
1 
 

Genetic testing for Familial Hypercholesterolaemia – Past, Present and Future 

 

Marta Futema1,2, Alison Taylor-Beadling3, Maggie Williams4, Steve E. Humphries5 

 

1 Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College 

London, United Kingdom 

2 Molecular and Clinical Sciences Research Institute, St George’s University of London, 

London, United Kingdom  

3 Regional Molecular Genetics Laboratory, Great Ormond Street Hospital for Children, 

London, United Kingdom 

4 Bristol Genetics Laboratory, Bristol, United Kingdom 

5 Institute of Cardiovascular Science, University College London, 5 University St, London 

WC1E 6JF, United Kingdom 

 

Correspondence to Steve Humphries: Centre for Cardiovascular Genetics, Institute of 

Cardiovascular Science, University College London, 5 University St, London WC1E 6JF, UK. 

Tel: +44 207679 6962, Fax: +44 207 679 6212, e-mail: steve.humphries@ucl.ac.uk 

 

Keywords: Monogenic, polygenic, LDL-C, SNP-Score, Variants of Unknown Significance 

(VUS), clinical utility, coronary heart disease, next-generation sequencing,  index case, LDLR 

 

 Short Title: Genetic Testing for FH 

 

Funding 

SH and MF were supported by a grant from the British Heart Foundation (BHF grant PG 

08/008) and by funding from the Department of Health's NIHR Biomedical Research Centers 

funding scheme. MF is supported by the Fondation Leducq Transatlantic Networks of 

Excellence Program grant (no 14 CVD03).  

 

  

mailto:steve.humphries@ucl.ac.uk


2 
 

Abbreviations 

Coronary Heart Disease (CHD)  

Next Generation Sequencing (NGS) 

Variants of Unknown Significance (VUSs) 

Lipid Lowering Therapy (LLT) 

Restriction Fragment Length Polymorphism (RFLP) 

Single-Strand Conformation Polymorphism (SSCP) 

Denaturing High-Performance Liquid Chromatography (dHPLC) 

Multiplex Amplification Refractory Mutation (ARMS) 

Cascade Testing (CT)  

Polygenic Risk Score (PRS) 

Whole Exome/Genome Sequencing (WES/WGS) 

 

 

Abstract 

In the early 1980s, the Nobel Prize winning cellular and molecular work of Mike Brown and 

Joe Goldstein led to the identification of the Low Density Lipoprotein Receptor (LDLR) gene 

as the first gene where mutations cause the Familial Hypercholesterolaemia (FH) 

phenotype. We now know that autosomal dominant monogenic FH can be caused by 

pathogenic variants of three additional genes (APOB/PCSK9/APOE), and that the plasma 

LDL-C concentration and risk of premature Coronary Heart Disease (CHD) differs according 

to the specific locus and associated molecular cause. It is now possible to use Next 

Generation Sequencing (NGS) to sequence all exons of all four genes, processing 96 patient 

samples in one sequencing run, increasing the speed of test results and reducing costs. This 

has resulted in the identification of many novel FH-causing variants, but also some “Variants 

of Unknown Significance (VUSs)” which require further evidence to classify as pathogenic or 

benign. The identification of the FH-causing variant in an index case can be used as an 

unambiguous and rapid test for other family members. An FH-causing variant can be found 

in 20%-40% of patients with the FH phenotype, and we now appreciate that in the majority 

of patients without a monogenic cause, a polygenic aetiology for their phenotype is highly 

likely. Compared to those with a monogenic cause, these patients have significantly lower 

risk of future CHD. The use of these molecular genetic diagnostic methods in the 

characterization of FH is a prime example of the utility of precision or personalised 

medicine. 
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Introduction 

Since the identification in 1983 of mutations in the Low Density Lipoprotein Receptor (LDLR) 

gene as causing the Familial Hypercholesterolaemia (FH) phenotype, pathogenic variants 

(mutations) in the APOB gene which reduce binding of the LDL-particle to the LDL-R (1), 

gain-of-function variants in PCSK9 (2) and one specific amino acid deletion in APOE (3) are 

known to also cause autosomal dominant FH. For LDLR, over 2300 different variants have 

been reported (4, 5) with some being found relatively commonly in some countries such as 

Finland (6), South Africa (7), and in French Canadians (8), due to “founder effects”  because 

of  recent immigration and population expansion. 

This knowledge has opened the way for molecular genetic diagnosis approaches to be 

developed to allow the unambiguous genetic proof that an individual with the FH 

phenotype is carrying an FH-causing variant, and to distinguish such individuals from those 

with environmental and or polygenic underlying causes of their elevated plasma cholesterol 

concentrations.  Initial diagnostic methods used co-segregation with common genetic 

variants at the LDLR locus, but these were superseded by methods that enabled rapid 

screening of all exons of LDLR for any variant, followed by Sanger sequencing of the 

identified exon.  

One of the most significant findings about FH emerging from Next Generation Sequencing 

(NGS) studies is the DNA-based confirmation that the prevalence of carriers of an FH-

causing variant is ~1/250 in many Caucasian populations world-wide (9). Since the textbook 

figure for FH is 1/500, this new knowledge has essentially doubled the number of FH 

patients predicted to exist, and emphasises the clinical and health economic value of testing 

relatives to identify individuals at a young age and offering them appropriate lifestyle and 

lipid lowering therapy (LLT) to reduce their risk of future premature Coronary Heart Disease 

(CHD). This process is called cascade testing (CT), and has led to the identification of many 

thousand previously undiagnosed individuals with FH who can then be offered appropriate 

lifestyle advice and lipid-lowering therapy 

In the UK the 2019 National Health System (NHS) long-term plan pledged to find and offer 

treatment to 25% of the predicted number of FH patients by 2023 

(https://www.longtermplan.nhs.uk/).  DNA testing in index cases with a clinical diagnosis of 

FH and cascade testing of their relatives for the family variant is a mainstay in such 

programmes to find these individuals before the onset of CHD.  

 

First diagnosis using RFLPs 

Before sequencing was routine in laboratories, it was still possible to carry out the 

presymptomatic identification of those relatives carrying a pathogenic variant inherited 

from an affected relative, and this approach had already been used for many clinically 

important inherited diseases. The method first required finding a restriction fragment 

length polymorphism (RFLP) at the disease gene locus, and required the index case to be 

https://www.longtermplan.nhs.uk/
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heterozygous for the polymorphism. As shown in Figure 1, in 1985 (10) we used the cloned 

gene probe for the LDLR gene (kindly donated by Dr D Russell) to detect an RFLP with the 

enzyme PvuII using Southern Blotting technology. Three different patterns can be seen. 

Individuals who have both LDLR alleles with the cutting site lead to the detection of only the 

shorter fragment of 14kb (kilobases) (designated V1) and have the genotype V1V1, while 

those who have both alleles lacking the cutting site result in the detection of only the longer 

fragment of 16.5kb (designated V2) and have the genotype V2V2. To be useful for following 

the alleles through the family the index case must be heterozygous for the polymorphism, 

(ie having the genotype V1V2). To establish whether the FH-causing variant is segregating 

with the common V1 or the rare V2 allele of the RFLP, at least one affected relative is 

required before a DNA diagnosis on other relatives can be made. This polymorphism was 

used to follow the inheritance of the defective LDLR gene in two families with FH, where it 

could be used for unambiguous diagnosis (10).  As shown in Figure 1 in Family S, the 

deceased proband (arrowed) must have had the genotype V1V2 since his wife had only the 

V1 allele and two of his children had the genotype V1V2. Both children with LDL-C 

concentration in the normal range had inherited the father’s V2 allele and the child with 

elevated LDL-C had inherited the father’s V1 allele, allowing the inference that in this family 

the defective LDLR gene is segregating with the V1 allele.  Both of the (affected) siblings of 

the proband also had the genotype V1V2 and thus when any of their children inherits the V1 

allele they will have FH, which was confirmed by measures of LDL-C in these subjects.  Since 

in the UK population around 30% of individuals have the genotype V1V2, this method was 

only potentially in 30% of all probands. Wider application of DNA-based diagnosis required 

identification of the specific causal variants, and several different methods evolved to 

achieve this.  

 

Early diagnostic methods – Deletions, direct assays and rapid screening of exons for any 

sequence variant  

Southern Blot analysis is a method of detecting the presence of gross deletions/insertions in 

a gene of interest. Due to a “founder” effect of recent immigration, a 10Kb deletion of the 5’ 

region and including part of exon 1 of the LDLR gene was found to be the cause of FH in 

individuals of French-Canadian origin (8), while the FH-Helsinki variant is a deletion of exons 

16, 17 and a portion of exon 18 (11).  Following the development of the Polymerase Chain 

Reaction (PCR) laboratories used PCR-based methods to detect these deletions rapidly and 

cheaply, allowing many samples to be screened, and the characteristics of carriers of 

different variants compared (6).  

In the UK and in many populations worldwide gross deletions/insertions explain ~5% of the 

molecularly defined FH index cases (12), indicating that a PCR-based assay method is a key 

element of the diagnostic strategy. Multiplex ligation-dependent probe amplification 

(MLPA) is a commercially available kit-based method using amplification probes for all 18 

exons of LDLR, alongside control probes to check for amplification efficiency. The exon 
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specific probes are modified to create fragments of different lengths, and the products 

analysed by capillary electrophoresis (13). Peak heights are compared, with a heterozygous 

deletion showing as a peak of 50% and a duplication as 150% of the expected height. MLPA 

has now been largely superseded by NGS copy number bioinformatic data analysis methods, 

which also provide data on sequencing coverage across the exons, enabling the comparison 

of a collective read depth per each gene exon in a single sequenced sample versus the 

average of the sequenced samples batch (14).  While deletions and insertions have been 

reported in all parts of LDLR, the majority are located in introns 1–8 and 12 through the 

3’UTR, which corresponds to the distribution of “Alu” repeat sequences in the gene (15) and 

suggests these rearrangements are due to mis-pairing and cross over at meiosis. 

Interestingly, a patient with the FH phenotype, and a poor/limited response resistance to 

statin LLT has been found to have an entire duplication of the wild-type PCSK9 gene (16) 

which will clearly result in the FH phenotype because of higher plasma levels of the PCSK9 

protein and greater hepatic LDL-receptor degradation. 

Since the majority of FH-causing variants are due to a single base change in the gene, 

methods to screen the entire gene for such changes were required. Early methods included 

single-strand conformation polymorphism (SSCP) analysis (17), and denaturing high-

performance liquid chromatography (dHPLC) electrophoresis (18). In both of these methods, 

any exon harbouring a sequence variant could be rapidly identified and selected for Sanger 

sequencing to determine if the change were likely to be FH-causing or not.  While such 

methods have been superseded they set the foundation and were integral in identifying the 

mutation spectrum in the LDLR gene in patients with the FH phenotype from many different 

countries.  

To enable rapid triage diagnostic testing, several PCR-based approaches were developed to 

test for FH-causing variants common in the population under study. In the UK this was first 

done using an Multiplex Amplification Refractory Mutation (ARMS) system assay for 12 LDLR 

variants and the common APOB c.10580G>A, p.(Arg3527Gln) variant (19). This method was 

rapid and cheap and if a patient sample gave a positive result this could be reported quickly, 

with negative patients entering a lengthy pathway of SSCP/dHPLC testing followed by 

Sanger sequencing and MLPA, often taking several months to complete. As sequencing 

became faster and cheaper SSCP and dHPLC methods were dropped, and Sanger sequencing  

of all exons of  LDLR, but only  for APOB and PCSK9 hotspots, plus MLPA testing was adopted 

as the diagnostic protocol.  

Using these available tools, DNA testing laboratories were established in a number of 

countries including in Holland (20), Spain (21), and Norway (22). In the UK the FH molecular 

diagnostic service was established in 1997 in the Clinical Molecular Genetics Laboratory at 

Great Ormond Street Hospital for Children (23). Over a four year period the laboratory 

analysed 227 probands and 141 family members, from lipid clinics. Pathogenic variants were 

found in 76 probands, 67 in LDLR (23 previously undescribed) and nine carriers of the 

common APOB mutation. The mutation detection rate was 53% in paediatric probands, 32% 
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in adults with tendon xanthoma positive definite FH (DFH) and 14% in adults with a tendon 

xanthoma negative Possible FH (PFH). By 2010 using similar methods but with improved 

sensitivity and speed 635 probands were analysed in 2 years using the ARMS kit for 18 

different LDLR mutations, one APOB and one common PCSK9 variant c.1120G>T 

(p.(Asp374Tyr), followed by SSCP/dHPLC and finally MLPA. The detection rate in DFH adult 

patients had improved to 56% and in PFH to 25% (24).     

 

FH-mutation databases 

As more and more countries have established molecular diagnostic laboratories for FH 

testing, and as commercial FH testing has developed (eg (25)), the number of published 

reports of FH-causing variants has increased significantly. UCL established an LDLR mutation 

database in 1998 (26) with regular updates since then. Analysis of world-wide reported 

variants identified that LDLR exon 4 appears to be a “hot-spot” for pathogenic changes, with 

significantly more variants reported here than in any other single exon (5, 27). However, 

exon 4 is also one of the largest in the gene, and when corrected for size, this hot-spot 

appears less impressive. This exon codes for three of the crucial 7-finger repeat motifs 

involved in LDL binding (28), which suggests that any missense mutation that alters the 

structure of this part of the protein may be pathogenic.  

One of the major problems in curating such a database is to have agreement as to the 

correct transcript and nomenclature to report a DNA or predicted protein change. Another 

problem is that simply finding a DNA change in a patient with FH does not prove that the 

change is actually FH-causing. In 2015, the American College of Medical Genetics and 

genomics (ACMG) published guidelines for the classification of variants (29), with five 

categories for variant classification: benign, likely benign, variants of unknown significance 

(VUS), likely pathogenic and pathogenic. The UK Association for Clinical Genomic Science 

(ACGS) has published annual best practice guidelines for variant classification and reporting 

for UK Clinical genomic laboratories based on the implementation of ACMG guidelines.  The 

recently updated LDLR variant database with variants classified according to these guidelines 

may be accessed via: http://databases.lovd.nl/shared/genes/LDLR. Although 93% of LDLR 

variants in the current upgrade of the database have been assigned to an ACGS 

pathogenicity category, ~7% could not be classified with available data and remain as 

variants of unknown significance.  Recently the ClinVar consortium has published LDLR-

specific criteria (30) which will be extremely useful in helping laboratories make uniformly 

consistent decisions regarding whether or not a novel variant is pathogenic.  

As an illustration of the immense genetic heterogeneity of molecular causes of FH, a recent 

study (31) of over 2500 children with molecularly defined FH from just eight countries in 

Europe (Norway, Holland, France, UK, Portugal, Czech Republic Austria and Greece) found 

297 different LDLR pathogenic variants, with the highest degree of heterogeneity seen in 

the Czech Republic and the UK, with Greece showing the lowest (81, 67 and 16 different 

http://databases.lovd.nl/shared/genes/LDLR
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variants respectively). Across countries the three most common variants in each showed no 

overlap except for an intron 3 c.313+1G>A mutation, which occurred commonly in Norway 

and the Netherlands, and c.131G>A, p.(Trp44*) in the Netherlands and Czech Republic, 

demonstrating the extreme heterogeneity of LDLR pathogenic variation across these eight 

countries. Interestingly, the prevalence of the APOB p.(Arg3527Gln) variant varied 

significantly (ranging from 0% in Greece to 39% in Czech Republic). 

 

Next Generation Sequencing (NGS) methods  

The technical advances realised during the Human Genome project, has enabled significant 

increases in the speed of return for diagnostic test results, and significant reductions in the 

costs.  DNA diagnostic labs have now developed NGS protocols whereby all the protein 

coding regions for all of the four known autosomal dominant FH genes as well as LDLRAP1, a 

gene showing autosomal recessive inheritance (two pathogenic variants required to cause 

the condition) (32), can be captured and sequenced together (33-36). With the addition of 

small ‘barcoding’ sequence identifiers into primers used for PCR amplification, it is also 

possible to batch samples from up to 96 individuals and analyse them in one run with high 

accuracy (34). This economy of scale has reduced costs so that now a full FH diagnostic 

screen including copy number assessment (deletions and duplications found in 5% of cases) 

can be completed for under £300.  While laboratories routinely confirm the identified 

variant by Sanger sequencing, the Bristol laboratory has carried out a validation exercise 

that negates the need for Sanger confirmation of a NGS variant if specific quality parameters 

are met (QUAL score and allele read split), reducing the number of variants that require 

confirmation and reducing reporting time by around 2 weeks.  

 

Clinical utility of a molecular diagnosis of monogenic FH 

When an individual with a clinical diagnosis of FH is found to carry an FH-causing variant, 

this creates a definitive DNA-based diagnosis of monogenic FH (37).  All recent guidelines on 

the management of FH recognise the utility of a DNA confirmed diagnosis. In those where a 

pathogenic variant is found, cascade testing (CT) using the family variant for unambiguous 

identification of FH relatives is recommended by all recent published guidelines [eg (37-41)], 

with identified subjects treated with high intensity lipid lowering therapies to reduce their 

very considerable risk of early CHD. CT has been shown to be a feasible and highly cost-

effective strategy in many countries [eg (42, 43)], and particularly in Holland (44).  

Knowing the specific gene (and specific variant) may also help with clinical management, but 

this is mainly due to the direct or indirect effect of the genetic variant on LDLR activity and 

thus the impact of the variant on the individual’s untreated LDL-C concentrations (45).   

Mutations in LDLR which completely destroy receptor function (such as large deletions or  

the introduction of a premature stop codon) are often associated with higher LDL-C than for 

example  some missense mutations or mutations influencing correct intron-exon splicing, 
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which may result in some degree of residual receptor function. In the recent analysis of the 

2500 Pan-European children discussed above (31) the highest mean concentrations were 

observed in the large insertions/deletions mutation carriers, which were similar to nonsense 

mutation carriers, but significantly higher than in promoter, splicing and missense mutation 

carriers. When examining the untreated mean LDL-C concentrations between the 22 most 

common mutations, a 1.6 fold difference was seen, but with each group showing a wide 

variation, probably reflecting the influence of both polygenetic and environmental 

influences. While the LDL-C concentration varies considerably within a group of individuals 

who all carry the same LDLR variant, it is well documented that compared to those with a 

variant in LDLR, those with the common APOB variant tend to have lower mean untreated 

plasma total and LDL-C concentrations, while in those with a gain-of-function PCSK9 variant, 

mean concentrations tend to be higher, particularly for the variant observed in the UK 

p.(Asp374Tyr) (46).  This is illustrated in Figure 3, using data from the Simon Broome 

Register, where 410 Definite FH (tendon xanthoma positive) patients were examined, 41% 

of whom had documented CHD (46). Compared to those where no pathogenic variant could 

be found (using pre NGS methods) the median pre-treatment Total Cholesterol (TC) was 

33% higher in the PCSK9 group, 5% higher in the LDLR group and similar in the APOB group. 

All four groups showed similar and clinically useful reduction in TC concentrations upon 

statin treatment, but because pre-treatment concentrations were so high in the PCSK9 

patients, their median on-treatment concentrations were still higher than recommended 

(9.3mmol/l). Compared to those with no mutation, the Odds Ratio (OR) for CHD in the LDLR 

group was 84% higher and in the PCSK9 group was 20 fold higher, estimates that were only 

modestly diminished by adjusting for pre-treatment TC. In this selected sample of DFH 

patients, those carrying the APOB mutation had an intermediate but non-significant OR for 

CHD.  

The Copenhagen General population study of over 98,000 participants has also examined 

this, with 111 carrying an LDLR mutation and 63 the common APOB mutation. Both groups 

had an earlier median age of Myocardial Infarction (MI) than the general population (14 and 

10 years respectively), with the Odds Ratio for MI being 5.3 (2.4-12) and 1.8 (0.7-4.6) 

respectively (47). The specific mutation in the LDLR is also known to be associated with pre-

treatment TC concentrations and with risk of early CHD, with for example “null mutations” 

which lead to no functional receptors being produced being more severe than  missense 

mutations (48) where some functional receptors may still be formed. 

 

Variant of Uncertain Significance (VUS)  

The full gene screening approaches available through NGS have increased the number of 

diagnoses, but in also the number of occasions whereby a Variant of Uncertain Significance 

(VUS) is identified, creating a diagnostic conundrum. These variants are more often novel 

with no or little published evidence to either support of refute classification. The proportion 

of UK tested samples showing a VUS is small but is not trivial. The UK FH PASS database 
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reports that as June 2019 there were 19,742 index cases tested with a clinical diagnosis of 

Simon Broome Definite or Possible FH, which resulted in 4,145 mutation positive cases 

(21%) and 670 patients (3.3%) where a VUS was reported (49).  ACGS best practice variant 

interpretation and reporting guidelines in 2020 now advocate only reporting a VUS where 

there is significant evidence supporting the VUS status, such that segregation or functional 

testing will enable classification. This should further reduce the number of VUS reported. 

It is clearly of important to be able to assess the probability of whether a variant identified 

in a clinical setting or as an incidental finding in genomics projects, is pathogenic or not. 

Predicting this is not always straightforward, especially for synonymous and missense 

variants. For LDLR, definitive proof that a variant is pathogenic requires either in vitro 

molecular assays to examine impact on transcription (50) or correct splicing (51) or LDL-R 

expression (52) and although such studies have been reported for some variants, for the 

majority of LDLR variants such data is lacking. 

The ApoB protein is highly polymorphic, with many common and rare variants that do not 

cause FH (eg (53)). However as well as the two common causes of the FH phenotype 

c.10580G>A, p.(Arg3527Gln) (46) and c.10579C>T, p.(Arg3527Trp) (54)) several novel 

variants in the APOB gene have been shown to be FH-causing using in vitro assays (55-57). 

For PCSK9 the situation is more complex, since in silico prediction algorithms may predict 

that a missense change is likely to affect function, but cannot distinguish between a gain-of-

function, possibly FH-causing variant, and a loss-of-function, low LDL-C variant. For 

LDLRAP1, pathogenic variants causes a premature truncation and loss of function (32), 

however where an individual is heterozygous for two different variants, determining phase 

and proof of recessive inheritance requires family studies.   

In 2018 ClinVar published an update of all reported FH causing variants (4), and as shown in 

Figure 2 this included 2314 LDLR variants of which 1620 were predicted to be pathogenic, 

353 in APOB of which 35 were designated as pathogenic and 216 in PCSK9, of which 28 were 

designated pathogenic. Figure 2 shows that while only 8% of reported LDLR variants are 

VUS, 58% of APOB and 46% of PCSK9 variants are currently designated as VUS using 

available evidence.  

The gold standard for proof of a variant being pathogenic requires family studies to see if 

other relatives who have inherited this variant have also shown high LDL-C levels, while the 

relatives without the inherited variant have normal levels of LDL-C. Such studies are time 

consuming and resource costly, and a method to triage the VUS would be of considerable 

utility.  

 

The LDL-C Polygenic Risk Score (PRS) 

The proportion of those with a clinical diagnosis of FH who are found to carry an FH-causing 

variant is of course strongly dependent on the precise selection criterial being used. While in 

those with the highest clinical suspicion of FH (Simon Broome Definite FH or a DLCN score 

https://www.ncbi.nlm.nih.gov/nuccore/NM_000384.3?report=graph&mk=10579|NM_000384.3/:c.10579C%3ET|green
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>8) between 40-80% have a monogenic cause, in those with a lower clinical suspicion the 

detection rate is usually 20-30% (24, 58, 59). A modification of the DLCN score has been 

proposed (60) which allocates “negative” points to the score depending on fasting plasma 

triglyceride concentrations, on the grounds that these would lower the probability of an 

individual having FH.  However, with the reduction in costs of NGS it is becoming less 

important to only select individuals with the highest probability of carrying an FH-causing 

variants, since identifying the monogenic cause in an individual with a low score is clinically 

useful for managing treatment and for testing relatives. 

. In the patients with clinical FH but where no FH-causing variant has been found a polygenic 

aetiology should be considered, due to the co-inheritance of a greater-than-average number 

of common LDL-C raising genetic variants (SNPs). This can be examined using a validated 12-

SNP “LDL-SNP Score” which in combination gives a “Polygenic Risk Score” (PRS) (61).  Data 

from UK patients (and in international collaborations) suggests that in more than 80% of 

those with a clinical diagnosis of FH but with no detectable monogenic cause, the polygenic 

explanation is the most likely cause of their hypercholesterolaemia (62).  

The clinical use of the PRS in the management of FH is shown in Figure 3. In the reports that 

have been returned to clinicians from several UK Diagnostic Laboratories for the last 3 years, 

the PRS is included by reporting the decile in which the individual scores. Deciles have been 

calculated using over 400,000 healthy UK White Caucasians from the UK BioBank study (63). 

Although using smaller sample numbers, the data suggests that these decile cut-offs are also 

appropriate for individuals from the Indian Subcontinent, but not in those of Afro-Caribbean 

origin, and different values will need to be used in reporting for this group. In those without 

a monogenic cause the report states that that there is a “high” likelihood of an individual in 

the 6th-10th decile of the PRS having a genetic cause for their hyperlipidaemia, those in the 

4th-6th decile an “intermediate” and those in the 1st-3rd decile as having a “low” likelihood.  

In individuals where no monogenic cause has been ideintified, the PRS allows a genetic 

cause to be reported as highly likely in an additional 40% (50% of 80%) and intermediate 

likelihood in an additional 16% (20% of 80%), thus increasing the overall diagnostic yield of 

FH testing from ~20-30% to >75%.   The PRS also has diagnostic utility in triaging identified 

VUSs for family or in vitro studies. Finding a VUS in an individual with a low PRS score in an 

individual with a VUS would suggest that the variant is more likely to be pathogenic. Such 

families, which would represent only 20-30% of the VUS subjects (ie in the lowest three 

score deciles) would then allow these families to be prioritised for co-segregation or 

functional studies to confirm or refute pathogenicity. 

There are several lines of evidence to suggest that the extent of atherosclerosis is higher in 

monogenic compared to polygenic FH patients. We have recently demonstrated (64) that 

the degree of thickening in the carotid artery, as measured by ultrasound, is considerably 

greater in a group of monogenic FH patients compared to a group of patients with a 

polygenic aetiology, even though total and LDL-C levels were similar. In addition, coronary 

calcium score was significantly higher in monogenic vs polygenic patients. Many papers 
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report that the prevalence of CHD is higher in groups of FH patients where a mutation can 

be found compared to those with a clinical diagnosis of FH but where no mutation can be 

found (46, 65, 66). Using NGS for the known FH genes among 20,485 CHD-free individuals, 

1,386 (6.7%) had LDL-C >4.9mmol/l, and of these, 24 (1.7%) carried a known FH mutation. 

As expected, there was a clear and continuous gradient of increasing CVD risk in individuals 

with increasing quintiles of LDL-C concentration, but in each quintile, those carrying an FH-

causing variant had markedly higher CVD risk than non-carriers. Compared with individuals 

with LDL-C<3.7mmol/l and no mutation, those with LDL-C >4.9mmol/l and no FH mutation 

had a 6-fold higher risk for CHD, but those with both LDL-C >4.9mmol/l and an FH mutation 

had a 22-fold higher risk. This elevated risk for CHD in individuals carrying an FH-causing 

variant has also been convincingly confirmed in a population-based analysis (66). This higher 

risk is likely explained by the substantially higher accumulated ‘LDL-C burden’ in monogenic 

FH subjects, since these individuals will have had genetically-determined lifelong high LDL-C.  

There is now mounting evidence of clinical utility of including the PRS in a diagnostic report 

of those where no FH-causing variant is found.  For the clinician, patients who have a PRS 

greater than the  8th decile, it is appropriate to consider that, because of their high genetic 

burden, and therefore life-long exposure to elevated LDL-C, their risk of developing CVD is 

high and that they should be considered for more intensive lipid lowering therapy. In 

addition, for all patients with a PRS greater than the 3rd decile this establishes a probable 

genetic cause for their hyperlipidaemia, which should help the physician (and patient) from  

embarking on a search for other esoteric causes of their dyslipidaemia. It also gives more 

confidence about recommending treatment for primary prevention to younger patients 

with a high PRS, in the knowledge that, as they have a genetic cause, they will be more likely 

to benefit. It is relevant to note that the low PRS score clinical FH patients that have a 

dominant family history of high cholesterol may have a novel monogenic cause, and this 

information could be helpful in selecting patients for recruitment for novel gene discovery 

research studies. 

For the patient, the PRS is also helpful. Clinicians who have been using this PRS for some 

time report that patients find the information gives them clarity about their diagnosis and 

less guilt that they have a high cholesterol because of their lifestyle. They also report that 

patients are more likely to accept statin treatment and less likely to pursue long and 

potentially futile attempts to treat their dyslipidaemia with diet and lifestyle measures 

alone. The PRS offers a likely explanation for their hypercholesterolaemia and its genetic 

cause may promote adherence with lifestyle and treatment. While there are limited data in 

this field, one randomised control study of reporting CVD risk using conventional risk factors 

plus or minus a 22 CVD risk SNP score found that significantly more subjects receiving the 

score started lipid-lowering therapy (and had a greater reduction in LDL-C) than those not 

told their genetic risk (67). This supports the clinical view that the LDL-SNP PRS will be 

motivational for statin use and adherence.    
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Finally, for those individuals with clinical FH and both a monogenic cause and a high 

polygenic score there is evidence for having a higher CVD risk than those with monogenic FH 

and a low score (66, 68). In a meta-analysis of over 1000 FH mutation positive individuals 

from three different cohorts (including UK BioBank), those with an LDL-SNP PRS above the 

80th percentile had a 48% higher HR for CVD (68). This risk was in part, but not fully, 

explained by their higher LDL-C. Based on this data it is appropriate to consider using more 

intense lipid-lowering therapy and even lower LDL-C on treatment targets for those with a 

PRS > 8th decile, for example using PSCK9i agents (http://www.nice.org.uk/guidance/TA394). 

 

Future Prospects. 

Cascade Testing 

Although Cascade Testing has been used very effectively in Holland (44) and has been 

shown to be highly cost effective using economic modelling (42), this is still not widely 

available in many countries (37). Apart from hesitation from family members to accept DNA 

testing (69) the main barriers to this being carried out are the lack of trained health care 

professionals (ie an “FH-Nurse”) to perform the necessary pedigree construction, plus the 

logistics of contacting relatives (especially those living at a distance) to obtain informed 

consent for genetic testing and to obtain a blood sample (particularly in the time of Covid 

pandemic). Obtaining funding for this work from health service providers requires a co-

ordinated effort from local clinical champions, with support from patient groups. This will 

both raise public and professional awareness of genomic and precision medicine and be 

essential to persuade funders that the short term investment for this process is cost saving 

in the long term, with regard to CVD events prevented.   

 

Other Polygenic Risk Scores 

Although we have focused here on the use of the LDL-C SNP PRS, it is also of potential 

clinical utility to consider other PRS in the management of individuals with FH. For example, 

a PRS based on more than 1.6 million SNPs obtained from a Genome-wide SNP chip has 

been shown to predict future risk of CHD in healthy individuals in the UK BioBank study (70), 

The magnitude of this effect was as large as that of the convention CHD risk factors 

combined, and added significantly to overall risk prediction in a model including all classical 

risk factors.  A particular genetic risk factor that is known to influence CHD risk in FH 

patients is their plasma concentration of the lipoprotein Lp(a) (71). Since concentrations of 

Lp(a) are almost entirely genetically determined, a Lp(a) PRS such as reported (72) may have 

clinical utility in patients with FH. Although neither of these PRS have yet been examined in 

patients with FH, it is likely that their use could identify those at highest risk of future CHD 

(based on non-LDL-C causes), and that such individuals would benefit from more intensive 

risk-factor management (eg even more intensive LDL-C lowering).  

http://www.nice.org.uk/guidance/TA394
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Testing Children 

Would it be feasible, affordable and ethically acceptable to use whole exome/genome 

sequencing (WES/WGS) of samples from babies at birth to identify those carrying an FH-

causing variant? Currently many countries already use biochemical and molecular 

approaches to test for a range or inherited metabolic diseases, usually using heel-prick 

blood samples taken within a few days of birth. It is certainly feasible to use this material for 

WES/WGS and as costs fall it is likely to become affordable in the next few years. Since an 

individual’s genome information can be used over a lifetime, the cost effectiveness could be 

high. However, the ethical acceptability of such an approach is still open to debate, and this 

is beyond the scope of the current review. It is worth pointing out that the metabolic 

diseases currently tested for at birth, for example phenylketonuria,  have a major 

consequence on the health and development of the infant if undetected, and treatment has 

a huge impact on  the child’s future health. For FH, the most relevant immediate 

consequence of a diagnostic finding is for the parents, one of whom will have FH of which 

many are likely to be as yet undiagnosed. The subsequent LLT of the affected parent and 

other siblings and relatives will improve their health and life expectancy.  

A related approach has been proposed of first measuring cholesterol concentrations in 

infants at the time of their routine 12 month vaccination visit, and then using targeted NGS 

in those with elevated cholesterol to identify FH-variant carriers (73), an approach 

designated “Child-Parent Screening”. In the UK this approach has been shown to be feasible 

and acceptable in a pilot project, which confirmed the prevalence of FH-causing variant 

carriers of ~1/270 (74).  As a source of new FH index cases, if implemented this would make 

a significant contribution to achieving the UK NHS target of finding 25% of the predicted FH 

cases in the next 5 years (75). Health economic modelling has shown that this approach is 

cost effective (76), but the UK National Screening Committee has not yet endorsed this 

approach (https://legacyscreening.phe.org.uk/familialhypercholesterolaemia-child), and 

requested additional information about appropriate cholesterol thresholds, long term 

benefits and acceptability, which is being obtained through a larger pilot scheme. Measuring 

the lipid profile in children for example at school age and genetic screening of those above a 

threshold is already being run successfully in some countries (77). 

 

Incidental findings 

An additional way in which an individual carrying an FH-causing variant may be picked up is 

through having an “incidental finding” as part of a WES/WGS activity for an unrelated 

disorder. The ACMG have published a list of 57 genes involved in 27 disorders, where 

reporting such incidental findings has clinical utility (78), and this list includes FH. As part of 

the UK 100,000 genomes project (https://www.genomicsengland.co.uk/the-100000-

genomes-project/), more than 70,000 individuals have had WGS carried out, and based on 

the prevalence of 1/250, between 200-300 FH patients are likely to be identified. Results will 

https://legacyscreening.phe.org.uk/familialhypercholesterolaemia-child
https://www.genomicsengland.co.uk/the-100000-genomes-project/
https://www.genomicsengland.co.uk/the-100000-genomes-project/
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be fed back under the additional findings arm of the project and evaluation of the 

acceptability of receiving an FH diagnosis by this route, and the extent to which this leads to 

appropriate LLT and cascade testing will be carried out.  Several similar large scale 

WES/WGS projects are on-going around the world, both as part of research protocols and as 

part of routine clinical practice, and follow-up of the identified individuals will be important.    

One of the aims of such WES/WGS projects is to identify novel genes where variants cause 

FH. To date, while potential candidates have been identified (79) these approaches have not 

yielded definitive results, and every candidate must be examined in detail before adding to 

diagnostic FH panel. As an example, the gene STAP1 was suggested to be a novel FH gene by 

linkage analysis and NGS in a large family from Holland (80).  Although these findings 

appeared robust, functional analysis (81) and failure in co-segregation analysis (82) has 

definitively ruled out STAP1 as being an FH gene, demonstrating the degree to which 

caution must be used and a high threshold set for such candidates.  Finally, WGS would also 

allow the identification of potential FH-causing variants in regions of the known FH genes 

not usually examined such, as in distant flanking transcriptional control elements or deep in 

introns (83), which would then require function studies to verify the effect.  

 

Conclusions 

Since the identification of the LDLR gene in 1983 and demonstration that pathogenic 

variants in this gene cause FH, enormous progress has been made in developing rapid, 

affordable and sensitive methods for the identification of the underlying molecular cause of 

the FH phenotype in an individual. The estimated prevalence of FH in Caucasian populations 

is 1/250 individuals and although we yet have limited data to substantiate this, if the 

prevalence is similar in all ethnic groups there may be up to 31 million individuals carrying 

an FH-variant world-wide. Although there is currently no global database of the number of 

individuals with a genetic confirmation of their diagnosis, published data suggests that for 

example 40% of the predicted number in Holland  20% in Spain and ~10% in Canada and the 

UK have been identified, with the vast majority of countries having fewer than 1% identified 

to date (84, 85). While all patients with a clinical diagnosis of FH need cholesterol and CHD 

risk factor management, the demonstration of higher levels of atherosclerotic burden in 

those with an identified monogenic cause supports recommendations that they warrant 

intensive LDL-C lowering, and that this should be performed under the management of a 

lipid specialist. In some patients this may include treatment with PCSK9 inhibitors in order to 

achieve LDL-C lowering target. By contrast, in those who do not have a monogenic cause for 

their lipid phenotype, estimation of their CHD risk using risk algorithms is appropriate, and 

they may be able to be managed in general practice. This use of genetic information to risk 

stratify patients with a clinical diagnosis of FH is a paradigm example of the utility of genetic 

in Precision Medicine (86).  
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Figure Legends 

Figure 1.  The First DNA diagnosis in relatives of an FH index case. (Data from (10)) 

1A. Southern blot using a radioactive probe for human LDLR, hybridised to a southern blot 

filter of a digestion with the restriction enzyme PvuII of three samples of human DNA, 

showing the RFLP. The detection of an RFLP is due to a sequence change altering the 

restriction site and usually occurs in flanking regions or introns of the gene and is not usually 

itself the FH-causing variant. Identifying a potentially useful RFLP was a time consuming and 

rate limiting step in this methodology. The common allele designated V1 contains a cuting 

site for PvuII and is seen as a band of 14kb. The rare allele V2 lacks the cutting site and is 

seen as a band of 16.5Kb. Individuals shown are homozygous for the V1 allele (genotype 

V1V1, homozygous for the V2 allele (genotype V2V2) and heterozygous for both alleles 

(genotype V1V2). 

1B. Segregation of the PvuII RFLP in Family S. The proband (deceased from an early 

myocardial infarction) is indicated by an arrow. It can be deduced from the genotypes of his 

children that this individual must have had the genotype V1V2, as do both his older sister 

and younger brother. From inspection of the child of the older sister, in this family the FH 

causing variant is inherited with the V1 allele, since the child has inherited the V1 allele from 

his Fh mother and has the FH phenotype. This is confirmed in the children of the proband, 

where those who have inherited the V2 allele from the deceased father do not have FH 

while the child who inherited the V1 allele has FH. In the children of the youngest brother all 

have inherited the V1 allele and can all be predicted to have FH.  
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Figure 2.  Distribution of ClinVar Benign, VUS, Pathogenic and Unclear variants in LDLR, 

APOB and PCSK9. (Data from (4))  

 

Figure 3. Box Whisker plot of untreated Total Cholesterol Pre and Post Statin treatment 

and Odds Ratio for CHD by FH-causing gene. (Data from (46)) 

Boxes show median and interquartile range, with 95% range shown by bars. Outliers (more 

than 1.5 times the interquartile range from the edge of the box) are shown as dots. * 

indicate p <0.005 vs None, values from two-tailed unpaired Student’s t tests.  
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Figure 4. Flowchart showing the Risk stratification Clinical management for adding the 12-

SNP Polygenic Risk Score to the Next Generation Sequencing strategy used in Diagnostic 

Laboratories    

 

 


