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Abstract. Default risk significantly affects the corporate policies of a firm. We develop a model in which

a limited liability entity subject to default at an exponential random time jointly sets its dividend policy

and capital structure to maximize the expected lifetime utility from consumption of risk averse equity

investors. We give a complete characterization of the solution to the singular stochastic control problem.

The optimal policy involves paying dividends to keep the ratio of firm’s equity value to investors’ wealth

below a critical threshold. Dividend payout acts as a precautionary channel to transfer wealth from the

firm to investors for mitigation of losses in the event of default. Higher the default risk, more aggressively

the firm leverages and pays dividends.

1. Introduction

Since the proposal of capital structure irrelevance principle and dividend irrelevance principle by

Modigliani and Miller (1958) and Miller and Modigliani (1961), a vast literature has emerged to explore

the factors driving corporate policies observed in practice. Historically, some important considerations

include tax benefit, asymmetric information, signaling motive, agency costs, financial distress costs, man-

agerial risk aversion and etc. While market frictions and strategic interaction among agents are all realistic

concerns, very fundamental factors such as default risk could indeed also play a crucial role behind corpo-

rate finance decisions. In this paper, we examine the impact of default risk of a firm on its joint decision

of dividend policy and capital structure as well as equity investors’ consumption behavior.

Our model features a limited liability firm and risk averse equity investors. At each point of time given

the amount of equity capital in place, the firm simultaneously decides how much to invest in a risky asset

(which implies the amount of debt required and in turn its choice of capital structure) and how much to pay

out to investors with logarithm utility function. Investors can deposit the dividends received in a riskfree

retail saving account and consume to derive utility flow. The interests of firm managers (who set the

capital structure decision and payout policy) and investors (who choose their own consumption policy) are

perfectly aligned such that their joint economic objective here is to maximize investors’ expected lifetime

utility of consumption. One scenario where such a perfect alignment of interests naturally arises is the case
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that the consuming investor is also the sole owner/manager of the firm who sets the corporate policies.

The modeling framework can be extended to a small firm or a firm with highly concentrated ownership

where shareholders can exert significant influence on the firm’s policies, and in turn firm managers and

investors can be approximately viewed as a single decision maker.

A reduced form approach is adopted to model firm’s default where the equity value of the firm jumps

to zero at an exponentially distributed random time. There are many possible interpretations of the

source of the default risk. One can view such a shock as the arrival of a macroeconomic downturn which

results in severe liquidity squeeze and eventually triggers insolvency of firms. A prime example is the sub-

prime mortgage crisis leading to the collapse of Lehman Brothers, AIG and several other major financial

institutions in 2008. The shock may also reflect idiosyncratic and disastrous operational losses suffered by

a firm such as Barings Bank which was single-handedly brought down by a rogue trader in 1995, or Mt.

Gox the largest bitcoin exchange at the time which filed for bankruptcy in 2014 after the “disappearance”

of the cryptocurrency worth more than $450 million on its platform.

We assume wealth can only flow from the firm to investors in form of dividends but capital cannot

be injected into the firm from investors via equity issuance. One implication of this restriction is that

investors cannot opt to revitalize a firm hit by the default shock. It is partly a simplifying mathematical

assumption,1 and can be practically relevant if we interpret the shock as a systematic risk which can

adversely affect the refinancing capacity of the firm due to for instance the liquidity constraints faced by

investors during market distress. In some cases, a default firm cannot even simply be rescued by capital

injection due to operational issues such as legal restrictions or destruction of irreplaceable technology.

More generally, arranging equity issuance is expensive and time consuming even under normal market

conditions in absence of any shocks. As a result, our model is perhaps the most suitable to describe

the corporate policies of small businesses and start-ups with high level of economic and/or operational

uncertainty (and hence are prone to irrecoverable default) which face a high barrier to equity financing.

The incentive to pay out dividends in presence of default risk is intuitive. A unit of wealth retained

in the firm can generate economic value via investment in the risky asset but it comes at the cost of the

potential loss when default arrives. Equity investors, however, can exploit the limited liability structure

of the entity by transferring some of the firm’s equity to their private pocket via dividends to earn a

mediocre but safe retail interest rate, rather than leaving all the money on the table just to be wiped out

when the firm goes bust.

The underlying optimization problem turns out to be a singular stochastic control problem. In contrast

to many other models of investment and dividend distribution, the optimal payout policy in our setup

is to pay dividends as to keep the ratio of the firm’s equity value to investors’ wealth level below a

certain critical threshold, rather than just to pay out the cash to keep the equity reserve below a constant

1A possible generalization of the model may feature costly capital injections. See the further discussion in Section 6.
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level. Moreover, the optimal leverage level is state-dependent with its magnitude being decreasing in the

equity-to-wealth ratio instead of being a constant.

Analysis of such a singular stochastic control problem is not straightforward in general and the concept

of viscosity solutions sometimes has to be invoked. However, based on the transformation techniques

introduced in the recent work of Hobson and Zhu (2016) and Hobson et al. (2019a), we show that the

associated HJB equation can indeed be reduced to a first order crossing problem. The critical dividend

payment boundary can be read from the point at which the solution to a first order differential equation

first crosses a given analytical function. An important advantage of this approach is that it is relatively

easy to deduce the comparative statics of the model. We find that a higher default risk leads to a lower

critical equity-to-wealth ratio for dividend payout, a higher leverage level and a lower consumption rate

of investors.

We close the introduction by relating our work to the existing literature. Both payout policy and

capital structure decision are long-standing research topics in corporate finance and it is impossible to

give a full account of the theory development here. Instead, we refer readers to the excellent surveys

by Harris and Raviv (1991) and Allen and Michaely (2003). Mainstream finance literature often studies

payout policy and capital structure decision separately but not their joint interaction, as highlighted by

Lambrecht and Myers (2012). The economic foundation of our model is based on Lambrecht and Myers

(2017) and Lambrecht and Tse (2018) where investment and payout policy are examined together in an

inter-temporal investment/consumption model (although our model should be interpreted differently. See

Remark 2 in Section 2).

Continuous-time portfolio selection, which is the skeleton of the modeling framework in this paper, is

of course another enormous field in the mathematical finance and stochastic control literature. Existing

work usually focuses on optimal consumption/investment models as per the seminal work of Merton

(1969, 1971) and its many other variants, or optimal risk control/dividend distribution models which are

studied extensively in the field of insurance [e.g. Radner and Shepp (1996), Browne (1997) and Jgaard

and Taksar (1999)]. These two classes of models are closely related. “Dividend optimization/risk control

models in many instances can be viewed as consumption/investment models with linear utility function

and with risky assets governed by an arithmetic Brownian motion” although the former also possesses

some additional features such as “singularity of the dividend distribution process” and “inevitability of

bankruptcy” [Taksar (2000), p.3]. Nonetheless, an important common feature is that both classes of the

models assume payout from a firm has to be consumed immediately to derive utility and therefore discard

the possibility that dividends can at least be deposited for consumption later. We disentangle the effect of

dividend payout and consumption by introducing a riskfree retail saving account to risk averse investors

as an outside option.
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To the best of our knowledge, our current paper is the first one to consider a joint, dynamic model of

capital structure (i.e. investment/risk control), dividend payout and individuals’ consumption. The opti-

mal policy involves smooth consumption, singular dividend distribution and non-constant investment pol-

icy. These solution features are typically not simultaneously observed in a pure consumption/investment

model or dividend/risk control model. Another novel prediction, relative to similar models with risk

averse agents such as Merton (1969, 1971) and Lambrecht and Myers (2017), is that a bad firm will be

voluntarily liquidated despite risk averse investors’ preference for smooth consumption over time. It is

because there is no longer the need to keep a bad firm alive just for the purpose of generating dividends

perpetually to match the smooth consumption demanded by risk averse investors.

In a standard dividend/risk control model, default arises endogenously as the ruin time when the

reserve level of an insurance firm (commonly modeled as a controlled arithmetic Brownian motion) hits

zero. In contrast, our model focuses on a general firm subject to uncontrollable catastrophic risk where

default time is exogenously modeled by an exponential distribution with a known intensity parameter.

This allows us to examine the impact of default risk (i.e. default intensity) on the corporate policies

of the firm and the consumption pattern of investors. Incorporation of exogenous default risk is not a

new mathematical feature - optimal portfolio choice and consumption problems with random termination

time have been considered in life insurance models [see for example Richard (1975) and Pliska and Ye

(2007)]. In our current context of corporate finance, nonetheless, consideration of default risk leads to

some interesting economic phenomena as revealed by the comparative statics.2

One important aspect of our model is that equity financing is not possible. Thus our model is similar

to a Merton problem with transaction costs as in Magill and Constantinides (1976), Davis and Norman

(1990) and Shreve and Soner (1994). More precisely, the special case studied by Hobson and Zhu (2016),

where transaction cost is zero on sale and infinite on purchase, is comparable to our model in which equity

capital can only be passed to investors as dividends but fresh capital cannot be injected into the firm.

Consequently, our optimal dividend strategy is similar to the investment strategy obtained by Hobson and

Zhu (2016). However, our model implicitly has a rather special set of tradeable assests and transaction

costs structure and thus it is not a trivial extension of their model. See the discussion in Section 2.

Broadly speaking, our work contributes to the growing literature on solving a singular stochastic control

problem via reduction to a first order crossing problem [e.g. Hobson and Zhu (2014), Hobson and Zhu

(2016), Hobson et al. (2019a) and Hobson et al. (2019b)]. It showcases the mathematical techniques are

amendable outside the context of portfolio selection under transaction costs and how simple comparison

principles can lead to powerful comparative statics which is not commonly explored in other related

literature. Certain results we establish such as closed-form expressions of optimal policy in a special but

2The interaction among dividend, leverage and firm’s default is also explored in a one-period signaling model of Kucinskas

(2018), where high dividend is a bad signal for firms with high leverage because the payout can be driven by the motivation

of “cash out” prior to bankruptcy.
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non-degenerate case are also quite unique in the context of a portfolio selection style problem involving

singular control.

The rest of the paper is organized as follows. Section 2 introduces the modeling setup. Section 3 gives

the main results of the paper and their economic significance. A heuristic derivation of the solution is

provided in Section 4 and we give a full verification argument of the candidate solution in Section 5.

Section 6 concludes. Some proofs in the main body of the paper are deferred to the appendix.

2. The setup

Throughout this paper we work with (Ω,F , {Ft},P) a filtered probability space satisfying the usual

conditions which supports a one-dimensional Brownian motion B = (Bt)t≥0.

A firm can invest in two classes of asset: a bond instrument with interest rate ρ, and a risky asset

which price process is a geometric Brownian motion with drift µ and volatility σ > 0. For every unit of

equity within the firm at time t, an amount of πt is invested in the risky asset whereas 1−πt is invested in

the bond. A choice of πt > 1 corresponds to a levered firm which borrows an amount of πt − 1 to finance

its investment in the risky asset. We call π = (πt)t≥0 an investment policy of the firm which is required

to be adapted and satisfy
∫ t

0
π2
u(ω)du < ∞ for all (t, ω) ∈ [0,∞) × Ω. Equity within the firm can also

be distributed to risk averse equity investors in form of dividends. Let Φ = (Φt)t≥0 with Φ0− = 0 be an

adapted, non-decreasing process representing the cumulative amount of dividends paid to the investors

up to time t. The equity value of the firm S = (St)t≥0 then evolves as

dSt = πtSt(µdt+ σdBt) + (1− πt)Stρdt− dΦt

= [ρ+ (µ− ρ)πt]Stdt+ σπtStdBt − dΦt. (1)

The risk averse investors have a logarithm utility function. They possess a private account which

earns a retail riskfree rate of r and they consume at the same time to derive utility flow continuously. A

consumption policy c = (ct)t≥0 is a non-negative, adapted process with
∫ t

0
cu(ω)du < ∞ for all (t, ω) ∈

[0,∞)× Ω. The investors’ wealth level X = (Xt)t≥0 then follows the dynamic

dXt = (rXt − ct)dt+ dΦt. (2)

The firm is exposed to a shock which arrives at an exponentially distributed random time of intensity

λ > 0 which causes the firm to default and wipes out its equity entirely. This shock represents realization

of an extreme financial or operational loss which is beyond the firm’s control. Equity investors however

are protected by the limited liability structure of the entity and their private wealth will remain intact.

After the firm’s default, there is no other investment opportunity available to the investors except their

private saving account. Hence their optimal consumption strategy post-default can be derived by solving



DIVIDEND POLICY AND CAPITAL STRUCTURE OF A DEFAULTABLE FIRM 6

the deterministic control problem of

F (x) := sup
ct>0

∫ ∞
0

e−βt ln ctdt (3)

under the dynamic dXt = (rXt− ct)dt with X0 = x. Here β > 0 is the investors’ subjective discount rate.

The solution to (3) is known as

F (x) =
1

β
lnx+

1

β

[
r

β
+ lnβ − 1

]
(4)

and the corresponding optimal consumption strategy is given by c∗t = βXt.

A collection of consumption, investment and dividend policies (c, π,Φ) is said to be admissible if St

and Xt are non-negative with (St, Xt) /∈ (0, 0) for all t ≥ 0. Denote by A(s, x) the class of admissible

strategies with initial value (S0− = s,X0− = x). Prior to default, equity investors’ expected discounted

liftime utility from consumption under a given (c, π,Φ) is

J(s, x; c, π,Φ) := E

[∫ ∞
0

e−βt ln ctdt

∣∣∣∣∣S0− = s,X0− = x

]

= E

[∫ τ

0

e−βt ln ctdt+

∫ ∞
τ

e−βt ln ctdt

∣∣∣∣∣S0− = s,X0− = x

]
where τ is an exponential random variable with parameter λ defined on the same probability space and

it is independent of the underlying Brownian motion B. Firm managers act in the best interest of the

investors. Their joint objective is to solve

V (s, x) := sup
(c,π,Φ)∈A(s,x)

J(s, x; c, π,Φ)

which can be rewritten as

V (s, x) = sup
(c,π,Φ)∈A(s,x)

E

[∫ τ

0

e−βt ln ctdt+ e−βτF (Xτ )

∣∣∣∣∣S0− = s,X0− = x

]
(5)

due to dynamic programming principle [see Jeanblanc et al. (2004)].

Remark 1. It is straightforward to introduce a dividend tax rate of κ ∈ [0, 1) in the model such that

investors’ wealth process, prior to firm’s default, satisfies

dXt = (rXt − ct)dt+ (1− κ)dΦt (6)

instead. Then under the transformation X̃t := Xt
1−κ we can recover a version of the problem without tax.

Remark 2. In reality, the decision of the firm (π and Φ) and the decision of the investors (c) are made

separately against different objectives due to agency issues or informational frictions. Hence the opti-

mization problem (5) is a “first best” criteria where firm managers and investors can perfectly coordinate

to jointly deduce the optimal corporate policies and consumption strategy to create maximum value for

investors. This kind of assumption is classical in corporate finance literature and naturally applies if the

consuming agent is the sole owner of the firm. Alternatively, it is possible to adopt our mathematical
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framework within an agency-based model featuring self-interested, risk averse managers as in Lambrecht

and Myers (2012, 2017). In this alternative setup, managers capture 1 − κ fraction of the firm’s total

payout in form of rents extraction and pass the remaining κ fraction to investors as dividends. We could

then interpret X = (Xt)t≥0 in (6) and c = (ct)t≥0 as the private wealth level and consumption level of the

managers respectively. The parameter 1 − κ now reflects the bargaining power of the managers.3 They

simultaneously set the corporate policies and their consumption strategy to maximize their own lifetime

utility as in (5).

It is constructive to compare our modeling setup to that of Hobson and Zhu (2016) who consider a

Merton consumption and investment problem in which the risky asset can only be sold but not bought.

Our problem is similar to theirs in the sense that the transfer of value also occurs in one direction only

from the firm to the investors as dividends but capital cannot be injected into the firm from the investors.

In other words, we rule out the possibility of equity issuance within our setup. As discussed in the

introduction, it is not an unreasonable assumption as equity financing often involves expensive and time

consuming procedures, and in some cases it is not even possible to rescue a default firm simply by capital

injection.

In Hobson and Zhu (2016) wealth is allocated between a risky asset and a riskfree cash account as in

the standard Merton problem. Meanwhile, our model concerns wealth allocation between a risky firm

and a riskfree cash account where the value of the former is not an exogenously given process but rather

a controlled process based on the capital structure decision π. This extra decision variable π introduces

additional non-linearity to the underlying HJB equation (see equation (13) in Section 4) which is not

the same as the standard equation arising in a transaction costs problem considered in Hobson and Zhu

(2016), or more generally Davis and Norman (1990) and Shreve and Soner (1994).

It is possible to interpret our model as a multi-asset Merton problem with three distinct assets and a

very special transaction costs structure: a risky defaultable asset with drift µ and volatility σ, a defaultable

debt instrument with yield ρ and a non-defaultable cash account with interest rate r. The two defaultable

securities can only be sold for cash but not bought with cash, i.e. transaction cost is infinite on purchase

and zero on sale. On the other hand, these two securities are fully fungible which can be freely converted

from one into another at their prevailing value without any friction. Our setup is thus somewhat similar

to the two-asset Merton problem under infinite transaction costs considered by Hobson and Zhu (2014).

However, the additional asset in Hobson and Zhu (2014) is a transaction-cost-free risky asset whereas in

our model it is a defaultable debt instrument which cannot be bought with the consuming agent’s wealth.

The two problems are thus quite different fundamentally. For our specific problem, we show in the next

section that many useful properties of the optimal controls such as dependence on the state variables and

3The sharing rule of the firm’s payout can be justified by solving a repeated bargaining game between managers and

investors. See Lambrecht and Myers (2012, 2017).
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comparative statics can be deduced. These explicit results are not commonly seen in literature which

employs similar transformation technique for the analysis of the underlying HJB equation.

3. Main results

We state the key results of this paper where the proof is deferred to Section 5.

Theorem 1. For the optimization problem (5):

(1) Suppose µ = ρ ≤ λ + r. The optimal strategy is to liquidate the firm immediately by distributing

its entire equity to investors in form of dividends and then investors consume their wealth at a

rate of β. Mathematically, the optimal consumption strategy and optimal dividend policy are given

by c∗t = βXt and Φ∗t = s for t ≥ 0. The corresponding value function is given by

V (s, x) = F (s+ x) =
1

β
ln(s+ x) +

1

β

[
r

β
+ lnβ − 1

]
. (7)

(2) Suppose µ 6= ρ or µ = ρ > λ + r. There exists a constant z∗ ∈ (0,∞) such that for s ≤ z∗x

the optimal consumption strategy and investment policy are given by the feedback controls c∗t =

c∗(St, Xt) and π∗t = π∗(St, Xt) where

c∗(S,X) :=
1

Vx(S,X)
, π∗(S,X) := − (µ− ρ)Vs(S,X)

σ2SVss(S,X)
, (8)

with V being the value function of the problem to be defined in Proposition 7 in Section 5. The

optimal dividend policy Φ∗ is an element of the solution (S∗t , X
∗
t ,Φ

∗
t )t≥0 to the Skorokhod problem

dSt = [ρ+ (µ− ρ)π∗t ]Stdt+ σπ∗t StdBt − dΦt,

dXt = (rXt − c∗t )dt+ dΦt,

Φt = Φ0 +
∫ t

0
1(Su=z∗Xu)dΦu,

(9)

with initial values (S0 = s,X0 = x,Φ0 = 0).

If s > z∗x, the optimal dividend policy involves paying a discrete dividend of size φ∗ := s−z∗x
1+z∗

to the investors at time zero and then the strategies associated with the case of s ≤ z∗x are

followed thereafter. Mathematically, the optimal consumption strategy and investment policy are

given by (8) and the optimal dividend policy Φ∗ is an element of the solution (S∗t , X
∗
t ,Φ

∗
t )t≥0 to

the Skorokhod problem (9) with the initial values replaced by (S0 = s−φ∗, X0 = x+φ∗,Φ0 = φ∗).

In our model, there are two economic motives for the equity investors to invest in the firm. The first

motive is brought by the investment prospect of the firm which exists for as long as the excess return of

the risky asset µ − ρ is non-zero. Note that investors are still willing to invest in the firm even if µ < ρ

because it is possible for the firm to short sell the poor performing risky asset for value creation. The

second motive lies within the funding advantage of the firm due to its access to corporate debt financing.

At minimum, the firm can serve as a “risky bank account” with yield ρ and default rate λ. This funding
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Xt (Investors’ wealth)

St (Equity value of firm)

Zt := St
Xt

= z∗

no-dividend region

dividend paying region

Figure 1. A graphical illustration of the optimal dividend strategy.

vehicle is superior to the investors’ private saving account provided that the default-risk-adjusted yield

ρ − λ is larger than the retail saving rate r. For the parameter combination in part (1) of Theorem 1,

there is neither investment nor funding motive to invest in the firm and hence the optimal strategy is to

liquidate the firm immediately.

This very plausible prediction that a bad firm will be immediately and voluntarily liquidated is a

unique feature relative to other models based on the standard Merton investment/consumption framework

(such as Lambrecht and Myers (2017)). Under risk aversion, individuals demand a smooth consumption

schedule. If dividends are tied with consumption, then risk aversion will force dividends to be smooth as

well and hence a bad firm must be run continuously to generate cash flows over time. By distinguishing

consumption and dividend via the possibility of depositing investors’ private wealth in a retail account,

individuals can opt to liquidate a bad firm and consume the proceeds over time optimally according to

their own preference.

Remark 3. Phenomenon of voluntary liquidation has been observed in various optimal dividend problems.

Examples include the classical model of Jeanblanc-Picqué and Shiryaev (1995), the model admitting costly

equity issuance of Løkka and Zervos (2008), the regime switching model of Jiang and Pistorius (2012)

and the cash flow model with stochastic drift of Reppen et al. (2017). The precise model formulations

in the aforementioned references differ from one another but they all share the same feature that the

underlying objective function is based on expected cash flows maximization (i.e. linear utility function).

Voluntary liquidation as a possible optimal strategy in those cases is perhaps not surprising because agents

with linear utility function have infinite elasticity of intertemporal substitution and thus prefer immediate

consumption, which creates incentives to impatiently liquidate a firm/cash reserve with poor growth rate



DIVIDEND POLICY AND CAPITAL STRUCTURE OF A DEFAULTABLE FIRM 10

and then consume the proceeds immediately. One interesting feature of our solution structure that is that

voluntary liquidation can indeed occur even if the investors have preference for smooth consumption as

encoded in our concave utility specification.

For the more general parameter combination in part (2) of Theorem 1, the optimal dividend strategy

resembles the optimal investment strategy of a Merton problem with infinite transaction costs as in

Hobson and Zhu (2016). The optimal dividend strategy Φ∗ in our model is a local time policy which

keeps Zt := St
Xt
≤ z∗. The joint process of the firm value and investors’ private wealth under the optimal

policy, as given by the solution to the Skorohod equation (9), is a reflected diffusion with boundary

Zt = z∗. Referring to Figure 1, if the state variable processes (S,X) start inside the dividend paying

region then a lump sum amount of dividend is instantaneously paid from the firm to investors to bring

(S,X) back to the boundary Zt = z∗. After this initial corporate action (or if the state variable processes

start inside the no-dividend region), dividends will only be paid whenever Zt = z∗. The optimal dividend

policy is designed to exert a “local time push” to (St, Xt) at and only at the ray St
Xt

= z∗ to keep the

processes contained within the no-dividend region.

In simpler economic terms, dividends are paid when the firm value S is too high or investors’ private

wealth level X is too low in order to keep ratio of firm value to private wealth below a threshold. In

particular, the payout trigger target is given by St ≤ z∗Xt where the right hand side is not a constant

[as commonly seen in standard dividend distribution models such as Radner and Shepp (1996)] but

instead it increases with the investors’ private wealth. As investors become wealthier, consumption can

be adequately supported from their private account and hence a larger fraction of equity can be retained

within the firm to further finance its investment activities. It is another unique feature of our model due

to the disentanglement of dividend payout and consumption.

Remark 4. In the context of corporate finance, it might be more sensible to impose the constraint π > 0

since there may not exist a realistic way for a firm to dis-invest in a project. This can be incorporated

within our model, and Theorem 1 will then remain the same except that the conditions for case (1) and

(2) shall be replaced by “µ ≤ ρ ≤ λ+ r” and “µ > ρ, or µ ≤ ρ and ρ > λ+ r” respectively.

Although the characterization of the optimal controls in Theorem 1 is somewhat abstract under the

non-degenerate case (2), a lower bound of z∗ is available and the monotonicity of π∗ and c∗ with respect

to the state variables can be established. Moreover, in the corner case of µ = ρ > λ + r the closed-form

expressions of the optimal controls can indeed be derived. The results are summarized in the following

two propositions which proofs are given in Appendix 7.2.

Proposition 1. Suppose µ 6= ρ and consider the optimal controls defined in case (2) of Theorem 1:

(1) The critical threshold of dividend payment z∗ satisfies (ρ−r−λ)+

λ ≤ z∗ <∞.
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(2) The optimal investment level π∗(s, x) admits an expression π∗(s, x) = µ−ρ
σ2 θ(s/x) where θ(z) is a

bounded, positive and decreasing function on 0 < z ≤ z∗ with θ(z∗) > 1.

(3) The optimal consumption rate per unit private wealth c̄(s, x) := c∗(s,x)
x is a function of z = s

x only

which is increasing on 0 < z ≤ z∗ and c̄(z) ↓ β as z ↓ 0.

Proposition 2. Suppose µ = ρ > λ+ r and consider the optimal controls defined in case (2) of Theorem

1. Then

z∗ =
ρ− r − λ

λ
, π∗(s, x) = 0, c∗(s, x) =

x

1/β − q(s/x)

where q = q(z) is an implicit function defined as the solution to

z =

(
ρ− r − λ

λ

) λ
β+λ

(
ρ− r − λ
β(ρ− r)

)− ρ−r
β+λ

(
βq

1− βq

) β
β+λ

q
ρ−r
β+λ . (10)

Analytical expressions of all the important control variables are available in the case of µ = ρ > λ+ r

where the investment motive vanishes.4 The firm essentially becomes a pure funding vehicle (subject to

default risk) without any investment in the risky asset as π∗ = 0. The optimal dividend policy is then

entirely driven by the funding quality of the firm measured by ρ−r
λ , which can be interpreted as the

corporate yield spread per unit default risk. Higher this ratio, less often the firm pays dividends since it

is more efficient to retain the capital within the firm for value creation.

In the more general case of µ 6= ρ, part (1) of Proposition 1 implies that z∗ ↑ ∞ as λ ↓ 0 provided

that ρ > r. The economic interpretation of this limiting result is the following: as long as the funding

advantage ρ > r exists, it is in general suboptimal to pay out any dividend because a unit of wealth in

the investors’ private account can only earn the retail rate r whereas a unit of equity within the firm can

at least earn a better rate ρ when default of firm is not a concern. Dividends should thus only be paid out

after investors’ private wealth has been entirely depleted. Once X hits zero, the firm pays out dividend

continuously to match the optimal consumption required by the investors. Although we do not explicitly

consider λ = 0 in this paper, the optimal strategy of this special case can be characterized rigorously

similar to Theorem 10 of Hobson and Zhu (2016).

The magnitude of the firm’s investment level is decreasing in equity value St and increasing in investors’

wealth Xt. To understand this behavior, it is important to note that investors’ exposure to the risky asset

is determined by two factors: the fraction of wealth invested in the firm Zt = St/Xt and the investment

level of the firm πt. In general, risk averse investors desire to maintain a target exposure to the risky

asset. A benchmark example is that if there is no friction in the economy such that investors do not

need to rely on the firm as an intermediary to invest in the risky asset, then they will invest a constant

4Note that the case of µ = ρ ≤ λ+ r has been covered by case (1) of Theorem 1 where we can take z∗ = 0 corresponding

to immediate liquidation.
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fraction of their wealth in the risky asset given by the Merton ratio. In our model where equity financing

cannot be performed freely, the firm thus has to be leveraged more aggressively when equity value declines

or investors’ wealth increases to provide an efficient risk-return exposure for the investors. Notice that

θ(z∗) > 1 implies the investment level is always larger than the Merton ratio (in magnitude).

Consumption rate rises as the state variable Zt = St/Xt approaches the critical threshold z∗ because

investors anticipate a dividend payment is due soon which will boost their wealth level and hence a larger

consumption today becomes sustainable.

The next proposition highlights the key comparative statics of our model. The proof can be found in

Appendix 7.3.

Proposition 3. Suppose we are in the non-degenerate case of either µ 6= ρ or µ = ρ > λ+ r. Then the

following comparative statics hold:

(1) The critical threshold of dividend payment z∗ is decreasing in λ, r and σ, and is increasing (resp.

decreasing) in µ when µ ≥ ρ (resp. µ ≤ ρ).

(2) The optimal investment level π∗(s, x) is increasing (resp. decreasing) in λ and r when µ > ρ

(resp. µ < ρ).

(3) The optimal consumption level c∗(s, x) is decreasing in λ and r.

We focus on the comparative statics results with respect to λ (see Figure 2 for some numerical illustra-

tions). Firstly, with a higher default risk λ the firm pays out dividends more aggressively as reflected by

a lower critical threshold z∗. This can be understood as a phenomenon of moral hazard. When managers

foresee that their firm is more likely to fail, there is a stronger precautionary incentive to transfer value

within the firm to the investors’ in form of dividends because the wealth in the private pocket of investors

is left untouched due to limited liability while equity within the firm is seized or wiped out in the event

of default.

Among all the results in Proposition 3, perhaps the most surprising one is that the magnitude of π∗

is increasing in λ. This may seem counter-intuitive in view of the risk averse nature of equity investors

as the result here suggests the (absolute) investment level is higher for a riskier firm (in terms of default

risk). Nonetheless, this result should be understood in conjunction with the impact of λ on z∗. A higher

λ leads to a lower dividend threshold z∗ and as such a smaller pool of equity (relative to investors’ wealth)

is retained in the firm on average. To offset this effect of under-investment, the firm has be leveraged

more aggressively to restore the overall exposure to the risky asset.

Finally, the effect of λ on the optimal consumption is intuitive where a higher default risk of the firm

encourages precautionary saving of the investors by reducing consumption.

The above results could be of interests to the area of corporate finance because they suggest aggressive

payout policy and capital structure could potentially be driven by a high level of default risk where equity

holders exploit the limited liability structure of the firm to retain value for themselves, thus a symptom of
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Figure 2. Comparative statics of the optimal controls with respect to λ. Base parame-

ters used are: µ = 0.2, σ = 0.3, ρ = 0.1, r = 0.02 and β = 0.1.

moral hazard. An important caveat behind the above interpretations is that we assume both µ and ρ are

fixed constants independent of λ. Implicitly, we assume asymmetric information between equity holders

and bondholders. Only the former know the firm is subject to a default shock of intensity λ while the

latter do not take this default possibility into account when setting the debt yield. On the other hand,

the default risk is assumed to be an idiosyncratic one which does not improve the risky asset return µ. In

a bank lending model of Lambrecht and Tse (2018), both ρ and µ are linked to λ depending on how an

insolvent bank is resolved during an economic downturn. In general, we could incorporate extensions of

this kind by replacing ρ and µ by some functions of λ. This will not significantly change the mathematical

analysis of the stochastic control problem. However, the comparative statics with respect to λ will now

depend on the precise constructions of ρ(λ) and µ(λ).
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4. A heuristic derivation of the solution

In this section we use heuristics to derive an equation that the value function should satisfy. Its

optimality is then verified rigorously in Section 5.

It is convenient to reformulate (5) as an infinite horizon control problem. Note that

E
[∫ τ

0

e−βt ln ctdt+ e−βτF (Xτ )

]
= E

[∫ ∞
0

1(τ>t)e
−βt ln ctdt

]
+ E

[
e−βτF (Xτ )

]
= E

[∫ ∞
0

e−(β+λ)t ln ctdt

]
+

∫ ∞
0

λe−λtE
[
e−βtF (Xt)

]
dt

= E
[∫ ∞

0

e−(β+λ)t (ln ct + λF (Xt)) dt

]
where we have used the fact that τ is an independent exponential random variable. Hence problem (5) is

equivalent to

V (s, x) = sup
(c,π,Φ)∈A(s,x)

E

[∫ ∞
0

e−(β+λ)t (ln ct + λF (Xt)) dt

∣∣∣∣∣S0− = s,X0− = x

]
(11)

which is an infinite horizon problem with discount rate β + λ and running reward ln ct + λF (Xt).

Write

Mt :=

∫ t

0

e−(β+λ)u[ln cu + λF (Xu)]du+ e−(β+λ)tV (St, Xt).

Then we expect M is a supermartingale in general, and is a true martingale under the optimal strategy.

Suppose V is a C2×1 function, applying Ito’s lemma we find

e(β+λ)tdMt =

{
ln ct − Vxct + rVxXt + ρVsSt + (µ− ρ)VsStπt +

σ2

2
VssS

2
t π

2
t − (β + λ)Vt + λF (Xt)

}
dt

+ (Vx − Vs)dΦt + σπtVsStdBt.

Further assume Vx > 0 and Vss < 0, the drift term can be maximized with respect to c and π. Then we

expect the value function to solve the HJB variational inequality

min (−LV,−MV ) = 0 (12)

where the operators L and M are defined as

Lf := sup
c>0,π

{
ln c− fxc+ rfxx+ ρfss+ (µ− ρ)fssπ +

σ2

2
fsss

2π2 − (β + λ)f + λF (x)

}
= − ln fx − 1 + rfxx+ ρfss−

(µ− ρ)2[fs]
2

2σ2fss
− (β + λ)f + λF (x), (13)

Mf := fx − fs. (14)

Inspired by Magill and Constantinides (1976), we conjecture the optimal strategy is to pay dividends

only when the ratio Zt := St
Xt

is above a certain threshold z∗ (refer to Figure 1 again). Following Davis
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and Norman (1990), we postulate the value function has the form

V (s, x) =
1

β
lnx+ g

( s
x

)
(15)

for some function g to be determined. Write z := s
x . Then over z ≤ z∗ no dividend is paid and we expect

LV = 0 which becomes

− ln

(
1

β
− zg′(z)

)
+ (ρ− r)zg′(z)− (µ− ρ)2[g′(z)]2

2σ2g′′(z)
− (β + λ)g(z) +

λ

β

(
r

β
+ lnβ − 1

)
+
r

β
− 1 = 0.

(16)

The system can be further simplified by a series of transformation used in Hobson and Zhu (2016) and

Hobson et al. (2019a). Write u := ln z and let h(u) = h(ln z) := g(z) − 1
β+λ

[
λ
β

(
r
β + lnβ − 1

)
+ r

β − 1
]
.

Then

g′(z) =
d

dz
g(z) =

d

dz
h(u) =

d

du
h(u)

du

dz
=
h′(u)

z
,

g′′(z) =
d

dz

h′(u)

z
=

1

z

d

dz
h′(u)− h′(u)

z2
=
h′′(u)

z2
− h′(u)

z2
.

(16) can then be reduced to

− ln

(
1

β
− h′(u)

)
+ (ρ− r)h′(u)− (µ− ρ)2[h′(u)]2

2σ2(h′′(u)− h′(u))
− (β + λ)h(u) = 0. (17)

Set w(h) := dh
du such that h′′(u) = d

duw(h) = w′(h)h′(u) = w′(h)w(h). (17) then becomes

− ln

(
1

β
− w(h)

)
+ (ρ− r)w(h)− (µ− ρ)2w(h)

2σ2(w′(h)− 1)
− (β + λ)h = 0. (18)

Let N be the inverse function of w, i.e. N := w−1, and write q := w(h). (18) can then be written as

− ln

(
1

β
− q
)

+ (ρ− r)q − (µ− ρ)2q

2σ2(1/N ′(q)− 1)
− (β + λ)N(q) = 0. (19)

Suppose for now µ 6= ρ. The special case of µ = ρ is discussed at the end of this section. Set

n(q) := ln
(

1
β − q

)
+ βN(q). After some algebra of substituting N and N ′ away by n and n′ in (19), we

can obtain a first order ODE n′(q) = O(q, n(q)) where

O(q, n) :=
β2q

1− βq
m(q)− n
n− `(q)

(20)

and

m(q) :=
β

β + λ

{
(ρ− r)q +

λ

β
ln

(
1

β
− q
)

+
(µ− ρ)2

2σ2β

}
,

`(q) :=
β

β + λ

{[
ρ− r +

(µ− ρ)2

2σ2

]
q +

λ

β
ln

(
1

β
− q
)}

= m(q)− β

β + λ

(µ− ρ)2

2σ2

(
1

β
− q
)
.

We now derive the form of the value function on the dividend paying regime s
x = z > z∗. Under

the conjectured strategy, a lump sum dividend D is paid out by the firm to restore the equity value to

investors’ private wealth ratio back to z∗. D should then solve s−D
x+D = z∗ which gives D = s−z∗x

1+z∗ . The
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value function does not change on this corporate action and thus V (s − D,x + D) = V (s, x) which is

equivalent to

1

β
ln(x+D) + g(z∗) =

1

β
lnx+ g(z).

From this we obtain

g(z) =
1

β
ln

(
1 +

D

x

)
+ g(z∗) =

1

β
ln

(
1 + z

1 + z∗

)
+ g(z∗) =

1

β
ln(1 + z) +A∗ (21)

on z > z∗ where A∗ is some constant.

Now we apply the same set of transformations to (21). We have

h(u) = g(eu)− 1

β + λ

[
λ

β

(
r

β
+ lnβ − 1

)
+
r

β
− 1

]
=

1

β
ln(1 + eu) +A∗ − 1

β + λ

[
λ

β

(
r

β
+ lnβ − 1

)
+
r

β
− 1

]
=:

1

β
ln(1 + eu) + Ā.

Then

w(h) = h′(u) =
1

β

eu

1 + eu
=

1

β

eβ(h−Ā) − 1

eβ(h−Ā)
=

1

β
(1− eβ(Ā−h))

and the inverse function of w is found to be

N(q) = w−1(q) = Ā− 1

β

(
lnβ + ln

(
1

β
− q
))

.

Finally,

n(q) = ln

(
1

β
− q
)

+ βN(q) = βĀ− lnβ = βA∗ −
(
r

β
+ lnβ − 1

)
+

λ

λ+ β
ln

1

β

= βA∗ −
(
r

β
+ lnβ − 1

)
+ `(0) (22)

which is a constant. The above relationships hold as long as z > z∗, on which

q = w(h) =
1

β

eu

1 + eu
=

1

β

z

1 + z
.

Hence the equivalent range in the q-coordinate is q > q∗ := 1
β

z∗

1+z∗ .

We expect the transformed value function n to solve n′ = O(q, n) on q ≤ q∗ and to be a constant on

q > q∗. To solve such a free boundary value problem, we further require an initial value associated with

the system. Along the boundary s = 0 the equity value of the firm is zero and hence cannot invest in

the risky asset nor the bond (if a firm with zero net equity attempts to borrow to invest or short sell the

asset to support purchase of the bond, the Brownian nature of the asset price will make it impossible for

the firm to maintain non-negative equity value). Then essentially the firm ceases to exist and the only

feasible strategy is for the investors to consume their existing private wealth optimally. Hence V (0, x) =

F (x) = 1
β lnx + 1

β

[
r
β + lnβ − 1

]
. This boundary condition translates into g(0) = 1

β

[
r
β + lnβ − 1

]
,

h(−∞) = g(0) − 1
β+λ

[
λ
β

(
r
β + lnβ − 1

)
+ r

β − 1
]

= ln β
β+λ and we expect h′(−∞) = 0. Then w

(
ln β
β+λ

)
=

w(h(−∞)) = h′(−∞) = 0, N(0) = ln β
β+λ . and finally n(0) = ln 1

β + β
β+λ lnβ = λ

β+λ ln 1
β = `(0).
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In summary, we are looking for a solution n with initial value n(0) = `(0) which solves n′ = O(q, n) on

0 ≤ q ≤ q∗ and n(q) being a constant on q > q∗, where q∗ is an unknown boundary to be identified. The

conjectured second order smoothness of the original value function V now translates into the first order

smoothness of n and as such we expect n′(q∗) = 0. But the form of (20) suggests that, away from q = 0,

n′ = O(q, n) = 0 if and only if n = m. Hence the boundary point q∗ must be given by the q-coordinate

where the solution n intersects the function m(q).

The next proposition confirms that a solution n and the corresponding free boundary point q∗ indeed

exist.

Proposition 4. Suppose µ 6= ρ. Consider an initial value problem

n′(q) = O(q, n(q)) :=
β2q

1− βq
m(q)− n(q)

n(q)− `(q)
, n(0) = `(0) and n′(0) > `′(0)

where

m(q) :=
β

β + λ

{
(ρ− r)q +

λ

β
ln

(
1

β
− q
)

+
(µ− ρ)2

2σ2β

}
,

`(q) :=
β

β + λ

{[
ρ− r +

(µ− ρ)2

2σ2

]
q +

λ

β
ln

(
1

β
− q
)}

.

A unique solution to the above problem exists at least up to 0 ≤ q ≤ q∗ with n′(0) > 0 and q∗ := inf{q >

0 : n(q) ≥ m(q)} ∈ ( 1
β

(ρ−r−λ)+

(ρ−r−λ)++λ ,
1
β ). The solution n is strictly increasing and lies between `(q) and m(q)

on (0, q∗).

Proof. We first show that a unique solution exists in the neighborhood of q = 0. Let χ(q) := n(q)− `(q).

Then the initial value problem is equivalent to

χ′(q) = n′(q)− `′(q) = O(q, χ(q) + `(q))− `′(q)

=
β2

1− βq

[
β

β + λ

(µ− ρ)2

2σ2

(
1

β
− q
)
− χ(q)

]
q

χ(q)
− β

β + λ

(
ρ− r +

(µ− ρ)2

2σ2
− λ

1− βq

)
=: A(q, χ(q))

q

χ(q)
+B(q) =: Ô(q, χ(q)) (23)

subject to χ(0) = 0 and χ′(0) > 0.

Consider first a simpler problem in form of

χ′(q) = A
q

χ(q)
+B, χ(0) = 0 and χ′(0) > 0

where A,B are constants with A > 0. Making use of the substitution y = χ
q , we can obtain an ODE in

terms of y = y(q) as y + q dydq = A
y +B and in turn

y

A+By − y2
dy =

1

q
dq. (24)
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Since A > 0, the denominator on the left hand side of (24) admits an expression of (α−y)(γ+y) for some

α, γ > 0. (24) can then be solved via partial fraction which leads to the solution of |q|α+γ |α−y|α|γ+y|γ =

C for some arbitrary constant C, or equivalently

|αq − χ|α|γq + χ|γ = C.

The initial condition χ(0) = 0 forces C = 0. Hence the solution is either χ(q) = αq or χ(q) = −γq where

the former satisfies the initial condition χ′(0) > 0.

Return to the original problem (23), as A(0, 0) = β2

β+λ
(µ−ρ)2

2σ2 > 0 a small extension to the above

argument shows that a unique solution to problem (23) exists satisfying limq↓0
χ(q)
q = α where α is the

positive root to the quadratic equation

A(0, 0) +B(0)y − y2 = 0. (25)

The conclusion that n′(0) > 0 is now clear since an application of L’Hopital’s rule to n′(q) = O(q, n(q))

around q = 0 gives

n′(0) =
β2[m(0)− `(0)]

n′(0)− `′(0)
=

β2

β + λ

(µ− ρ)2

2σ2

1

n′(0)− `′(0)

and thus n′(0) > `′(0) implies n′(0) > 0.

Away from the singular initial point (0, 0), the existence and uniqueness of the solution to the ODE are

guaranteed by standard theories. Since n′(0) > `′(0) and n(0) = `(0) < m(0), n is initially lying between

`(q) and m(q). It is trivial from the form of O(q, n) that the solution n cannot cross `, and that the solution

is increasing for as long as q < 1
β and n(q) stays between m(q) and `(q). As m(q) → −∞ when q → 1

β ,

n must cross m somewhere on q < 1
β which guarantees the existence of q∗ := inf{q > 0 : n(q) ≥ m(q)}.

Moreover, as n(q) < m(q) on q < q∗ and the derivative of n has to be zero when n crosses m, we must

have m′(q∗) ≤ 0. A simple calculus exercise shows that m(q) has an inverted U-shape when ρ− r−λ > 0

with its maximum attained at q = ρ−r−λ
β(ρ−r) and thus q∗ ≥ ρ−r−λ

β(ρ−r) . Otherwise if ρ− r − λ ≤ 0 then m(q) is

decreasing for all 0 ≤ q < 1/β and in this case we can only conclude q∗ > 0. Combining these two cases

leads to q∗ ∈ ( 1
β

(ρ−r−λ)+

(ρ−r−λ)++λ ,
1
β ). �

Remark 5. Note that we have imposed an additional constraint of n′(0) > `′(0) in Proposition 4. If we

instead pick the solution with n′(0) < `′(0), then n(q) will be initially below `(q). The form of O suggests

that n is decreasing and does not cross `, and in turn m, for all q. Then there does not exist a boundary

point q∗ at which smooth pasting holds. The resulting n therefore is not a sensible candidate solution.

Finally, we consider the special case of µ = ρ. We can indeed obtain an explicit solution for n where

(19) gives a closed-form expression of N as

N(q) =
1

β + λ

[
(ρ− r)q − ln

(
1

β
− q
)]
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and thus

n(q) = ln

(
1

β
− q
)

+ βN(q) =
β

β + λ

[
(ρ− r)q +

λ

β
ln

(
1

β
− q
)]

= m(q) = `(q).

This result should not be surprising. From Proposition 4, `(q) < n(q) < m(q) on 0 < q < q∗ and

m(q)− `(q)→ 0 as µ→ ρ, we must have n(q)→ m(q) = `(q) when µ approaches ρ.

What should be the correct value of q∗ when µ = ρ? Again, we expect n is a constant on q > q∗ and

first order smoothness suggests q∗ should satisfy n′(q∗) = m′(q∗) = 0. Thus q∗ should be the q-coordinate

of the turning point of m(q) if it exists. The existence condition is given by m′(0) > 0 which is equivalent

to ρ− r − λ > 0 and the corresponding value of q∗ is ρ−r−λ
β(ρ−r) .

If ρ−r−λ ≤ 0, then one cannot locate any positive boundary point at which the first order smoothness

holds. Our conjecture in this case is that the no-dividend region vanishes which is economically equivalent

to q∗ = 0. The firm is liquidated immediately at time zero and investors receive the entire equity of the

firm as dividends. The value function should thus satisfy

V (s, x) = F (s+ x) =
1

β
ln(s+ x) +

1

β

[
r

β
+ lnβ − 1

]
=

1

β
lnx+

1

β
ln(1 + z) +

1

β

[
r

β
+ lnβ − 1

]
and thus g(z) = 1

β ln(1 + z) + 1
β

[
r
β + lnβ − 1

]
. If we apply the transformation which takes (21) to (22),

we can obtain n(q) = λ
λ+β ln 1

β = m(0) = `(0) for all q ≥ 0.

To summarize this section, all possible shapes of n, m and ` under different parameter combinations

are shown in Figure 2.

5. Construction of the candidate value function and verification

The heuristics in Section 4 guide us to write down a first order system that the transformed value

function should satisfy (with closed-form expressions available in some special cases). Conversely, given

the solution to the first order system we can reverse the transformation to construct a second order smooth

candidate value function and prove its optimality via a formal verification argument.

We first construct the candidate value function in the special case of µ = ρ ≤ r + λ in which case we

expect the optimal strategy is to liquidate the firm immediately by transferring all equity to investors via

dividends payment.

Proposition 5. Suppose µ = ρ ≤ r + λ. On (s, x) ∈ R2
+ \ {(0, 0)} define

V C(s, x) =
1

β
ln(s+ x) +

1

β

[
r

β
+ lnβ − 1

]
. (26)

Then V C(s, x) is a concave function increasing in both s and x. Moreover, LV C ≤ 0 and MV C = 0,

where L and M are the operators defined in (13) and (14).
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(c) µ = ρ > r + λ.
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(d) µ = ρ ≤ r + λ.

Figure 3. The possible shapes of the transformed value function n under different pa-

rameter combinations. When µ 6= ρ, n is first increasing and then becomes flat when it

crosses m at q = q∗. When µ = ρ, n, m and ` coincide and q∗ is the turning point of m

if exists. If µ = ρ ≤ r+ λ such that m is decreasing for all q ≥ 0, we take q∗ = 0 and the

transformed value function is a flat horizontal line n(q) = m(0) = `(0).

Proof. It is trivial that V C is concave and is increasing in both of its arguments. Direct computation

gives V Cs = V Cx = 1
β(s+x) and in turn MV C = 0. Finally,

LV C = − ln
1

β(s+ x)
− 1 +

r

β

x

s+ x
+
ρ

β

s

s+ x
− (β + λ)

[
1

β
ln(s+ x) +

1

β

(
r

β
+ lnβ − 1

)]
+ λ

[
1

β
lnx+

1

β

(
r

β
+ lnβ − 1

)]
=
λ

β
ln

x

s+ x
+
ρ− r
β

s

s+ x
≤ λ

β
ln

x

s+ x
+
λ

β

s

s+ x
=
λ

β

(
ln

x

s+ x
+ 1− x

s+ x

)
.

Simple calculus exercise shows that f(α) := lnα+ 1− α ≤ 0 for all α ∈ (0, 1) and hence LV C ≤ 0. �

Away from the special case of µ = ρ ≤ r + λ, we cannot write down the candidate value function

explicitly. In the following two propositions, we describe how the transformation introduced in Section 4

can be reversed and several important analytical properties of the constructed candidate value function

are provided.
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Proposition 6. If µ 6= ρ, let n = (n(q))0≤q≤q∗ be the solution to the initial value problem in Proposition

4 where q∗ := inf{q > 0 : n(q) ≥ m(q)}. Otherwise if µ = ρ > r + λ, define n(q) := m(q) on 0 ≤ q ≤

q∗ := ρ−r−λ
β(ρ−r) .

In both case, let z∗ := βq∗

1−βq∗ and N(q) := 1
β

[
n(q)− ln

(
1
β − q

)]
. Let w be the inverse function of N .

For −∞ < u ≤ ln z∗, define h = h(u) as the solution to∫ N(q∗)

h

dv

w(v)
= ln z∗ − u (27)

which is equivalent to ∫ q∗

w(h)

N ′(v)

v
dv = ln z∗ − u. (28)

u→ h(u) is then a strictly increasing bijection from (−∞, ln z∗]→ (N(0), N(q∗)].

Finally, set

gC(z) :=

h(ln z) + 1
β+λ

[
λ
β

(
r
β + lnβ − 1

)
+ r

β − 1
]
, 0 < z ≤ z∗;

1
β ln(1 + z) + 1

β

[
n(q∗) +

(
r
β + lnβ − 1

)
− `(0)

]
, z > z∗.

(29)

Then gC : (0,∞)→ R is a C2 function.

Proof. For ease of notation we suppress the superscript C in gC throughout the proof. We give the proof

in the case of µ 6= ρ. It is much easier to establish the results under µ = ρ since n and q∗ are then available

in closed-form.

We first show that h(u) is an increasing bijection. Recall from Proposition 4 that n is increasing. Then

N ′(v) = n′(v)
β + 1

1−βv > 0 on v < 1
β and in turn the integrand on the left hand side of (28) is strictly

positive such that w(h(u)) is strictly increasing in u. Moreover,∫ ·
0+

N ′(v)

v
dv >

∫ ·
0+

dv

v(1− βv)
= +∞.

Hence u → w(h(u)) is a bijection from (−∞, ln z∗] to (0, q∗]. Since N = w−1 is strictly increasing on

(0, q∗], u→ h(u) is a bijection from (−∞, ln z∗]→ (N(0), N(q∗)].

Now we proceed to show that g is a C2 function. On z > z∗, g is trivially a C2 function. On 0 < z < z∗,

n is a C1 function and the continuity property is inherited by (N,N ′) and then on integration by (h, h′, h′′)

and finally (g, g′, g′′). It is thus sufficient to check the continuity of g, g′ and g′′ at z = z∗ > 0.

From (27), h(ln z∗) = N(q∗) = 1
β

[
n(q∗)− ln

(
1
β − q

∗
)]

= n(q∗)
β − 1

β ln
(

1
β(1+z∗)

)
. Hence

g(z∗) = h(ln z∗) +
1

β + λ

[
λ

β

(
r

β
+ lnβ − 1

)
+
r

β
− 1

]
=

1

β
ln(1 + z∗) +

1

β

[
n(q∗) +

(
r

β
+ lnβ − 1

)
− `(0)

]
= g(z∗+).
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We now check the continuity of zg′(z) at z = z∗. Let u∗ := ln z∗ and h∗ := h(u∗). Then by construction,

z∗g′(z∗) = h′(u∗) = w(h∗) = q∗. Meanwhile, (z∗+)g′(z∗+) = z∗

β(1+z∗) = q∗. This implies the continuity

of g′ at z∗.

Similarly we check the continuity of z2g′′(z) at z = z∗. From construction we can deduce

(z∗)2g′′(z∗) = h′′(u∗)− h′(u∗) = w(h∗)[w′(h∗)− 1] = q∗
(

1

N ′(q∗)
− 1

)
= −β(q∗)2

where we have used the fact N ′(q) = 1
β

(
n′(q) + β

1−βq

)
and n′(q∗) = 0. On the other hand,

(z∗+)2g′′(z∗+) = − (z∗)2

β(1 + z∗)2
= −β(q∗)2.

This completes the proof. �

When we transform the original HJB equation in Section 4, a crucial step is a change of the independent

variable via q := w(h) which leads to the transformed value function n = (n(q))0≤q≤q∗ . Proposition 6

is about the reversal of the transformation. While q is a dummy independent variable associated with

the candidate value function n in the transformed system, one should keep in mind that q is related

to the original coordinate system through q := w[h(u)] = w[h(ln z)]. The following lemma provides an

important link between the two coordinate systems which will be utilized extensively in many of the

subsequent proofs in this paper.

Lemma 1. Recall the notations introduced in Proposition 6. Write q := w[h(u)] = w[h(ln z)]. Then z

and q are linked via

z = z(q) =
βq

1− βq
exp

(
−
∫ q∗

q

n′(v)

βv
dv

)
. (30)

In particular, z : [0, q∗]→ [0, z∗] is a strictly increasing function, z(q) ↓ 0 as q ↓ 0 and z(q) ↑ z∗ as q ↑ q∗.

Proof. Starting from (28),

ln z∗ − ln z =

∫ q∗

q

N ′(v)

v
dv =

∫ q∗

q

(
n′(v)

βv
+

1

v(1− βv)

)
dv

=

∫ q∗

q

(
n′(v)

βv

)
dv + ln

q∗

1− βq∗
− ln

q

1− βq

=

∫ q∗

q

(
n′(v)

βv

)
dv + ln z∗ − ln

βq

1− βq

and we can arrive at (30) after a slight rearrangement of the terms. Since n′(v) > 0 for all v ∈ (0, q∗],

z = z(q) is increasing in q.
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From the form of (30) it is trivial that z ↑ z∗ as q ↑ q∗ because n′(v)/v is bounded near v = q∗. To

establish z(q) ↓ 0 as q ↓ 0, observe that

0 ≤ z(q) =
βq

1− βq
exp

(
−
∫ q∗

q

n′(v)

βv
dv

)
≤ βq

1− βq
.

Taking limit gives the desired result. �

Now we formally define the candidate value function in the non-degenerate case and provide a few

useful properties.

Proposition 7. For µ 6= ρ or µ = ρ > r + λ, define

V C(s, x) =
1

β
lnx+ gC

( s
x

)
, s > 0, x > 0 (31)

where gC is defined in Proposition 6. Then:

(1) V C can be extended to s = 0 and x = 0 by continuity leading to

V C(0, x) =
1

β
lnx+

1

β

[
r

β
+ lnβ − 1

]
, x > 0,

V C(s, 0) =
1

β
ln s+

1

β

[
m(q∗) +

(
r

β
+ lnβ − 1

)
− `(0)

]
, s > 0.

(2) V C(s, x) is a concave function and is increasing in both s and x.

(3) On {(s, x) : 0 < xz∗ < s}, MV C = 0 and LV C ≤ 0.

(4) On {(s, x) : 0 < s ≤ xz∗}, LV C = 0 and MV C ≤ 0.

Proof. Again we will suppress the superscript C in gC throughout the proof for brevity.

(1) Recall that u→ h(u) is a bijection from (−∞, ln z∗] to (N(0), N(q∗)]. Then

lim
z↓0

g(z) = lim
u↓−∞

h(u) +
1

β + λ

[
λ

β

(
r

β
+ lnβ − 1

)
+
r

β
− 1

]
= N(0) +

1

β + λ

[
λ

β

(
r

β
+ lnβ − 1

)
+
r

β
− 1

]
=

1

β

[
`(0)− ln

1

β

]
+

1

β + λ

[
λ

β

(
r

β
+ lnβ − 1

)
+
r

β
− 1

]
=

1

β

[
r

β
+ lnβ − 1

]
.

Thus

V C(0, x) := lim
s↓0

V C(s, x) =
1

β
lnx+ lim

z↓0
g(z) =

1

β
lnx+

1

β

[
r

β
+ lnβ − 1

]
.

On the other hand, for all x 6= 0 and s
x = z > z∗ we have

V C(s, x) =
1

β
lnx+

1

β
ln(1 + s/x) +

1

β

[
n(q∗) +

(
r

β
+ lnβ − 1

)
− `(0)

]
=

1

β
ln(x+ s) +

1

β

[
n(q∗) +

(
r

β
+ lnβ − 1

)
− `(0)

]
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and hence

V C(s, 0) := lim
x↓0

V C(s, x) =
1

β
ln s+

1

β

[
n(q∗) +

(
r

β
+ lnβ − 1

)
− `(0)

]
since z∗ <∞.

(2) On s > xz∗,

V C(s, x) =
1

β
lnx+

1

β
ln(1 + s/x) +

1

β

[
n(q∗) +

(
r

β
+ lnβ − 1

)
− `(0)

]
=

1

β
ln(s+ x) +

1

β

[
n(q∗) +

(
r

β
+ lnβ − 1

)
− `(0)

]
which is obviously a concave function increasing in both s and x. On s ≤ xz∗ or equivalently

q ≤ q∗,

V Cx =
1

x

(
1

β
− zg′(z)

)
=

1

x

(
1

β
− h′(u)

)
=

1

x

(
1

β
− w(h)

)
≥ 1

x

(
1

β
− q∗

)
> 0

as q∗ < 1/β from Proposition 4, and

V Cs =
1

x
g′(z) =

1

s
zg′(z) =

1

s
h′(u) =

1

s
w(h) > 0.

Since g is second-order smooth at z = z∗ by Proposition 6, to show that V C concave it is sufficient

to check that the Hessian matrix

H :=

V Css V Csx

V Cxs V Cxx


is semi-negative definite on s ≤ xz∗. From the transformation adopted,

V Css =
g′′(z)

x2
=

1

s2
z2g′′(z) =

1

s2
[h′′ − h′] =

w(h)

s2
[w′(h)− 1] =

q

s2
[1/N ′(q)− 1] < 0

as

N ′(q) =
n′(q)

β
+

1

1− βq
≥ 1

1− βq
> 1 (32)

given n is increasing. Meanwhile, the determinant of H can be evaluated as

V CssV
C
xx − [V Cxs]

2 =
1

x2

[
g′′(z)

(
z2g′′(z) + 2zg′(z)− 1

β

)
− (g′(z) + zg′′(z))2

]
= − 1

x4

[
g′′(z)

β
+ (g′(z))2

]
= − 1

z2x4

[
z2g′′(z)

β
+ (zg′(z))2

]
= − 1

z2x4

[
h′′ − h′

β
+ (h′)2

]
= −w(h)

z2x4

[
w′(h)− 1

β
+ w(h)

]
= − q

z2x4

[
1/N ′(q)− 1

β
+ q

]
.

Hence det(H) ≥ 0 if and only if 1/N ′(q)−1
β + q ≤ 0 which is equivalent to N ′(q) ≥ 1

1−βq . But again

the latter holds due to (32). Thus V C is concave.
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(3) From construction of V C on s > xz∗ it is trivial that and V Cs = V Cx = 1
β(s+x) and henceMV C = 0.

Then it remains to show LV C ≤ 0. A direct evaluation of LV C on s
x = z > z∗ gives

LV C = − ln
1

βx(1 + z)
− 1 +

r

β(1 + z)
+

ρz

β(1 + z)
+

(µ− ρ)2

2σ2β

− (β + λ)

[
1

β
lnx+

1

β
ln(1 + z) +

1

β

[
n(q∗) +

(
r

β
+ lnβ − 1

)
− `(0)

]]
+
λ

β
lnx+

λ

β

[
r

β
+ lnβ − 1

]
= (ρ− r)

[
1

β

z

1 + z

]
+
λ

β
ln

[
1

β
− 1

β

z

1 + z

]
+

(µ− ρ)2

2σ2β
− β + λ

β
n(q∗)

=
β + λ

β

[
m

(
1

β

z

1 + z

)
− n(q∗)

]
≤ β + λ

β

[
m

(
1

β

z∗

1 + z∗

)
− n(q∗)

]
=
β + λ

β
[m(q∗)− n(q∗)] = 0

since m(q) is decreasing on q ≥ q∗ = z∗

β(1+z∗) and n(q∗) = m(q∗) by the definition of q∗. Note that

the inequality can be extended to x = 0 by continuity on observing that m
(

1
β

z
1+z

)
= m

(
1
β

s
s+x

)
.

(4) On z ≤ z∗ the candidate value function V C is constructed from n = (n(q))0≤q≤q∗ which by

definition solves LV C = 0. Thus we only have to verify thatMV C = V Cx −V Cs ≤ 0 on 0 < z ≤ z∗.

Under the transformation adopted the desired inequality is 1
x

(
1
β − (1 + z)g′(z)

)
≤ 0 which is

equivalent to zg′(z) ≥ z
β(1+z) and in turn q = w(h) = h′ = zg′(z) ≥ z

β(1+z) or equivalently

z ≤ βq
1−βq . But this immediately follows from (30).

�

Remark 6. Since V C is C2×1, we can extend the definition of LV C to s = 0 and x = 0 by continuity.

Similar extension can be done to show thatMV C = 0 on {(s, x) : x = 0, s > 0} and {(s, x) : xz∗ = s > 0}.

Note that we do not requireMV C at s = 0. The rationale is that along s = 0 the net equity value of the

firm is zero and hence no dividend can be paid out, i.e. dΦt = 0 is the only admissible strategy whenever

St = 0. The marginal utility contributed by the dividend term MV CdΦt is thus zero.

The following lemma provides some useful results which will facilitate the proof of the verification

theorem.

Lemma 2. (1) For V C defined in Proposition 5 or 7, sV Cs and 1
xV Cx

are bounded everywhere.

(2) Suppose µ 6= ρ or µ = ρ > λ + r such that z∗ > 0. Then
V Cs
sV Css

and
(V Cs )2

V Css
are bounded on

0 ≤ s ≤ xz∗.

Proof. (1) In the case of µ = ρ ≤ r + λ we have a closed-form expression of V C as in Proposition 5

where the desired results can be established easily.

For the more general case where V C is defined in Proposition 7, on 0 ≤ s ≤ xz∗ we have

sV Cs = zg′(z) = h′(u) = w(h) ∈ [0, q∗]
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and

1

xV Cx
=

1

1/β − zg′(z)
=

1

1/β − h′(u)
=

1

1/β − w(h)
(33)

which is bounded as w(h) = q ∈ [0, q∗] ⊂ [0, 1/β). Meanwhile, on s > xz∗ V C equals 1
β ln(s+ x)

plus a constant such that sV Cs and 1
xV Cx

are trivially bounded.

(2) Similarly,

V Cs
sV Css

=
zg′(z)

z2g′′(z)
=

h′(u)

h′′(u)− h′(u)
=

1

w′(h)− 1
=

1

1/N ′(q)− 1
(34)

which is bounded on 0 < q ≤ q∗ as N ′(q) is continuous, N ′(0) = n′(0)
β + 1 and n′(0) is non-zero

from Proposition 4. Finally,

[V Cs ]2

V Css
=

[zg′(z)]2

z2g′′(z)
=

[h′(u)]2

h′′(u)− h′(u)
=

w(h)

w′(h)− 1
=

q

1/N ′(q)− 1
(35)

which is also bounded on 0 < q ≤ q∗.

�

We are now ready to prove Theorem 1.

Proof of Theorem 1. To show that V C is indeed the value function, it is sufficient to show that V C is

simultaneously an upper bound and a lower bound of V defined in (11).

(1) In this case the candidate value function is given by (26). We first show that V ≤ V C which

relies on a perturbation argument based on Davis and Norman (1990). Fix ε > 0 and define

Ṽ C(s, x) := V C(s, x+ ε) such that Ṽ C is bounded below by V C(0, ε) = 1
β ln ε+ 1

β

[
r
β + lnβ − 1

]
.

For an arbitrary admissible strategy (c, π,Φ), let

M̃t :=

∫ t

0

[
e−(λ+β)u ln cu + λF (Xu)

]
du+ e−(λ+β)tṼ C(St, Xt).

Since Ṽ C is C2×1, generalized Ito’s lemma gives

M̃t = M̃0 +

∫ t

0

e−(β+λ)u

{
ln cu − Ṽ Cx cu + rṼ Cx Xu + ρṼ Cs Su + (µ− ρ)Ṽ Cs Suπu

+
σ2

2
Ṽ CssS

2
uπ

2
u − (β + λ)Ṽ C + λF (Xu)

}
du+

∫ t

0

e−(β+λ)u(Ṽ Cs − Ṽ Cx )dΦu

+
∑
υ≤t

e−(β+λ)υ
[
Ṽ C(Sυ, Xυ)− Ṽ C(Sυ−, Xυ−)− Ṽ Cs ∆Sυ − Ṽ Cx ∆Xυ

]
+

∫ t

0

e−(β+λ)uσπuSuṼ
C
s dBu

=: M̃0 +N1
t +N2

t +N3
t +N4

t . (36)

Consider a sequence of stopping times Tn := inf{t > 0 :
∫ t

0
(πuSuṼ

C
s )2du ≥ n} under which the

stopped local martingale N4
t∧Tn =

∫ t∧Tn
0

e−(β+λ)uσπuSuṼ
C
s dBu is a true martingale for each n.
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Since
∫ t

0
π2
udu <∞ and sV Cs (and in turn sṼ Cs ) is bounded as shown in part (1) of Lemma 2, we

have Tn ↑ ∞ almost surely.

Using Proposition 5,

MṼ C(s, x) = V Cx (s, x+ ε)− V Cs (s, x+ ε) =MV C(s, x+ ε) = 0

and

LṼ C = − lnV Cx (s, x+ ε)− 1 + rxV Cx (s, x+ ε) + ρsV Cs (s, x+ ε)− (β + λ)f + λF (x)

=

[
− lnV Cx (s, x+ ε)− 1 + r(x+ ε)V Cx (s, x+ ε) + ρsV Cs (s, x+ ε)− (β + λ)f + λF (x+ ε)

]
− rεV Cx (s, x+ ε)− λ(F (x+ ε)− F (x))

≤ −rεV Cx (s, x+ ε)− λ(F (x+ ε)− F (x)) ≤ 0

where the second last inequality is due to the fact that V C solves LV C = 0 and the last inequality

is due to V C and F being both increasing in x. Thus

N1
t ≤

∫ t

0

e−(β+λ)uLṼ Cdu ≤ 0, N2
t =

∫ t

0

e−(β+λ)uMṼ CdΦu = 0.

Moreover, the concavity property of V C is inherited by Ṽ C and as such N3
t ≤ 0.

Taking expectation on both side of (36) at t ∧ Tn leads to

E

[∫ t∧Tn

0

[
e−(λ+β)u ln cu + λF (Xu)

]
du+ e−(λ+β)(t∧Tn)Ṽ C(St∧Tn , Xt∧Tn)

]
= E(M̃t∧Tn) ≤ M̃0 = Ṽ C(s, x).

Sending n ↑ ∞, monotone convergence and bounded convergence theorem give respectively

lim
n↑∞

E

[∫ t∧Tn

0

[
e−(λ+β)u ln cu + λF (Xu)

]
du

]

= lim
n↑∞

E

[∫ t∧Tn

0

[
e−(λ+β)u ln cu + λF (Xu)

]+
du

]
− lim
n↑∞

E

[∫ t∧Tn

0

[
e−(λ+β)u ln cu + λF (Xu)

]−
du

]

= E
[∫ t

0

[
e−(λ+β)u ln cu + λF (Xu)

]
du

]
and

lim
n↑∞

E
[
e−(λ+β)(t∧Tn)Ṽ C(St∧Tn , Xt∧Tn)

]
≥ lim
n↑∞

E
[
e−(λ+β)(t∧Tn) min(Ṽ C(St∧Tn , Xt∧Tn), 0)

]
= E

[
e−(λ+β)t min(Ṽ C(St, Xt), 0)

]
.

Hence we obtain

E
[∫ t

0

[
e−(λ+β)u ln cu + λF (Xu)

]
du+ e−(λ+β)t min(Ṽ C(St, Xt), 0)

]
≤ Ṽ C(s, x) = V C(s, x+ ε).

On letting t ↑ ∞ and then ε ↓ 0, we can conclude

E
[∫ ∞

0

[
e−(λ+β)u ln cu + λF (Xu)

]
du

]
≤ V C(s, x)
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and for any admissible (c, π,Φ) and thus V (s, x) ≤ V C(s, x).

To show that V C ≤ V it is sufficient to demonstrate an admissible strategy which attains the

candidate value function. Consider the strategy of liquidating the firm by distributing the entire

equity to investors in form of dividends, and then investors consume their private wealth at a rate

of β. In other words, the candidate optimal dividend and consumption policy are given by Φ∗t = s

and c∗t = βX∗t respectively for t ≥ 0. The resulting wealth process X∗ is thus the solution to

dX∗t = (r − β)X∗t dt, X∗0 = s+ x

and hence X∗t = (s+ x)e(r−β)t. The candidate optimal consumption policy can be written as

c∗t = βX∗t = β(s+ x)e(r−β)t.

The resulting expected lifetime utility is

E
[∫ ∞

0

e−βt ln
(
β(s+ x)e(r−β)t

)
dt

]
=

1

β
ln(s+ x) +

1

β

[
r

β
+ lnβ − 1

]
= V C(s, x).

Thus V C ≤ V .

(2) The proof of V ≤ V C is omitted since it is almost identical to part (1), except that N1
t ≤ 0

and N2
t ≤ 0 are now established by part (3) and (4) of Proposition 7. To show that V ≥

V C , we again want to demonstrate there exists an admissible strategy under which V C(s, x) =

E
[∫∞

0
e−(β+λ)t[ln ct + λF (Xt)]dt

]
. Suppose the initial value (s, x) is such that s

x ≤ z∗. Define

the feedback controls c∗ = (c∗t )t≥0, π∗ = (π∗t )t≥0 as in (8). By part (2) of Lemma 2, π∗(s, x) and

c∗(s, x)/x are bounded and thus (c∗, π∗) is a pair of valid consumption/investment policy. Let

(S∗, X∗,Φ∗) be the solution to the Skorokhod problem (9).5

Let M∗t :=
∫ t

0

[
e−(λ+β)u ln c∗u + λF (X∗u)

]
du+ e−(λ+β)tV C(S∗t , X

∗
t ) be the value process under

(c∗, π∗,Φ∗). Using part (4) of Proposition 7 and the facts that dΦ∗t = 0 on Z∗t := S∗t /X
∗
t < z∗ as

well as MV C = 0 along Z∗t = z∗, Ito’s lemma gives M∗t = M∗0 +
∫ t

0
σπ∗uS

∗
uV

C
s dBu. By part (2)

of Lemma 2 the integrand of the stochastic integral is bounded and thus it is a true martingale

such that

E
[∫ t

0

e−(λ+β)u (ln c∗u + λF (X∗u)) du

]
+ E

[
e−(λ+β)tV C(S∗t , X

∗
t )
]

= E(M∗t ) = M∗0 = V C(s, x). (37)

To show that (c∗, π∗,Φ∗) is admissible, we want to demonstrate that S∗t ≥ 0 and X∗t ≥ 0 for all

t and also T := inf{t ≥ 0 : (S∗t , X
∗
t ) ∈ (0, 0)} =∞. The design of Φ∗ immediately implies S∗t ≥ 0

and X∗t ≥ 0. Applying Ito’s lemma directly to V C(S∗t , X
∗
t ) gives

V C(S∗t , X
∗
t ) = V C(s, x) +

∫ t

0

[
rV Cx X

∗
u + ρV Cs S

∗
u + (µ− ρ)V Cs S

∗
uπ
∗
u +

σ2

2
Vss(π

∗
uS
∗
u)2 − Vxc∗u

]
du

5The existence result is standard. See for example Theorem 4.1 of Davis and Norman (1990) or Theorem 9.2 of Shreve

and Soner (1994).
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+

∫ t

0

(V Cx − V Cs )dΦ∗u + σ

∫ t

0

π∗uV
C
s S
∗
udBu

= V C(s, x) +

∫ t

0

[
− ln c∗u + (β + λ)V C − λF (X∗u)

]
du+ σ

∫ t

0

π∗uV
C
s S
∗
udBu

= V C(s, x) +

∫ t

0

[
lnV Cx + (β + λ)V C − λF (X∗u)

]
du− µ− ρ

σ

∫ t

0

(V Cs )2

V Css
dBu

=: V C(s, x) +

∫ t

0

f1(S∗u, X
∗
u)du+

∫ t

0

f2(S∗u, X
∗
u)dBu (38)

where we have used the fact that LV C = 0 on z ≤ z∗. But

f1(s, x) = lnV Cx + (β + λ)V C − λF (x)

= ln

(
1

β
− zg′(z)

)
+ (β + λ)g(z)− λ

β

(
r

β
+ lnβ − 1

)
= ln

(
1

β
− h′(u)

)
+ (β + λ)h(u) +

r

β
− 1

= ln

(
1

β
− q
)

+ (β + λ)N(q) +
r

β
− 1 = n(q)

which is bounded on q ≤ q∗ and f2(s, x) is bounded as well by part (2) of Lemma 2. Now

V C(S∗t∧T , X
∗
t∧T ) = V C(s, x) +

∫ t∧T

0

f1(S∗u, X
∗
u)du+

∫ t∧T

0

f2(S∗u, X
∗
u)dBu

and thus we must have T =∞ because V C(S∗T , X
∗
T ) = V C(0, 0) = −∞ but the integrands on the

right hand side are bounded.

(38) and the boundedness of f1 and f2 also allow us to deduce the transversality condition

limt→∞ E
[
e−(β+λ)tV C(S∗t , X

∗
t )
]

= 0. Upon taking limit t→∞ in (37) we can conclude V (s, x) ≥

E
[∫∞

0
e−(λ+β)u (ln c∗u + λF (X∗u)) du

]
= V C(s, x) on s

x ≤ z
∗.

Finally, if the initial value (s, x) is such that s
x > z∗, then consider a strategy of paying a

discrete dividend φ∗ = s−z∗x
1+z∗ at time zero such that the ex-dividend equity to private wealth ratio

is restored to z∗, and then follow the candidate optimal strategies (c∗, π∗,Φ∗) described in the

regime of s
x ≤ z∗ thereafter. By construction of V C on z > z∗, V C(s, x) = V C(s − φ∗, x + φ∗).

Then (37) gives

E
[∫ t

0

e−(λ+β)u (ln c∗u + λF (X∗u)) du

]
+ E

[
e−(λ+β)tV C(S∗t , X

∗
t )
]

= V C(s− φ∗, x+ φ∗) = V C(s, x).

and again we can conclude V (s, x) ≥ V C(s, x).

�

6. Concluding remarks

We develop a continuous-time stochastic control model which jointly determines the optimal dividend

policy and capital structure of a defaultable firm as well as the consumption strategy of its risk averse

equity investors. We give a complete characterization of the solution to the problem. The optimal dividend
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policy is a local time strategy which keeps the ratio of the firm’s equity value to investors’ wealth below

a target threshold. Comparative statics of economic importance are derived where the impact of default

risk on the corporate policies is highlighted. A firm facing a higher default risk has stronger incentive to

pay out dividends aggressively as a precautionary move to preserve value for investors against potential

default. To offset the negative effect on investment due to the shrunk equity basis, the firm adopts a

higher leverage level to boost its return. This feature can potentially be interesting to mainstream finance

literature as dividends and leverage decision of a firm now reflect its riskiness (default probability), and

hence they could have important asset pricing implications.

We have exclusively focused on the equity value evolution without considering the payoff to the bond-

holders. In particular, the corporate yield ρ is a given constant. A possible variant of the current model

may involve bondholders who understand the default probability of the firm and adjust the cost of debt

accordingly. An example of the modeling strategy can be found in Lambrecht and Tse (2018), where

risk-neutral bondholders charge a fair corporate yield as a function of the leverage level π and default risk

λ. Our analysis can be extended in a similar fashion and this can potentially shed colors on the issues

of agency cost of debt and their impacts on the corporate policies although the analysis might then rely

more heavily on numerical studies.

Investors have logarithm utility function in the current model. A natural and tempting extension

of the model is to consider a more general power utility function such that the effect of risk aversion

can be investigated. Unfortunately, it appears difficult to apply the same set of transformation scheme

to facilitate the analysis of the HJB system since the “bequest” term λF (x) now has a multiplicative

(rather than additive) form and the resulting first order system n′ = O(q, n) is much more complicated.

Moreover, we also expect that under power utility function the issue of well-posedness will lead to extra

complications of the problem.6 Identification of the exact conditions under which well-posedness holds for

stochastic control problems of this type has historically been a very difficult task. For example, since the

rigorous formulation of the Merton consumption/investment problem under transaction costs by Davis

and Norman (1990), it has taken more than two decades for the precise well-posedness conditions to be

established by Choi et al. (2013). A full generalization of the model in the current paper to power utility

function should prove to be a challenging open problem for future research.

Capital injection is ruled out in the current model. One can relax this assumption by introducing

costly capital injections where investors can transfer cash from their private account to the firm subject to

equity issuance costs (such that our current model is the special case with infinite equity issuance costs).

Inspired by the standard literature of transaction costs, we expect the optimal dividend/capital injection

policy to be characterized by three regimes: a dividend paying region, a capital injection region and an

6For utility function in form of u(c) = c1−R/(1 − R) where R ∈ (0,∞) \ {1} is the risk aversion level, the parameter

combination of R < 1 and β ≤ (1−R)r leads to an ill-posed problem since the deterministic optimal consumption problem

under such parameters is ill-posed and thus a version of the problem with the defaultable firm is also ill-posed.
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inactive region. Analysis of this general problem will likely require a combination of techniques in the

current paper and those in Hobson et al. (2019a): the underlying HJB system can be transformed into a

family of first order crossing problems, and the correct solution is the one corresponding to the given level

of equity issuance cost. Interesting follow-up questions might include the impact of the equity issuance

costs on the optimal policies of the firm.

In our framework, the only outside investment option available to the investors is the retail saving

account. Another possible direction of future research is to allow equity investors to also invest in another

risky market asset which can potentially be correlated to the risky asset of the firm. While it is expected

that the extra dimension introduced will bring significant challenges to the analysis of the underlying HJB

equation, it is perhaps not an impossible task in view of the recent progress by Hobson et al. (2019b)

who completely solve a multi-asset Merton problem with transaction costs (albeit the special case where

transaction cost is only payable for one of the assets).

References

Allen, F. and Michaely, R. (2003). Payout policy. In Handbook of the Economics of Finance, volume 1,

pages 337–429. Elsevier.

Browne, S. (1997). Survival and growth with a liability: Optimal portfolio strategies in continuous time.

Mathematics of Operations Research, 22(2):468–493.

Choi, J. H., Sirbu, M., and Zitkovic, G. (2013). Shadow prices and well-posedness in the problem of optimal

investment and consumption with transaction costs. SIAM Journal on Control and Optimization,

51(6):4414–4449.

Davis, M. H. and Norman, A. R. (1990). Portfolio selection with transaction costs. Mathematics of

Operations Research, 15(4):676–713.

Harris, M. and Raviv, A. (1991). The theory of capital structure. The Journal of Finance, 46(1):297–355.

Hobson, D., Tse, A. S. L., and Zhu, Y. (2019a). Optimal consumption and investment under transaction

costs. Mathematical Finance, 29(2):483–506.

Hobson, D., Tse, A. S. L., and Zhu, Y. (2019b). A multi-asset investment and consumption problem with

transaction costs. Finance and Stochastics, 23(3):641–676.

Hobson, D. and Zhu, Y. (2014). Multi-asset consumption-investment problems with infinite transaction

costs. arXiv:1409.8037.

Hobson, D. and Zhu, Y. (2016). Optimal consumption and sale strategies for a risk averse agent. SIAM

Journal on Financial Mathematics, 7(1):674–719.

Jeanblanc, M., Lakner, P., and Kadam, A. (2004). Optimal bankruptcy time and consumption/investment

policies on an infinite horizon with a continuous debt repayment until bankruptcy. Mathematics of

Operations Research, 29(3):649–671.



DIVIDEND POLICY AND CAPITAL STRUCTURE OF A DEFAULTABLE FIRM 32
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7. Appendix

7.1. A bound of n. The following lemma will be useful when establishing the proofs related to the

dependence of the optimal controls on the state variables.

Lemma 3. Suppose µ 6= ρ and recall the notations introduced in Proposition 4. Let χ(q) := n(q)− `(q).

Then χ(q) ≤ αq for 0 ≤ q ≤ q∗ where α is defined to be the positive root to the quadratic equation (25).

Proof. On differentiating both side of (23), setting q → 0 and applying L’Hopital’s rule we can obtain

χ′′(0+) = − β2(µ− ρ)2

4(β + λ)2σ2α2
χ′′(0+)− β3

β + λ

which give

χ′′(0+) = − β3/(β + λ)

1 + β2(µ−ρ)2
4(β+λ)2σ2α2

< 0.

Hence χ is concave near q = 0 and then χ must be initially lying below L(q) := χ′(0)q = αq.

Write the ODE (23) as χ′(q) = Ô(q, χ(q)). Then

Ô(q, L(q)) = Ô(q, αq) =
β2

β + λ

(µ− ρ)2

2σ2α
− β

β + λ

(
ρ− r +

(µ− ρ)2

2σ2

)
− β

1− βq

(
βq − λ

β + λ

)
=

β2

β + λ

(µ− ρ)2

2σ2α
− β

β + λ

(
ρ− r +

(µ− ρ)2

2σ2

)
− 1

λ+ β

β3q

1− βq
+

λβ

λ+ β

≤ β2

β + λ

(µ− ρ)2

2σ2α
− β

β + λ

(
ρ− r +

(µ− ρ)2

2σ2

)
+

λβ

λ+ β

=
A(0, 0)

α
+B(0) = α = L′(q).

Thus χ(q) can only downcross L(q) and from this we conclude χ(q) ≤ L(q) = αq.

�

7.2. Dependence of the optimal controls on the state variables.

Proof of Proposition 1. (1) Recall from Proposition 4 that q∗ ∈
(

1
β

(ρ−r−λ)+

(ρ−r−λ)++λ ,
1
β

)
. The result follows

immediately under the relationship z∗ = βq∗

1−βq∗ .

(2) The result mainly follows from part (2) of Lemma 2 that

π∗(s, x) =
µ− ρ
σ2

[
− Vs
sVss

]
=
µ− ρ
σ2

[
− zg′(z)

z2g′′(z)

]
=:

µ− ρ
σ2

θ(z) (39)

such that θ(z) = − zg′(z)
z2g′′(z) = 1

1−1/N ′(q) which is positive, strictly larger than one and bounded

since N ′ is a positive function bounded away from 1 on q ∈ (0, q∗].
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It remains to show that θ(z) is decreasing in z which is equivalent to showing that N ′(q) is

increasing in q. By definition of N , we can obtain N ′′(q) = n′′(q)
β + β

(1−βq)2 . We work out the

second derivative of n as

n′′(q) =
d

dq
O(q, n(q)) =

d

dq

[
β2q

1− βq
m(q)− n(q)

n(q)− `(q)

]
=

d

dq

{
β2q

1− βq

[
m(q)− `(q)
n− `(q)

− 1

]}
=

β2

β + λ

(µ− ρ)2

2σ2

[n(q)− `(q)]− q[n′(q)− `′(q)]
[n(q)− `(q)]2

− β2

(1− βq)2

and hence

N ′′(q) =
β

β + λ

(µ− ρ)2

2σ2

[n(q)− `(q)]− q[n′(q)− `′(q)]
[n(q)− `(q)]2

=
β

β + λ

(µ− ρ)2

2σ2

χ(q)− qχ′(q)
[χ(q)]2

where χ(q) := n(q)− `(q) as introduced in the proof of Proposition 4. Hence to show that N ′ is

increasing it is necessary and sufficient to show that χ′(q) ≤ χ(q)
q for all 0 < q ≤ q∗.

Suppose on contrary that there exists q̄ ∈ (0, q∗] such that χ′(q̄) > χ(q̄)
q̄ =: ᾱ. From Lemma 3,

χ(q) ≤ αq for q ∈ (0, q̄] where α := χ′(0) and thus we must have ᾱ ≤ α. Let L(q) := ᾱq. Then

we have L′(q̄) = ᾱ < χ′(q̄) and hence χ(q) upcrosses L(q) at q = q̄.

Since χ′(0) = α > ᾱ, χ(q) must initially be large than L(q) for q near zero. Hence there must

exist some q̃ < q̄ where χ downcrosses L at q = q̃. But, recall the definition of Ô in (23),

ᾱ < χ′(q̄) = Ô(q̄, χ(q̄)) = Ô(q̄, ᾱq̄)

=
β2

β + λ

(µ− ρ)2

2σ2ᾱ
− β

β + λ

(
ρ− r +

(µ− ρ)2

2σ2

)
− β

1− βq̄

(
βq̄ − λ

β + λ

)
=

β2

β + λ

(µ− ρ)2

2σ2ᾱ
− β

β + λ

(
ρ− r +

(µ− ρ)2

2σ2

)
+ β − β2

(β + λ)(1− βq̄)

<
β2

β + λ

(µ− ρ)2

2σ2ᾱ
− β

β + λ

(
ρ− r +

(µ− ρ)2

2σ2

)
+ β − β2

(β + λ)(1− βq̃)

= Ô(q̃, ᾱq̃) = Ô(q̃, χ(q̃)) = χ′(q̃).

But this contradicts the fact that χ downcrosses L at q = q̃.

(3) The result is immediate from (33) where

c∗(s, x)

x
=

1

1/β − zg′(z)
=

1

1/β − q
. (40)

The above is increasing in q and in turn z and it tends to β as q ↓ 0 or equivalently z ↓ 0.

�

Proof of Proposition 2. q∗ = ρ−r−λ
β(ρ−r) under µ = ρ > λ+r and hence z∗ = βq∗

1−βq∗ = ρ−r−λ
λ . π∗ = 0 is trivial

when µ = ρ. Finally, the expression of c∗(s, x) can be established using (40) and the fact that n = m

when µ = ρ > λ+ r. Thus (30) in Lemma 1 can be further simplified to

z = z(q) =
βq

1− βq
exp

(
−
∫ ρ−r−λ

β(ρ−r)

q

m′(v)

βv
dv

)
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=
βq

1− βq
exp

[
−
∫ ρ−r−λ

β(ρ−r)

q

1

β + λ

(
ρ− r
v
− λ

v(1− βv)

)
dv

]
(41)

and we can arrive at (10).

�

7.3. Comparative statics.

Proof of Proposition 3. In the case of µ = ρ > λ+r, z∗ = ρ−r−λ
λ and π∗ = 0 and hence their comparative

statics are trivial. While it may be less trivial to deduce the comparative statics of c∗(s, x) directly from

(10), one trick is to observe its integral form as in (41) to deduce that z = z(q) is increasing in λ and

r. As z = z(q) is an increasing bijection, its inverse function q = q(z) is decreasing in λ and r. This

monotonicity is then inherited by c∗(s, x) = x
1/β−q(s/x;λ,r) .

Now we proceed to give the proof in the general case of µ 6= ρ:

(1) Recall that the transformed value function n is the solution to the ODE n′ = O(q, n) where O

is defined in Proposition 4, and the transformed dividend payment boundary is given by q∗ :=

inf{q > 0 : n(q) ≥ m(q)}.

Let b(q) := β+λ
β (m(q)−n(q)). Then the ODE becomesm′(q)− β

β+λb
′(q) = O

(
q,m(q)− β

β+λb(q)
)

which can be written as

b′(q) = ρ− r − λ

1− βq
− (β + λ)βq

1− βq
b(q)

(µ−ρ)2
2σ2

(
1
β − q

)
− b(q)

=: P (q, b(q)) (42)

subject to initial condition b(0) = β+λ
β (m(0) − `(0)) = (µ−ρ)2

2βσ2 . The dividend payment boundary

can now be expressed as q∗ := inf{q > 0 : b(q) ≤ 0}. Note that P (q, b) is decreasing in λ for as

long as 0 ≤ (µ−ρ)2
2σ2

(
1
β − q

)
which must be satisfied along the solution trajectory b = (b(q))0≤q≤q∗

since the transformed value function n = n(q) always lies between m(q) and `(q) on [0, q∗].

Consider λhi > λlo and denote by bhi (resp. blo) the solution to the ODE b′ = P (q, b(q);λhi)

(resp. b′ = P (q, b(q);λlo)) with initial condition b(0) = (µ−ρ)2
2βσ2 . Since P (q, b;λhi) < P (q, b;λlo),

bhi can only downcross blo. Thus bhi is dominated by blo at least up to min(q∗hi, q
∗
lo), where

q∗hi := inf{q > 0 : bhi(q) ≤ 0} (and q∗lo is defined similarly). Hence we must have q∗hi < q∗lo from

which we conclude q∗ and in turn z∗ = βq∗

1−βq∗ are both decreasing in λ.

The exact same argument can be used to establish the comparative statics of z∗ with respect

to µ, σ and r. From (42) it is easy to see that P (q, b) is increasing in (µ−ρ)2
σ2 (while keeping all

the other parameters fixed) and is decreasing in r. The result follows immediately.

(2) From (39), (µ − ρ)π∗(s, x) ∝ 1
1−1/N ′(q) and hence to show that (µ − ρ)π∗ is increasing in λ it

is sufficient to show that N ′(q) = N ′(q(z;λ);λ) is decreasing in λ. Using the substitution of



DIVIDEND POLICY AND CAPITAL STRUCTURE OF A DEFAULTABLE FIRM 36

b(q) := β+λ
β (m(q)− n(q)) again, we have

N ′(q;λ) =
n′(q;λ)

β
+

1

1− βq
=
m′(q;λ)− β

β+λb
′(q;λ)

β
+

1

1− βq

=
βq

1− βq
b(q;λ)

(µ−ρ)2
2σ2

(
1
β − q

)
− b(q;λ)

+
1

1− βq

and thus N ′(q;λ) is decreasing in λ under a fixed q as b(q;λ) is decreasing in λ as shown in part

(1) of this proof. Then

d

dλ
N ′(q(λ);λ) =

∂

∂λ
N ′(q(λ);λ) +

∂

∂q
N ′(q(λ);λ)

∂

∂λ
q(λ) < 0

since q(λ) is decreasing in λ and N ′(q) is increasing in q as already shown in part (1) of this proof

and part (2) of the proof of Proposition 1 respectively. Similarly, we can show that (µ − ρ)π∗ is

increasing in r.

(3) From (40) the optimal consumption rate per unit wealth is given by c∗(s,x)
x = 1

1/β−q . We first

show that the expression is decreasing in λ which is equivalent to showing that q = q(z;λ) is

decreasing in λ.

Using (30) and the substitution of b(q) := β+λ
β (m(q)− n(q)) again, we have

z = z(q;λ) =
βq

1− βq
exp

−∫ q∗(λ)

q

 β

1− βv
b(v;λ)

(µ−ρ)2
2σ2

(
1
β − v

)
− b(v;λ)

 dv

 .
We have shown in part (1) of the proof that both q∗(λ) and b( · ;λ) are decreasing in λ. Hence

z = z(q;λ) is increasing in λ. As z = z(q;λ) is increasing in q, q = q(z;λ) is decreasing in λ.

Hence the result follows. Using the exact same argument, it can be shown that q = q(z; r) and in

turn c∗(s,x)
x are decreasing in r.
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