional layer. 

3 Results and Discussion 

Fig. 1 shows a comparison between a real EUS image and a sEUS image for each of 

the anatomical landmarks selected (aorta, liver, pancreas). Visually inspecting the gen-

erated sEUS images, we observed that the sEUS images obtained with CycleGAN look 

realistic as the main features of the anatomical landmarks are preserved. 

In Table 2 we report the classifier performance when trained on varying ratios of 

sEUS to real EUS images, with the number of sEUS increasing with the ratio. From 

this table we can observe that classification accuracy is maintained for sEUS ratios up 

to 75%. We attribute this to the fact sEUS images may provide a consistent representa-

tion of patient variation on the selected anatomical landmarks, making it feasible to 

generalize to new patients. Liver F-measures were consistently low, indicating poor 

classification performance and degrading overall accuracy scores. Due to the liver’s 

size and position, liver-labelled images can often contain additional anatomical features 

belonging to the other classes. We speculate this may be a contributing factor to the 

consistently low F-measures. 
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Single-sided McNemar tests comparing classifier pairs indicated the small reduction 

in accuracy, from 0.63 to 0.61 with increasing sEUS ratio, was statistically significant 

(p<0.05). 

 The FID scores are shown in Table 3. Although the FID measure is widely used to 

evaluate the realism of synthetic images, a significant limitation arises from its reliance 

on a pre-trained model (ImageNet) that does not comprehensively represent US-

specific features. This lack of accurate representation is compounded by the small da-

taset used in this study (and in medical imaging generally) compared to the originally 

intended application of FID. As such, we cannot expect the predicted activation distri-

butions to provide authoritative results on our specific clinical application. . An indica-

tion of the ideal FID is given by the differences between random subsets within the 

EUS data (as shown in the EUS vs EUS results). To have a better quantification of a 

bad FID value, we compared all the EUS images to all the EUS images with added 

noise using a Gaussian distribution with 0 mean and a standard deviation of 0.1. Our 

synthetic images achieved lower scores in comparison to that from noisy US images 

which yielded a FID >300. 

Finally, Fig. 3 shows the Grad-CAM activations for two image examples (one EUS 

and one sEUS) of the pancreas. Note the model has focused on the area representing 

the pancreas to make a correct prediction. 

Other studies have used GAN-based methods to simulate and augment ultrasound 

image data: Bargsten and Schlaefer developed SpeckleGAN, which generates intrave-

nous ultrasound speckle simulations from segmentation maps, achieving FID scores < 

115 [18]. Peng, et al. generated synthetic ultrasound from MRI images and qualitatively 

demonstrated their equivalence to numerical simulations [19]. A broader examination 

of GAN-based approaches in medical imaging was presented by Yi, et al. [20].  

In future, this study could be extended to aid EUS navigation by establishing a real-

time image labelling and automated landmark recognition framework, for example, by 

using the Grad-CAM maps to localise salient features in EUS video, as demonstrated 

in this work. Further potential enhancements include developing a single CycleGAN 

model capable of generating all three landmark types to enable multi-class object gen-

eration and detection. 

4 Conclusions 

The results of this work demonstrate that the generation of synthetic EUS images, 

from CT data, can support training of a simple classification model when data is scarce 

as it may better represent the population. It allows generation of a large dataset from 

specific anatomical landmarks that are relevant for the clinical application of interest, 

which would not be possible otherwise (as demonstrated by the poor accuracy obtained 

when using the only real EUS data available). The proposed method is easy to use com-

pared to manual data acquisition and labelling, which is a task that is time consuming 

and requires the input of a clinical expert.  
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Fig. 1. Comparison between a real EUS image, a synthetic EUS image and the sliced CT from 

which it was generated for each anatomical landmark (aorta, liver and pancreas). Indicative an-

atomical features are shown in red: A – aorta, V – liver vasculature, PD – pancreatic duct. 

 

Fig. 2. Subset of candidate EUS probe positions and orientations at the stomach surface for 

liver views within a CT volume. 

 

Fig. 3. Normalized class activation maps for real EUS images and a synthetic EUS images 

(sEUS) representing the aorta, liver and pancreas. The red areas represent increased regions of 

activation used by the model to make a correct prediction. 
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Table 2. Classifier performance when trained on varying ratios of synthetic to real EUS im-

ages. The number of sEUS images increases with synthetic ratio. 

Synthetic 

ratio (%) 
Precision Recall 

F1-measure 
Accuracy 

Aorta Liver Pancreas 

0 0.46 0.51 0.38 0.07 0.77 0.63 

25 0.45 0.54 0.38 0.05 0.78 0.62 

50 0.44 0.54 0.38 0.05 0.78 0.62 

75 0.43 0.53 0.36 0.06 0.77 0.61 

Table 3. Fréchet inception distance scores when comparing random subsets of real EUS images 

within the same class, and when comparing real EUS to synthetic EUS (sEUS) images. 

Control (n images) Compared to (n images) FID 

EUS pancreas (5250) EUS pancreas (5241) 2.00 

EUS aorta (1599) EUS aorta (1595) 6.96 

EUS liver (1110) EUS liver (1104) 11.03 

EUS all images (7959) EUS all images (7940) 1.83 

EUS all images (7959) EUS all images + noise (7940) 312.56 

EUS pancreas (10491) sEUS pancreas (11763) 79.88 

EUS aorta (3194) sEUS aorta (2774) 71.30 

EUS liver (2214) sEUS liver (4365) 71.68 

EUS all images (15899) sEUS all images (18902) 55.31 

Acknowledgements 

This work is supported by the Wellcome/EPSRC Centre for Interventional and Surgical 

Sciences (WEISS) (203145/Z/16/Z) and by Cancer Research UK (CRUK) Multidisci-

plinary Award (C28070/A19985). ZMC Baum is supported by the Natural Sciences 

and Engineering Research Council of Canada Postgraduate Scholarships-Doctoral Pro-

gram, and the UCL Overseas and Graduate Research Scholarships. SP Pereira was sup-

ported by the UCLH/UCL Comprehensive Biomedical Centre, which receives a pro-

portion of funding from the Department of Health's National Institute for Health Re-

search (NIHR) Biomedical Research Centres funding scheme. 

References 

1. Bonmati, E., Hu, Y., Gibson, E., Uribarri, L., Keane, G., Gurusami, K., 

Davidson, B., Pereira, S.P.S.P., Clarkson, M.J.M.J., Barratt, D.C.D.C.: 

Determination of optimal ultrasound planes for the initialisation of image 



9 

registration during endoscopic ultrasound-guided procedures. Int. J. Comput. 

Assist. Radiol. Surg. 13, 875–883 (2018). https://doi.org/10.1007/s11548-018-

1762-2. 

2. Liu, S., Wang, Y., Yang, X., Lei, B., Liu, L., Li, S.X., Ni, D., Wang, T.: Deep 

Learning in Medical Ultrasound Analysis: A Review, (2019). 

https://doi.org/10.1016/j.eng.2018.11.020. 

3. Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., Shen, D.: 

Medical image synthesis with context-aware generative adversarial networks. 

In: Lecture Notes in Computer Science (including subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 417–425. 

Springer Verlag (2017). https://doi.org/10.1007/978-3-319-66179-7_48. 

4. Jiao, J., Namburete, A.I.L., Papageorghiou, A.T., Noble, J.A.: Self-Supervised 

Ultrasound to MRI Fetal Brain Image Synthesis. IEEE Trans. Med. Imaging. 

39, 4413–4424 (2020). https://doi.org/10.1109/TMI.2020.3018560. 

5. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired Image-to-Image 

Translation using Cycle-Consistent Adversarial Networks. Proc. IEEE Int. 

Conf. Comput. Vis. 2017-Octob, 2242–2251 (2017). 

6. Zhang, L., Portenier, T., Goksel, O.: Learning ultrasound rendering from cross-

sectional model slices for simulated training. Int. J. Comput. Assist. Radiol. 

Surg. 16, 721–730 (2021). https://doi.org/10.1007/s11548-021-02349-6. 

7. Cronin, N.J., Finni, T., Seynnes, O.: Using deep learning to generate synthetic 

B-mode musculoskeletal ultrasound images. Comput. Methods Programs 

Biomed. 196, 105583 (2020). 

https://doi.org/https://doi.org/10.1016/j.cmpb.2020.105583. 

8. Landman, B., Xu, Z., Igelsias, J.E., Styner, M., Langerak, T.R., Klein, A.: 

Multi-Atlas Labeling Beyond the Cranial Vault. 

https://doi.org/10.7303/syn3193805. 

9. Ramalhinho, J., Tregidgo, H.F.J., Gurusamy, K., Hawkes, D.J., Davidson, B., 

Clarkson, M.J.: Registration of Untracked 2D Laparoscopic Ultrasound to CT 

Images of the Liver Using Multi-Labelled Content-Based Image Retrieval. 

IEEE Trans. Med. Imaging. 40, 1042–1054 (2021). 

https://doi.org/10.1109/TMI.2020.3045348. 

10. Porav, H., Musat, V., Newman, P.: Reducing Steganography In Cycle-

consistency GANs. In: Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recogni-tion (CVPR) Workshops. pp. 78–82 (2019). 

11. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian 

Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. 

Image Process. 26, 3142–3155 (2017). 

https://doi.org/10.1109/TIP.2017.2662206. 

12. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization, (2017). 

13. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, 

G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Andrew 

Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Y.J., Lukasz Kaiser, 

Manjunath Kudlur, Josh Levenberg, Dan Mané, M.S., Rajat Monga, Sherry 

Moore, Derek Murray, Chris Olah, J.S., Benoit Steiner, Ilya Sutskever, Kunal 



10 

Talwar, P.T., Vincent Vanhoucke, Vijay Vasudevan, F.V., Oriol Vinyals, Pete 

Warden, Martin Wattenberg, M.W., Yuan Yu,  and X.Z.: TensorFlow: Large-

Scale Machine Learning on Heterogeneous Systems, 

https://www.tensorflow.org/, (2015). https://doi.org/10.5281/zenodo.4724125. 

14. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are GANs 

Created Equal? A Large-Scale Study. In: Bengio, S., Wallach, H., Larochelle, 

H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.) Advances in Neural 

Information Processing Systems. Curran Associates, Inc. (2018). 

15. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs 

Trained by a Two Time-Scale Update Rule Converge to a Local Nash 

Equilibrium. In: Proceedings of the 31st International Conference on Neural 

Information Processing Systems. pp. 6629–6640 (2017). 

https://doi.org/10.5555/3295222.3295408. 

16. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the 

Inception Architecture for Computer Vision. In: Proceedings of the IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition. 

pp. 2818–2826. IEEE Computer Society (2016). 

https://doi.org/10.1109/CVPR.2016.308. 

17. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: 

Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based 

Localization. Int. J. Comput. Vis. 128, 336–359 (2020). 

https://doi.org/10.1007/s11263-019-01228-7. 

18. Bargsten, L., Schlaefer, A.: SpeckleGAN: a generative adversarial network 

with an adaptive speckle layer to augment limited training data for ultrasound 

image processing. Int. J. Comput. Assist. Radiol. Surg. 15, 1427–1436 (2020). 

https://doi.org/10.1007/s11548-020-02203-1. 

19. Peng, B., Huang, X., Wang, S., Jiang, J.: A Real-Time Medical Ultrasound 

Simulator Based on a Generative Adversarial Network Model. In: 2019 IEEE 

International Conference on Image Processing (ICIP). pp. 4629–4633 (2019). 

https://doi.org/10.1109/ICIP.2019.8803570. 

20. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical 

imaging: A review. Med. Image Anal. 58, 101552 (2019). 

https://doi.org/https://doi.org/10.1016/j.media.2019.101552. 

 


