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Direct on-swab metabolic profiling of vaginal
microbiome host interactions during pregnancy and
preterm birth
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The pregnancy vaginal microbiome contributes to risk of preterm birth, the primary cause of

death in children under 5 years of age. Here we describe direct on-swab metabolic profiling

by Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) for sample preparation-

free characterisation of the cervicovaginal metabolome in two independent pregnancy

cohorts (VMET, n= 160; 455 swabs; VMET II, n= 205; 573 swabs). By integrating meta-

taxonomics and immune profiling data from matched samples, we show that specific

metabolome signatures can be used to robustly predict simultaneously both the composition

of the vaginal microbiome and host inflammatory status. In these patients, vaginal microbiota

instability and innate immune activation, as predicted using DESI-MS, associated with pre-

term birth, including in women receiving cervical cerclage for preterm birth prevention. These

findings highlight direct on-swab metabolic profiling by DESI-MS as an innovative approach

for preterm birth risk stratification through rapid assessment of vaginal microbiota-host

dynamics.
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The vaginal microbiome is a key mediator of reproductive
tract pathophysiology. Unlike other mucosal surfaces such
as the gut, low diversity in the vaginal microbiome and

dominance by Lactobacillus species is considered a hallmark of
health, particularly during reproductive years. Lactobacillus spe-
cies depletion and increased microbial diversity are characteristic
of bacterial vaginosis (BV)1, and associates with both the
increased risk of acquisition2 and ineffective treatment of sexually
transmitted infections, including HIV3,4. High diversity, BV-
associated vaginal microbiota have also been linked to HPV
infection and cervical dysplasia5,6, in vitro fertilization failure7,
miscarriage8 and preterm birth9–13. Current clinical diagnosis of
vaginal infection is largely limited to subjective assessment of
clinical symptoms in addition to time-consuming microscopic
evaluation of vaginal swab samples, pH and, in some cases,
culture14–16. These approaches fail to detect many clinically
relevant species and lack insight into overall community com-
position. Such information can be obtained using next-generation
sequencing-based approaches (e.g. metagenomics and metataxo-
nomics), but these involve complex and time-consuming sample
preparation, data processing and expense that prevents their use
for routine bedside testing. Further, molecular-based character-
ization of microbiota is unable to assess microbiota:host inter-
actions that ultimately determine health and disease phenotypes.
Therefore, there exists a need for rapid, point-of-care vaginal
diagnostics to facilitate faster clinical decision making, more
judicious use of antibiotics and targeted treatment strategies.

A common mechanistic pathway linking sub-optimal vaginal
microbiota composition (VMC) and pathophysiology is activa-
tion of host-innate immune response and inflammation17, which
can be suppressed by Lactobacillus species such as L. crispatus,
through the modification of the metabolic milieu of the cervi-
covaginal mucosa16,18. During pregnancy, untimely activation of
inflammation in gestational tissues (e.g. cervix, foetal membranes)
caused by ascending vaginal infection is thought to cause a sig-
nificant proportion of infection-associated preterm birth19,20,
which remains the primary cause of death in children under 5
years of age21. Consistent with this, we have recently reported
that cervical cerclage, a procedure used to reinforce the cervix in
women at risk of preterm delivery due to cervical shortening, can
induce vaginal bacterial dysbiosis, inflammatory activation and
premature cervical ripening associated with increased risk of
preterm birth, if performed using a braided instead of mono-
filament cerclage material22. In contrast, L. crispatus dominance
of the vaginal niche during pregnancy has been associated with
protection against preterm birth10,12,22. Despite this, individual
and ethnic variation in VMC and host response11,23,24 as well as
cost and time constraints have limited the utility of current
analytical methods used for vaginal microbiota characterization
to inform clinical decision-making during pregnancy. Current
methods for preterm birth prediction have poor positive pre-
dictive value and fail to provide insight into underlying aetiology,
which may explain low efficacy of interventions designed to
prevent preterm birth25.

We have recently described a method that enables rapid,
objective assessment of the chemical composition of mucosal
surfaces using sample preparation-free, direct on-swab desorption
electrospray ionization mass spectrometry (DESI-MS)26,27. This
involves directing a pneumatically assisted electrospray of
charged aqueous droplets directly onto a rotating swab, where it
forms a liquid film that desorbs and ionizes molecules from the
sample, which are transferred to a mass spectrometer via an
atmospheric pressure ion-transfer line. With this method, meta-
bolic profiles can be acquired rapidly (in <3 min) and directly
from a swab sample without the need for laborious sample pre-
paration or chemical extraction procedures. While lack of

chromatographic separation limits assay selectivity, it provides
the advantage of vastly simplifying the amount of maintenance
and operator intervention required. Additionally, since the sol-
vent stream only ablates sample from a small area of the swab, the
method is virtually non-destructible supporting multi-assay use
from the sampling device (e.g., cytokine/immune marker profil-
ing or 16S rRNA sequencing)16. Collectively, these characteristics
make direct on-swab DESI-MS particularly suitable for deploy-
ment in clinical point-of-care settings.

We hypothesized that vaginal microbiota:host interactions
would be reflected in the metabolic milieu of the cervicovaginal
mucosa during pregnancy and provide sufficient biochemical
information to predict both bacterial composition and host
immune response. To test this, direct on-swab DESI-MS profiling
was used to characterize the cervicovaginal metabolome of two
independent cohorts of women prospectively sampled throughout
pregnancy (VMET, n= 160; 455 swabs; VMET II, n= 205;
573 swabs, Fig. 1A). These data were then integrated with mat-
ched metataxonomic and immuno-profiling data to identify
DESI-MS metabolic signatures predictive of VMC and local
inflammatory status. We then examined if these predictive
models could be used to monitor changing VMC and host
inflammatory responses that associate with preterm birth and
clinical interventions (e.g., cervical cerclage) used during
pregnancy.

Results
Baseline characteristics of the prospective study subjects. A
total of 160 women recruited to the VMET study were long-
itudinally sampled throughout pregnancy (n= 455 swabs)
(Fig. 1A). These samples were all subjected to metabolic profiling
by DESI-MS and a cross-platform comparison using five com-
plementary liquid chromatography-MS (LC-MS) assays (Fig. 1A).
A second independent patient cohort (n= 205, VMET2 study)
were longitudinally sampled at comparable time points
(n= 573 swabs). Samples from these patients were analysed by
DESI-MS and a subset were used for immuno-profiling studies.
Key demographics including maternal age, BMI, gravida and
ethnicity were similar between the two patient cohorts (Table 1).
Preterm births rates in these high-risk populations were 18%
(n= 29; VMET) and 21% (n= 44; VMET2).

Prediction of VMC by direct on-swab DESI-MS. Ward’s linkage
hierarchical clustering (HC) analysis with Jensen–Shannon dis-
tance metric of bacterial species (operational taxonomic counts,
OTUs) was used to group vaginal samples into 11 distinct groups
as evaluated with Silhouette scores (Supplementary Fig. 1) that
were subsequently reduced into community state types (CSTs)
consistent with previous studies (Fig. 1B)9,12,13,22,23,28. Six major
CSTs were identified across both cohorts: (1) CST I (L. crispatus);
(2) CST II (L. gasseri); (3) CST III (L. iners); (4) CST IV
(Gardnerella vaginalis); (5) CST V (L. jensenii); (6) CST VII
(other Lactobacillus spp.). CST VI (Bifidobacterium breve) was
identified in the VMET2 and not in the VMET cohort, due to
differences in the primer sets used for amplicon generation
(Supplementary Fig. 1)29,30. Higher taxonomic classification at
genera level was achieved by grouping samples from CST I, II, III,
V, and VII into Lactobacillus-dominated (LDOM, VMET:
n= 379; VMET2: n= 427), and samples from CST IV and VI
into Lactobacillus-depleted (LDEPL, VMET: n= 49; VMET2:
n= 112) categories (Supplementary Table 1).

Using linear mixed effect modelling, a total of 113 metabolite
features determined in DESI-MS negative and positive ion modes
were found to significantly discriminate between LDOM and
LDEPL in independent analyses of both patient cohorts (Fig. 1B)
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Fig. 1 Direct on-swab desorption electrospray ionization mass spectrometry (DESI-MS) metabolic profiling of cervicovaginal fluid enables robust
prediction of vaginal microbiome compositions. A Study design and longitudinal multi-omic sampling and analysis workflow of cervicovaginal swab
samples collected from two independent pregnancy cohorts (VMET: n= 165, 455 swabs; VMET2: n= 205, 573 swabs). Data from each cohort were
analysed independently, and features selected only if their Benjamini–Hochberg q-value was smaller than 0.05 in both datasets, after matching the hits
from each analysis by their m/z values. B Heatmaps representing relative concentrations of DESI-MS (negative mode)-derived metabolic features (n= 88)
significantly differing between Lactobacillus spp. dominated (L-dominated, green) and Lactobacillus spp. depleted (L-depleted, red) states in both
independent patient cohorts (see Table S2). C Boxplots of representative discriminatory metabolic features with corresponding Benjamini–Hochberg
q-values identified including thiomalic acid, leucyl-serine, docosanoic acid (C22:0), lignoceric acid (C24:0) with calculated z-score measured in the
two patient cohorts VMET2 (left, n= 203, 539 swabs) and VMET (right, n= 160, 428 swabs). The lower and upper bounds of the box represent the 25th
and 75th percentile values, respectively, and the interior horizontal line the median value. Whiskers are drawn from the corresponding box boundary to
the most extreme data point located within the box bound ± 1.5 × IQR (interquartile range). m/z mass-to-charge ratio, CST community state type.
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(Supplementary Data 1). The vast majority of these metabolites
did not change with advancing gestation (Supplementary Fig. 2).
A detailed assessment of variance explained by CST, gestational
age, ethnicity, BMI and maternal age for each of the metabolite
biomarkers highlighted CST and ethnicity as being the major
factors of variance (Supplementary Fig. 3). In addition, the
proportion of total metabolome variance explained by each factor
was estimated with permutational multivariate analysis of
variance (PERMANOVA, Supplementary Table 2). While the
R2 values estimated for each covariate varied between metabolic
profiling assays, their relative importance was consistent, with
between-individual variability explaining the most variance
(35–45.2%), followed by CST (2.2–25.2%), ethnicity (0.5–2.4%)
and gestational age (0.4–1.8%). Of those, thiomalic acid and
leucyl-serine were consistently higher in LDOM samples, whereas
docosanoic acid and lignoceric acid were significantly higher in
LDEPL samples (Fig. 1C). Random forest classifier and ROC-
curve analysis were then used to assess the performance of DESI-
MS to predict VMC (Fig. 2 and Supplementary Fig. 4). Robust
prediction of genera-level classification (LDOM vs LDEPL) was
observed across patient cohorts particularly using features derived
from negative ion polarity mode (VMET/VMET2; AUC 94.1/
90.6; sensitivity: 62.0/54.5; specificity: 97.8/96.4). Discrimination
between the major vaginal CSTs (CSTI, III and IV) could also be
readily achieved by direct on-swab DESI-MS (Fig. 2). The
predictive performance of DESI-MS for all models was compar-
able to averaged (min/max) prediction performance of LC-MS
assays (VMET/VMET2; AUC 95.76 (94.3–97.7); sensitivity: 69.74
(57.5–80.2); specificity 98.28 (97.7–98.9)) (Supplementary Table 3
and Supplementary Figs. 4 and 5).

In vitro DESI-MS profiling of vaginal commensal and patho-
genic bacterial isolates. We next investigated if any of the dis-
criminatory metabolites identified in the in vivo DESI-MS
analyses could also be observed in culture isolates (n= 25) of
bacterial species recognized as being predominant members of
major vaginal CSTs. In total, 27 of the discriminatory metabolites
identified in vivo were detected by DESI-MS in swabs of culture
biomasses following correction for background media con-
centrations (Fig. 3). Approximately half of these metabolites were
detected at levels lower than that observed in media background
controls, whereas the remainder were found at levels higher than
media background. No clear relationship was observed between
the DESI-MS detected levels of these metabolites in vitro, CST
membership nor levels observed in vivo.

Assessment of host immune response at the mucosal interface
using direct on-swab DESI-MS. A panel of 22 soluble immune
markers including cytokines, chemokines, immunoglobulins and
members of the complement system were measured in a subset of
the VMET2 cohort samples (n= 391). Random forest regression
analysis was used to predict the log-transformed concentrations
of each marker using DESI-MS-derived features. Robust predic-
tion (cross-validated R2 > 0.25) was observed particularly for IL-
1β (CV R2= 0.51), IL-8 (CV R2= 0.37), C3b/iC3b (CV
R2= 0.31), IgG3 (CV R2= 0.31), IgG2 (CV R2= 0.27) and MBL
(mannose-binding lectin) (CV R2= 0.26) (Fig. 4A). Immune
markers with CV R2 > 0.1 (n= 9) and DESI-MS features with an
R2 > 0.1 for the linear regression against the immune marker
(n= 23) revealed a metabolic signature strongly associated with
local immune phenotype primarily characterized by altered levels
of long-chain fatty acids, glycerophospholipids and ceramides
(Fig. 4B and Supplementary Table 4). Both DESI-MS predicted
and immunoassay-measured levels of C3b, IL-1β, IgG2 and IgG3
were elevated in Lactobacillus-depleted vaginal microbiomes
indicating activation of the local innate and adaptive immune
response (Fig. 4C).

Direct-on swab DESI-MS as a potential tool for PTB risk
stratification. We next examined the relationship between
pregnancy outcome, VMC and inflammatory status as predicted
by DESI-MS by combining all available data from both VMET
and VMET2 patient cohorts. High vaginal microbiome diversity
and instability during pregnancy, as defined by shifts between
Lactobacillus-dominated and Lactobacillus-depleted compositions
classified with 16S rRNA gene-based metataxonomics, was asso-
ciated with an increased risk of preterm birth compared to those
women maintaining Lactobacillus-dominance throughout preg-
nancy (odds ratio (OR) 1.97, 95% confidence interval (CI)
1.03–1.66, p= 0.04) (Fig. 5A). Similarly, vaginal microbiota
instability determined solely by DESI-MS was also associated with
a higher risk of preterm birth although this did not reach sta-
tistical significance (OR 1.47, 95% CI 0.75–2.78, p= 0.25).

Increased levels of IL-1β, measured directly by immunoassay or
predicted by DESI-MS, were associated with high-diversity VMC
in both those women experiencing term birth or preterm birth.
However, levels were significantly higher in preterm birth cases
(preterm 59.63 pg/ml vs term 1.94 pg/ml, p= 0.006, Welch two
sample t-test, Fig. 5B). Increased levels of MBL, again either
measured directly by immunoassay or predicted by DESI-MS,
were also observed in high-diversity VMC of women

Fig. 2 Comparison of DESI-MS classification performance between different vaginal microbiome compositions. A ROC-curve analysis showing
performance of direct swab analysis by DESI-MS operating in both negative and positive ion polarity modes to predict Lactobacillus-depleted vaginal
microbiome compositions in both the VMET (blue; AUC: 94.1, sensitivity: 62.0, specificity: 97.8) and VMET2 (red; AUC: 90.6, sensitivity: 54.5, specificity:
96.4) patient cohorts. Discrimination between the major vaginal community state types (CST) could also be readily achieved using DESI-MS across both
patient cohorts, including B CST I vs IV, C CST III vs IV and D CST I vs III. Overall, predictive performance of DESI-MS was comparable to that of models
constructed from LC-MS assays (Supplementary Table 3 and Supplementary Fig. 4).
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subsequently delivering preterm (term 0.042 ng/ml vs preterm
0.692 ng/ml, p= 0.007, Welch two-sample t-test, Fig. 5C).

We next tested if DESI-MS metabolic, metataxonomics and
inflammatory marker profiles obtained at three different stages of
gestation, could predict subsequent preterm birth. Overall, the
predictive capacity of these models was poor (Supplementary
Table 5). We therefore focused our subsequent analyses on
preterm birth phenotypes more likely to associate with dysregu-
lated vaginal microbiota–host interactions, as previously
described22. In women at high risk of preterm birth due to
cervical shortening, vaginal levels of MBL were most frequently
increased in those treated with a cervical cerclage using braided
suture material compared to those where cerclage had been
performed with monofilament suture (10/11, 91% vs 9/21, 43%,
p= 0.011, Fisher’s exact test). This was similarly detected when
VMC and MBL levels were estimated using only DESI-MS
analysis of vaginal swabs (7/11, 64% vs 8/21, 38%, p= 0.316;
Fig. 5D). Immunoassay also indicated increased IL-1β after
braided cerclage insertion, but this was less consistently detected
by DESI-MS prediction (Fig. 5E). However, following treatment
with braided cerclage material, DESI-MS did accurately predict

low levels of IL-1β in women delivering at term compared to
those who subsequently delivered preterm (Fig. 5F).

Discussion
Despite recent developments in metataxonomics and metage-
nomics, VMC characterization in clinical settings remains largely
limited to culture and microscopy, which like molecular-based
approaches, fails to capture information regarding host response.
Our method, which is easily amenable to bedside point-of-care
testing31,32, addresses this limitation by leveraging information
contained within the cervicovaginal mucosa to provide robust
detection of VMCs and simultaneous estimation of host immune
and inflammatory status.

Many of the discriminatory metabolites identified in our study
have been previously reported using gas chromatography-MS or
LC-MS based assays in women suffering from BV33–36 or in HPV
infection37 and have biologically plausible roles in mediating
vaginal health and disease. For example, increased vaginal levels
of short- and long-chain fatty acids and biogenic amines are
associated with activation of pro-inflammatory pathways36,38–41,
which contribute to reduced barrier integrity of the epithelia and

Fig. 3 Detection of in vivo discriminatory metabolite features in bacterial biomasses by DESI-MS. Discriminatory metabolites identified in the in vivo
DESI-MS analyses were detected by DESI-MS in bacterial isolates (n= 25) of species recognized as being predominant members of major vaginal
community state types (CST). A total of 27 metabolites were detected at levels lower or higher than that observed in media background controls, where
the mean log2 fold change (FC) was estimated as the ratio of the mean intensity in the bacterial biomass samples to the mean intensity in the background
culture media samples.
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consequently, increased risk of infection34,42–45. Furthermore,
cervicovaginal lipid species have recently been associated with
tumour progression and genital inflammation defined using an
aggregated score, in a study of 78 non-pregnant, HPV-negative/
positive women with cervical dysplasia37. Lipid changes in vaginal
discharge have also been associated with vulvovaginal
candidiasis46. In our study, we profiled a larger panel of soluble

immune mediators, including humoral response mediators, and
identified associations with the metabolome via regression mod-
els. Despite different experimental approaches, our results pro-
vide further evidence that lipid species are a core component of
the metabolic signature of inflammation and immune response in
the vaginal niche. Some of the discriminatory markers used in our
in vivo DESI-MS prediction models were also detected by DESI-
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MS in vitro swab analyses of bacterial isolate biomasses. It should
be noted that the bacterial isolates analysed here were not
representative of the genetic diversity of vaginal commensal and
pathogenic strains; however, our analyses indicate that the
metabolite signatures predictive of microbiota composition and
inflammation in vivo are likely derived from both bacterial and
host sources.

Some studies have estimated that around 23–30% of total
cervicovaginal metabolic variation is associated with bacterial
composition36,47,48. Similar estimates obtained in our data
emphasize the impact of the microbial composition on the
metabolome, which is greater than the effect of gestational age,
ethnicity, maternal age, or BMI. However, using the repeated
measures per individual, we found that the top proportion of
variance explained could be attributed to between-individual
variability. The magnitude of the R2 values for microbial com-
position was higher in the LC-MS assays compared to DESI-MS.
This may represent greater coverage of relevant constituents of
the metabolome that are not detected by DESI-MS or may reflect
the technical variability of DESI-MS which, like other ambient
ionization methods, is recognized to be larger than that of LC-MS
where implementation of experimental quality control (QC),
instrumental drift correction and data filtering procedures are
more established49. Despite this, our findings highlight the
capacity of direct on-swab DESI-MS to rapidly capture this
information from the metabolome without the need for laborious
sample preparation and comparatively high per/assay time and
economic costs associated with coupled chromatography-MS
assays for similar applications. This lends itself to customization
and automation for ease-of-use, which are important character-
istics for point-of-care testing32. Our approach also offers the
advantage of providing objective simultaneous assessment of
microbiota composition and inflammatory state. In comparison,
current ‘gold standard’ diagnostic methods for vaginal infection
(e.g. Amsel criteria) are limited to a combined subjective assess-
ment of clinical symptoms and microscopy grading of bacterial
morphotypes as well as selective culture.

There is now substantial data supporting a role for the vaginal
microbiome and host immune responses in shaping preterm birth
in a proportion of women10–12,22. However, prediction of pre-
term birth using DESI-MS metabolic profiles, metataxonomics or
inflammatory marker data in our patient cohort was poor. This is
not surprising given the fact that preterm birth is a multi-
aetiological disease state that can be caused by many different
factors, including non-microbial and non-immune related
causes19,20. Because of this, we focused subsequent analyses on
women who receive cervical cerclage with braided suture, who we
have previously shown are at increased risk of preterm birth that
involves a phenotype characterized by vaginal dysbiosis and local
immune activation22. Here we confirmed these findings in an
independent patient population and highlight the utility of direct
swab analysis by DESI-MS to rapidly detect both microbiota and
inflammatory changes caused by the intervention that associate

with subsequent preterm birth risk. The ability to provide such
information at point-of-care would be transformative for direct-
ing clinical decision making and ultimately improving outcomes
for these women and their babies.

In this study, DESI-MS prediction of VMCs was capable of
monitoring vaginal microbiome diversity and instability long-
itudinally throughout pregnancy, which in the study participants
was associated with increased risk of preterm birth. These results
are consistent with a recent meta-analysis of metataxonomics-
based studies of the vaginal microbiome in pregnancy, which
reported higher variance of VMC across trimesters in women
subsequently experiencing preterm birth50. An additional
strength of our approach is the ability to simultaneously capture
relationships between VMC and local immune response. Innate
immune activation in the vagina often accompanies disease states
associated with suboptimal VMC, including BV, preterm birth,
and sexually transmitted infections51–53. For example, L. crispatus
dominance of the vaginal niche is associated with suppressed
levels of IL-1β compared to high-diversity compositions17,54–58.
Further, MBL is a recognition molecule for G. vaginalis59 and
several single-nucleotide polymorphisms in the MBL2 gene have
been reported to increase the risk of BV60,61. Our findings show
that local vaginal immune responses are reflected in the cervi-
covaginal metabolic phenotype and can be readily detected by
DESI-MS. This has clear translational benefit. We have recently
reported that cervical cerclage, a procedure used to reinforce the
cervix in women at risk of preterm delivery due to cervical
shortening, can induce vaginal bacterial dysbiosis, inflammatory
activation and premature cervical ripening associated with
increased risk of preterm birth, if performed using a braided
instead of monofilament cerclage material22. Consistent with
these findings, DESI-MS showed capacity to detect clinically
relevant inflammatory responses to cerclage insertion that asso-
ciated with patient outcome. Coupled with VMC prediction, this
highlights direct swab profiling by DESI-MS as an innovative
platform for host–microbiota interactions during pregnancy that
could potentially facilitate PTB risk stratification, optimization of
preventative interventions29 (e.g. targeted antibiotic treatment
following preterm premature rupture of the foetal membranes
and response to treatment interventions during pregnancy9).
While our study has focused upon application of DESI-MS in
pregnancy cohorts, the rapid detection of VMC and host response
offered by this methodology could also inform treatment strate-
gies in other clinical scenarios. For example, efficacy of the topical
pre-exposure prophylactic, Tenofovir, is superior in preventing
HIV acquisition in women with Lactobacillus-dominated VMCs
compared to those dominated by G. vaginalis and BV-associated
bacteria3. It is therefore conceivable that efficacy and effectiveness
could improve through stratification of treatment using point-of-
care metabolic profiling of vaginal swabs. By extension, our
approach may also be useful for bedside monitoring of response
to treatments designed to optimize VMC, such as live
biotherapeutics62 and vaginal microbiome transplantation63.

Fig. 4 Assessment of host response at the mucosal interface using direct on-swab DESI-MS profiling. A Cross-validated R2 value for all 22
corresponding measured immune mediator concentrations. B Heatmap of top 23 significantly correlated metabolite features with top 10 immune mediators
(IL-1β, IL-8, MBL, C5, C3b/C3bi, IgE, IgG2, IgG3, IgG4, IgM). t-ratio ranges from +10 (red) to −7.5 (blue). C Association between predicted log-
transformed value of immune marker by DESI-MS and measured log-transformed values by multiplexed immune-assay for IL-1β (CV R2= 0.51), IL-8 (CV
R2= 0.37), C3b/iC3b (CV R2= 0.33), IgG3 (R2= 0.31), IgG2 (CV R2= 0.27), MBL (CV R2= 0.26). A linear regression line was fitted to the log-
transformed values and their corresponding prediction. A box plot of predicted immune marker levels for LDEP (red) and LDOM (green) samples is also
presented (n= 136 pregnancies, 369 swabs). The lower, interior horizontal line, and upper bounds of the box represent the 25th, median and 75th
percentile values, respectively. Whiskers are drawn from the corresponding box boundary to the most extreme data point located within the box
bound ± 1.5 × IQR (interquartile range). P values are reported for a two-tailed Welch t-test for the difference in mean predicted immune markers between
LDEP and LDOM.
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A limitation of our approach was the relatively low sensitivity
of prediction. Further inspection of the 16S rRNA gene amplicon
data indicated that this was largely associated with mis-
classification of samples harbouring mixed compositional struc-
tures, often containing G. vaginalis (Supplementary Fig. 6). This

suggests that hard-clustering techniques often used for deter-
mining CSTs may under-estimate the impact of low abundance
taxa on the host mucosal metabolome. Comparison of predictive
performances from the LC-MS assays indicated that metabolic
coverage may also impact misclassification rate with small polar

Fig. 5 Vaginal microbiome instability and immune activation associates with preterm birth risk and poor outcomes following cervical cerclage.
A Increased risk of PTB (red) was associated with vaginal microbiome instability (defined by shifts between Lactobacillus spp.-dominated (LDOM) and
Lactobacillus spp.-depleted (LDEPL) compositions) measured by 16S rRNA-based metataxonomics (OR 1.97, 95% CI 1.03–3.66, p= 0.04, two-sided mid-p
exact test) or predicted using DESI-MS profiles (OR 1.47, 95% CI: 0.75–2.78, p= 0.25, two-sided mid-p exact test). B LDEPL vaginal composition was
associated with increased IL-1β levels compared to LDOM; however, highest levels were observed in LDEPL women subsequently having preterm delivery.
This relationship was also observed when IL-1β levels and vaginal microbiota composition were predicted using direct swab profiling by DESI-MS (n= 103
pregnancies, 103 swabs). C A relationship between LDEPL, increased MBL and subsequent preterm birth was also detected by DESI-MS profiling (n= 103
pregnancies, 103 swabs). D Elevated MBL and E elevated IL-1β levels were observed in response to cervical cerclage performed with braided cerclage
material, but not monofilament material (n= 34 pregnancies, 68 swabs). F Preterm birth in women treated with cervical cerclage using braided cerclage
material was associated with higher IL-1β levels compared to term birth outcomes (n= 13 pregnancies, 13 swabs), whereas no relationship between IL-1β
levels measured or DESI-MS-predicted were observed with pregnancy outcome following cervical cerclage using monofilament material (n= 21
pregnancies, 21 swabs). All box and whisker plots are drawn with the lower, horizontal interior line, and upper bounds of the box representing the 25th
percentile, median and 75th percentile values, and whiskers extending from the lower or upper box bonds to the position of the most extreme data point
within ± 1.5 × IQR (interquartile range).
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or non-polar molecule-based assays marginally outperforming
lipid-based assays (Supplementary Figs. 5 and 7). It is also worth
noting that the analysis of VMC in this study was limited to the
assessment of relative abundances of the bacterial component of
microbiome and a comparatively small number of patients car-
rying less prevalent community compositions (e.g., L. gasseri, L.
jensenii and B. breve-dominated). The detection of B. breve-
dominated women in our study was limited to the VMET2
patient cohort where a mixed formulation of the 27F forward
primer set was used. This primer formulation has been shown to
maintain the rRNA gene ratio of key vaginal species including
Lactobacillus spp. to Gardnerella spp. as well as improve detection
of Bifidobacterial species, which are otherwise not detected by the
‘universal’ 27f primer often used in metataxonomics studies30,64.
Consistent with these results, a number of recent studies have also
identified B. breve-dominated vaginal microbiota using meta-
taxonomics approaches65,66. Additional datasets that provide
improved representation of more diverse compositions and rarer
taxa may also eventually facilitate prediction of VMC by DESI-
MS beyond major CSTs as described here, and toward species
level classification. It is also important to note that recent meta-
taxonomics studies have indicated higher false discovery rates
when using relative abundance from NGS data compared to
quantitative PCR67. Future studies incorporating microbial load
within a sample may further improve the sensitivity of DESI-MS
predictive models, particularly those with intermediate
compositions.

In conclusion, we show that direct on-swab DESI-MS permits
rapid and robust assessment of vaginal microbiota:host immune
interactions reflected within the cervicovaginal mucosal metabo-
lome. While we show that this may offer an approach for preterm
birth risk stratification and selective targeting of preventative
treatments, we expect it to have wider application to the assess-
ment of vaginal microbiota–host interactions in other clinical
scenarios, including both pregnant and non-pregnant women.

Methods
Study subjects and sample collection. The study was conducted with approval of
the NHS National Research Ethics Service (NRES) Committees London-City and
East (REC 12/LO/2003) and London–Stanmore (REC 14/LO/0328), and by the
North of Scotland Research Ethics Service (REC 14/NS/1078). All participants
provided written informed consent prior to sampling and experiments were per-
formed in accordance with the approved institutional guidelines. Recruitment and
sampling were performed at Imperial College Healthcare NHS Trust Hospitals
(Queen Charlotte’s and Chelsea and St Mary’s Hospitals), London, UK, at Chelsea
& Westminster Hospital (NHS Trust, London, UK), University College London
Hospital (NHS Foundation Trust, London, UK) and the Royal Infirmary of
Edinburgh, Scotland, UK. Eligibility criteria were pregnant women with a singleton
pregnancy, with and without risk factors for preterm birth. Exclusion criteria
included women under 18 years of age, sexual intercourse within 72 h of sampling,
vaginal bleeding in the preceding week, antibiotic use in the preceding 2 weeks,
multiple pregnancies, HIV or hepatitis C-positive status. Detailed maternal clinical
metadata were collected for all participants and birth outcome recorded following
delivery. Preterm birth was defined as labour prior to 37 weeks of gestation.
Cervicovaginal fluid swab samples were collected at up to five timepoints
throughout pregnancy (1. 8–16, 2. 16–20, 3. 20–26, 4. 26–30, 5. 30–37 weeks) from
the posterior fornix using BBL CultureSwab MaxV Liquid Amies swabs (Becton,
Dickinson and Company, Oxford, UK), placed in either Amies transport media or
a sterile microcentrifuge tube on ice, before long-term storage at −80 °C.

Metabolic profiling of cervicovaginal swabs using direct swab analysis by
DESI-MS. All chemicals used were analytical reagent grade. HPLC grade methanol
and water for DESI-MS analysis and swab sample extraction were purchased from
Sigma-Aldrich (St Louis, MO). The method used for the direct analysis of vaginal
swab samples by DESI MS is detailed elsewhere26. Briefly, we used an LTQ-
Orbitrap Discovery mass spectrometer (Thermo Scientific, Bremen, Germany)
coupled with a DESI-MS source designed for direct swab analysis. Swabs were
placed into a rotating holder positioned orthogonally in front of the MS inlet
capillary with a swab–capillary distance of approximately 2 mm. The DESI sprayer
tip was pointed to the swab centre with a tip–sample distance of 1.5–2 mm and a
distance between the tip and the inlet capillary of 2 mm. The entire surface of the
medical swabs was analysed by DESI-MS through clockwise rotation of the swab

toward the MS capillary. The cervicovaginal mucosa was absorbed from the swab
tip by gently desorbing the analytes with charged droplets of methanol/water (95:5,
v/v) mixture and directed to the mass spectrometer. For each sample, 30 scan mass
spectra (m/z 50–1000, R= 30,000 (FWHM)) were recorded in the negative and
positive ion mode.

Metabolic profiling of cervicovaginal swabs using direct swab analysis by LC-
MS analysis. Liquid extraction was performed on each swab by adding a
MeOH:H2O (1:1, v-v) solution as eluent to a final concentration of 50 mg vaginal
fluid/ml. Each blank swab was extracted with 1 ml solution using a repeated
sonication and vortexing cycle for 30 s each. Recovery of soluble material was
achieved through centrifugation of swabs (2000 × g for 2 min) seated in a 200 µl
loading tip positioned in a sterile microcentrifuge tube. Associated supernatants
were pooled and centrifuged at 16,000 × g for 10 min to remove insoluble material
before the resulting supernatant was divided into three aliquots. An additional
extraction of lipids from the swab was performed by repeating the procedure with
an isopropanol:water (4:1, v-v) solution to a final extraction of 25 mg vaginal fluid/
ml. The resulting extract was pooled with one aliquot of the methanol:water
extract. All extracts were evaporated using a SpeedVac for further reconstitution
before analysis by LC-MS68,69.

Reversed phase LC-MS analysis of small metabolites. Sample reconstitution was
performed in 300 μl of water. In all, 250 μl aliquot of reconstituted sample material
were used for individual sample preparation of 96-well plates including the addi-
tion of 25 μl of full RP 2× labelled standard mix (L-glutamine-13C5; L-glutamic acid
13C5; creatinine-methyl-D3; cytidine-5,6-D2; citric acid 13C6; L-isoleucine-13C6

15N;
L-leucine-13C6; L-phenylalanine-13C9

15N; hippuric acid-D5, benzoic acid-13C6,
octanoic acid-13C8, L-tryptophane-13C11

15N2). In addition, 50 μl aliquots of each
sample were used for pooling and generation of QC sample. For chromatographic
separation a 2 μl aliquot of extracted metabolites from each sample was injected
onto a reverse-phase 150 × 2.1 mm ACQUITY 1.8-μm High Strength Silica (HSS)
column (Waters Corp.) kept at 45 °C using an ACQUITY UPLC system (Waters
Corp.). The mobile phase consisting of 0.1% v/v formic acid (Fisher Scientific) in
water (A) and acetonitrile containing 0.1% formic acid (B, Sigma-Aldrich). Each
sample was resolved for 12.65 min at a flow rate of 0.5 ml/min. The gradient
consisted of 99% A and 1% B for 0.1 min, a ramp of curve 6–100% B from 0.1 to
10.70 min.

Reversed phase LC-MS analysis for lipids. Sample reconstitution was performed in
300 μl of water/isopropanol (4:1). In all, 250 μl aliquot of reconstituted sample
material were used for individual sample preparation of 96-well plates including
the addition of full RP-labelled standard mix (C17:0; LPC(6:0/0:0); LPC(9:0/0:0);
LPC(15:0/0:0); PC(11:0/11:0); PC(15:0/15:0); PE(15:0/15:0); PA(17:0/17:0);
PG(15:0/15:0); PS(17:0/17:0); SM(d18:1/17:0); Cer(d18:1/17:0); DG(19:0/0:0/19:0);
PC(23:0/23:0); TG(8:0/8:0/8:0); TG(10:0/10:0/10:0); TG(12:0/12:0/12:0); TG(14:0/
14:0/14:0); TG(15:0/15:0/15:0); TG(16:0/16:0/16:0); TG(17:0/17:0/17:0); DG(18:0/
20:4/0:0); DG(18:0/18:0)). In addition, 50 μl aliquots of each sample were used for
pooling and generation of QC sample. For chromatographic separation a 2 μl
aliquot of extracted metabolites from each sample was injected onto a Waters
Acquity UPLC BEH C8, 1.7 µm, 2.1 × 100 mm column (Waters Corp.) kept at
55 °C using an ACQUITY UPLC system (Waters Corp.). The mobile phase con-
sisting of water:isopropanol:acetonitrile (50:25:25, all high-grade LC-MS solvents
from Fisher Scientific or Sigma-Aldrich)+ 5 mM ammonium acetate+ 0.05%
acetic acid+ 20 µM phosphoric acid (A) and isopropanol:acetonitrile 50:50
(Sigma-Aldrich)+ 5 mM ammonium acetate+ 0.05% acetic acid (B). Each sample
was resolved for 13.15 min at a flow rate of 0.5 ml/min. Starting conditions were
99% A and 1% B and the gradient changed with a ramp of curve 6 as follows:
decrease to 70% A and 30% B over the first 2 min, decrease to 10% A with 90% B
from 2 to 11.50 min, decrease to 0.1% A with 99.9% B from 11.50 to 12.50 min,
after which the solvent composition returned to starting conditions over 0.1 min
until 13.15 min.

HILIC LC-MS analysis. Sample reconstitution was performed in 200 μl of water:-
acetonitrile mixture (1:3.6, v-v). 115 μl aliquot of reconstituted sample material
were used for individual sample preparation of 96-well plates including the addi-
tion of 2.5 μl of 48× labelled IS standard mix ((uracil-2-13C15N2; N-benzoyl-d5-
glycine, adenosine-2-D1, adenine-2-D1, taurine-15N, L-tryptophan-D5, L-phenyla-
lanine-13C9

15N, creatine-(methyl-D3)-monohydrate, L-arginine-13C6-hydro-
chloride). In addition, 20 μl aliquots of each sample were used for pooling and
generation of QC sample. HILIC chromatography analysis was performed using a
Waters Acquity UPLC BEH HILIC (1.7 μm, 2.1 × 150 mm) column (Waters Cor-
poration, Milford, MA, USA) kept at 40 °C. The mobile phases consisted of 0.1%
formic acid and 20 mM ammonium formate in water (A, Fisher Scientific), and
0.1% formic acid in acetonitrile (B, Sigma-Aldrich) at a flow rate of 0.5 ml/min.
Starting conditions were 5% A and 95% B and the gradient changed with a ramp of
curve 6 as follows: increase to 20% A and 80% B over the first 5.5 min; increase to
50% A with 50% B from 5.5 to 7.1 min, after which the solvent composition
returned to starting conditions over 0.1 min until 12.65 min. The injection volume
was 2 μl of extracted metabolites for negative ion mode analysis.
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LC-MS instrumental operation and analysis. The column eluent was introduced
directly into the mass spectrometer by electrospray. MS was performed on a Waters
Xevo G2-S QTOF mass spectrometer (Waters Ltd, Elstree, UK) operating in either
negative-ion (ESI−) or positive-ion (ESI+) electrospray ionization mode with a
capillary voltage of 1 kV for RP and 1.5 kV for HILIC, and a sampling cone voltage
of 20 V. The desolvation gas flow was set to 1000 l/h and the desolvation tem-
perature was set to 600 °C. The cone gas flow was 150 l/h, and the source tem-
perature was 120 °C. Accurate mass was maintained by introduction of LockSpray
interface of Leucine Enkephalin (m/z 556.2771 in ESI+, m/z 554.2615 in ESI−) at a
concentration of 200 pg/μl in 50% aqueous acetonitrile with a scan time of 0.07 s
over 4 scans, after each interval of 60 s. Data were collected in centroid mode from
50 to 1200m/z in MS scanning mode. To ensure system suitability and stability, a
study reference (SR) QC sample was prepared by combining equal aliquots of all the
samples and injected at regular intervals throughout the analytical run. This SR
sample was also used to condition the column (30 injections) prior to the analysis of
both the ESI+ and ESI mode batches. Blank samples (i.e. injection of the recon-
stitution solvent) were also run to check the presence of artefact or contaminant
peaks. A dilution series of the SR sample was also acquired at the beginning and end
of injection sequence. Data-dependent acquisition (DDA) and MSE analysis of the
SR sample were performed for structural elucidation.

Mass spectral data processing. DESI-MS raw mass spectral data were converted
from.raw files into.mzXML format via the ProteoWizard msConverterGUI70. The
first 30 spectra per sample were averaged into a single spectrum and saved as.csv
file using the MALDIquant R package (v1.19.3). The detailed parameter settings
and algorithm used in the R package MALDIquant71 are as follows: Peak detection
was performed using ‘detectPeaks’, with SNR set to 3 and half window size to 10,
and using the median absolute deviation (MAD) method. Peaks were aligned with
a half window size set to 20, tolerance set to 0.002, signal-to-noise-ratio (SNR) set
to 2 using the warping method LOWESS. The reference peaks were created by
calling the function ‘referencePeaks’ from MALDIquant with method ‘strict’,
‘minFrequency’ set to 0.01 and peak binning tolerance 0.002.

Raw LC-MS data files were first converted to the.mzML open format and the
Proteowizard msconvert..mzML files were processed in R (v4.0.3) using the XCMS
(v3.10.2) package72. Peaks were detected with the centWave algorithm (ppm= 25,
mzdiff= 0.001, prefilter= c(4, 1000), noise= 100, snthresh= 5), and grouped with
the ‘density’ method (bw= 3, mzwid= 0.0007, minFrac= 0.4). The centWave
peakwidth parameter was set depending on the chromatographic method (c(1.5,
14) for HILIC-LC-MS (−) c(3, 12) in RP-LC-MS Lipid (+/−) and c(1.5, 5) in the
RP-LC-MS Metabolite (+/−). Non-detected peaks were filled with fillPeaks, using
the default arguments, and no retention time correction was done. The XCMS
datasets were further filtered and the feature intensities drift corrected in Python
(v3.8.5) using the nPYc-Toolbox (v1.2.4)73. Drift correction was performed using
LOWESS trend-line model fitted on the SR samples. Features where the coefficient
of variation measured on repeated injections of the SR sample were larger than 30%
or whose Pearson correlation with dilution was less than 0.7 (measured using the
SR dilution series) were excluded from the data matrix.

Metabolite identification. Target m/z features were putatively annotated using
online databases including HMDB, Metlin, MMCD, KEGG and Lipidmaps with a
5 ppm tolerance for each compound. To account for potential imprecision in m/z
measurement due to peak binning and data processing artefacts, raw m/z value
were confirmed by inspection of the.raw data. Metabolite annotation was per-
formed by searching the measured m/z ratios against METLIN (http://
metlin.scripps.edu), Lipidmaps (http://www.lipidmaps.org) and the HMDB (http://
www.hmdb.ca)74–76. Further structural elucidation was performed using MS/MS
experiments via collision-induced dissociation on the LTQ-Discovery MS instru-
ment (Thermo Scientific), and with DDA of the precursor ion by the quadrupole of
the Xevo G2 XS Q-TOF mass spectrometer (Waters corporation). For the anno-
tation of metabolites, the MS/MS spectra were matched against spectral libraries
from HMDB, NIST and METLIN that were compiled with either authentic stan-
dards or theoretical assignment. Identification of metabolites where MS/MS
reference spectra were not available were annotated using chemical fragmentation
rules. For the structural assignment of glycerophospholipid, fragments of the polar
head group or the fatty acyl chains were investigated to confirm the annotation
proposed by the databases and discriminate isomers. MSI levels of compound
identification were further reported as suggested by the Metabolomics Standards
Initiative (MSI)77.

DNA extraction and sequencing of 16S rRNA amplicons. Extraction of bacterial
DNA was performed as previously described78. For the VMET cohort, V1–V3
hypervariable regions of bacterial 16S rRNA genes were amplified using a forward
and reverse fusion primer. The forward primer was constructed with the Illumina
i5 adapter (5′-AATGATACGGCGACCACCGAGATCTACAC-3′), an 8-base pair
(bp) bar code, a primer pad (forward, 5′-TATGGTAATT-3′), and the 28F primer
(5′-GAGTTTGATCNTGGCTCAG-3′) (64). The reverse fusion primer consisted of
the Illumina i7 adapter (5′-CAAGCAGAAGACGGCATACGAGAT-3′), an 8-bp
bar code, a primer pad (reverse, 5′-AGTCAGTCAG-3′), and the 519R primer (5′-
GTNTTACNGCGGCKGCTG-3′). For the VMET2 cohort, the V1–V2 hyper

variable regions were amplified with the forward primer set (28f-YM) consisting of
a mixture of the following primers mixed at a 4:1:1:1 ratio: 28F-Borrellia
GAGTTTGATCCTGGCTTAG; 28F-Chlorflex GAATTTGATCTTGGTTCAG;
28F-Bifido GGGTTCGATTCTGGCTCAG; 28F GAGTTTGATCNTGGCTCAG.
The reverse primer consisted of 388R TGCTGCCTCCCGTAGGAGT30. Sequen-
cing was performed at RTL Genomics (Lubbock, TX, USA) using an Illumina
MiSeq platform (Illumina Inc.). Resulting sequence data were analysed using the
MiSeq SOP Pipeline of the Mothur package79. The Silva bacterial database
(www.arb-silva.de/) was used for sequence alignment and classification was per-
formed using the RDP (Ribosomal Database Project) database reference sequence
files80. Determination of operational taxonomic unit taxonomies (phylum to
genus) and species-level taxonomies was performed with USEARCH with 16S
rRNA gene sequences from the cultured representatives from the RDP database81.
Species-level taxonomies were complemented using information from the STIR-
RUPS database82.

Counts from all OTUs assigned to the same species were summed to generate
matrices of total counts per species. Species with less than 50 total counts were
excluded. Community state types were then assigned to each sample with HC,
using Ward-linkage and the Jensen–Shannon distance. The number of clusters
which maximized the mean silhouette score were selected. The relative abundance
of each species in a cluster was inspected and the clusters matched to CST reported
in previous publications, by comparing the relative abundances of the top five
OTUs obtained for each cluster. Samples where the most abundant species was a
Lactobacillus spp. other than L. crispatus, L. iners, L. gasseri or L. jensenii, where
manually assigned to a separate cluster (CST VII). HC analyses and heatmaps were
performed using Python (v3.8.5), ‘scipy’83 (v1.5.2), the ‘matptlotlib’84 (v3.3.2) and
‘seaborn’85 (v0.11.0) libraries.

Immune/inflammatory profiling of cervicovaginal samples. Swabs were thawed
on ice and re-suspended in 350 ml of phosphate-buffered saline solution containing
protease inhibitor (5 µL/ml; Sigma-Aldrich) before being centrifuged at 7000 × g for
10 min to remove cellular debris. Customized multiplex assays (R&D Systems)
were used together with a Bio-Plex 200 system (Bio-Rad Laboratories Ltd) to
quantify levels of interleukin-1β (IL-1β), IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-18,
interferon-γ, GM-CSF and tumour necrosis factor-α, with a 10-fold dilution of 1L-
8 performed using Calibrator Diluent RD6-52 prior to assaying. The Human
Complement Magnetic Bead panel 1 (Milliplex®) was used for measurement of C5,
C5a and MBL, while panel 2 was used for measurement of C3b. Levels of
immunglobulins IgA, IgG1, IgG2, IgG3, IgG4 and IgM were assessed using the
ProcartaPlex Human Antibody Isotyping Panel 7plex assay (Thermo Fisher
Scientific).

DESI-MS profiling of bacterial isolates. Bacterial isolates analysed in this study
were derived from the DSMZ-German Collection of Microorganism and Cell
Culture GmbH (DSM number, Supplementary Table 6) or clinical samples received
by the Imperial College NHS Healthcare Trust Diagnostic Microbiology laboratory
(NHS number, Supplementary Table 6) at Charing Cross Hospital, London, after
the completion of standard identification workflows. Identification of isolates from
clinical samples was performed using a MALDI Biotyper instrument (Bruker,
UK)86. Isolates were stored on beads and in glycerol broth at −80 °C. The bacterial
culture library consisted of Atopobium vaginae, Bifidobacterium breve, Gardnerella
vaginalis, Lactobacillus crispatus (5× isolates), Lactobacillus gasseri (5× isolates),
Lactobacillus iners, Lactobacillus gasseri (5× isolates), Lactobacillus jensenii (5×
isolates), Prevotella amni, Prevotella disiens, Prevotella timonensis, Staphylococcus
aureus, Streptococcus agalactiae and Streptococcus anginosus. Microorganisms were
grown from either fresh cultures or beads with each isolate cultured 10 times using
optimal culture conditions (Supplementary Table 5).

Bacterial isolates were sampled directly from solid agar plates using a medical
rayon swab before being transferred into a sterile microcentrifuge tube and stored
at −80 °C. Three ‘blank’ swab samples of each solid agar media were also collected.
Direct swab analysis using DESI-MS was performed in both positive and negative
ion mode. Spectra were processed and assembled into a single data matrix. For each
isolate, the intensities per m/z feature of biological replicates were compared
against their corresponding culture media background samples using the
Wilcoxon–Mann–Whitney test. The list of significant features was matched to the
set of identified features from the analysis of human cervicovaginal swab samples.
The mean fold change for matched peaks (tolerance < 5 ppm) was estimated as the
ratio of the mean intensity within bacterial biomass samples to the mean intensity
in the background culture media samples. The heatmap in Supplementary Fig 6
was generated in Python (v3.8.5), with the ‘matptlotlib’ (v3.3.2) and ‘seaborn’
(v0.11.0) libraries.

Statistical analysis of metabolomic profiling data. The linear mixed-effects
modelling analyses were performed in R using the ‘lme4’87 package (v1.1.25). For
all metabolic profile variables in each data matrix, a linear mixed-effects model
with the following ‘lme4’ formula was fitted: Metabolite ~ GestationalAge+
CST+MaternalAge+ BMI+ Ethnicity+ (GestationalAge||SubjectID). This
model structure accounts for the repeated measures by using a random intercept
per pregnancy and a random slope per pregnancy. No random effect term was used
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to model correlation between the random slopes and random intercepts. Gesta-
tional age, CST, age, BMI and ethnicity were modelled as fixed effects. All models
were fitted using restricted maximum likelihood (‘REML= TRUE’ in lmer function
call). The ‘emmeans’88 package (v1.5.2.1) was used to perform contrast coding and
obtain effect size estimates and P values for contrasts and trends of interest. For the
comparisons between different CST’s and LDOM vs LDEPL, the mean levels and
contrasts obtained from the model were estimated assuming maternal age= 30
years, BMI= 23 and gestational age= 20 weeks, and averaged over all levels of
ethnicity. For the gestational age trend estimates were further averaged across all
CSTs. Detailed tables with effect size estimates and P values for these analyses and
contrasts are available via a GitHub repository (see ‘Code availability’). The
comparisons between Lactobacillus dominant vs depleted was encoded as a com-
parison between the grand mean of CST I, II III, V and VII levels vs the mean of
CST IV. The P values for each contrast tested were calculated using the
Kenward–Roger approximation, implemented in the ‘pbkrtest’ package
(v0.4.8.6)89. The P values for all contrasts within a single metabolic signal were not
corrected for multiple testing. Instead, for each of the main contrasts of interest
(early gestation vs late gestation, CST I vs III, CST I vs IV, CST III vs IV and
LDOM vs LDEPL), all P values obtained across all metabolic variables in an assay
were pooled and FDR corrected together as a signature, using Benjamini–Hochberg
false discovery rate correction and selecting a 5% FDR cut-off. The heatmaps in
Fig. 1B were created in Python (v3.8.5), ‘matptlotlib’ (v3.3.2) and ‘seaborn’
(v0.11.0). Only features which were statistically significant after false discovery rate
correction and replicated in both VMET and VMET2 datasets were plotted. To
account for differences in m/z calibration between datasets, a feature was only
considered to be replicated between datasets if it was possible to find a marker with
an m/z error of less than 5 part-per-million in the final FDR corrected signature
from the other study. The linear mixed effect model, semi-partial r2 and condi-
tional R2 measures were calculated using the R packages ‘r2glmm’ (v0.1.2) and
‘MuMIn’ (v1.43.17), respectively. PERMANOVA analyses90 were performed with
the ‘vegan’ package (v2.5.7), using the adonis2 function, with method= ‘euclidean’,
permutations= 999, and by adding terms sequentially following their order in the
model formula log(MetaboliteMatrix+ 1) ~ CST+GestationalAge+ Ethnicity+
BMI+Age+ SubjectID.

For the immune-metabolite association analysis, a series of linear models with
the formula lm(log(ImmuneMarker+ 1) ~Metabolite) were fitted in R (v4.0.3) for
all immune-marker cytokine pair combinations, and the corresponding F-test P
values calculated. Benjamini–Hochberg false discovery rate correction was used
independently for each immune marker analysis, with a 5% FDR cut-off. The
heatmaps in Fig. 2A, B were generated using Python (v3.8.5), ‘matptlotlib’ (v3.3.2)
and ‘seaborn’ (v0.11.0), using the results of the linear model analysis and the
random forest regression models (detailed in the next section).

Prediction of CST, preterm birth and immune markers from the metabolomic
data. The CST type was predicted from the metabolomic profiles using random forest
classifiers. For the Lactobacillus dominant vs depleted comparison, samples which
were assigned to CST I, II, III, V or VII were assigned to the Lactobacillus dominant
class, and samples with CST IV or VI label were assigned to Lactobacillus depleted.
Random forest classifiers were trained to predict the CST or Lactobacillus depletion
status using the metabolic profile variables, without using any other clinical or
demographical variables, including gestational age. An assessment of the impact on
model performance of using gestational age as covariate was also performed (see the
analyses under ‘CST Typing by DESI-MS’ in the GitHub code repository).

Prediction of preterm birth was also performed using random forest classifiers.
The centred-log-ratio transformation was applied to the 16S data matrices with the
R package ‘propr’ (v4.2.6)91. The gestational period was divided in three gestational
windows (1st timepoint: 0–14 weeks; 2nd timepoint: 14–24 weeks; 3rd timepoint
24–40 weeks) and a random forest classifier models fitted at each window using
only the 16S data, immune markers, or DESI-MS profiles as predictors. Only one
sample per patient (selected as the closest to the gestational age window mid-point)
was used in each model. For the immune marker prediction, immune marker
concentrations were initially log-transformed after addition of a constant offset
log(x+ 1). A random forest regressor was trained to predict a single log-
transformed immune marker level. All random forest models were trained in R
(v4.0.3), using the ‘randomForest’ (v4.6-14)92 package in combination with the
‘caret’ package (v6.0-86)93, for model fitting, performance metric calculation and
cross-validation. RF classifiers were trained using constant default parameters:
number of trees ‘ntree’= 1000, and the number of variables ‘mtry= number of
metabolic variables/3’. For the random forest regression models,
‘mtry= sqrt(number of metabolic variables)’. A repeated (n= 15) stratified fivefold
cross-validation procedure was used for all models. This approach ensures that the
train and test sets contain a similar proportion of samples from each class.

The performance of the RF models was assessed by calculating the R2 using only
data left out from each CV round test sets (performed by default by ‘caret’). For the
classifiers, ROC curves, precision–recall curves, accuracy, sensitivity, specificity,
positive-predictive value and negative predictive values were calculated and plotted
with the R packages ‘caret’, ‘pROC’ (v1.16.2)94, ‘plotROC’ (v2.2.1)95, ‘precrec’
(v0.11.2)96 and ‘ggplot2’ (v3.3.2)97. For the regression analysis, the R2 was
calculated with ‘caret’ and predictions plotted with ‘ggplot2’.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The metabolic profiling data generated in this study have been deposited and made
publicly available in the MetaboLights database under study identifier MTBLS717. The
sequence data for the study are publicly available through the European Nucleotide
Archive [https://www.ebi.ac.uk/ena] under accession numbers PRJEB 11895, 12577 and
(https://www.ebi.ac.uk/ena/browser/view/PRJEB41427). Relevant clinical and patient
metadata are publicly available in the GitHub repository at https://www.github.com/
gscorreia89/desims-cst-analysis/, digital resource identifier: https://doi.org/10.5281/
zenodo.5513501 98.

Code availability
Key analysis code and processed datasets required to reproduce the statistical analyses
presented in this study are deposited and publicly available in the GitHub repository at
https://www.github.com/gscorreia89/desims-cst-analysis/, digital resource identifier:
https://doi.org/10.5281/zenodo.551350198.
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