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Abstract

Reliable and responsive tools for monitoring disease activity and treatment outcomes in patients with neuropathies are
lacking. With the emergence of ultrasensitive blood bioassays, proteins released with nerve damage are potentially useful
response biomarkers for many neurological disorders, including polyneuropathies. In this review, we provide an overview
of the existing literature focusing on potential applications in polyneuropathy clinical care and trials. Whilst several promis-
ing candidates have been identified, no studies have investigated if any of these proteins can serve as response biomarkers
of longitudinal disease activity, except for neurofilament light (NfL). For NfL, limited evidence exists supporting a role as
a response biomarker in Guillain-Barré syndrome, vasculitic neuropathy, and chronic inflammatory demyelinating polyra-
diculoneuropathy (CIDP). Most evidence exists for NfL as a response biomarker in hereditary transthyretin-related amyloi-
dosis (hATTR). At the present time, the role of NfL is therefore limited to a supporting clinical tool or exploratory endpoint
in trials. Future developments will need to focus on the discovery of additional biomarkers for anatomically specific and
other forms of nerve damage using high-throughput technologies and highly sensitive analytical platforms in adequality
powered studies of appropriate design. For NfL, a better understanding of cut-off values, the relation to clinical symptoms
and long-term disability as well as dynamics in serum on and off treatment is needed to further expand and proceed towards
implementation.
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Introduction

Polyneuropathies have a total prevalence of about 1% in the
unselected population, and up to 7% in elderly [1]. There
are many causes of polyneuropathy, the most frequent being
diabetes mellitus, alcohol overuse, nutritional deficiencies,
toxins and medication, genetic causes, and autoimmune and
haematological disorders, whilst infections, in particular lep-
rosy, are a more frequent cause in lower income countries. In
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around 20-30% of cases, the polyneuropathy has no identi-
fied cause and is idiopathic [2]. Typically, the diagnosis of
a polyneuropathy is based on the clinical pattern of history
and examination in combination with nerve conduction stud-
ies, while laboratory testing and other ancillary tests may be
needed to clarify or confirm a potential cause that may or
may not be amenable to treatment.

Arguably, the most important unmet need in the field is
the monitoring of disease activity and treatment response in
patients with treatable neuropathies such as chronic inflam-
matory demyelinating polyradiculoneuropathy (CIDP),
hereditary transthyretin-related amyloidosis (hATTR), and
anti-MAG neuropathy. Nerve conduction studies can be
poorly tolerated by patients and are also poorly responsive
to change, especially in patients with severe axonal damage.
Nerve imaging with ultrasound or MRI in the twenty-first
century has improved resolution, but with low specificity
and inconsistent reliability when used as a response bio-
marker limits utility [3]. Therefore, clinical disease activ-
ity measures currently employed in clinical care and trials
are mostly based on clinical outcomes such as measuring
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(patient reported) disability, muscle strength, and sensory
deficits through clinical examination (impairments) or
patient reported measures of disability. Unfortunately, a
reliance solely on clinical assessment has drawbacks. In the
presence of severe axonal damage (for example, in vascu-
litic neuropathy, severe Guillain-Barré syndrome (GBS), and
paranodopathies), clinical improvement can be very delayed.
In other neuropathies (for example, anti-MAG neuropathy
or genetic neuropathies), progression might be too slow to
capture change with clinical outcome measures, making
clinical decisions difficult and clinical interventional stud-
ies very prolonged. In these patients, it would be very useful
to have an early biochemical response biomarker to deter-
mine whether they are receiving optimal treatment and are
likely to obtain later improvement. Finally, clinical outcomes
cannot discern ongoing from residual damage and in some
patients, such as those receiving maintenance intravenous
immunoglobulin (IVIg) treatment for CIDP; identifying
relapse or stability may avoid trial-and-error treatment with-
drawal attempts, and unnecessary treatment re-initiations.

The recent development of high-sensitivity techniques to
measure fluid biomarkers has accelerated biomarker research
in polyneuropathies. There have recently been several
reports on how biomarkers could potentially improve and
accelerate diagnosis but also allow for assessment of dis-
ease activity. Most have focused on non-specific biomarkers
of disease activity reflecting nerve damage. In this review,
we will provide an overview of biomarker candidates that
reflect structural damage across different types of neuropa-
thies, with a focus on diagnostic and response biomarkers
[4]. In particular, we will focus on neurofilament light chain
(NfL) in blood as a response biomarker of disease activity
in different neuropathies. Finally, we will share our view
on their use in clinical care and clinical studies and future
perspectives in biomarker development.

Fluid Nerve Damage Biomarkers: What Is
Known in Peripheral Nerve Disease?

At least three important challenges exist for damage bio-
markers in neuropathies. Firstly, peripheral nerve tissue is
of low volume and nerve-specific proteins are usually only
present in very low concentrations in blood. Secondly, the
tempo of damage can be acute or more importantly very
prolonged, which when combined with biomarker phar-
macokinetics means levels can be even lower. Therefore,
assays need to have sufficient sensitivity to detect very low
circulating levels. Thirdly, nerve structures, like myelin,
axon, or paranode, may be preferentially or even exclusively
damaged in different disorders. Therefore, it is likely that
different biomarkers reflecting different nerve components
are needed. While one would prefer high specificity for a
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diagnostic biomarker, in general response, biomarkers do not
need to be so specific as long as they have sufficient sensitiv-
ity and responsiveness (that is, it will closely follow changes
in disease activity). Below, we have summarized biomarkers
reflecting damage to different nerve structures (Table 1).

Myelin Biomarkers

While the numerous lipids and proteins within Schwann
cells and the myelin sheath are now well-characterized [5],
there are currently few useful fluid biomarkers of demyelina-
tion. To date, three have shown some initial promise as bio-
markers. Extracellular sphingomyelin, a widely distributed
sphingolipid of the myelin sheath in peripheral and central
nerves, can be measured. CSF sphingomyelin was higher in
acute inflammatory demyelinating polyneuropathy (AIDP)
and CIDP than in various non-inflammatory neurological
disorders and axonal neuropathies including the acute motor
axonal neuropathy (AMAN) variant of GBS. There was
some overlap between groups, although sphingomyelin still
showed relatively good sensitivity and high specificity for
differentiating AIDP/active CIDP from other neurological
disorders [6, 7]. Levels also correlated with clinical severity
scores in both AIDP and CIDP [6]. While sphingomyelin
shows promise as a diagnostic and possibly prognostic bio-
marker, the results need to be replicated in other studies.

Neural cell adhesion molecule (NCAM) is a member of
the immunoglobulin superfamily expressed on several differ-
ent neural cell types including Schwann cells. In one study,
the mean serum NCAM levels were higher in demyelinating
neuropathies (both inflammatory and Charcot-Marie-Tooth
disease (CMT) type 1A) than in healthy controls and axonal
neuropathies, and there was a positive correlation with the
Overall Neuropathy Limitations Score [8]. NCAM levels
were also raised, but to a lesser extent, in axonal neuropa-
thies compared to healthy controls, and there was significant
overlap between demyelinating and axonal groups, probably
limiting its use as a diagnostic biomarker [8].

Serum levels of p75 neurotrophin receptor, a transmem-
brane protein expressed on Schwann cells and some CNS
neurons, were raised in inflammatory demyelinating neu-
ropathies but not in CMT1A, whereas NCAM levels were
raised in both, indicating that there may be potential to use
the levels of NCAM and p75 to differentiate CIDP from
CMT in difficult cases, with a raised p75 differentiating
CIDP from CMT 1A with both high sensitivity and specific-
ity [9]. The high serum levels of NCAM and p75 have been
postulated to reflect increased expression by demyelinating
Schwann cells and thus may not change very rapidly in acute
disease.

Transmembrane protease serine 5 (TMPRSSS), a
transmembrane protein expressed on Schwann cells, was
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identified in one study as capable of discriminating between
CMT subtypes, with CMT1A patients showing increased
serum levels whereas other forms of CMT did not have
elevated levels [10].

Axonal Biomarkers

The axonal cytoskeleton is made from a small number of
repeating co-associating proteins, and these can be released
to the extracellular space by axonal damage. By far, the best
studied axonal damage markers in neurological diseases is
NfL. NfL is a ubiquitous cytoskeletal protein and released
into the CSF and blood in numerous CNS disorders and
peripheral neuropathies (see further below). Although neu-
rofilament heavy (NfH) was described as an axonal bio-
marker well before NfL and early studies of small numbers
of patients showed that higher CSF levels predict axonal
involvement and poor outcome in GBS [11-13], it has
not been as extensively studied. Subsequent investigators
described that serum NfH levels were higher in diabetic
neuropathy than in diabetics without neuropathy [14], and
plasma levels were higher in critical illness neuropathy/
myopathy (CINM) compared to other intensive care patients
[15]; once again, in these studies, there was significant over-
lap in NfH levels between groups. In contrast to recent NfL.
data, NfH was not higher in CMT compared to healthy con-
trols [16].

The neurotrophins nerve growth factor (NGF) and brain-
derived neurotrophic factor (BDNF) have been studied in
diabetic neuropathy and chemotherapy-induced peripheral
neuropathy (CIPN), with higher levels postulated to have a
neuroprotective effect. While most studies found that lower
levels of neurotrophins correlated with neuropathy and its
severity [17-23], the opposite result was found in other stud-
ies [24-26], and thus, the utility of neurotrophins as bio-
markers remains unclear.

Glial fibrillary acidic protein (GFAP) is an interme-
diate filament expressed by astrocytes in the CNS and
by non-myelinating Schwann cells in the PNS. GFAP is
thought to be upregulated in Schwann cells after axonal
injury, and thus may be an indirect marker of axonal dam-
age [27]. One research group found that serum GFAP
was higher in axonal compared to demyelinating neu-
ropathies; however, there was significant overlap between
groups; levels were much higher in patients with multiple
sclerosis than in neuropathies [27, 28]. Increased GFAP
levels in CSF and serum have also been seen in GBS;
however, there have been conflicting results on whether
GFAP can predict long-term outcome [12, 27, 29], and
whether it can differentiate AMAN from AIDP [27, 30].
Recently, serum GFAP levels were found to be higher in

COVID-19-associated CINM than other critically unwell
COVID-19 patients [31].

S-100B is another glial protein expressed in CNS glial
cells and Schwann cells, though unlike GFAP which is
found in both myelinating and non-myelinating Schwann
cells [32]. S-100B levels have been found to be elevated
in GBS [12, 13, 33], and levels correlated with time to
recovery in one study [33] and GBS Disability Scale at
3-4 weeks in another [13]. However, levels did not predict
longer term prognosis [12, 13] and could not differentiate
AIDP from AMAN [13]. S-100B has not been studied in
other neuropathies. As evidence on the potential to dis-
criminate between axonal and demyelinating neuropathies
is conflicting for both of these glial proteins, it remains
uncertain which type(s) of structural nerve damage these
biomarkers reflect.

Osteopontin is a widely expressed protein also found in
Schwann cells, and is involved in inflammation and possi-
bly axonal regeneration [34]. One study found lower serum
levels at baseline that were weakly correlated with reduced
sural nerve amplitude and worse clinical outcome after
taxane chemotherapy; however, there was a large amount
of overlap between groups [35]. In contrast, higher CSF
levels of osteopontin were found in patients with GBS,
with higher levels correlated with greater disability in the
acute phase [36].

For disorders such as sensory neuronopathies, and
infectious and inflammatory polyradiculopathies, damage
to the neuronal cell body may occur at an early stage of
disease. Although the axon and neuron are a continuum,
and neuronal damage subsequently leads to axonal dam-
age, some authors have advocated that neuronal proteins
such as total rau may be used as markers for neuronal
damage [37]. Tau and neuron-specific enolase (NSE),
another neuronal protein, have both been studied in GBS,
with CSF levels of fau associated with worse short- and
medium-term outcome [12, 13], and CSF levels of NSE
[33] correlated with increased time to recovery [33]. In a
recent small study, there was no clear difference between
plasma tau levels in COVID-19-positive CINM patients
and other critically unwell COVID-19 patients at different
timepoints [31].

In summary, for most of the molecules above, variations
of study design and overlap between groups make it difficult
to say whether any of them are reliable disease overarch-
ing diagnostic biomarkers (see Table 1). Most importantly,
no study has focused on the potential of these molecules to
serve as response biomarkers of disease activity by conduct-
ing longitudinal studies in treatable polyneuropathies. How-
ever, with the increasing availability of proteomic panels,
many more potential biomarkers will likely become avail-
able in the coming years.
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Neurofilament Light Chain as a Monitoring
Biomarker in Peripheral Nerve Disease

NfL is a ubiquitous axonal cytoskeletal protein present
in PNS and CNS axons which forms heterodimers with
the other neurofilament alpha-internexin and peripherin
[38]. Neurofilament proteins are released with other pro-
teins into interstitial fluid during axonal damage. They can
diffuse between CSF and blood, as shown by the strong
correlation between levels in the serum and CSF [39]. Its
potential as a CSF biomarker was shown in several CNS
diseases [40]. However, since the emergence of ultrasensi-
tive technologies enabling its detection at very low levels
and in the blood, the number of neurological diseases,
including neuropathies, where increased NfL is found has
expanded enormously [39].

NfL is currently the best candidate as an axonal dam-
age biomarker for a number of reasons. It is present at
high level in axons, and is soluble and stable in vitro [39].
For example, NfL appears insensitive to most variations
in pre-analytical handling [41]. However, there are some
recovery issues with collection tubes and levels of NfL
from lithium-heparin collection tubes are systematically
higher than for plasma EDTA serum or citrated samples
[42]. Serum and plasma NfL are both stable at room tem-
perature for up to 7 days, and NfL is also stable to up to 4
freeze—thaw cycles and centrifugations [41, 43].

Several platforms have been developed to facilitate measure-
ment of NfL. Serum and plasma levels are in picogrammes per
millilitre in normal controls and only slightly higher in more
chronic pathological processes. The majority of platforms use
the antibody developed by Uman Diagnostics Measurement.
Platforms vary in sensitivity (in order of decreasing sensitivity:
Simoa-Ella-Siemens), their degree of automation (specialized
stand-alone technologies such as Simoa and Ella vs fully clini-
cal chemistry automates linked to robots, such as Siemens and
Roche), and the platform costs. Standardization across labs
and platforms is the subject of several initiatives, such as the
Alzheimer’s Association Quality Control Program and Blood-
Based Biomarker Working Interest Group. The development
of reference material and methods is an important unmet need,
to allow comparison between different platforms and assay
formats and the development of unified cut-offs. There is a
strong relationship between NfL levels and age, which means
that cross-sectional results should always be compared against
reference values obtained in the same age groups [39].

NfL levels can increase rapidly (within 12 h after
hypoxic cardiac arrest [44]) and decline slowly, with an
estimated half-life of 6 weeks. In vivo decline correspond-
ing with intervention efficacy has been shown to occur
within 12 weeks in multiple sclerosis patients treated with
ocrelizumab [45, 46].
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An overview of studies investigating NfL in neuropa-
thies is provided in Table 2. Increased blood or CSF NfL
levels compared to healthy controls have been found in
nearly all disorders investigated. However, for many dis-
orders, the data are limited by small numbers, unbalanced
control groups (especially for age), variation in analytical
platforms and methods, and limited replication. Figure 1
summarizes the relative quantitative change in NfL for
various disorders compared to healthy controls. In GBS,
increased blood and/or CSF NfL at the moment of diagno-
sis was found to predict poor outcome [29, 47]. During a
6-month course of oxaliplatin, NfL levels rose and mirrored
disease severity of chemotherapy-induced polyneuropathy
[48]. In CIDP, increased group NfL levels were not consist-
ently found across studies when comparing untreated and
treated patients, probably because axonal damage is not a
prominent feature in all forms of CIDP [49-51]. Indeed, in
neurofascin-155-mediated CIDP, NfL levels were higher
compared to other forms [49]. The evidence supporting the
role of NfL as a response biomarker of disease activity in
neuropathies is limited. When NfL is increased in CIDP,
successful treatment can lead to normalization at follow-up
[49, 51]. In patients with vasculitic neuropathy, NfL reduces
markedly from a peak when disease remission is achieved
[52]. In a clinical trial investigating patisiran for hATTR
polyneuropathy, increased NfL levels at enrolment signifi-
cantly lowered during treatment while NfL levels in the
placebo group continued to rise [53].

Neurofilament Light Chain: Perspectives
on Current Use in Practice and Trials

Taken together, only a handful of candidates of nerve tissue
biomarkers have been explored in neuropathies. NfL has been
studied most and has potential uses in clinical practice and tri-
als. Although there is some way to go in development, we are
now at an important juncture for exploring clinical applications.

NfL in Clinical Practice

NfL is released in measurable amounts in any disorder
where axonal degeneration occurs fast enough to exceed
clearance. Where this occurs in a large tissue mass, released
into a small volume of fluid and the axon loss is rapidly
occurring, this is straightforward; for example, in prion
disease and other rapidly progressive dementias, CSF NfL
levels are in nanogrammes per millilitre [54]. Significantly
raised levels are detectable in the blood, but usually 200-fold
lower and still well-discernible from healthy controls. High
levels do not necessarily correlate with other established
axonal damage biomarkers (for example tau) and are not
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Fig.1 Summary of fold change in blood NfL in various polyneu-
ropathies. This figure displays the fold change in blood NfL levels
when comparing patients to healthy controls. Values are presented in
Table 1. When reported, patients with active disease were chosen for
this comparison. CIDP, chronic inflammatory demyelinating polyneu-

specific enough to be diagnostic for particular disorders, as
raised levels occur in many diseases including ALS, adre-
noleukodystrophy, frontotemporal dementia, and autoim-
mune encephalitis. In clinical scenarios where the differ-
ential diagnosis includes disorders with differing degrees
of axonal degeneration, NfL may be of diagnostic help,
especially early after disease onset when clinical symptoms

polyneuropathy in AL amyloidosis -
polyneuropathy in vasculitis

ropathy; CMT, Charcot-Marie Tooth disease; GBS, Guillain-Barré
syndrome; hATTR, hereditary transthyretin-related amyloidosis. NB
two studies were excluded from this figure because they presented
as outliers: Kortveleyessy [74], which reports mean NfL values, and
Gaiottino [75] which uses an ECL assay

can be limited. In a memory clinic, normal serum or CSF
NfL in the ‘worried well’ can be reassuring of the lack of a
neurodegenerative process [55]. Conversion to symptomatic
ALS in genetic forms was shown to be preceded by a rise
in NfL 12 months earlier [56]. The performance of NfL as
a diagnostic biomarker in patients suspected of neuropathy
has not been studied however.
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CoV-2 +ve CINM than other SARS-CoV-2
+ve ICU patients

NSE raised in 42% of GBS patients; higher
levels correlated with time to recovery

Tau not different in GBS and DC; higher levels
in patients with Hughes F-score >2

Levels non-significantly higher in SARS-

Main results

N (diseased
patients)
38

24

11

tive)

Disease(s) studied
CINM (SARS-CoV-2 posi-

GBS
GBS

Source
CSF
Plasma
CSF

Multicentre prospective
Single centre prospective
Single centre prospective

Design

Petzold, 2009
Frithiof, 2021
Mokuno, 1994

Study

(NSE)

AMAN, acute motor axonal neuropathy variant of Guillain-Barré syndrome; MMN, multifocal motor neuropathy; HC, healthy controls; ONLS, Overall Neuropathy Limitations Score; CMT,

AIDP, acute inflammatory demyelinating polyradiculoneuropathy variant of Guillain-Barré syndrome; CIDP, chronic inflammatory demyelinating polyradiculoneuropathy; DC, diseased controls;
Charcot-Marie-Tooth disease; GBS, Guillain-Barré syndrome; GDS, GBS Disability Scale; NCS, nerve conduction studies; 72DM, type 2 diabetes mellitus; CINM, critical illness neuropathy/
myopathy; ICU, intensive care unit; CIPN, chemotherapy-induced peripheral neuropathy; TNS, total neuropathy score; CT-CAE, Common Terminology Criteria for Adverse Events; PMA, primary

muscular atrophy; SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2 infection; SNAP, sensory nerve action potential

Table 1 (continued)
Neuron specific enolase

Biomarker

As with CNS disease, there are many potential applications
such as assessing treatment efficacy and prognosis, identifying
relapses of relapsing and remitting diseases such as CIDP, and
differentiating the worried well from those with active disease.
However, NfL has not yet found a place in clinical use despite
potential in GBS, CIDP, and very promising findings in hATTR
[53]. Arguably, the greatest clinical utility would be in optimiz-
ing treatment of patients to identify ongoing axonal damage
that might become permanent before any clinical manifestation
so that effective treatment might be applied. So far, in CIDP,
such a clear differentiation has not been possible [50, 51, 57].
Moreover, it remains to be shown if NfL is the best marker to
identify axonal damage early, when permanent sequelae may
still be preventable, or whether other damage proteins released
earlier in the cascade of axonal degeneration might be better.

NfL in Clinical Trials

Clinical trials are geared towards measuring clinically signifi-
cant changes in outcome measures directly relating the thera-
peutic effect of an intervention to patient benefit in a reliable,
reproducible, and unequivocal manner. In neuromuscular
disease, measures of disability are favoured as meaningful to
patients, and impairments as quantitatively measurable. How-
ever, neither relates directly to disease pathogenesis; quantifi-
able change may take time to develop; and as these measures
are indirectly related to the pathology, they can be influenced
by patient and measurement errors.

Some biological biomarkers have proven utility as out-
comes in trials, such as muscle fat fraction MRI measurement
in CMT1A which has excellent responsiveness and reliabil-
ity in much shorter term assessments compared to clinical
measures [58]. As NfL is directly linked to axonal damage,
increases or decreases should be detectable acutely with wors-
ening or with effective disease modifying interventions. This
has already been shown in multiple sclerosis trials and, in
polyneuropathies, only for hATTR neuropathy [53, 59].

Other biomarkers of Schwann cell or cell body damage,
or perhaps immune activation, may be developed, possibly as
compound measures in the future, and these may eventually
become favoured for their directness. Until then, their inclusion
as exploratory outcomes to prove their utility, explore respon-
siveness, correlate them to clinical change, and develop cut-off
values will be important steps to them becoming accepted by
regulatory authorities alongside traditional scales.

Future

Now that we have the technologies and analytical plat-
forms, as well as increasing molecular knowledge, there is
huge potential for biomarkers to become significant tools
in diagnosis, therapeutics, and prognosis.
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For biomarker identification, peripheral nerve dis-
eases perhaps have some advantages over CNS diseases.
Firstly, the lesser tissue mass and greater volume of dis-
tribution into which NfL is released might more reli-
ably identify severe and acute damage. And arguably,
more easily quantifiable clinical outcome measures of
neuromuscular disease compared to CNS pathologies
may correlate better with measured levels of a blood
biomarker. Changes may occur more rapidly and reli-
ably than clinical outputs resulting in better signal to
noise in outcome measurement and possibly shorter
trials, at least in early phases. However, the lack of a
readily available tissue correlate and limitations of dis-
ability and impairment measures in discerning ongoing
or residual axonal degeneration may form challenges
to accurately anchor NfL levels and define meaningful
changes in polyneuropathies.

Other protein biomarkers of damage to specific cell
types, which differentiate CNS from PNS disease, that
quantify blood-nerve barrier dysfunction and identify
different pathway perturbations need to be identified and
assays developed employing the novel technologies. It is
likely that compound biomarkers utilizing two or more
biomarkers in panels will be useful. Reaching from single
protein measures into more complex pathway biomarkers
has been explored in recent novel metabolomic [60-65]
and epigenetic [66—70] approaches, where these tech-
niques have sought to identify metabolic or microRNA
‘fingerprints’ in different neuropathies. It remains to be
seen whether these will be clinically useful.

Besides more biomarkers, the best fluid compartment
for measurement also needs to be explored. Blood-based
analysis of molecules using ultrasensitive technologies
offers advantages over CSF as sampling is atraumatic
and repeated samples are easily accessible giving better
time resolution and more granular results. Urine and tears
might also possible sources of measurable biomarkers in
some cases.

Recently initiated international registries and biobanks,
such as the International Guillain-Barré Syndrome Out-
come Study (IGOS) [71], Inflammatory Neuropathy Con-
sortium Base (INCbase) [72], and IgM Anti-MAG periph-
eral Neuropathy: from proper assessment to trial Needs
(IMAGiNe) study [73], will allow collection of standard-
ized clinical data and biomaterial of large numbers of
patients that will surely speed up biomarker discovery in
the next decade. Once biomarkers have been validated and
rolled out for use, it will be important to unify technolo-
gies and institute quality control systems so assays remain
reliable, standardized, and comparable from day to day and
lab to lab. Providing core facilities for research and trials
will help, but the funding for collaborative infrastructures
will remain difficult to facilitate.

@ Springer
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