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ABSTRACT
One of the main challenges in facial expression recognition (FER)
is to address the disturbance caused by various disturbing factors,
including common ones (such as identity, pose, and illumination)
and potential ones (such as hairstyle, accessory, and occlusion).
Recently, a number of FER methods have been developed to ex-
plicitly or implicitly alleviate the disturbance involved in facial
images. However, these methods either consider only a few com-
mon disturbing factors or neglect the prior information of these
disturbing factors, thus resulting in inferior recognition perfor-
mance. In this paper, we propose a novel Dual-branch Disturbance
Disentangling Network (D3Net), mainly consisting of an expression
branch and a disturbance branch, to perform effective FER. In the
disturbance branch, a label-aware sub-branch (LAS) and a label-free
sub-branch (LFS) are elaborately designed to cope with different
types of disturbing factors. On the one hand, LAS explicitly cap-
tures the disturbance due to some common disturbing factors by
transfer learning on a pretrained model. On the other hand, LFS
implicitly encodes the information of potential disturbing factors
in an unsupervised manner. In particular, we introduce an Indian
buffet process (IBP) prior to model the distribution of potential dis-
turbing factors in LFS. Moreover, we leverage adversarial training
to increase the differences between disturbance features and expres-
sion features, thereby enhancing the disentanglement of disturbing
factors. By disentangling the disturbance from facial images, we are
able to extract discriminative expression features. Extensive experi-
ments demonstrate that our proposed method performs favorably
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’21, October 20–24, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8651-7/21/10. . . $15.00
https://doi.org/10.1145/3474085.3475249

against several state-of-the-art FER methods on both in-the-lab and
in-the-wild databases.
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1 INTRODUCTION
Recently, with the rapid development of deep learning, facial expres-
sion recognition (FER) has made remarkable progress in multimedia
and computer vision [32, 36, 39, 40, 45], mainly due to its practical
significance in human-computer interaction, health care systems,
digital entertainment, etc [6]. However, FER is still a very challeng-
ing problem. This is mostly because facial images usually involve
the disturbance caused by various disturbing factors, resulting in
large appearance variations. Therefore, it is of great importance to
disentangle the disturbance from facial images for effective FER.

In general, facial images are easily affected by some common dis-
turbing factors (e.g., illumination and pose) that are often ubiquitous
in FER databases and seriously deteriorate the recognition accuracy.
In Figure 1(a), variations of identity, pose, illumination, gender,
race, and age exist in facial images and interfere the extraction of
expression features. Extensive deep learning-based FER methods
[4, 30, 32, 43] have been proposed to exploit the labels of common
disturbing factors and explicitly disentangle the disturbance.

Unfortunately, the above methods ignore the fact that there may
exist many other disturbing factors. As shown in Figure 1(b), facial
images are apparently influenced by some potential disturbing
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Figure 1: Some facial images influenced by (a) common dis-
turbing factors (such as identity, pose, illumination, gender,
race, and age) and (b) potential disturbing factors (such as
hairstyle, accessory, and occlusion).

factors (such as hairstyle, accessory, and occlusion), which also
degrade the FER performance. Note that most FER databases do
not provide the label information for potential disturbing factors
that can vary in different FER databases. Moreover, it is difficult to
predefine all the possible disturbing factors for FER. In recent years,
somemethods [2, 21, 42] have been developed to implicitly suppress
the disturbance in facial images in an unsupervised manner without
specifying disturbing factors. Generally, these methods make no
difference between common disturbing factors and potential ones.

For FER, it is important to address both common disturbing
factors and potential ones. However, previous methods either focus
on only a few common disturbing factors [4, 32] or do not fully take
into account the prior information of common disturbing factors
[2, 42], leading to sub-optimal performance.

To tackle the above problem, we propose a novel Dual-branch
Disturbance Disentangling Network (called D3Net) by elaborately
performing both explicit and implicit disentanglement of various
disturbing factors for FER. D3Net consists of a shared backbone
network, and two task-specific branches (i.e., an expression branch
and a disturbance branch) that learn expression features and distur-
bance features, respectively. For the disturbance branch, it contains
two sub-branches (i.e., a label-aware disturbance sub-branch (LAS)
and a label-free disturbance sub-branch (LFS)) to extract disturbance
features for common disturbing factors and potential ones, respec-
tively. By jointly training the two task-specific branches on the
shared backbone network, we can effectively disentangle compre-
hensive disturbance information from the expression information.

The contributions of this paper are summarized as follows:
(1) We propose a novel D3Net method which elaborately designs

a disturbance branch to disentangle various disturbing factors in
the FER database. In particular, LAS is trained to explicitly capture
the information of common disturbing factors by transfer learning,
while LFS is developed to implicitly learn the information of poten-
tial disturbing factors in a fully unsupervised manner. In this way,
our method is able to extract discriminative expression features by
suppressing various disturbing factors.

(2) We introduce an Indian buffet process (IBP) prior to model
the distribution of potential disturbing factors in LFS. Moreover, we
leverage adversarial training to distinguish label-free disturbance
features from expression features. Combining the IBP prior with

adversarial training is advantageous to learn the latent structure of
potential disturbing factors from facial images in an unsupervised
manner. To the best of our knowledge, this is the first work to make
use of the IBP prior to perform implicit disturbance disentanglement
for FER.

(3) We carry out extensive experiments on public FER databases,
including three in-the-lab databases and two in-the-wild databases.
Experimental results demonstrate that our proposedmethod achieves
superior performance against several state-of-the-art FER methods.

2 RELATEDWORK
Explicit Disturbance-Disentangled FERMethods.Thesemeth-
ods explicitly disentangle the disturbance by exploiting the label
information of common disturbing factors. For example, Wang et
al. [36] employ an encoder that is adversarially trained with two
discriminators to address pose variations and identity bias. Some
methods [4, 43, 46] apply generative adversarial network (GAN)
[10] to learn identity-invariant or pose-invariant features, by gen-
erating facial images with different identity labels or pose labels.
Ruan et al. [32] propose a deep disturbance-disentangled learning
(DDL) method which simultaneously disentangles several common
disturbing factors based on adversarial transfer learning.

The above methods address common disturbing factors but over-
look the influence caused by potential disturbing factors that also
harm the FER performance. In fact, it is difficult to specify all the
possible disturbing factors for FER. As a result, it is not a trivial
task to disentangle the disturbance in a fully-supervised manner.
Implicit Disturbance-Disentangled FERMethods.Thesemeth-
ods implicitly disentangle the disturbance without specifying dis-
turbing factors. Based on adversarial training, Halawa et al. [16]
develop an unsupervised method to disentangle the disturbance for
FER. Some methods [2, 21, 42] explore the differences between the
expression component and the neutral component to learn expres-
sion features. However, these methods depend highly on neutral
facial images. Moreover, they may fail to classify facial images
exhibiting weak expressions similar to neutral expressions.

It is widely acknowledged that some common disturbing factors
are of great significance for achieving excellent FER performance.
The above methods, however, do not fully explore this important
prior information for FER, and thus may not well reduce the distur-
bance due to these disturbing factors. In this paper, we innovatively
design two sub-branches to explicitly capture the information of
common disturbing factors and implicitly encode the information of
potential disturbing factors, respectively. Hence, we can effectively
eliminate the disturbance caused by various disturbing factors.
Unsupervised Disentangled Representation Learning (UD-
RL) Methods. UDRL methods aim to identify the underlying fac-
tors from observed data [3], and they are mostly based on the
variational auto-encoder (VAE) [23]. Higgins et al. [18] develop β-
VAE with an isotropic Gaussian prior to enhance the independence
of each element of latent variables. Inspired by β-VAE, some Gauss-
ian posterior approximation-based methods [5, 20] are developed
to address the problem of β-VAE that it cannot effectively balance
the tradeoff between disentanglement and image reconstruction.
However, the disentanglement ability of these methods generally
degrades when the number of underlying factors increases [15].
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Figure 2: Overview of our proposed D3Net method, containing a shared backbone network to extract the shared features, (a) a
disturbance branch consisting of two sub-branches (i.e., label-aware disturbance sub-branch (LAS) and label-free disturbance
sub-branch (LFS)) to capture the disturbance information in explicit and implicit ways, respectively, and (b) an expression
branch to capture the expression information.

Later, a non-parametric prior is also combined with VAE to perform
disentanglement of task-irrelevant factors for skin lesion classifica-
tion [15].

For FER, the number of all the possible disturbing factors is diffi-
cult to be predefined and can be large. Hence, Gaussian posterior
approximation-based methods may be inappropriate to perform dis-
turbance disentanglement in FER. In this paper, we capitalize on a
non-parametric prior, i.e., the Indian buffet process (IBP) prior [12],
which enables to obtain a richer posterior approximation, to im-
plicitly disentangle potential disturbing factors. Note that previous
methods [15, 33] that combine the IBP prior with VAE aim to either
improve image reconstruction or achieve a tradeoff between dis-
entanglement and image reconstruction. In contrast, considering
the characteristics of the FER task, instead of adopting the decoder
for image reconstruction, we perform adversarial training between
disturbance features and expression features. Such a manner greatly
enhances the performance of disturbance disentanglement for FER.

3 PROPOSED METHOD
3.1 Overview
D3Net is comprised of a shared backbone network, an expression
branch, and a disturbance branch, as shown in Figure 2. In this pa-
per, we employ the commonly used ResNet-18 [17] as the backbone
to extract the shared features, where the expression information
is heavily entangled with the disturbance information. Based on
the shared backbone network, the expression branch and the dis-
turbance branch are developed to extract expression features and
disturbance features, respectively. For the expression branch, we

adopt a set of fully-connected (FC) layers to predict facial expres-
sions. For the disturbance branch, two sub-branches, consisting of
a label-aware disturbance sub-branch (LAS) and a label-free dis-
turbance sub-branch (LFS), are elaborately designed to capture the
disturbance information in different ways. Concretely, LAS and LFS
extract the disturbance features of common disturbing factors and
potential disturbing factors in explicit and implicit ways, respec-
tively. Finally, by jointly optimizing the expression branch and the
disturbance branch on the shared backbone network, our proposed
D3Net can fully disentangle the disturbance from facial images, and
thus effectively extract discriminative expression features for FER.

More specifically, in LAS, we adopt transfer learning to explicitly
capture the label-aware disturbance information with a pretrained
model (which is learned to identify multiple common disturbing
factors trained on large-scale face databases). This enables LAS to
extract discriminative features of these common disturbing factors,
even when the labels of disturbing factors are not available in the
FER database. Meanwhile, in LFS, we take advantage of UDRL to
implicitly encode the label-free disturbance information of poten-
tial disturbing factors that are not considered in LAS. In particular,
a non-parametric IBP prior is introduced to model the distribution
of potential disturbing factors. Moreover, adversarial training is
employed to enlarge the differences between disturbance features
and expression features. By combining LAS with LFS in an inte-
grated network, we are able to sufficiently capture the disturbance
information from facial images.

During the inference stage, the test images are fed into the
trained backbone network and expression branch to extract features
for classification.



3.2 Expression Branch
Following the backbone network, the expression branch consists
of three FC layers. Assume that a training set Dt = {(xit ,yit )}Ni=1
contains N facial expression images in the FER database, where
xit and yit represent the i-th facial image and its corresponding
expression label, respectively. We train the expression branch by
minimizing the cross-entropy loss, which is defined as

Lexp = −
N∑
i=1

C∑
c=1
1[c=yit ] log(Pe (Eexp (xit ))), (1)

where C is the number of expression categories; Eexp represents
the expression feature extractor (the backbone network and the
first two FC layers in the expression branch); Pe is the prediction
function (the final FC layer) for classifying expressions; 1[c=yit ]
equals to 1 when c = yit , and 0 otherwise.

3.3 Disturbance Branch
The disturbance branch has two sub-branches, i.e., LAS and LFS.

3.3.1 Label-Aware Disturbance Sub-Branch (LAS). LAS is developed
to capture the disturbance information of common disturbing fac-
tors. However, only the labels of identity and pose are available in
most FER databases. Fortunately, some large-scale face databases of-
fer the labels of common disturbing factors. For example, Multi-PIE
[13] and RAF-DB [25] provide the labels of identity, pose, illumina-
tion, and those of gender, race, age, respectively. Therefore, we are
able to take advantage of transfer learning to exploit these available
labels, achieving explicit disentanglement of common disturbing
factors in the FER database.

Inspired by DDL [32], we pretrain a model encoding the dis-
turbance information of common disturbing factors in the face
databases, thus providing reference disturbance features for train-
ing LAS. More specifically, given a face database, its training set
Ds with R images can be denoted as Ds = {(xis , si )}Ri=1, where
xis is the i-th training image and si = [s1

i , · · · , sMi ] denotes the
corresponding labels ofM disturbing factors. A pretrained model
is learned based on the labels ofM disturbing factors. For the j-th
disturbing factor, its classification loss function L j

p is defined as

L j
p = −

R∑
i=1

Cj∑
c=1
1[c=s ji ]

log(Pj (Ej (xis ))), (2)

where Cj is the class number of the j-th disturbing factor; Ej and
Pj represent the feature extractor and the prediction function for
classifying the j-th disturbing factor, respectively.

Thus, the pretrained model is trained by optimizing

Lp =

M∑
j=1

L j
p , (3)

where Lp denotes the classification loss of the pretrained model.
More details of the pretrained model can be referred in [32].

Based on the above pretrained model, LAS comprising of two FC
layers is then trained on the FER database. Given a facial expres-
sion image xit from the FER database, the label-aware disturbance
feature extracted by LAS is denoted as f ai ∈ R1×D , while the refer-
ence disturbance feature f ri ∈ R1×D extracted from the pretrained

model is defined as f ri =
∑M ′
j=1 f

p
i , j . Here, M

′ denotes the num-
ber of selected common disturbing factors for training LAS, and
f
p
i , j ∈ R1×D is a disturbance feature extracted by Ej . To effectively

transfer the knowledge from the pretrained model to LAS, we adopt
the Kullback-Liebler (K-L) divergence to constrain the probability
distributions of the features extracted by the pretrained model and
LAS to be as close as possible. Hence, the loss function for training
LAS is defined as

LLAS =

N∑
i=1

DKL(f ri | | f ai ) =
N∑
i=1

D∑
j=1

f̄ ri , j · log
f̄ ri , j

f̄ ai , j
, (4)

where DKL(·| |·) represents the K-L divergence; f̄ ai , j = softmax(f ai , j )
and f̄ ri , j = softmax(f ri , j ) (here, softmax(·) indicates the softmax
operation); f ai , j and f ri , j are the j-th elements of f ai and f ri , respec-
tively.

3.3.2 Label-Free Disturbance Sub-Branch (LFS). LFS is designed to
perform implicit disentanglement of potential disturbing factors in
an unsupervised way. Note that most representative UDRLmethods
[5, 18, 20] are based on a Gaussian approximation of the posterior
density, where the disentanglement ability can be severely affected
by the increasing number of underlying factors [15]. However, the
possible disturbing factors are usually unknown, their number can
be large, and their presence is often sparse for the FER task. Thus,
the Gaussian posterior approximation-based methods may not be
appropriate for learning disturbance features in FER.

In this paper, to address the above problem, we introduce an IBP
prior, which enables to give a richer posterior approximation, to
effectively model the distribution of a number of potential disturb-
ing factors in LFS. As shown in Figure 2, LFS contains one hidden
layer (an FC layer) and three output layers (three FC layers), which
output the label-free disturbance features.

On the one hand, the IBP (also known as the Beta-Bernoulli
process) [11] is constructed as a prior on a sparse binary matrix
D ∈ {0, 1}N×K (which is defined as the disturbance occurrence
matrix in this paper), where K represents the number of potential
disturbing factors. Di denotes the i-th row of D. In D, the element
di ,k equals to 1 if the k-th disturbing factor appears in the i-th
facial image and 0 otherwise. Each di ,k obeys the Bernoulli dis-
tribution (i.e., p(di ,k ) = Bernoulli(πk ), where πk represents the
occurrence probability of the k-th disturbing factor. In practice,
πk is generated by a stick-breaking method [34]. In this way, πk
can be formulated as the product of a set of independent random
variablesv = {v1,v2, · · · ,vk , · · · }, i.e., πk =

∏k
j=1vj , where each

variable vk follows a Beta distribution (i.e., p(vk ) = Beta(α, 1)).
Hence, givenv , the prior density of Di is formulated as

p(Di |v) =
K∏
k=1

Bernoulli(πk ). (5)

On the other hand, we define W ∈ RN×K as a weight matrix [12],
whose prior density is assumed to follow a Gaussian distribution.
Given a weight vectorWi (i.e., the i-th row ofW), we have p(Wi ) =
N(0, IK ), where N denotes the Gaussian function with an identity
matrix IK ∈ RK×K .



Then, the K-L losses between the posterior densities and the prior
densities of the variablesv , the disturbance occurrence matrix D,
and the weight matrix W are jointly minimized to train LFS. Thus,
we can perform implicit disentanglement of potential disturbing
factors.

Specifically, to enable the training of the network, the poste-
rior density of each element of v is approximated with the Ku-
maraswamy distribution [31], i.e., q(vk |ak ,bk ) = Kumaraswamy
(ak ,bk ), where Kumaraswamy(·) denotes the Kumaraswamy func-
tion with the learnable parameters ak and bk . Therefore, the K-L
loss LBeta between the posterior density and the prior density of
v is formulated as

LBeta =

K∑
k=1

DKL(q(vk |ak ,bk )| |p(vk ))

=
ak − α

ak
(−γ − Ψ(bk ) −

1
bk

) + logakbk + logB(α, 1)

− bk − 1
bk
,

(6)

where γ and Ψ(·) denote the Euler constant and the digamma func-
tion, respectively; B(·) is the Beta function [31].

To facilitate the training of LFS, the posterior density of D is ap-
proximated with the Concrete distribution [19, 29]. That is, the pos-
terior density ofDi can be described asq(Di |v, xit ) = Concrete((π+
hi ), λq ), where π = [π1, π2, · · · , πK ] and hi = [hi1,hi2, · · · ,hiK ] is
the noise; Concrete(·) indicates the Concrete function; λq denotes
the temperature parameter for the posterior density. Hence, accord-
ing to [29], the K-L loss LBern between the posterior density and
the prior density of D is

LBern =

N∑
i=1

DKL(q(Di |v, xit )| |p(Di |v))

=

N∑
i=1

(
K∑
k=1

log ρδ i ,kq ,λq
(d̃i ,k ) −

K∑
k=1

logκδ i ,kp ,λp
(d̃i ,k )),

(7)

where log ρδ i ,kq ,λq
(d̃i ,k ) and logκδ i ,kp ,λp

(d̃i ,k ) denote the log-density
functions in the binary concrete case for the posterior density and
the prior density, respectively; λp is the temperature parameter for
the prior density; d̃i ,k is sampled fromD as d̃i ,k = Fσ ( 1

λq
(logδ i ,kq +

logU − log(1−U ))), whereU obeys a uniform distribution on [0,1];
Fσ denotes the sigmoid function; δ i ,kq = πk + h

i
k and δ i ,kp = πk

denote the logit probabilities in the posterior density and the prior
density, respectively, for the k-th factor in the i-th image.

Similarly, the K-L loss LGaus between the posterior density and
the prior density ofW is formulated as

LGaus =

N∑
i=1

DKL(q(Wi |xit )| |p(Wi ))

=

N∑
i=1

K∑
k=1

(− logσi ,k +
σ 2
i ,k + µ

2
i ,k

2 − 1
2 ),

(8)

where the posterior density is q(Wi |xit ) = N(µi , diaд(σ2
i )); the

mean µi ,k and the variance σ 2
i ,k respectively denote the k-th ele-

ments of µi ∈ R1×K and σ2
i ∈ R1×K , which are learned in LFS.

Therefore, by combining the above three losses in LFS, we have

LLFS = LBeta + LBern + LGaus . (9)

By obtaining D andW, f u ∈ RN×K can be obtained as

f u = D ⊙ W, (10)

where f u = [f u1 , f u2 , · · · , f uN ]T represents the extracted label-free
disturbance features for all the images in the FER database; ⊙ de-
notes the element-wise multiplication.

3.4 Adversarial Training
Inspired by [16], adversarial training is further adopted to enlarge
the differences between label-free disturbance features and expres-
sion features. We employ a classifier Cuadv (including an FC layer
and a parametric ReLU layer) to play an adversarial game with LFS.

Specifically, given an image xit and its corresponding expression
label yit , f

u
i ∈ R1×K denotes the feature extracted from LFS. The

adversarial training contains two steps. First, an additional classifier
Cuadv is trained to predict expressions given the disturbance feature
f ui as the input. Note that f ui involves some expression information
before adversarial training. Hence, it can still be used to predict
expressions. Thus,Cuadv is updated by minimizing the classification
loss Lu

cls as

Lu
cls = −

N∑
i=1

C∑
c=1
1[c=yit ] log(Pu (f ui )), (11)

where Pu denotes the prediction function of Cuadv .
Second, the feature extractor Ef of LFS is trained to foolCuadv by

maximizing the uncertainty of predictions fromCuadv . Like [16], we
define a confusion loss which minimizes the cross-entropy between
predictions and a uniform distribution over expression labels as

Lu
conf = − 1

C

N∑
i=1

log(Pu (f ui )). (12)

Therefore, the adversarial loss is expressed as

Lu
adv = Lu

cls + Lu
conf . (13)

Analogously, we also perform adversarial training to pull away
label-aware disturbance features from expression features. Similar
to Eq. (13), the adversarial loss is formulated as

Ll
adv = Ll

cls + Ll
conf , (14)

where Ll
adv , Ll

cls , and Ll
conf respectively denote the adversarial

loss, the classification loss, and the confusion loss during adversarial
training between a classifier Cladv and LAS.

3.5 Joint Loss
Based on the above formulations, the joint loss of the proposed
D3Net is given as

Ljoint = Lexp + η1LLAS + η2LLFS + η3Lu
adv + η4Ll

adv , (15)

where η1, η2, η3, and η4 represent the balancing weights.
By optimizing the joint loss, D3Net is capable of effectively dis-

entangling the disturbance from facial images and extracting dis-
criminative expression features for FER. It is worth pointing out



that we do not impose a constraint to enforce the differences be-
tween the features extracted from LFS and LAS since these features
are not mutually uncorrelated (e.g., the correlations between some
common disturbing factors (such as gender) and some potential
disturbing factors (such as hairstyle) can be high).

3.6 Discussions
Conventional FER methods either explicitly alleviate the influence
caused by common disturbing factors [26, 32, 36] or implicitly sup-
press the variations of all disturbing factors [2, 21, 42]. In contrast,
D3Net is designed to perform both explicit and implicit disturbance
disentanglement by designing LAS and LFS. On the one hand, dif-
ferent from DDL [32] that employs adversarial transfer learning,
we adopt the K-L loss to transfer the knowledge from a pretrained
model to LAS. Such a way is simple but effective. Moreover, we
design LAS to enable the adaptive selection of common disturbing
factors according to different characteristics of FER databases. On
the other hand, in LFS, we exploit a non-parametric IBP prior to
obtain a richer posterior approximation than the commonly used
Gaussian posterior approximation. This is more suitable to implic-
itly disentangle the potential disturbing factors for FER. In addition,
most VAE-based UDRL methods [15, 18, 20] simultaneously per-
form image reconstruction and disentanglement. Although image
reconstruction is beneficial to capture the detailed information, it
can be detrimental to perform disentanglement. Unlike these meth-
ods, we leverage adversarial training to maximize the discrepancy
between label-free disturbance features and expression features
(instead of using the decoder for image reconstruction), leading to
improved classification performance.

4 EXPERIMENTS
4.1 Databases
CK+. The Extended Cohn-Kanade (CK+) database [27] is one of
the most popular in-the-lab databases, and it contains 327 video
sequences annotated with six basic expressions (i.e., happy, angry,
sad, surprise, fear, and disgust) and contempt. Since CK+ does not
offer the training, validation, and test sets, the last three peak frames
from each sequence are selected to construct the dataset. The whole
dataset is then split into 10 subsets based on the identity, where
the subjects are mutually exclusive in any two subsets. Following
[32, 42], we adopt the popular 10-fold subject-independent cross-
validation in this paper.
Oulu-CASIA. The Oulu-CASIA database [48] contains 2,880 im-
age sequences labeled with six basic expressions. The images are
captured with two imaging systems (i.e., near-infrared (NIR) and
visible light (VIS)), under three different illumination conditions.
Following the settings in [42], we choose the last three peak frames
in each sequence captured by the VIS system under the strong illu-
mination condition for experiments. Similar to the CK+ database,
we perform the 10-fold subject-independent cross-validation.
MMI. The MMI database [35] is a laboratory-controlled database
and involves challenging inter-personal variations. It includes 205
image sequences labeled with six basic facial expressions. Similar
to the CK+ database, we select the three peak frames in each frontal
sequence for 10-fold subject-independent cross-validation.

Table 1: The details of the baseline and 5 variants of D3Net.
Methods Be LAS Cladv LFS Cuadv
baseline

√
D3Net-LA

√ √ √
D3Net-LF

√ √ √
D3Net-LA_AT

√ √
D3Net-LF_AT

√ √
D3Net

√ √ √ √ √
Be denotes the expression branch.

RAF-DB. The Real-world Affective Face Database (RAF-DB) [25]
is an in-the-wild database that contains 15,339 images labeled with
six basic facial expressions and one neutral expression. Besides, it
also provides labels of gender, race, and age. RAF-DB is divided
into 12,271 training samples and 3,068 test samples.
SFEW. The Static Facial Expressions in the Wild (SFEW) [7] is
created by selecting the static frames from the AFEW database.
SFEW 2.0 [8] is the most commonly used version, where contains
958 images for training and 436 images for validation. Each image is
labeled with one of six basic expressions or the neutral expression.

4.2 Implementation Details
In our experiments, all the images are aligned and cropped to extract
the facial regions. Then, they are resized to 256 × 256 pixels and
cropped to 224 × 224 pixels. Furthermore, we apply the horizontal
flip to the cropped images. Similar to [37, 38], the shared backbone
network is based on ResNet-18 [17], where we remove the last FC
layer and change the output size of the last pooling layer. In this
paper, ResNet-18 is pretrained on the MS-Celeb-1M face database
[14]. As a result, the shared backbone network outputs a 2,048-
dimensional feature vector. The first FC layers in LAS, LFS, and
expression branch have the size of 512. The dimensions of each f ai
and f ui are set as 150 (i.e., D = K = 150). The weights in Eq. (15) are
empirically set as η1 = 0.1, η2 = 0.1, η3 = 1, and η4 = 1. In LFS, we
initialize the parameter α of Beta distribution with 20. In LAS, same
as DDL [32], the labels of illumination, pose, and identity in the
Multi-PIE database and those of gender, race, and age in the RAF-
DB database are employed to obtain a pretrained model. Therefore,
the value of M in Eq. (3) is 6. The value of M ′ is adaptively set (4
for Oulu-CASIA, 5 for both CK+ and MMI, and 6 for both SFEW
and RAF-DB) according to the experimental results of DDL.

All experiments are implemented by Pytorch and run on NVIDIA
GTX TITAN XP. We train the networks for 40 epochs using the
Adam optimizer [22] with β1 = 0.5 and β2 = 0.999. The initial
learning rate is 0.001 and decays by 0.1 after 10, 18, 25, and 32
epochs. The batch size is set as 16 for all the five databases.

4.3 Ablation Studies
In this subsection, we perform ablation studies to show the influ-
ence of the key components of D3Net (including LAS, LFS, and
adversarial training) on the performance. We evaluate one baseline
method and 5 variants of D3Net. The details of these methods are
summarized in Table 1. The comparison results are given in Table 2.
Influence of Label-Aware Sub-Branch (LAS). As shown in Ta-
ble 2, D3Net-LA achieves better performance than the baseline
method (about 1.35%, 5.91%, 2.92%, 1.41%, and 3.44% improvements



Table 2: The classification accuracy (%) obtained by different methods in ablation studies. The best results are boldfaced.
Methods CK+ MMI Oulu-CASIA RAF-DB SFEW
baseline 97.57 79.23 84.72 86.86 56.65
D3Net-LA 98.92 85.14 87.64 88.27 60.09
D3Net-LF 98.72 85.12 87.29 88.23 60.32
D3Net-LA_AT 98.61 83.54 86.67 87.81 58.49
D3Net-LF_AT 98.54 83.40 86.81 87.61 58.72
D3Net 99.52 86.30 89.24 88.79 62.16

Surprise
Fear
Disgust
Happy
Sad
Angry
Neutral

(a) original images (b) baseline (c) D3Net

Figure 3: Feature visualization on (a) the original images, and the models trained by (b) baseline and (c) D3Net on RAF-DB.

in terms of recognition accuracy on CK+, MMI, Oulu-CASIA, RAF-
DB, and SFEW, respectively). Similarly, D3Net obtains higher recog-
nition accuracy than D3Net-LF. This demonstrates that LAS, which
exploits the available label information from the face databases
to explicitly disentangle common disturbing factors in the FER
databases, is helpful to perform FER.

Note that, according to the observations in DDL, we select dif-
ferent common disturbing factors to extract disturbance-aware
features for different FER databases. More specifically, we choose
six common disturbing factors (gender, age, race, identity, illumina-
tion, and pose) for two in-the-wild databases. We use five disturbing
factors (gender, age, race, identity, and illumination) and four dis-
turbing factors (gender, age, race, and identity) for CK+ and MMI,
and Oulu-CASIA, respectively. By transfer learning, we apply the
knowledge (referring to common disturbing factors) learned from
the face databases to the target FER database, enabling the effective
removal of the disturbance caused by these disturbing factors. This
successfully alleviates the training difficulty from the lack of label
information for common disturbing factors in most FER databases.
Influence of Label-Free Sub-Branch (LFS). From Table 2, com-
pared with the baseline method, D3Net-LF gives better recognition
accuracy on both in-the-lab and in-the-wild databases. To be spe-
cific, for three in-the-lab databases, D3Net-LF improves the accu-
racy of the baseline method by 1.15%, 5.89%, and 2.57% on CK+,
MMI, and Oulu-CASIA, respectively. For two in-the-wild databases,
D3Net-LF respectively obtains 1.37% and 3.67% improvements on
RAF-DB and SFEW. Moreover, D3Net outperforms D3Net-LA on
five databases. These results show the effectiveness of LFS.

On the one hand, we introduce the IBP prior tomodel the distribu-
tion of potential disturbing factors. Such a manner is advantageous
to encode label-free disturbance features in an unsupervised way.
On the other hand, we capitalize on adversarial training to enforce
label-free disturbance features to be dissimilar from expression
features. This is beneficial to extract effective disturbance features,
thus capturing the information of potential disturbing factors.

Influence of Adversarial Training. In order to further show the
importance of adversarial training, we also evaluate the perfor-
mance of the models trained without using the adversarial training
loss Ll

adv and Lu
adv , which are denoted as D3Net-LA_AT and

D3Net-LF_AT, respectively. The results are shown in Table 2.
D3Net-LA_AT achieves worse performance than D3Net-LA in

all the databases. This indicates that employing adversarial training
to label-aware disturbance features is very helpful to perform dis-
entanglement of disturbance in LAS. In D3Net-LA_AT, label-aware
disturbance features are learned by leveraging transfer learning on a
pretrained model. Without adversarial training, label-aware distur-
bance features cannot be completely distinguished from expression
features, thereby leading to inferior disentanglement ability.

Compared with D3Net-LF, D3Net-LF_AT also obtains worse
recognition accuracy on all the databases. By employing adver-
sarial training in D3Net-LF, the distances between label-free distur-
bance features and expression features are enforced to be far away
from each other. Therefore, we are able to capture the label-free
disturbance information, thus improving the performance.
Feature visualization. To further verify that employing both ex-
plicit and implicit disturbance disentanglement plays a vital role in
extracting discriminative expression features, we use t-SNE [28] to
visualize expression features on RAF-DB, as shown in Figure 3.

From the feature distribution of the original images, we are diffi-
cult to distinguish different expressions. For the baseline method,
the differences between the features from different expressions are
not distinct. In Figure 3(b), features from disgust, sad, angry, and
neutral are mixed together, which easily leads to classification er-
rors. This can be ascribed to the fact that the features extracted by
the baseline method are easily affected by the disturbance due to
various disturbing factors. In other words, the expression informa-
tion is seriously entangled with the disturbance information for the
features obtained by the baseline method. In contrast, compared



Table 3: Performance comparisons on the in-the-lab
databases (i.e., CK+, MMI, and Oulu-CASIA) in terms of
recognition accuracy (%). The best results are boldfaced.

Method CK+ MMI Oulu-CASIA
IACNN [30] 95.37 71.55 –

PHRNN-MSCNN [47] 98.50 81.18 86.25
FN2EN [9] 98.60⋆ – 87.71

DLP-CNN [24] 95.78⋆ 78.46 –
IPA2LT [44] 92.45⋆ 65.61 61.49
DeRL [42] 97.30 73.23 88.00
ADFL [2] 98.17 77.51 87.50

TDGAN [41] 97.53±2.03⋆ – –
DDL [32] 99.16 83.67 88.26

D3Net (proposed) 99.52 86.30 89.24
⋆ denotes that six basic expressions are classified in CK+.

with the baseline method, D3Net shows better inter-class separa-
bility and intra-class compactness (see Figure 3(c)). Moreover, the
features corresponding to some similar expressions (i.e., sad, neu-
tral, and angry) are also more distinguishable. This is because D3Net
is capable of fully suppressing different types of disturbing factors
involved in facial images by the disturbance branch. In a word, the
proposed D3Net can extract discriminative expression features by
performing explicit and implicit disturbance disentanglement.

4.4 Comparison with State-of-the-Art FER
Methods

Table 3 and Table 4 report the results obtained by all the competing
methods on in-the-lab databases (i.e., CK+, MMI, and Oulu-CASIA)
and in-the-wild databases (i.e., RAF-DB and SFEW), respectively.

In Table 3, we can observe that D3Net and DDL outperform the
other competing FER methods on all the in-the-lab databases. This
is because multiple common disturbing factors are simultaneously
suppressed by these two methods. In contrast, IACNN only con-
siders the influence caused by identity. Compared with DDL that
only performs explicit disentanglement of limited common disturb-
ing factors, D3Net performs both explicit and implicit disturbance
disentanglement by using LAS and LFS. Hence, D3Net achieves
higher recognition accuracy than DDL. This demonstrates the sig-
nificance of taking into account potential disturbing factors in FER.
TDGAN, PHRNN-MSCNN, and DeRL show good performance on
CK+, MMI, and Oulu-CASIA. However, TDGAN and DeRL extract
discriminative expression features by implicitly separating the dis-
turbance information. Note that only six basic expressions in CK+
are classified by TDGAN, while seven expressions are predicted by
our D3Net. PHRNN-MSCNN focuses on the appearance variations
and identity differences from sequence data, ignoring many other
potential disturbing factors.

As shown in Table 4, we compare the proposed method with nine
state-of-the-art FER methods on two in-the-wild databases. Clearly,
D3Net obtains better performance than the other competing FER
methods on both RAF-DB and SFEW. Although DLP-CNN, SPDNet,
IPA2LT, and SCN achieve excellent FER performance, these meth-
ods do not explicitly consider the disturbance in facial images. On
the contrary, some common disturbing factors (such as illumination

Table 4: Performance comparisons on the in-the-wild
databases (i.e., RAF-DB and SFEW) in terms of recognition
accuracy (%). The best results are boldfaced.

Method RAF-DB SFEW
DLP-CNN [25] 84.13 51.05
IACNN [30] – 50.98
SPDNet [1] 87.00 58.14
IPA2LT [44] 86.77 58.29
IPFR [36] – 57.10†

TDGAN [41] 81.91±1.18 –
RAN [38] 86.90 56.40‡
SCN [37] 87.03 –
DDL [32] 87.71 59.86

D3Net (proposed) 88.79 62.16
† indicates extra data are used during training;
‡ represents a naive model fusion by averaging the scores of

ResNet18 and VGG16 [38].

and pose) are taken into account in D3Net. By performing trans-
fer learning in LAS, D3Net is capable of explicitly alleviating the
negative influence of these disturbing factors. Therefore, the above
results show the importance of disturbance disentanglement for
performing effective expression recognition.

Among the disturbance-disentangled based FERmethods, IACNN,
IPFR, RAN, and DDL only consider limited common disturbing fac-
tors. However, these methods ignore the influence of potential
disturbing factors, thus resulting in inferior recognition accuracy.
TDGAN is proposed to implicitly disentangle variations by GAN,
but it may not well cope with common disturbing factors. In con-
trast, D3Net effectively disentangles the disturbance of various
disturbing factors, achieving the best performance among all the
competing methods.

5 CONCLUSION
In this paper, we develop a novel D3Net, mainly consisting of an
expression branch and a disturbance branch, to address the distur-
bance in facial images for effective FER. In the disturbance branch,
two sub-branches (i.e., LAS and LFS) are respectively designed to
perform explicit and implicit disturbance disentanglement. In LAS,
we leverage transfer learning to capture the information of common
disturbing factors. Meanwhile, in LFS, we introduce the IBP prior to
model the distribution of potential disturbing factors. Moreover, ad-
versarial training is employed to effectively enlarge the differences
between disturbance features and expression features. By jointly
training the disturbance branch and the expression branch on the
shared backbone network, we are able to extract discriminative
expression features for FER. A large number of experiments on both
in-the-lab and in-the-wild databases have shown the superiority of
D3Net in comparison with several state-of-the-art FER methods.
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