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Abstract— In this work, numerical solution to a general
electromagnetic (EM) system is studied using a formalism based
on the formulas for the E–B–A–φ formulas with different
gauge conditions. The finite-difference time-domain (FDTD)
method is employed to discretize these formulas. In addition,
the convolutional perfectly matched layer (CPML) technique is
successfully applied to absorb outgoing scattered waves described
by the proposed formulas. The gauge invariance of EM fields
in inhomogeneous environment is demonstrated by numerical
examples. Moreover, the proposed EM framework integrated
with the Schrödinger equation is introduced to investigate the
mesoscopic phenomenon for light–matter interaction, which is
useful to design laser pulses for controlling discrete quantum
states. The work offers a simple and general numerical EM
framework, which is essential to bridge the classical EM and
quantum mechanical systems.
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I. INTRODUCTION

COMPUTATIONAL electromagnetics (CEM) [1] solves
scientific and engineering problems in the EM regime,

such as antenna design and optimization [2], ground pene-
trating radar [3], and electronic devices [4]. When the size
of highly integrated devices approaches the nanoscale, sev-
eral quantum effects, such as spill-out and tunneling effects
of electrons [5], and electron transition [6] of atoms and
molecules, become increasingly more significant in the EM
system and cannot be ignored. In these cases, the classical EM
framework is no longer applicable, and these quantum effects
will lead to a crucial influence on the performance of photonic
and electronic nanodevices. Moreover, these quantum effects
can be applied to improve device performance and enhance
their functionality. Therefore, the study of the interaction
between artificial atoms and external EM fields has become
an important and rapidly growing research topic in developing
next-generation electronic technologies. Equally important,
designing nanodevices and understanding their quantum prop-
erties via practical measurements can be extremely expensive
and time-consuming. Therefore, the development of an effi-
cient numerical simulation platform for EM response of a
nanoscale system is desirable. In fact, some numerical methods
based on Maxwell–Schrödinger (M–S) equations [7]–[10] or
Maxwell–Bloch equations [11]–[13] have been proposed to
model the multiphysics and multiscale problems in a hybrid
regime of classical EM and quantum worlds.

In order to bridge the quantum mechanics (QM) and clas-
sical EM, an alternative form of Maxwell equations based on
the vector potential (A) and scalar potential (φ) formulas is
proposed, instead of employing traditional H fields [14], [15].
However, the second-order partial differential operators acting
on the field components in temporal and spatial domains
make the numerical implementation of the formulas difficult,
especially for the perfectly matched layer (PML) technique
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used to truncate the computational domain and absorb out-
wardly propagating waves. To investigate the dynamics of
charge wave packets in a carbon nanotube, a hybrid method
utilizing the transmission line matrix [16] method and finite-
difference time-domain (FDTD) approach [17] was employed
to solve for the M–S equation. In addition, other hybrid numer-
ical methods, such as the locally one-dimensional (LOD)
FDTD method [18] and alternating-direction-implicit (ADI)
FDTD method, were also used to solve for the coupled
M–S equations for simulating nanodevices [19]. Moreover,
based on the solution to the M–S equations, some other
multiphysics simulations, such as the modeling of optically
controlled quantum states with the Lorenz gauge [20] and the
modeling of EM field–particle interaction with the Coulomb
gauge [21], [22], were also developed. However, the discussion
of the gauge invariance is not comprehensive in the above-
mentioned works. In most of these cases, one simply chose a
suitable type of field gauge for a specific problem.

In this article, we propose a simple but general E–B–A–φ
formulas that necessitate first-order partial differential opera-
tors both in time and space domains. The proposed numerical
framework can be used to simulate the EM response of
inhomogeneous and dispersive media. In particular, the Lorenz
gauge with different forms is applied in the proposed frame-
work to demonstrate the gauge invariance of EM fields.
In addition, the convolutional PML (CPML) technique is
successfully applied to the coupled EM system described
by the proposed formulas. Meanwhile, the accuracy of the
numerical framework established and the gauge invariance of
EM fields are verified by several numerical examples. Finally,
the proposed hybrid EM system coupled to the Schrödinger
equation is employed to simulate the transient interaction
between an EM control pulse and a single electron that is
confined in a quasi-one-dimensional nanoscale potential well.
The simulation results show that the proposed method could
reproduce a perfect quantum state switching while with a
more straightforward numerical solution process. This article
is organized as follows. In Section II, the decoupled A and φ
equations and the proposed E–B–A–φ formulas are presented,
and the iteration procedures and the spatial distribution of the
field components are introduced. Then, the method of applying
the CPML technique to the proposed EM system is introduced.
In Section III, several numerical examples are adopted to
verify both the accuracy of the proposed method and the gauge
invariance of the EM fields. In Section IV, the combination
of the proposed EM system with the Schrödinger equation
is presented to design the laser pulse for controlling discrete
quantum states. Finally, the conclusion and outlook are pre-
sented in Section V.

II. EM SYSTEM WITH VECTOR AND SCALER POTENTIALS

A. E–B–A–φ Formulas of EM System

The time-harmonic form of Maxwell’s equations in linear,
isotropic, and nonmagnetic medium can be written as

− jχB(r) = ∇ × E(r) (1)

jχD(r)+ J(r) = ∇ × H(r) (2)

∇ · B(r) = 0 (3)

∇ · D(r) = ρ(r). (4)

The constitutive relations between these field components
are to be described by

D(r, χ) = ε(r, χ)E(r, χ),B(r, χ) = μH(r, χ) (5)

where ε(r, χ) is the inhomogeneous permittivity of the dis-
persive medium and μ is the constant permeability.

According to the above constitutive relations, (2) is rewrit-
ten as

jχε(r)E(r)+ J(r) = μ−1∇ × B(r). (6)

By using the divergence-free condition ∇ · B = 0, one can
introduce the vector potential A through

B(r) = ∇ × A(r). (7)

Using (1), the relation among A, φ, and E satisfies the
following:

jχA(r) = −E(r)− ∇φ(r). (8)

Substituting (8) into (4), we have

jχ∇ · (ε(r)A(r))+ ∇ · (ε(r)∇φ(r)) = −ρ(r). (9)

Similarly, substituting (7) and (8) into (2), then

μ−1∇ × ∇×A(r)+ ( jχ)2ε(r)A(r)+ jχε(r)∇φ(r) = J(r).

(10)

To derive the decoupled A–φ formulas, one method is to
use the simple Lorenz gauge

∇ · A(r) = −με jχφ(r). (11)

It is easy to prove using (11) that the coupled A–φ formulas
can be decoupled in homogeneous media (ε(r) = ε)

∇2φ − με( jχ)2φ = −ρ/ε (12)

∇2A − με( jχ)2A = −μJ. (13)

Another gauge is the generalized Lorenz gauge [23]

ε(r)−1∇ · (ε(r)A(r)) = −με(r) jχφ(r). (14)

The generalized Lorenz gauge defined by (14) can
lead to the decoupled A–φ formulas in inhomogeneous
media [14], i.e.,

∇ · (ε(r)∇φ(r))− με(r)2( jχ)2φ(r) = −ρ (15)

−J = −μ−1∇ × ∇ × A(r)− ( jχ)2ε(r)A(r)

+μ−1ε(r)∇[ε(r)−2∇ · (ε(r)A(r))]. (16)

The two sources in the A–φ formulas are related to the
current continuity equation ∇ · J + jχρ = 0. In order to get
the solution of the decoupled A–φ formulas (12) and (13)
or (15) and (16), one needs to numerically solve the second-
order partial differential equations (PDEs), which is usually
time-consuming and complicated when the FDTD method is
applied in time domain.

Instead of directly solving the formulas (12) and (13)
or (15) and (16), a novel iteration approach based on the
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Fig. 1. Space and time configurations of the field components (E, B, A, J,
φ, ψR , and ψI ) on a Yee grid indexed as (i , j , and k) and n + 1/2 and n + 1
indicate the points on the time axis.

E–B–A–φ formulas is proposed to simulate a series of first-
order PDEs in sequence. As a result, the E–B–A–φ formulas
can be implemented much more efficiently, particularly for
the implementation of PML. Moreover, the gauge condition
(11) or (14) can be conveniently adopted to prove the gauge
invariance as well. According to the relation between EM field
components and potential field components, (6)–(8) can be
coupled via the Lorenz gauge condition (11) or (14) to form a
self-consistent numerical system, where only first-order PDEs
are to be discretized.

To numerically solve the self-consistent system, i.e.,
(6–8, 11) or (6–8, 14), we can transform the time-harmonic
form of the E–B–A–φ formulas into corresponding time-
domain form, which could be easily simulated with the FDTD
method. It is shown that the complexity of the proposed
E–B–A–φ formulas is about 1.5 times larger than that of the
traditional E-H curl equations.

In the Yee grid of the FDTD method, the electric fields are
located at the centers of its edges, and magnetic fields are
located at the centers of its faces, as shown in Fig. 1. In our
E–B–A–φ framework, A and E are placed at the same
positions. According to the Lorenz gauge, the positions of
A and φ are half a grid apart, and thus, φ is located at the
corner of the Yee cell. It must be noted that, for the generalized
Lorenz gauge, the location of permittivity ε(r) on the left-hand
side of (14) should be the same as that of A. Similarly, the
location of the permittivity ε(r) on the right-hand side of (14)
should be the same as that of φ. The discrete spatial positions
of these field components in a Yee cell are shown in Fig. 1.

The time-evolution procedure of the E–B–A–φ framework
is shown in Fig. 2. First, one sets the simulation domain and
defines the object in space. Subsequently, in order to reduce
the simulation time, some time-independent coefficients are
evaluated before starting the time-evaluation loop. At each
iteration step, the B components are calculated by using the
value of A, and then, the value of B is used to update E.

Fig. 2. Schematic of the numerical method for updating the field components
in the E–B–A–φ system.

Using the values of E and φ, the components of A are
evaluated, and then, the corresponding results are used to
update the value of φ. Simultaneously, the updating equations
of the proposed E–B–A–φ framework are described in detail
in the Appendix.

B. CPML for the Proposed EM System

In addition, to numerically simulate the wave propagation
in infinite space, the CPML technique is adopted in the
E–B–A–φ system. According to the CPML technique, the
spatial differential operator ∇ should be modified as

∇s = 1

sx

∂

∂x
ex + 1

sy

∂

∂y
ey + 1

sz

∂

∂z
ez (17)

where

su = ku + σu

αu + jχε0
. (18)

The quantity su is a coordinate stretched factor, and the
subscript u = x , y, and z. The parameters in the CPML
technique are scaling factors with a polynomial profile m, and
the specific expressions of these parameters are given in [24].

Using a recursive convolution method, the updating equa-
tions of the field components along the x-direction take the
following form

ε
∂Ex

∂ t
= 1

ky

∂Bz

∂y
− 1

kz

∂By

∂z
+ ΨE xy − ΨE xz (19)

Bx = 1

ky

∂Az

∂y
− 1

kz

∂Ay

∂z
+ ΨBxy − ΨBxz (20)

∂Ax

∂ t
= − 1

kx

∂φ

∂x
− ΨAxx − Ex . (21)

The formula of the generalized Lorenz gauge in the CPML
region can be derived as

∂φ

∂ t
= − 1

με2
φ

(
1

kx

∂(εx A Ax)

∂x
+ 1

ky

∂
(
εy A Ay

)
∂y

+ 1

kz

∂(εz A Az)

∂z

)

+Ψφx + Ψφy + Ψφz. (22)
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Fig. 3. Dielectric sphere illuminated by an EM plane wave.

The auxiliary variables Ψ in (19)–(22) can be updated
by using the corresponding field components. For instance,
the auxiliary variable in (22) along the x-direction takes the
forms

Ψ n+1
φxi, j,k

= bxΨ
n
φxi, j,k

+ cx
∂(εx A Ax)

∂x
(23)

and

bx = e−((σx/kx )+αx )(�t/ε0) (24)

cx = σx

σx kx + αx k2
x

(
e−((σx /kx )+αx )(�t/ε0) − 1

)
. (25)

It is worth noting that the proposed E–B–A–φ numerical
system should be divided into two parts when operating the
CPML parameters: one is the E–B and the other is the A–φ.
The settings of the CPML parameters for the field components
E–B are the same as those of the field components E–H.
It is known that the CPML parameters for field components
E–H are defined by their locations in space domain. It can
be seen from Fig. 1 that the field components E are located
at the ends of the edges and the field components B are
located at the centers of the edges. Therefore, the distance
of half a grid between E and B in each direction should be
considered when defining the CPML parameters. Although A
and E are placed at the same positions, however, the field
components A are located at the centers of the edges and the
field components φ are located at the ends of the edges in each
direction when considering the A–φ part. Through the above
analyses, it is known that the settings of CPML parameters for
the field components A should be the same as those of the field
components B. Similarly, the settings of CPML parameters for
the field components φ should be the same as those of the field
components E. The validation and flexibility of the proposed
method for the CPML technique applied in this EM system
have been investigated in the following section.

III. NUMERICAL EXAMPLES FOR EM SYSTEM

The physical system used to verify the accuracy of the
proposed numerical method and its gauge invariance is shown
in Fig. 3, where a 3-D lossless dielectric sphere with the
relative permittivity εr = 4 is illuminated by a plane-wave
excitation. The radius of the sphere is R = 300 nm. The Yee
grid size is chosen as �x = �y = �z = � = 15 nm, and

Fig. 4. E-plane bistatic RCS for a lossless dielectric sphere with the size of
half wavelength and relative permittivity of 4.

Fig. 5. H-plane bistatic RCS for a lossless dielectric sphere with the size of
half wavelength and relative permittivity of 4.

the time step interval equals 0.78 times the CFL maximum
allowed time step in the FDTD method. The computational
domain is surrounded by 15 layers of CPML and consists of
91 × 91 × 91 grid cells. The parameters in the CPML tech-
nique are scaling factors with a polynomial profile m (m = 1.9
in this example). The specific expressions of these parameters
are given in [24], and the corresponding optimal values are
chosen as kmax = 1 and σmax = 0.5(m + 1)/(150π�).
The incident plane wave has a modulated Gaussian envelope
in time with a carrier frequency of 500 THz (wavelength
of 600 nm) and t0 = 3τ , τ = 1.5 fs (t0 denotes the time
reaching peak value of the Gaussian pulse). The proposed A–φ
framework is applied to evaluate the bistatic E- and H-plane
radar cross section (RCS) at the center frequency. As shown
in Figs. 4 and 5, the numerical results of simple gauge and
generalized Lorenz gauge (ε = 4ε0) agree well with each
other. Moreover, all the numerical results exhibit very high
accuracy compared to the analytical results of Mie series
solution. Hence, the accuracy of the proposed numerical
framework is verified and the gauge invariance of the EM
fields is numerically demonstrated.
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Fig. 6. E-plane bistatic RCS for a dispersive metallic sphere (with the radius
of 20 nm and incident wavelength of 600 nm).

To further verify the gauge invariance of the universal A–φ
formalism, a more complicated 3-D dispersive metallic sphere
is studied. The radius of the sphere is 20 nm. The grid size
is chosen as �x = �y = �z = � = 1 nm, and the time
step interval equals 0.61 times the CFL maximum allowed
time step in the FDTD method. In this example, the dispersive
permittivity of metallic medium is described by the Drude
model as

εDrude(χ) = ε0[ε∞ − χ(χ)] = ε0ε∞ − ε0
χ2

p

χ(χ − jνc)
(26)

where ε∞ is the relative permittivity at infinitely-large fre-
quencies, χp is the plasma frequency, and νc is the damp-
ing coefficient. Hence, to simulate dispersive media, (6) can
be discretized by the auxiliary differential equation (ADE)
scheme [25]. In this example, ε∞ = 9.5, χp = 1.36 × 1016 Hz,
and νc = 1.048 × 1015 Hz. For simplification, the generalized
Lorenz gauge (14) in this example is given by

(ε0ε∞)−1∇ · (ε0ε∞ A) = −με0ε∞ jχφ (27)

where ε∞ = 9.5 in the sphere region and ε∞ = 1 in the air
region. Regarding the simple gauge, ε∞ = 1 is set for all
regions.

The bistatic E-plane RCS of the dispersive metallic sphere is
given in Fig. 6, whereas the absorbing cross section (ACS) and
scattering cross section (SCS) are presented in Figs. 7 and 8,
respectively. These simulation comparisons show that the
results obtained by the simple gauge agree well with those
obtained by the generalized Lorenz gauge. Moreover, both
numerical methods agree well with the analytical results.

Meanwhile, the accuracy of the proposed E–B–A–φ formu-
las system in simulating the propagation of the EM field and
the absorbing performance of the CPML applied in this system
are investigated. Considering the radiation of an electric dipole
in a three-dimensional space, the vertical dipole is assumed to
be at the center of the computational region. The computa-
tional region contains 60 × 60 × 60 Yee cells and the cell
sizes are chosen as �x = �y = �x = 0.05 m. A Gaussian

Fig. 7. ACS for a dispersive metallic sphere (with the radius of 20 nm).

Fig. 8. SCS for a dispersive metallic sphere (with the radius of 20 nm).

source with a time-domain form of e((t−3τ )/τ )2(τ = 2 ns) is
used as the radiation source and the probe point is placed
two cells away from the interface between the computational
domain and the CPML region. The number of the CPML
layers is 10 and the parameters are chosen as m = 3,
αmax = 0.04(m + 1)/(150π�), σmax = 0.5(m + 1)/(150π�),
and kmax = 1. The radiation results of the electric dipole
are shown in Fig. 9. For comparison, the numerical results
obtained by using the traditional E-H Maxwell equations
(1) and (2), A–φ framework (12) and (13), and the proposed
E–B–A–φ system are provided. It can be seen that the result
obtained by the proposed system has a good agreement with
that obtained by the traditional E–H and A–φ frameworks.
Therefore, the accuracy of the proposed system in simulating
the propagation of the EM field is demonstrated.

To evaluate the absorbing performance of the CPML applied
in this E–B–A–φ system, the relative reflection errors at the
probe point are calculated by the following:

Eerror = 20 log10

∣∣E(t)− Ere f (t)
∣∣

max|(Eref(t))| (28)
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Fig. 9. Radiation field of electric dipole for the A–φ, E–B–A–φ, and E–H
system.

Fig. 10. Relative reflection errors of the probe point Ez for the E–B–A–φ
system and E–H system, and the probe point Az for the E–B–A–φ system.

where E(t) denotes the field component at the probe point
and Eref(t) is the reference field value at the point within
an enlarged simulation domain where there are no reflected
EM waves.

As shown in Fig. 10, for the Ez field component at the probe
point, both the proposed E–B–A–φ numerical system and
traditional E–H numerical system have the comparable relative
reflection error and the maximum value is around −70 dB.
In addition, the relative reflection errors of the proposed
E–B–A–φ numerical system for the Az field component at the
probe point are also investigated, and the maximum value is
around −90 dB. These results demonstrate the validation and
efficiency of applying the CPML technique to the proposed
system.

IV. MAXWELL–SCHRÖDINGER SYSTEM

The progress of laser technology enables the control of
quantum states of the electron. The problems of realizing the
perfect switching of quantum states have attracted increasing
interest over the past two decades. As mentioned in Section I,

scientists have conducted extensive research on controlling
the quantum states of a single electron by solving the semi-
classical M–S equations with the FDTD solver. In addition,
various forms of Maxwell’s equations based on the A and φ
formulas are derived and are to be coupled to the Schrödinger
equation. The A and φ formulas introduced in the literature
contain second-order partial differential operators, and thus,
the corresponding simulation is usually time-consuming and
complicated. Due to the simplicity of the proposed E–B–A–φ
equations, these EM equations are coupled to the following
Schrödinger (29) and the quantum current density (30) to
analyze the transient interaction between the incident EM field
and the electron

i�
∂

∂ t
ψ(r, t) =

[
− �

2

2m0
∇2 + ie�

m0
A · ∇ + ie�

2m0
(∇ · A)

+ eφ + V + e2

2m0
A2

]
ψ(r, t) (29)

J(r, t) = −ie�

2m0

[
ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)

]
− e2

m0
ψ∗(r, t)Aψ(r, t) (30)

where h̄ is the reduced Planck’s constant, e and m0 are
the charge and mass of the electron, respectively, V is the
electrostatic quantum confinement potential, and ψ is the wave
function of the particle.

Meanwhile, the complex-valued calculations for solv-
ing (29) can be simplified to real-valued calculations via
splitting the wave function into its real and imaginary parts

ψ(r, t) = ψR(r, t)+ iψI (r, t). (31)

In addition, as for the model shown in Fig. 1, the time-
dependent wave function of this electron confined in a quasi-
one-dimensional potential V and subjected to a radiation field
with φ and Az .

Therefore, (29) can be derived as

∂

∂ t
ψI (r, t)

= �

2m0
∇2ψR(r, t)+ e

m0
Az · ∇ψI (r, t)

+ e

2m0
(∇ · Az)ψI (r, t)−

(
eφ + V

�
+ e2

2m0�
A2

z

)
ψR(r, t)

(32)
∂

∂ t
ψR(r, t)

= − �

2m0
∇2ψI (r, t)+ e

m0
Az · ∇ψR(r, t)

+ e

2m0
(∇ · Az)ψR(r, t)+

(
eφ + V

�
+ e2

2m0�
A2

z

)
ψI (r, t)

(33)

and the polarization current (30) density is thus obtained

Jz(r, t) = e�

2m0
[ψR(r, t)∇ψI (r, t)− ψI (r, t)∇ψR(r, t)]

− e2

m0

(
ψ2

R(r, t)+ ψ2
I (r, t)

)
Az. (34)
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Fig. 11. Geometric model of a nanotube.

According to (32) and (33), we can see that the real and
imaginary parts of wave function (ψI (r, t), ψR(r, t)) appear
at both sides of (32) and (33), respectively. Thus, the wave
function should be sampled at the time steps of n + 1 and
n + 1/2 when (32) and (33) are discretized as the discrete
forms. Accordingly, two sets of iterative equations are con-
structed. The first group is used to solve the wave function
at the time step of n + 1/2, and the second group is used to
solve the wave function at the time step of n + 1, as shown
in Fig. 1. The updating formulas for (32)–(34) are described
in detail in the Appendix.

According to the theory of [20], the control pulse generator
is designed to maximize the objective state ψ1 of the electron
from the ground state ψ0. The control pulse Es can be
generated by solving the following:

Es = −2
E0

m0
Im
〈
ψ ′|Wez|ψ ′〉 (35)

where W represents the projection operator of |ψ1〉〈ψ1| and
ψ ′ = e[−i(e/�)Az(z,t)]ψ is a unitary transformation for the
wave function ψ , and the derivation of (35) is introduced
in [26]–[28]. At last, applying equations EM (6)–(8) and
(11), Schrödinger (32) and (33), polarization current density
(34), and the control pulse Es (35), the proposed scheme can
provide a numerical simulation (as shown in Fig. 11), where a
uniform plane-wave source excites the electrons in a nanotube
to transform the quantum states of the electron from the ground
state ψ0 to the first excited state ψ1.

Fig. 12 shows a procedure illustration of the proposed
method for updating the field components in the coupled M–S
system. First, the control pulse Es (35) is obtained by the
wave function of the electron, and the polarization current
density Jz (34) generated by the electron motion will generate
the radiation fields governed by the EM system [see (6)–(8)
and (11)]. Then, the radiation fields will superimpose with
the control pulse field Es as the total external EM field
acting on the quantum system governed by (32) and (33),
and thus, the steps of transforming the control pulse Es to
As and then superimpose with Az are added in mulphysics
simulation, as shown in Fig. 12. Although the incident EM
field is polarized along the z-axis having thus only Ez and By

components initially, the last field components are also needed

Fig. 12. Procedure illustration of the proposed method for updating the field
components in the coupled M–S system.

Fig. 13. Confining potential V along the z-direction.

to interact with the electron. Therefore, all the fields, including
Ax , Ay, Az , φ, Ex , Ey, Ez , Bx , By, and Bz , are updated in
every iteration.

Finally, according to the program diagram of Fig. 12, the
numerical multiphysics simulation is performed. For the EM
system, the computational region contains 50 × 50 × 120 Yee
cells with the CPML region of ten layers, and the cell sizes
are chosen as �x = �y = 1 nm and �z = 0.01 nm. For
the QM system, as the electron is confined in the quasi-one-
dimensional space extending along the z-axis like a “tube,” its
wave function is dependent only on the z-coordinate. In other
directions, the wave function is set to be uniform and the value
is not zero only within one unit �x and �y of the Yee cell.
Hence, the wave function is norm normalized as

�x�y
∫ ∞

−∞
|ψ(z)|2dz = 1 (36)

and the length of the nanotube along the z-direction is chosen
as 1 nm; thus, 100 Yee cells are included in the QM system
along the z-direction.

The ground state ψ0 and the excited state ψ1 with the
confining potential V (Fig. 13) are shown in Fig. 14. For
numerical convergence, the wave function is initialized to
be as

ψ = √
0.9999ψ0 + √

0.0001ψ1. (37)

As shown in Fig. 15, the electron wave packet |ψ|2 initially
exists as a single peak, which corresponds to the ground state
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Fig. 14. Electron wave packet distribution of the ground state and the excited
state. The corresponding eigenenergies are 2.05 and 7.35 eV, respectively.

Fig. 15. Spatiotemporal plots of the probability density |ψ |2.

of the electron, and then, the electron wave packet starts
fluctuating about the time 2 fs. During the time interval of
2–10 fs, the electron wave packet oscillates rapidly under the
illumination of the pulse and is finally converted into the
bimodal form, which corresponds to the first excited state
of the electron. In addition, to quantify the quantum state
transition by the proposed scheme, the transition rate factor
�k is defined as

�k = 〈ψ ′ |ψk〉〈ψk |ψ ′〉 (38)

where ψk denotes the quantum state of the electron. The
resultant variations of the factors are shown in Fig. 16. As the
simulation time increases, the factor �0 decreases from one
to zero and the factor �1 increases from zero to one when
the pulse gradually raises (t = 3–10 fs). Finally, the value
of factor �1 remains stable when the pulse has gone. It can

Fig. 16. Magnitude of the transition rate factor �.

be concluded that the perfect quantum state transition is
numerically achieved by using the proposed M–S system.

V. CONCLUSION

Universal vector–scalar potentials system is proposed to
model the EM response from arbitrary inhomogeneous media
and demonstrate the gauge invariance. The numerical results
show that both simple gauge and generalized Lorenz gauge
can be adopted to calculate the time evolution of EM fields in
dispersive and nondispersive inhomogeneous media, and the
results obtained by the two gauges are nearly identical. In view
of simplicity and stability, the simple gauge is suggested to be
used. Moreover, the method of applying the CPML technique
to the proposed system is introduced, and the numerical
results demonstrate the validation and efficiency of the CPML
technique.

In addition, the proposed method provides a convenient
way to calculate the vector and scalar potentials, which is
essential to model the semiclassical quantum EM problems
described by the M–S equations. The combination of the
proposed EM system with the Schrödinger equation is pre-
sented to design laser pulse for controlling discrete quantum
states. The simulation results show that the proposed method
reproduces a perfect quantum state switching while with a
more straightforward numerical solution process. In future, the
proposed numerical method will be used to manipulate the
discrete multiquantum states and other multiphysics problems
in more complex environments where irregular structures are
included.

APPENDIX

For the EM part, according to the spatial and temporal
configuration of the field components as shown in Fig. 1,
the symbols i , j , and k denote spatial coordinates, while n
denotes the sampling point in time domain. Then, according
to the time-evolution procedure of the E–B–A–φ frame-
work as shown in Fig. 2, the updating equations for the
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EM framework are expressed as (39)–(44), shown at the
bottom of the page, where m denotes (i + (1/2), j, k),
(i, j + (1/2), k), and (i, j, k + (1/2)), respectively, and

C A(m) =
(

1 − σ(m)�t

2ε(m)

)/(
1 + σ(m)�t

2ε(m)

)
(45)

C B(m) = �t

ε(m)

/(
1 + σ(m)�t

2ε(m)

)
. (46)

For the scalar potential A and φ, we have

A
n+ 1

2
x

(
i + 1

2
, j, k

)

= A
n− 1

2
x

(
i + 1

2
, j, k

)
−�t En

x

(
i + 1

2
, j, k

)

− �t

�x

[
φn(i + 1, j, k)− φn(i, j, k)

]
(47)

A
n+ 1

2
y

(
i, j + 1

2
, k

)

= A
n− 1

2
y

(
i, j + 1

2
, k

)
−�t En

y

(
i, j + 1

2
, k

)

− �t

�y

[
φn(i, j + 1, k)− φn(i, j, k)

]
(48)

A
n+ 1

2
z

(
i, j, k + 1

2

)

= A
n− 1

2
z

(
i, j, k + 1

2

)
−�t En

z

(
i, j, k + 1

2

)

− �t

�z

[
φn(i, j, k + 1)− φn(i, j, k)

]
(49)

φn+1(i, j, k)

= φn(i, j, k)− �t

μ0ε
2
φ

×
{

1

�x
εAx

(
i + 1

2
, j, k

)[
A

n+ 1
2

x

(
i + 1

2
, j, k

)

−A
n+ 1

2
x

(
i − 1

2
, j, k

)]

+ 1

�y
εAy

(
i, j + 1

2
, k

)[
A

n+ 1
2

y

(
i, j + 1

2
, k

)

−A
n+ 1

2
y

(
i, j − 1

2
, k

)]

+ 1

�z
εAz

(
i, j, k + 1

2

)[
A

n+ 1
2

z

(
i, j, k + 1

2

)

−A
n+ 1

2
z

(
i, j, k − 1

2

)]}
.

(50)

B
n+ 1

2
x

(
i, j + 1

2
, k + 1

2

)
= 1

�y

(
A

n+ 1
2

z

(
i, j + 1, k + 1

2

)
− A

n+ 1
2

z

(
i, j, k + 1

2

))

− 1

�z

(
A

n+ 1
2

y

(
i, j + 1

2
, k + 1

)
− A

n+ 1
2

y

(
i, j + 1

2
, k

))
(39)

B
n+ 1

2
y

(
i + 1

2
, j, k + 1

2

)
= 1

�z

(
A

n+ 1
2

x

(
i + 1

2
, j, k + 1

)
− A

n+ 1
2

x

(
i + 1

2
, j, k

))

− 1

�x

(
A

n+ 1
2

z

(
i + 1, j, k + 1

2

)
− A

n+ 1
2

z

(
i, j, k + 1

2

))
(40)

B
n+ 1

2
z

(
i + 1

2
, j + 1

2
, k

)
= 1

�x

(
A

n+ 1
2

y

(
i + 1, j + 1

2
, k

)
− A

n+ 1
2

y

(
i, j + 1

2
, k

))

− 1

�y

(
A

n+ 1
2

x

(
i + 1

2
, j + 1, k

)
− A

n+ 1
2

x

(
i + 1

2
, j, k

))
(41)

En+1
x

(
i + 1

2
, j, k

)
= C A(m)En

x

(
i + 1

2
, j, k

)
+ C B(m)

×

⎡
⎢⎢⎣
(

Bn+1/2
z

(
i + 1

2
, j + 1

2
, k

)
− Bn+1/2

z

(
i + 1

2
, j − 1

2
, k

))/
�y

−
(

Bn+1/2
y

(
i + 1

2
, j, k + 1

2

)
− Bn+1/2

z

(
i + 1

2
, j, k − 1

2

))/
�z

⎤
⎥⎥⎦ (42)

En+1
y

(
i, j + 1

2
, k

)
= C A(m) · En+1

y

(
i, j + 1

2
, k

)
+ C B(m)

×

⎡
⎢⎢⎣
(

Bn+1/2
x

(
i, j + 1

2
, k + 1

2

)
− Bn+1/2

x

(
i, j + 1

2
, k − 1

2

))/
�z

−
(

Bn+1/2
z

(
i + 1

2
, j + 1

2
, k

)
− Bn+1/2

z

(
i − 1

2
, j + 1

2
, k

))/
�x

⎤
⎥⎥⎦ (43)

En+1
z

(
i, j, k + 1

2

)
= C A(m) · En+1

z

(
i, j, k + 1

2

)
+ C B(m)

×

⎡
⎢⎢⎣
(

Bn+1/2
y

(
i + 1

2
, j, k + 1

2

)
− Bn+1/2

y

(
i − 1

2
, j, k + 1

2

))/
�x

−
(

Bn+1/2
x

(
i, j + 1

2
, k + 1

2

)
− Bn+1/2

x

(
i, j − 1

2
, k + 1

2

))/
�y

⎤
⎥⎥⎦ (44)
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For the QM part, the updating equations for the discrete
forms of (32)–(34) are expressed as

ψ
n+ 1

2
R (k)

= ψ
n− 1

2
R (k)− �t�

2m0
α
[
ψn

I (k)
]

+ �te

m0
An

z (k)β
[
ψn

R(k)
]+ �te

2m0
β
[
An

z (k)
]
ψn

R(k)

+
(
�te2

2m0�

(
An

z (k)
)2 + �tV (k)

�
+ �teφn(k)

�

)
ψn

I (k) (51)

ψ
n+ 1

2
I (k)

= ψ
n− 1

2
I (k)+ �t�

2m0
α
[
ψn

R(k)
]

+ �te

m0
An

z (k)β
[
ψn

I (k)
]+ �te

2m0
β
[
An

z (k)
]
ψn

I (k)

−
(
�te2

2m0�

(
An

z (k)
)2 + �tV (k)

�
+ �teφn(k)

�

)
ψn

R(k) (52)

ψn+1
R (k)

= ψn
R(k)−

�t�

2m0
α
[
ψ

n+ 1
2

I (k)
]

+ �te

m0
A

n+ 1
2

z (k)β
[
ψ

n+ 1
2

R (k)
]

+ �te

2m0
β
[

A
n+ 1

2
z (k)

]
ψ

n+ 1
2

R (k)

+
(
�te2

2m0�

(
A

n+ 1
2

z (k)
)2

+ �tV (k)

�
+�teφn+ 1

2 (k)

�

)
ψ

n+1
2

I (k)

(53)

ψn+1
I (k)

= ψn
I (k)+

�t�

2m0
α
[
ψ

n+ 1
2

R (k)
]

+ �te

m0
A

n+ 1
2

z (k)β
[
ψ

n+ 1
2

I (k)
]

+ �te

2m0
β
[

A
n+ 1

2
z (k)

]
ψ

n+ 1
2

I (k)

−
(
�te2

2m0�

(
A

n+ 1
2

z (k)
)2

+�tV (k)

�
+�teφn+ 1

2 (k)

�

)
ψ

n+ 1
2

R (k).

(54)

After the imaginary and real parts of wave function are
calculated by (51)–(54), the polarization current J n+(1/2)

z is
obtained by

J n+1
z (k)

= e�

m0

{
ψ

n+ 1
2

R (k)β
[
ψ

n+ 1
2

I (k)
]
−ψn+ 1

2
I (k)β

[
ψ

n+ 1
2

R (k)
]}

− e2

2m0

×
[(
ψ

n+ 1
2

R (k)
)2

+
(
ψ

n+ 1
2

I (k)
)2
]

×
[

A
n+ 1

2
z

(
i, j, k + 1

2

)
+ A

n+ 1
2

z

(
i, j, k − 1

2

)]
. (55)

The operators α and β represent the sixth-order accurate
difference formulas of the first- and second-order derivatives
with respect to the z-coordinate (∂/∂k and ∂2/∂k2), respec-
tively. For an arbitrary function χ , the sixth-order accurate
difference formulas of the first- and second-order derivatives

are expressed as

β[χ(k)] = 1

60�z

[
χ(k + 3)− 9χ(k + 2)+ 45χ(k + 1)
−45χ(k − 1)+9χ(k − 2)−χ(k − 3)

]
(56)

α[χ(k)] = 1

90�z2

⎡
⎣χ(k+3)−13.5χ(k+2)+135χ(k+1)

−245χ(k)+ 135χ(k − 1)
−13.5χ(k − 2)+ χ(k − 3)

⎤
⎦.

(57)

The stability condition of the QM system that is simulated
by the FDTD simulation has been investigated in [29] and is
defined as

�t ≤ 2�

2�2

m0

(
1
�x2 + 1

�y2 + 1
�z2

)
+ Vmax

(58)

where Vmax is the maximum value. In order to have a stable
scheme, the time step �t should be taken to the minimum of
the EM or QM systems. In the next, the numerical stability of
the proposed E–B–A–φ system is analyzed and provided as
follows.

According to the updating equations of the EM fields
and the auxiliary variables (39)–(50), the matrix form of
the updating equation can be represented by (all the field
components are set at the same time for simplicity)

[Ml ]Pn+1 = [Mr ]Pn (59)

where

P = (Ex, Ey, Ez, Bx, By, Bz, Ax , Ay, Az, φ
)
. (60)

Ml and Mr are expressed by (61) and (62), respectively

Ml =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 0 0 0 0 0 0 0 0 0
0 a 0 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 b 0 0 0
0 1 0 0 0 0 0 b 0 0
0 0 1 0 0 0 0 0 b 0
0 0 0 0 0 0 Dx Dy Dz c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(61)

Mr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 0 0 0 Dz −Dy 0 0 0 0
0 a 0 −Dz 0 Dx 0 0 0 0
0 0 a Dy −Dz 0 0 0 0 0
0 0 0 1 0 0 0 −Dz Dy 0
0 0 0 0 1 0 Dz 0 −Dx 0
0 0 0 0 0 1 −Dy Dx 0 0
1 0 0 0 0 0 b 0 0 Dx

0 1 0 0 0 0 0 b 0 Dy

0 0 1 0 0 0 0 0 b Dz

0 0 0 0 0 0 0 0 0 c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(62)

where a = −με/�t , b = −1/�t , c = −με2
φ/(�tεA), and

Du = ∂/∂u (u = x , y, z) denotes the first-order derivative of
u versus space.
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We assume that the expression of the field components P
in space domain can be described by

Pn
i, j,k = φPζ

ne− j (kx�x+ky�y+kz�z) (63)

where ζ is the growth factor and ku (u = x , y, z) is the
wavenumber. Therefore, the spatial derivative of the field
components Pn

i, j,k can be approximated as

Du Pn
i, j,k = δuφPζ

ne− j (kx�x+ky�y+kz�z) (64)

and δu = 2 j sin(ku�u/2)/�u(u = x, y, z).
Substituting (63) and (64) into (59) gives

[Mlζ − Mr ]Pn = M Pn = 0 (65)

and

M

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

aζ1 0 0 0 −Dz Dy 0 0 0 0
0 aζ1 0 Dz 0 −Dx 0 0 0 0
0 0 aζ1 −Dy Dx 0 0 0 0 0
0 0 0 ζ1 0 0 0 Dz −Dy 0
0 0 0 0 ζ1 0 −Dz 0 Dx 0
0 0 0 0 0 ζ1 Dy −Dx 0 0
1 0 0 0 0 0 bζ1 0 0 −Dx

0 1 0 0 0 0 0 bζ1 0 −Dy

0 0 1 0 0 0 0 0 bζ1 −Dz

0 0 0 0 0 0 Dxζ Dyζ Dzζ cζ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(66)

where ζ1 = ζ − 1.
To determine the nonzero solution of (66), the deter-

minant of the coefficient matrix M in (66) should be
zero. The polynomial of the determinant of the coefficient
matrix M is obtained through many simplified operations and
expressed as

aζ 3(ζ − 1)
[(
σ 2

x + σ 2
y + σ 2

z

)
ζ − bc(ζ − 1)2

]
×[(σ 2

x + σ 2
y + σ 2

z

)
ζ − ab(ζ − 1)2

]2
. (67)

According to the von Neuman stability analysis method,
the module value of the growth factor ζ should be no more
than 1. For the first polynomial factor of (67), the growth
factors are ζ1,2,3 = 0, and for the second polynomial factor
of (67), the growth factor is ζ4 = 1, thereby meeting the
numerical stability requirement.

For the third polynomial factor of (67), the growth factor ζ
is obtained by

ζ5,6 =
−(σ 2

x +σ 2
x +σ 2

x +2bc
)±√(σ 2

x +σ 2
x +σ 2

x +2bc
)− 4b2c2

−2bc
.

(68)

As mentioned above, the module value of the growth factor
ζ5,6 in (68) should be no more than 1. Then, the following
condition should be satisfied:

4b2c2 ≥ (σ 2
x + σ 2

x + σ 2
x + 2bc

)
. (69)

Substituting δu = 2 j sin(ku�u/2)/�u(u = x, y, z) into
(69), thus,

[
sin(kx�x/2)

�x/2

]2

+
[
sin(kx�y/2)

�y/2

]2

+
[
sin(kx�z/2)

�z/2

]2

≤4b2c2.

(70)

Since sin(ku�u/2) can be at most one, then we get

[
1

�x/2

]2

+
[

1

�y/2

]2

+
[

1

�z/2

]2

≤ 4b2c2. (71)

As b = −1/�t and c = −με2
φ/(�tεA), we get

bc = με2
φ/
(
�t2εA

)
. (72)

Substituting (72) into (71), we get

�t =
√
με2

φ/εA
1√

(1/�x)2 + (1/�y)2 + (1/�z)2
. (73)

Although the values of permittivity εA and εφ are related
to the spatial location of A and φ, respectively, they are equal
to the same value ε. Then, the inequality of time step �t is
derived as

�t = √
με

1√
(1/�x)2 + (1/�y)2 + (1/�z)2

. (74)

For the fourth polynomial factor of (67), the growth factor
ζ is obtained by

ζ7,8 = ζ9,10

=
−(σ 2

x +σ 2
x +σ 2

x +2ab
)±√(σ 2

x +σ 2
x +σ 2

x +2bc
)−4a2b2

−2ab
.

(75)

Similarly, according to (75), we can get the following:
[

1

�x/2

]2

+
[

1

�y/2

]2

+
[

1

�z/2

]2

≤ 4a2b2. (76)

As a = −με/�t and b = −1/�t , we get

ab = με/
(
�t2
)
. (77)

Substituting (77) into (76), then the inequality of the time
step �t is derived as

�t = √
με

1√
(1/�x)2 + (1/�y)2 + (1/�z)2

. (78)

According to (74) and (78), we can conclude that the
proposed E–B–A–φ system satisfies the Courant–Friedrich–
Levy (CFL) limitation of the conventional FDTD method.

In conclusion, to have a stable scheme, the time step �t
should be taken to the minimum of the EM system (58) or
QM system (78).
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