

Climate change and coastal archaeology in the Middle East and North Africa: assessing past impacts and future threats

Kieran Westley, Georgia Andreou, Crystal El Safadi, Harmen O. Huigens, Julia Nikolaus, Rodrigo Ortiz-Vazquez, Nick Ray, Ash Smith, Sophie Tews, Lucy Blue & Colin Breen

To cite this article: Kieran Westley, Georgia Andreou, Crystal El Safadi, Harmen O. Huigens, Julia Nikolaus, Rodrigo Ortiz-Vazquez, Nick Ray, Ash Smith, Sophie Tews, Lucy Blue & Colin Breen (2021): Climate change and coastal archaeology in the Middle East and North Africa: assessing past impacts and future threats, *The Journal of Island and Coastal Archaeology*, DOI: [10.1080/15564894.2021.1955778](https://doi.org/10.1080/15564894.2021.1955778)

To link to this article: <https://doi.org/10.1080/15564894.2021.1955778>

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

[View supplementary material](#)

Published online: 02 Sep 2021.

[Submit your article to this journal](#)

Article views: 1094

[View related articles](#)

CrossMark

[View Crossmark data](#)

Citing articles: 9 [View citing articles](#)

Climate change and coastal archaeology in the Middle East and North Africa: assessing past impacts and future threats

Kieran Westley^a , Georgia Andreou^b , Crystal El Safadi^b , Harmen O. Huigens^a , Julia Nikolaus^a , Rodrigo Ortiz-Vazquez^b , Nick Ray^c, Ash Smith^b , Sophie Tews^a, Lucy Blue^b , and Colin Breen^a

^aSchool of Geography & Environmental Sciences, Ulster University, Coleraine, UK; ^bArchaeology, University of Southampton, Southampton, UK; ^cArchaeology and Ancient History, University of Leicester, Leicester, UK

ABSTRACT

Climate change threatens coastal archaeology through storm flooding (extreme sea-level: ESL), long-term sea-level rise (SLR) and coastal erosion. Many regions, like the Middle East and North Africa (MENA), lack key baseline evidence. We present initial results from a climate change threat assessment of MENA's coastal heritage using the Maritime Endangered Archaeology inventory: a geospatial database of MENA maritime archaeological sites incorporating a disturbance/ threat assessment. It informs two analyses of past disturbance and future threat: (1) using the integral threat/disturbance assessment, and (2) geospatial extraction of information from external coastal change models. Analysis suggests <5% of documented coastal sites are definitely affected by coastal erosion but up to 34% could also have experienced past flooding, erosion, or storm action. Climate change-related threats will increase over the 21st Century and accelerate post-2050 if carbon emissions remain high. SLR and ESL could impact 14–25% of sites by 2050 and 18–34% by 2100. Over 30% to 40% of sites could be impacted by erosion by 2050 and 2100 respectively. Whilst documentation is ongoing and there remain modeling uncertainties, this approach provides a means to redress the absence of baseline data on climate change threats to coastal cultural heritage in MENA .

ARTICLE HISTORY

Received 24 February 2021;
Accepted 12 July 2021

KEYWORDS

Spatial analysis; remote sensing; coastal; Middle East and North Africa

Introduction

Anthropogenic climate change is acknowledged as one of the greatest threats humankind is facing today, with the potential to adversely impact natural systems and human societies over the twenty-first century and beyond (IPCC 2014, 2019a, 2019b). Cultural heritage is not immune to these impacts (Fatorić and Seekamp 2017; Hambrecht and Rockman 2017; McGovern 2018; Sabbioni et al. 2006). Maritime cultural heritage, which incorporates coastal, intertidal, and underwater heritage, is regarded as especially at risk

CONTACT Kieran Westley k1.westley@ulster.ac.uk School of Geography & Environmental Sciences, Ulster University, Coleraine, BT52 1SA UK

 Supplemental data for this article is available online at <https://doi.org/10.1080/15564894.2021.1955778>.

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (<http://creativecommons.org/licenses/by-nc-nd/4.0/>), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

because coastlines and intertidal zones are subject to the considerable impacts of erosion and flooding, driven by long-term sea-level rise (SLR) or by episodic events such as storms, hurricanes, and tropical cyclones (Erlandson 2008, 2012; Fitzpatrick, Rick, and Erlandson 2015; Harkin et al. 2020; Murphy, Thackray, and Wilson 2009; Dawson et al. 2020). Secondary impacts on archaeological and heritage sites are created by the human response to climate change. Hard infrastructure such as seawalls and breakwaters may prevent erosion or flooding and protect sites inland, but coastal sites may be damaged by these measures, if they are located at the point of construction. Moreover, hard defenses can also shift erosion elsewhere along a coastline, and thus simply move the location of greatest threat (Cooper and Pile 2014; Cooper, O'Connor, and McIvor 2020; Cooper and Jackson 2019). Alternatives, such as soft- or ecological engineering (e.g., the creation/restoration of natural habitats: Morris et al. 2018) or managed realignment (Esteves 2014) are desirable from a coastal management standpoint because they provide a more natural and sustainable means of shoreline stabilization. However, they are often dynamic because shorelines are allowed to migrate or flood (Morris et al. 2018). Thus, while there are examples of archaeological sites that have been protected in this manner (Harkin et al. 2020), others remain at risk (Daly 2011; Krawiec 2017).

Awareness of climate change impact on coastal cultural heritage is increasingly established, along with a rapidly growing body of research (Fatorić and Seekamp 2017). Published approaches include desk-based assessment, flood modeling, remote sensing, shoreline change assessment, archaeological field survey, Unmanned Aerial Vehicle (UAV) survey, community-based projects, and adaptation planning (Andreou et al. 2017; Anderson et al. 2017; Cook, Johnston, and Selby 2019; Daire et al. 2012; Dawson 2015; Ezcurra and Rivera-Collazo 2018; Graham, Hambly, and Dawson 2017; Dawson et al. 2020; Hil 2020; Ives, McBride, and Waller 2018; O'Rourke 2017; Reeder-Myers 2015; Robinson et al. 2010; Westley et al. 2011; Westley and McNeary 2014; Reimann et al. 2018; Westley 2019; Elliott and Williams 2019; Reeder-Myers and McCoy 2019; Rivera-Collazo 2020). Clear common themes are emerging from this diverse body of work. These include awareness that not all sites can be saved, the importance of rapid documentation to record cultural material before it is lost, and the need to assist historic environment/cultural resource managers in prioritizing attention, resources, and interventions through improved data on climate change and sites at risk.

Nevertheless, and despite the global impact of climate change, the recent literature reveals an uneven distribution of research. Numerous projects are ongoing or completed in North America and Europe, often with the active engagement of national heritage agencies (Anderson et al. 2017; Cook, Johnston, and Selby 2019; Daire et al. 2012; Dawson 2015; Elliott and Williams 2019; Graham, Hambly, and Dawson 2017; Hambrecht and Rockman 2017; Heathcote, Fluck, and Wiggins 2017; Harkin et al. 2020; Heilen, Altschul, and Lüth 2018; Ives, McBride, and Waller 2018; Murphy, Thackray, and Wilson 2009; Robinson et al. 2010; Reeder-Myers 2015; Nash and Wholey 2018; O'Rourke 2017; Reeder-Myers and McCoy 2019; Westley et al. 2011; Westley and McNeary 2014; Westley 2019). Despite the rich maritime cultural heritage outside Europe and North America, attempts made elsewhere are few in number (Fatorić and Seekamp 2017; Brooks et al. 2020).

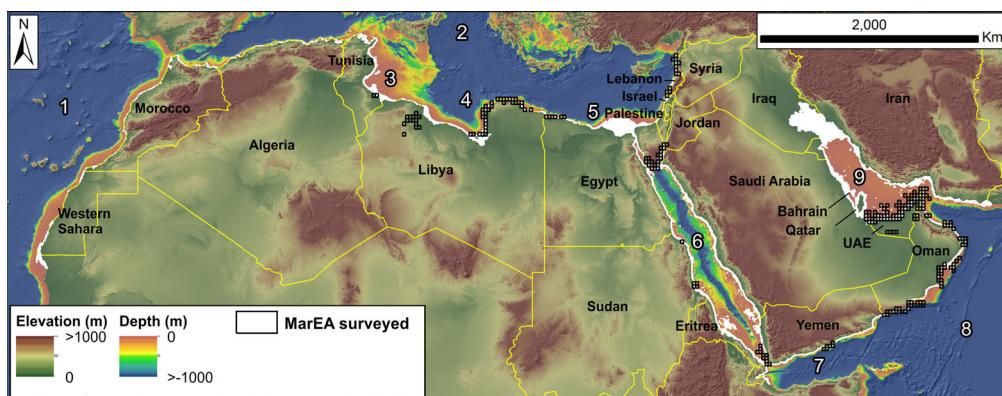
An example of this is the Middle East and North Africa (MENA). Although it has a longstanding and well-published tradition of maritime and coastal archaeology—particularly in the Mediterranean (e.g., Blue 2019)—research has often focused on specific sites or topics of study. For example, shipwrecks, ancient harbor development, or trade networks (e.g., Marriner, Morhange, and Carayon 2008; Marriner and Morhange 2008; Robinson and Wilson 2011; Galili, Oron, and Cvikel 2018). Moreover, discussions of sea level and climate have focused principally on past change (e.g., Benjamin et al. 2017; Galili et al. 2020; Inglis et al. 2019; Lambeck et al. 2011) rather than the impacts of present and future change on the endangered archaeological record. There are a handful of exceptions, which include one national-level (Israel: Galili and Rosen 2010) and one comprehensive regional risk assessment (Reimann et al. 2018), with the latter geographically and thematically restricted to Mediterranean World Heritage Sites. Outside these, the tendency is to discuss climate change impacts in terms of individual sites (see section "Impacts on Coastal Heritage") or generalized potential impacts (Brooks et al. 2020; Trakadas 2020). The upshot is a gap in knowledge that lies between site-specific snapshots and generalized overviews of potential impact. The missing information is precisely the type of baseline data on maritime cultural heritage (e.g., site locations, present condition) and impacts (e.g., severity, spatiotemporal variability) that is needed to start producing comprehensive threat assessments. This means that archaeologists and/or heritage agencies often cannot address even basic questions. For instance, which sites will be affected by climate change impacts? Where is the threat greatest along a given coastline? By when and how will particular sites be affected? This in turn hinders the development of prioritization and management strategies, which can minimize the loss of irreplaceable cultural heritage.

Addressing this at national and regional levels requires comprehensive and up-to-date digital inventories of archaeological sites. Within these, additional requirements are accurate site locations to enable geospatial modeling or assessment of threats (Hil 2020; Reimann et al. 2018; Reeder-Myers 2015; Westley et al. 2011) and use of standardized terminology to enable direct comparison of variables, such as threat or site types (Rayne et al. 2017). Outside MENA, threat assessments have adapted national heritage inventories for these purposes (e.g., Anderson et al. 2017; Westley and McNeary 2014). However, within MENA, the availability and quality of such inventories, and the skills and technology needed to produce them, are highly variable (Rayne, Sheldrick, and Nikolaus 2017). This has been the impetus for a recent series of threat assessment programs, which include the generation of new digital databases, such as Endangered Archaeology of the Middle East and North Africa (EAMENA: Rayne et al. 2017) and the ASOR Cultural Heritage Initiative (Danti, Branting, and Penacho 2017).

In 2019, this approach was extended into the MENA coastal/nearshore zone by the Maritime Endangered Archaeology Project (MarEA). MarEA is supported by the Arcadia Fund, a charitable fund of Lisbet Rausing and Peter Baldwin, and works in partnership with EAMENA (Rayne et al. 2017; Andreou et al. 2020). Its overarching aim is to comprehensively document and assess threats to the maritime cultural heritage of the MENA region. Documentation and assessment is based on remote sensing analysis supplemented where possible by other data, such as literature, field observations, and/or geophysical survey. Results are fed into the open-access EAMENA database (<https://database.eamena.org/>). The end result is an up-to-date digital inventory and

threat assessment of maritime archaeological sites that fulfills the core requirements of geospatial accuracy and standardized terminology and thereby enables quantification and comparison of threats across the MENA region.

This paper presents initial results from a component of the overall MarEA analysis, specifically the mapping and quantification of climate change impacts on coastal archaeological sites. For the purpose of this analysis, “coastal” is defined as the present shoreline and adjacent Low Elevation Coastal Zone (LE CZ: land areas <10 m in elevation and in hydrological connection to the coast; IPCC 2019b; see section “Materials and Methods” for rationale and S1 for technical details). These results are based on the initial 1.5 years of documentation and not all MENA countries are currently represented (see section “Materials and Methods”). However, given the urgency of the climate crisis, we cannot wait until the “perfect” data set is available. It makes sense to start identifying where threats are now and developing strategies to deal with them rather than delaying in the hope of more and better data. Over time, as more data become available, initial results can be refined and more countries and coastlines included. Moreover, the analysis presented here demonstrates different approaches to regional-scale threat assessment that can fill the current knowledge gap, specifically manual documentation of threats and disturbances versus geospatial integration of the digital inventory with external models of climate change impact.


In the following sections, we first provide background to the physical environment, maritime cultural heritage, and likely coastal climate change impacts in the MENA region; second, we provide initial results of climate change impact and threat identification; finally, we discuss the implications of analysis to date and potential future work.

Background: Physical geography, climate change, and coastal archaeology in the Middle East and North Africa

Physical geography

The MENA region has 55,000 km of coastline bordering the Atlantic Ocean, the Mediterranean Sea, the Indian Ocean and the Red Sea, Gulf of Aden, and Arabian/Persian Gulf. Coastal and nearshore zones are topographically diverse. Areas of steep mountains and narrow continental shelves contrast with broad coastal plains and extensive shelves (Figure 1). Roughly 175,000 km² of the MENA region are LECZ and thus are at risk from coastal flooding (Figure 1). Extensive LECZ is located at the northern Arabian/Persian Gulf, Nile Delta, and Gulf of Sirte. Elsewhere, it comprises a coastal fringe of varying width, generally expanding around estuaries and embayments.

MENA wave climates vary between the oceanic swell-dominated coast of northwest Africa, the protected semi-enclosed basins of the Mediterranean and Red Seas, and the tropical cyclone-influenced Arabian Sea. Tidal range varies from mesotidal (2–4 m) on the Atlantic coast and in the Arabian Sea and Arabian/Persian Gulf to microtidal (<2 m) in the Mediterranean and Red Seas (Rosendahl Appelquist 2013). Consequently, extreme sea levels (ESL) created by the combined effect of storm waves, tides and surges differ across the region. The highest ESL (2–3 m) are restricted to parts of the Arabian/Persian Gulf and Atlantic coast. Remaining areas are typified by ESL of <1 m, with localized excursions up to 1.5 m (Muis et al. 2016). Local to regionally varying wave

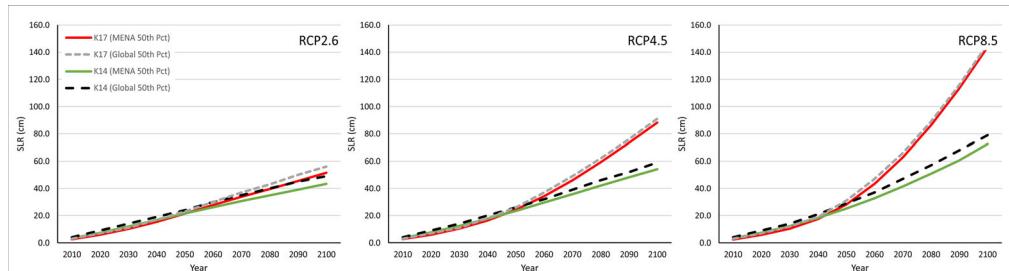
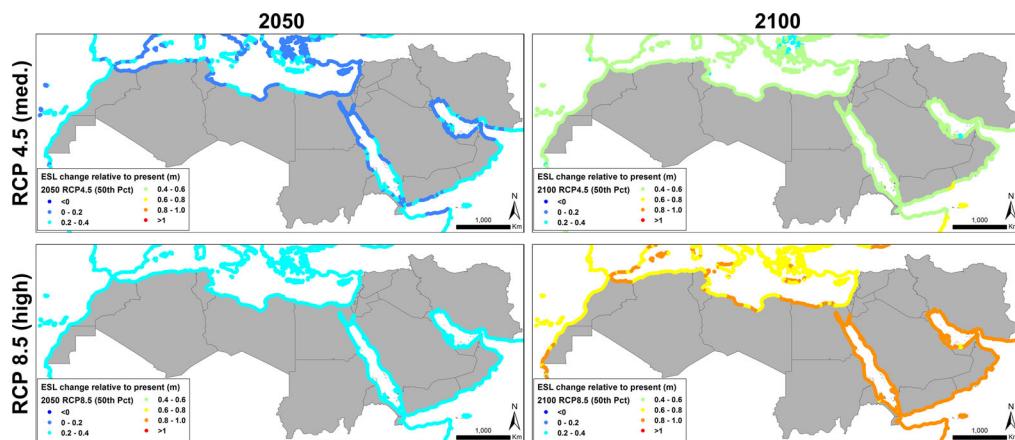


Figure 1. MENA topography, bathymetry and political geography. Elevation above sea level is from the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) (Farr et al. 2007), depth below sea level is from the GEBCO DEM (GEBCO Compilation Group 2019). The extent of the LECZ (<10 m asl) is shown in white and is derived from CoastalDEM90 (Kulp and Strauss 2019). Black grid squares show areas surveyed by MarEA and incorporated into the EAMENA database as of July 2020. Numbers indicate locations mentioned in the text: (1) Atlantic Ocean; (2) Mediterranean Sea; (3) Gulf of Gabes; (4) Gulf of Sirte; (5) Nile Delta, (6) Red Sea; (7) Gulf of Aden; (8) Arabian Sea; (9) Arabian/Persian Gulf. Yellow lines are national boundaries from the Database of Global Administrative Areas (GADM v3.6: <https://gadm.org/>) and do not imply any opinion, endorsement or acceptance on the part of the authors.

and tidal regimes and differing geology and topography all contribute to a diversity of coastal geomorphologies. This includes, for example, extensive beaches, archipelagos, coastal dunes, mangroves, estuaries, deltas, rock cliffs and platforms, intertidal flats, and sabkhas (Bird 2010).

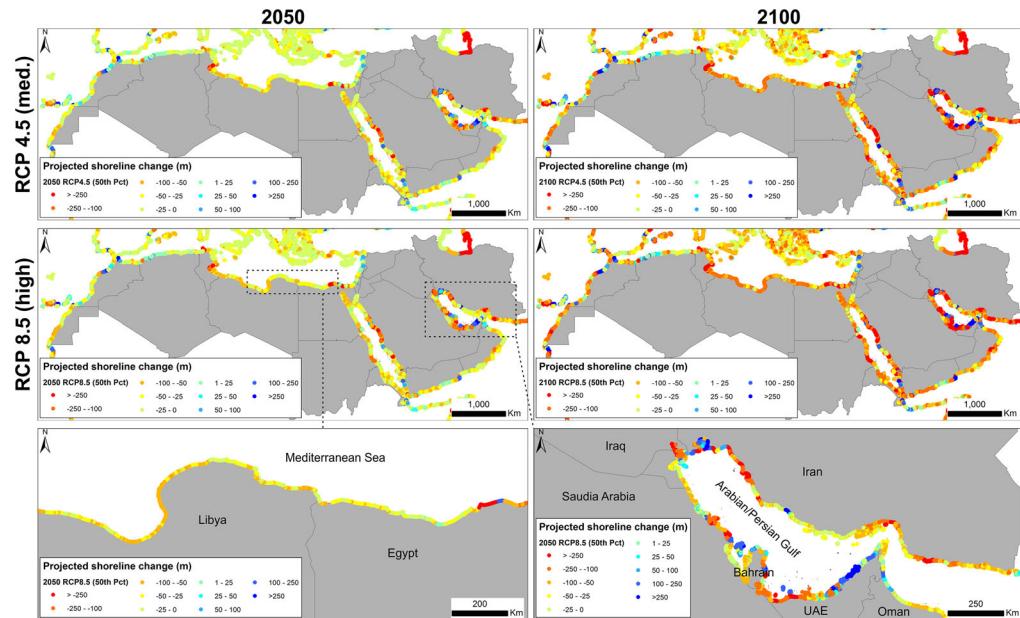
Coastal archaeology

The MENA region has been occupied by humans and their hominin ancestors since the Lower and Middle Paleolithic (Daujeard et al. 2020); Petraglia, Breeze, and Groucott 2019; Raynal et al. 2001; Scerri and Spinapolic 2019; Scerri et al. 2018, including sites within, or close to, the former coastal zone (Besançon et al. 1994; Beyin and Shea 2007; Ramos et al. 2008; Sinclair et al. 2019; Walter et al. 2000). Throughout the Quaternary, the MENA coastal zone experienced major fluctuations in relative sea level in line with glacial-interglacial cycles and with local- to regional-scale variation caused by tectonics and the isostatic response to distant ice sheets and changing water loads (Benjamin et al. 2017; Grant et al. 2014; Lambeck et al. 2011; Lambeck and Chappell 2001; Vacchi et al. 2018). The region has attracted significant scholarly attention due to material evidence for several early key processes including the development of crop agriculture, animal husbandry, and sedentary life as part of the “Neolithic revolution” (Cauvin 2000; Simmons 2007; Watkins 2010), early processes of social hierarchy, urbanization (Liverani and Tabatabai 2014), and state formation (Bang and Scheidel 2013), developing into some of the world’s earliest empires (Düring and Stek 2018; Van de Mieroop 2004) and the foundation of powerful maritime societies (Broodbank 2013; Horden and Purcell 2000). Given the comparative lack of permanent waterways for inland navigation


Figure 2. SLR projections for the MENA region (solid lines) compared with global projections (dashed lines) under low (RCP2.6), medium (RCP4.5) and high (RCP8.5) greenhouse gas emissions pathways. Each graph also compares model outputs from Kopp et al. (2014; labelled K14) versus the “pessimistic model” of Kopp et al. (2017; labelled K17).

(aside from exceptions such as the Nile), the sea has played a major role in regional trade and transport. Ancient shipping routes traversed the Mediterranean, Red Sea, Arabian Sea, and Indian Ocean (Boivin, Blench, and Fuller 2010; Seland 2011; Leidwanger 2020) and the coastline is dotted with coastal settlements, trading stations, constructed ports, and natural harbors, generally dating from the mid- to late-Holocene onwards. Sea-level and coastal geomorphological changes continued into these recent periods and are complicated by local and regional variations in neotectonics and sediment supply (Anzidei et al. 2011; Inglis et al. 2019; Morhange et al. 2006; Vacchi et al. 2018; Zerboni et al. 2020). Thus, for all periods, preexisting “maritime” sites and landscapes can be found along the coast, buried under the present coastal plain, submerged offshore, or uplifted above present sea-level and now inland.

Climate change impacts


A key driver of coastal climate change impacts is SLR, itself the result of ocean warming and ice melting. Global projections indicate SLR of 0.29–1.1 m by 2100. This takes the upper and lower bounds of the likely range for the IPCC’s Representative Concentration Pathways (RCP) 2.6 and 8.5, respectively, the best- and worst-case projections of twenty-first-century atmospheric greenhouse gas concentrations. SLR rates are currently 3.1–4.1 mm/year and projected to accelerate over the twenty-first century (IPCC 2019b). Modeled uncertainties also increase in time. Thus, “pessimistic” models with greater SLR (up to 1.5–2 m by 2100) driven by accelerated Antarctic melting cannot be excluded (Kopp et al. 2017; IPCC 2019b; Pattyn and Morlighem 2020). SLR projections for MENA follow these trends, albeit slightly reduced, due to region-specific tectonic, oceanographic, and isostatic effects (Figure 2). The expectation is that MENA will experience ~0.2 m of SLR by 2050 under all RCPs but with acceleration thereafter if greenhouse gas (GHG) emissions remain at elevated levels (RCPs 4.5 and 8.5). The result is SLR of ~1.5 m by 2100 under a pessimistic scenario, reducing to 0.8 m under a conventional high-emissions RCP. Models also indicate minor regional variability with SLR in the east of the region 0.1 m higher than in the west (Kopp et al. 2014, 2017; Waha et al. 2017; World Bank 2014).

SLR can impact coastlines in several ways. First, it will result in permanent inundation of present-day dryland. This impact will be most extensive in areas that are

Figure 3. 1-in-100-year extreme sea level (ESL) projections presented as anomalies relative to the present day (1980–2014 baseline) for the MENA region under medium (RCP4.5) and high (RCP8.5) emissions pathways for 2050 and 2100. Data derived from the 50th percentile projections of Vousovoukas et al. (2018). International boundaries are from the Database of Global Administrative Areas (GADM v3.6: <https://gadm.org/>) and do not imply any opinion, endorsement, or acceptance on the part of the authors.

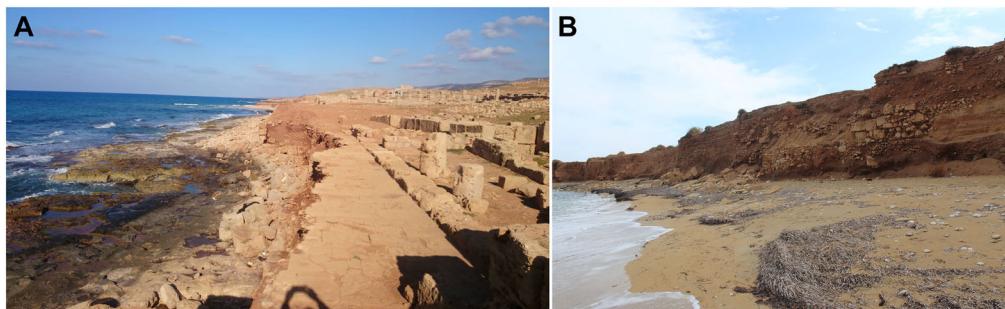

currently subsiding (e.g., Nile Delta) or which have extensive LECZ (e.g., northern Arabian/Persian Gulf, Gulfs of Gabes and Sirte: El Raey 2010; Dasgupta et al. 2011). Second, it will amplify the threat of ESL events (i.e., the combined effect of tides, storm surges, and mean sea-level) such that even relatively small SLR can lead to significantly increased flood intensity and frequency. For instance, the return period for extreme events can be reduced such that a 1-in-100-year flood becomes an annual event (Kopp et al. 2014, 2019; Vousovoukas et al. 2018). Frequency amplification is enhanced where historic sea-level variability due to tides and surges is small compared to projected future SLR (IPCC 2019b). These conditions characterize much of the MENA coastline given its often microtidal and semi-enclosed nature. Consequently, modeling suggests strong amplification, particularly in the Red Sea and Indian Ocean, such that the return period of 1-in-100-year ESL becomes an annual event by 2050, under both medium (RCP4.5) and high (RCP8.5) emissions pathways. Projected amplification is less severe for the Mediterranean, but shows a reduction in return period to <20 years (Vousovoukas et al. 2018). Regarding ESL height, increases are projected for the entire MENA region. By 2050 under both RCPs 4.5 and 8.5, increases of up to 0.4–0.5 m relative to present are apparent everywhere. By 2100, ESL values rise by up to 0.6 m under RCP4.5, and even further under RCP8.5: generally by up to 1 m for the Arabian Peninsula and varying between 0.6 and 1 m for North Africa (Figure 3). Third, SLR has the potential to alter the balance between erosion and accretion on a given coastline. Recent modeling suggests that SLR is the key factor responsible for increasing erosion rates of sandy shorelines over the twenty-first century rather than episodic storms (Vousovoukas et al. 2020). This model projects widespread coastal retreat of tens of meters by 2050 across MENA, and often exceeding 100 m by 2100 under RCPs 4.5 and 8.5 (Figure 4). This should be taken with the caveat that these models are necessarily simplified to enable a global-scale approach and that the

Figure 4. Shoreline change projections for the MENA region under medium (RCP4.5) and high (RCP8.5) emissions pathways for 2050 and 2100 timesteps. Warm colors and negative numbers indicate coastal retreat, cool colors and positive numbers indicate coastal advance. Dashed boxes show zoomed views of the Eastern Mediterranean (left) and Arabian/Persian Gulf (right) for RCP8.5 and 2050 in order to better demonstrate variability in projected shoreline change. Data are the 50th percentile projections from Vousdoukas et al. (2020).

precise coastal response at any given location can be more complex than predicted (Cooper et al. 2020).

In addition, human attempts to adapt to changing climates can also have adverse impacts. The most obvious are engineering solutions that protect the coast but at the cost of altering natural hydrodynamics and sediment supply. These can inhibit the natural response of coastal systems and potentially shift erosion elsewhere (Cooper and Pile 2014; Cooper and Jackson 2019; Cooper, O'Connor, and McIvor 2020). Additional indirect impacts could result from societal responses to climate change away from the coast. For example, declining rural livelihoods caused by climate change impacts on water and agriculture could increase rural-to-urban migration (Cattaneo et al. 2019; World Bank 2014; Waha et al. 2017). This pressure, coupled with the fact that the MENA population is projected to double by 2050 (World Bank 2014), could result in accelerated urban expansion. Because many of MENA's major urban centers are on the coast, the impacts here will be considerable. Human action unrelated to climate change may exacerbate the impact of the processes above. For example, groundwater extraction can result in subsidence, which in turn locally enhances SLR. Within MENA, this effect has been noted for the Nile Delta (Egypt; El Raey 2010; Rateb and Abotalib 2020; Stanley and Clemente 2017). Other problematic activities include reduction or modification of sediment supply caused by coastal sand mining or damming and land-use practice further upstream in watersheds (Basset, Anthony, and Bouchette 2019; Defeo et al. 2009; Luijendijk et al. 2018; Vousdoukas et al. 2020). Such activities result in accelerated

Figure 5. Impact of erosion on the coast of Eastern Libya at the sites of (A) Apollonia and (B) Tocra. (Photos taken November 2019 by Saad Buyadem and Saleh Alaurfi.)

coastal retreat and have been observed at multiple locations particularly along the North African coast, including the Nile Delta (Moussaid et al. 2015; Trakadas 2020; Poulos and Collins 2002; Hzami et al. 2021).

Impacts on coastal heritage

There is already evidence within MENA of the types of adverse impacts on coastal heritage which could be heightened by climate change. For instance, extensive erosion has been observed in Eastern Libya. Here, waves and storms cut into low cliffs of unconsolidated coastal sediment, exposing and damaging archaeological material buried within the cliff or undercutting structures built on top of it. The impact is particularly severe due to the numerous Classical to Roman-period ports, harbors, and settlements dotted along this stretch of coast. Well-known examples where destructive erosion has been observed include Tocra and Apollonia (Bennett 2018; Bennett and Barker 2011; Bennett et al. 2004; Flemming 1965; Pizzinato and Beltrame 2012). Reports from MarEA's local partners indicate that erosion is ongoing (Figure 5) and that its destructive effects can be seen also on a series of no-less important but less well-studied sites (Hesein 2014). Other locations where erosion or coastal retreat has been noted include: Syria (Arab al-Milk: Westley et al. 2018); Libya (El-Shahat, Minas, and Khomira 2014; Sabratha: Bennett and Barker 2011); Lebanon (Tell Burak, Byblos: Deroin, Kheir, and Abdallah 2017; Semaan 2016); Israel (Galili and Rosen 2010); Oman (Ra's al-Hamra: Tosi 1975; Marcucci et al. 2014); Morocco (Essaouira, Sidi Abdeselam de Behar: Trakadas 2020); and Iran (Siraf: Khakzad et al. 2015; Pourkerman et al. 2018). Episodic storm-driven coastal flooding is less well documented than erosion. Nonetheless, examples do exist from Syria (Arwad Island: Hassan, Xie, and Rahmoun 2018), Oman, and Yemen (Charabi 2010; Newton and Zarins 2019). More common is evidence of long-term submergence of archaeological sites. In particular, the Mediterranean coasts of the Levant and North Africa contains numerous examples of port/harbor facilities, quarries, fish ponds, and occupation sites now located below present sea level (Anzidei et al. 2011; Benjamin et al. 2017; Semaan 2016). Whilst submergence is historically the result of long-term glacio-eustatic SLR and/or tectonic subsidence or sediment compaction, rates of SLR over the twenty-first century suggest similar impacts will become more widespread, even for locations that are not currently subsiding.

Materials and methods

The results presented here are extracted from the MarEA inventory, which is incorporated into the open-access EAMENA database (<https://database.eamena.org/>). At the time of writing, this comprises data from the initial 1.5 years of documentation from an overall 5-year project duration. Results are thus initial and represent only a portion of the potential record to be documented. The focus of documentation in this initial phase of the project has been countries with high levels of threat (e.g., Yemen, Libya) or areas not/poorly covered by our partner EAMENA, so as to spatially expand overall coverage (e.g., Sudan, Oman).

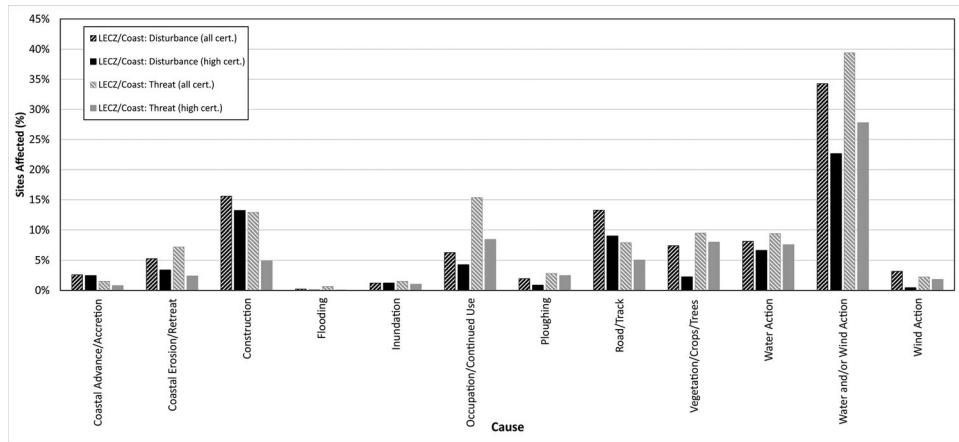
Documentation is comprehensive: all sites are documented regardless of whether they have been subject to disturbance or are at risk. Thus documented sites range in date from the Paleolithic to the early twentieth century and cover a variety of site types, including settlements, burials, ports/harbors, shipwrecks, buildings, and enclosures. Each documented site is subject to a disturbance and threat assessment, which can be used to identify disturbed or threatened sites or extract information on particular causes of threat/disturbance. This assessment is based on recent very high resolution (<1 m) satellite imagery (sourced primarily from Google Earth) supplemented by other data sources where available, including literature, historic imagery (aerial, satellite, ground-level), historic maps, geophysical data, and field survey. Disturbance describes impacts that are visible on satellite imagery or reported in the literature. Threat is estimated subjectively based on the disturbance trends observed by the data analyst. These are recorded in terms of both generalized categories and detailed causes of threat and disturbance.

In all cases, consistency is maintained by use of controlled vocabularies and certainty qualifiers (e.g., definite, high, medium, low are used to account for interpretative uncertainties; see also Rayne et al. (2017) and [Supplementary Information](#) for further details on documentation and disturbance/threat assessment).

This approach does not identify climate change as a specific threat or disturbance cause for two reasons. First, the immediate disturbances/threats are from natural processes or anthropogenic actions that may be affected or exacerbated by climate change. It is these immediate disturbances/threats that are recorded. Second, it can be difficult to disentangle which disturbances/threats are a direct outcome of climate change or have a portion attributable to climate change. Nevertheless, several types of disturbances/threats are included in the controlled vocabulary which are the most likely to be exacerbated by climate change—principally flooding and erosion. Results are presented from two analytical approaches. The first directly analyzes the threat and disturbance assessments manually created for each record. The second integrates the MarEA inventory with existing models of climate and environmental change. This uses the spatial information recorded for each documented site to extract relevant information from the integrated climate/environmental change model. Three models were integrated with these data, one focusing on past disturbance and two on future threat.

- (1) Past disturbance was based on the Global Surface Water data set (GSW: Pekel et al. 2016). This used satellite imagery to quantify the spatial extent of water gained or lost from the Earth's surface over the past 30 years and includes refinements to address coastal change (Mentaschi et al. 2018).

- (2) Modeled future flooding was based on the CoastalDEM90 elevation model (Kulp and Strauss 2019) combined with SLR and ESL projections generated by the Large Scale Integrated Sea-level and Coastal Assessment Tool (LISCoAsT: Voudoukas et al. 2018). Results were extracted for 2050 and 2100 timesteps under medium (RCP4.5) and high emissions pathways (RCP8.5).
- (3) Modeled future erosion was based on shoreline change projections generated by LISCoAsT (Voudoukas et al. 2020). Results were extracted for 2050 and 2100 timesteps under medium (RCP4.5) and high emissions pathways (RCP8.5).


All above approaches focused on a subset of 1386 coastal archaeological sites filtered out from the initial data set of 5609 sites. As mentioned earlier, for this exercise “coastal” is defined as the present shoreline and adjacent LECZ. This broad definition has been chosen to include those sites that are, in theory, on the present front line of coastal climate change impacts, as well as sites located inland that could be affected if processes such as erosion and flooding extend landwards in the future. In contrast, the full data set includes sites located offshore and fully underwater and spread across the coastal hinterland up to 25 km inland. Further details on filtering and analysis methods can be found in the [Supplementary Information](#).

Results: Disturbance

MarEA documentation

At face value, disturbances potentially relating to climate change, such as coastal erosion or flooding, rank low. Using all certainty qualifiers, Coastal Erosion/Retreat has only been identified for 5% of all documented sites, while the combined total of Inundation and Flooding accounts for only 1% of all sites (Figure 6, Table 1). However, these low numbers could be driven by uncertainty in the definitive identification of these causes (discussed further in the “Discussion” section). Alternative causes, which encompass both coastal flooding and erosion, are “Water Action” or “Wind and/or Water Action.” These are generic terms that denote that there has been an impact from water and/or wind but that the exact process is unclear. Thus, the predominant identified disturbance cause is Wind and/or Water Action. Using all certainty values, this cause has disturbed 34% of the documented subset. This reduces to 23% if only high certainties are used, suggesting that there is some uncertainty in its attribution. Following this, there is a slight divergence between identified disturbance causes, although the general pattern is a mix of natural and anthropogenic. The next most common causes are: Construction (16% all certainties/13% high certainties), Road/Track (13%/9%); Water Action (8%/7%), Vegetation/Crops/Trees (7%/2%).

Disturbance patterns can also be mapped spatially. These are constrained by the areas documented to date and this bias will be corrected as the project proceeds. Nonetheless, the analysis here indicates existing hotspots of disturbance. Figure 7 does this for causes that are potentially linked to climate change, either via direct (Coastal Erosion/Retreat, combined Wind and/or Water Action and Water Action) or indirect impacts

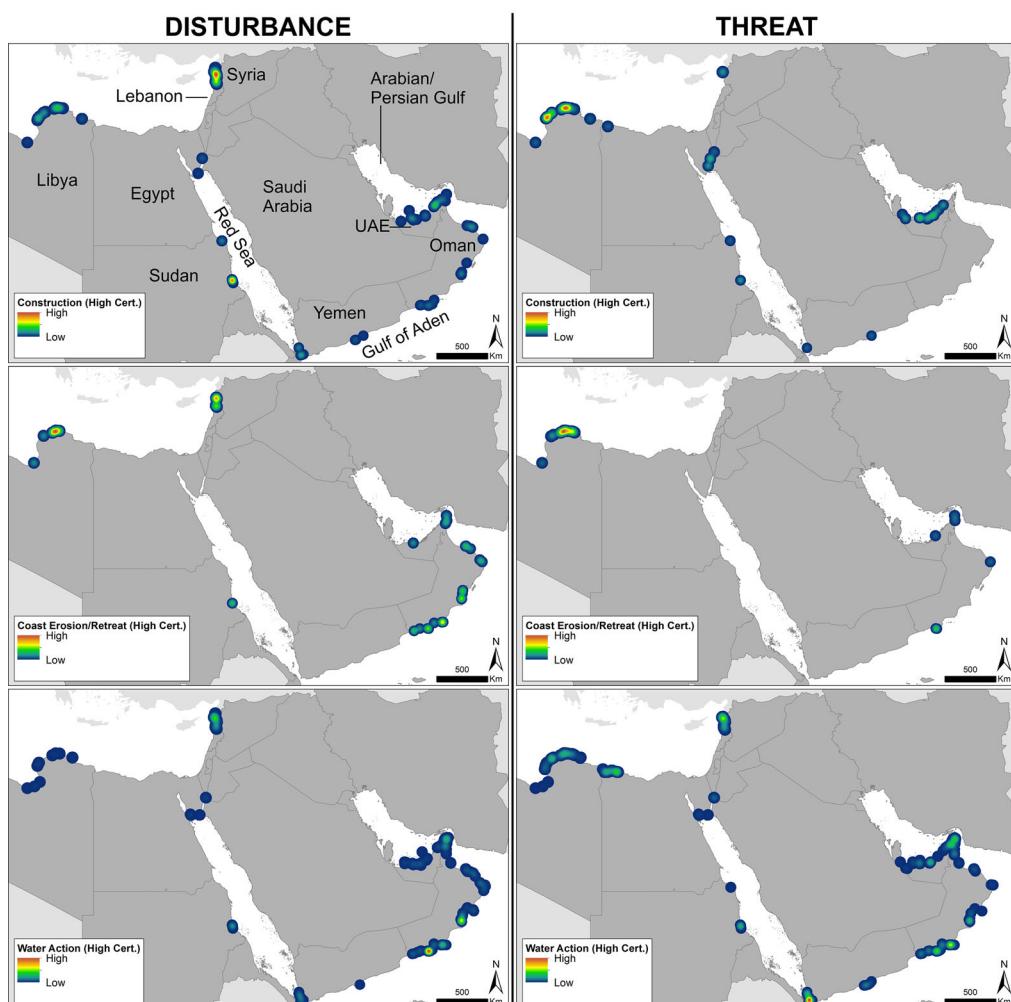


Figure 6. Percentage breakdown of documented MarEA sites for selected disturbance and threat causes. Selected causes include natural processes potentially linked to climate change and the most common anthropogenic impact. Graph compares threat and disturbance for all certainty classes and a filtered version using only high-certainty classes. See Table 2 for quantitative summary.

Table 1. Percentage breakdown of documented MarEA sites for selected disturbance and threat causes. Selected causes include natural processes potentially linked to climate change and the most common anthropogenic impacts. Comparison includes all certainty classes and a filtered version using only high certainty classes.

Cause	% Coastal sites affected (n = 1386)			
	Disturbance (All cert.)	Disturbance (High cert.)	Threat (All cert.)	Threat (High cert.)
Coastal Advance/Accretion	2.60	2.45	1.52	0.79
Coastal Erosion/Retreat	5.27	3.39	7.22	2.38
Construction	15.58	13.20	12.91	4.91
Flooding	0.22	0.07	0.65	0.07
Inundation	1.23	1.23	1.52	1.01
Occupation/Continued Use	6.28	4.26	15.37	8.44
Ploughing	1.95	0.87	2.81	2.45
Road/Track	13.26	9.04	7.93	5.04
Vegetation/Crops/Trees	7.43	2.24	9.52	8.01
Water Action	8.15	6.64	9.45	7.58
Water and/or Wind Action	34.27	22.66	39.39	27.78
Wind Action	3.17	0.43	2.24	1.80

(Construction). Disturbances from construction are spread across the region, with particularly dense clusters in Eastern Libya, Sudan, and Syria. An extensive but less-dense cluster is also evident along the coast of the southern Arabian/Persian Gulf. Definitively identified disturbances from coastal erosion are much less widespread. Again, Syria and Eastern Libya are hotspots, and smaller but dense clusters are also mapped in Sudan and on the southwest and northeast shores of Oman. Nonetheless, if water (and/or wind) action is used as a potential proxy for climate-change related processes, then the extent of disturbance becomes far more widespread. Almost every region surveyed to date has sites impacted by this cause. Some areas correspond to those where coastal erosion has already been identified (e.g., Syria, Eastern Libya, Oman), but new clusters also appear on the Sinai Peninsula, Yemen, and along the shores of the Gulf of Aden and Arabian/Persian Gulf.

Figure 7. Coastal subset of documented sites classified under specific disturbance and threat causes (high certainties only). Note that in this case Water Action combines both Water and/or Wind Action and Water Action categories in order to capture all possible instances of the impact of Water Action. Data are presented as a heat map such that high and low values refer to site density. Color scales have been not been normalized between images in order to highlight density per category. International boundaries are from the Database of Global Administrative Areas (GADM v3.6: <https://gadm.org/>) and do not imply any opinion, endorsement, or acceptance on the part of the authors.

Integration with GSW

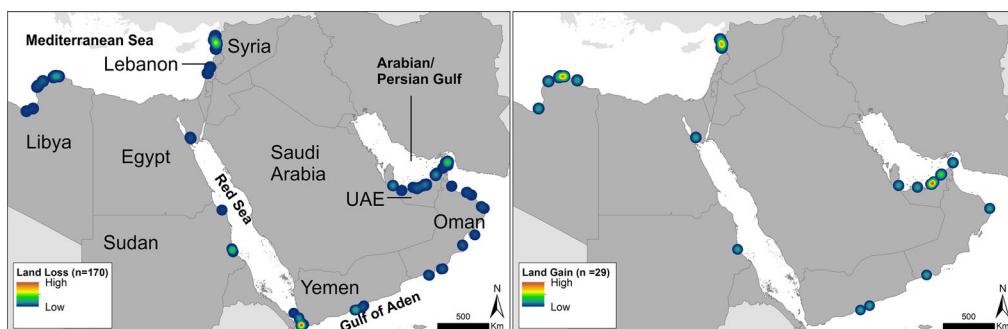
MarEA data were spatially overlaid on the GSW data set and reclassified on the basis of whether sites intersected one of the following coastal change categories (Mentaschi et al. 2018).

- (1) Land Loss: Land converted to sea/intertidal zone (coastal retreat).
- (2) Land Gain: Sea/intertidal zone converted to land (coastal advance).

This analysis indicate that a higher proportion of sites were affected by land loss (12%) compared to land gain (2%; Table 2). The highest-density clusters for Land Loss

Table 2. Summary breakdown of sites potentially impacted by coastal changes based on the integration of MarEA data with models of coastal change. Sites are shown in terms of the raw count of documented sites as well as percentages.

Analysis type	Model	Category/Timestep and RCP	Coastal subset (n = 1386)	
			No. of sites	% of data set
Disturbance	GSW	Land Loss	170	12.3
		Land Gain	29	2.1
Threat	ESL: LISCoAsT + CoastalDEM	RCP4.5 2050	337	24.3
		RCP4.5 2100	397	28.6
		RCP8.5 2050	351	25.3
		RCP8.5 2100	476	34.3
		RCP4.5 2050	182	13.1
Threat	SLR: LISCoAsT + CoastalDEM	RCP4.5 2100	211	15.2
		RCP8.5 2050	192	13.9
		RCP8.5 2100	247	17.8
		RCP4.5 2050	433	31.2
Threat	Coastal erosion/retreat: LISCoAsT shoreline change	RCP4.5 2100	550	39.7
		RCP8.5 2050	454	32.8
		RCP8.5 2100	599	43.2


are Eastern Libya, northern Syria, central Sudan, southwest Yemen, and the southern shore of the Arabian/Persian Gulf (Figure 8). Scattered lower clusters also occur in Lebanon and along the Oman coast. Land Gain, however, is spatially much more limited. The main hotspots occur in Eastern Libya, Syria, and the central UAE, with isolated clusters in the Sinai Peninsula, Sudan, Yemen, and Oman.

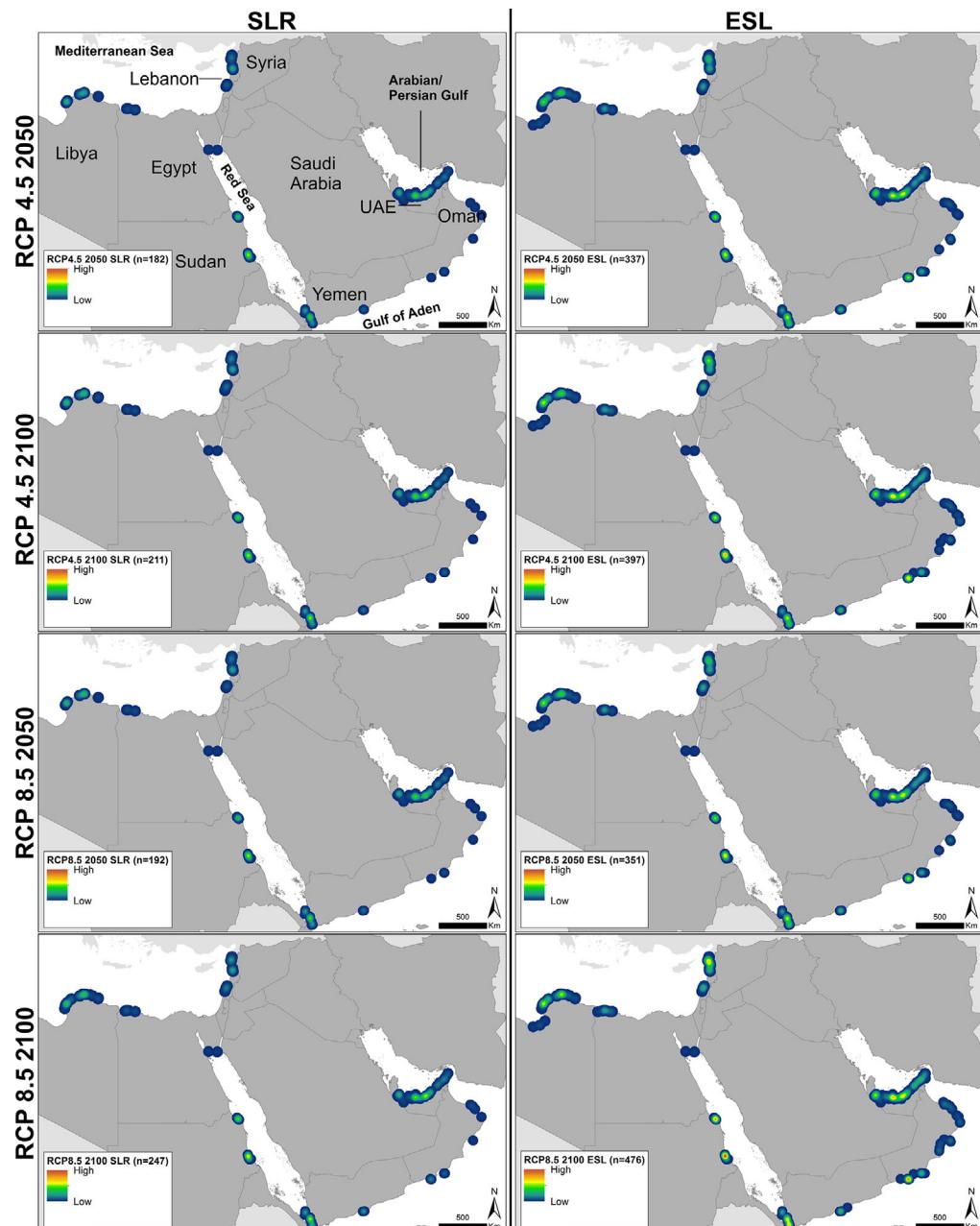
Results: Threat

MarEA documentation

As with disturbances, clearly identifiable causes which might be exacerbated by future climate change rank low (Figure 6, Table 1). Coastal Erosion/Retreat and the combined total of Inundation and Flooding have only been identified for 7% and 2% of sites, respectively, using all certainties. On the other hand, the generic but still potentially climate change-related cause of Water and/or Wind Action is the predominant threat. Using all certainties, 39% of the sites in the coastal subset are at risk. This reduces to 28% if only high certainties are used. The next-greatest identified threat causes are a mix of natural and anthropogenic: Occupation/Continued Use (15% all certainties/8% high certainties); Construction (13%/5%); Vegetation/Crops/Trees (10%/8%); and Water Action (9%/8%).

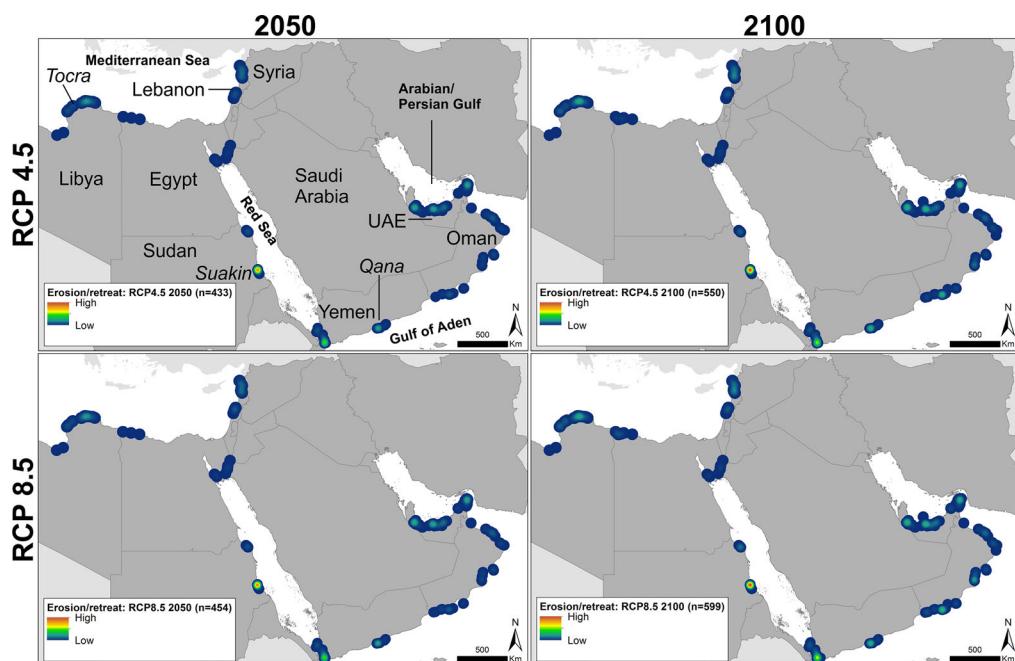
Spatial mapping using the coastal subset and high certainties, and for causes which are potentially directly or indirectly linked to climate change, demonstrates regional patterns. Threat from construction has concentrations in Eastern Libya, the Sinai Peninsula, and along the coast of the UAE. Isolated hotspots are present in Syria, Sudan, and Yemen (Figure 7). In terms of erosion, only Eastern Libya and isolated occurrences in the southeast Arabian/Persian Gulf and Oman coast have clear indications of this future threat. However, as noted in the “Discussion” section, this may relate to the difficulty of detecting erosion. Instead, if water action is considered as a potential indicator of climate-change related processes, then the extent of threat becomes widespread. Almost every region surveyed to date has sites potentially at risk, and given the coastal focus, water action in this

Figure 8. Coastal subset of the MarEA inventory classified according to coastal change categories from the GSW data set. Data are presented as a heat map such that high and low values refer to site density. Color scales have not been normalized between images in order to highlight density per category.


case mainly comprises processes such as wave, tidal, and storm action, which can result in coastal flooding and erosion. For this cause, Eastern Libya, southwest Yemen, Syria, southwest Oman, and the Arabian Persian Gulf are hotspots of threat.

Future threat: Flooding (LISCoAsT and CoastalDEM90)

This analysis suggests that several hundred sites across the region will be affected by coastal flooding from either long-term SLR or ESL (Table 2, Figure 9). This, respectively, equates to 13–18% or 24–34% of the documented coastal subset depending on the RCP and timestep. At the most immediate risk (i.e., RCP4.5 2050) are clusters of sites in Sudan, southwest Yemen, and the UAE. Smaller clusters are also evident in Lebanon, Syria, and Eastern Libya. Comparison between SLR and ESL also highlights that the number of sites potentially at risk almost doubles with ESL, and in addition to increasing cluster density, more sites at risk appear in Oman and in Eastern Libya. The pattern for 2050 under both RCPs 4.5 and 8.5 is also broadly similar, with only a handful more sites at risk under the latter. By 2100, the location of clusters of sites at risk remains broadly stable, but there are increases in the absolute numbers of sites at risk. This increase compared to 2050 is relatively minor for long-term SLR under RCP4.5 (~2%), but more marked for ESL (~4%). For RCP8.5, the pattern is the same, but the increase in risk is proportionally greater compared to RCP4.5: ~4% for SLR and ~9% for ESL. This highlights that risk will increase with SLR and particularly if storm surges increase in frequency and magnitude (Voudoukas et al. 2018). Stronger increases in risk will also occur if carbon emissions remain high (RCP8.5). However, the raw numbers also mask the vulnerability of certain site types; for example, most historic harbors (excluding those silted up and buried inland) are directly at the water's edge and thus at high risk of flooding and storm impacts.


Future threat: Erosion (LISCoAsT shoreline change)

These data suggest that under each RCP and timestep, several hundred sites across the region will be affected by coastal retreat (Table 2, Figure 10). By 2050 under both

Figure 9. Coastal sites at risk from (left) long-term SLR and (right) extreme sea level (ESL) using the 50th percentile values from Vousdoukas et al. (2018). Data are presented as a heat map such that high and low values refer to site density. Color scales have been normalized between all images to allow comparison between RCPs and timesteps.

RCP4.5 and 8.5, the densest clusters of impacted sites occur in Sudan, southwest Yemen, the south-eastern Arabian/Persian Gulf, and Eastern Libya. Lower-density clusters are also present in Egypt (northwest coast and Sinai Peninsula), Syria, and Oman. By 2100 the pattern is largely similar under both RCP4.5 and RCP8.5, with a slightly

Figure 10. Coastal sites at risk of erosion based on projected shoreline retreat from Vousovoukas et al. (2020). Data are presented in the form of a heat map such that high and low values refer to site density. Color scales have been normalized between all images to allow comparison between RCPs and timesteps. Place names in italics refer to sites discussed in section “Discussion.”

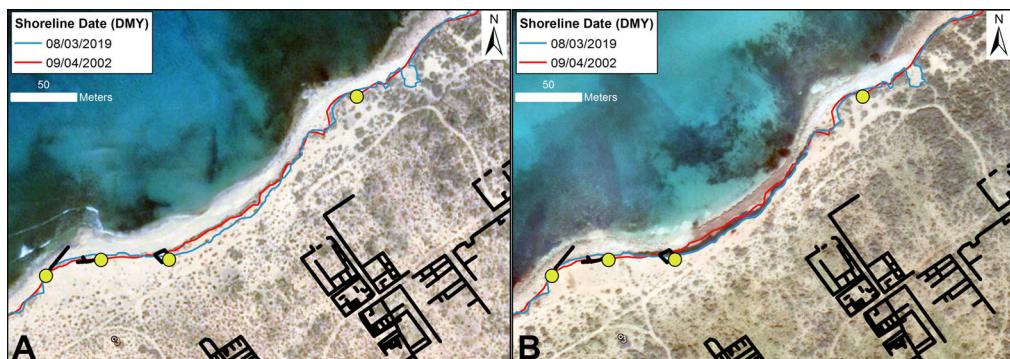
expanded range of sites centered on the core areas mentioned above. RCP8.5 increases the number of sites at risk, not so much in terms of their spread outside the core areas, but more in the form of increased site density within these areas. While this clustering is partly a product of the spatial coverage of documentation to date, it does start to flag up locations of threat or lack thereof. For example, there is a gap along the coast of the UAE, where LISCoAsT projections indicate that coastal advance rather than retreat will be prevalent during the twenty-first century (Figure 10).

In terms of proportion of sites at risk, these projections are somewhat alarming: up to 32% of coastal sites are projected to be at risk by 2050 and increasing to 43% by 2100 (RCP8.5). The caveat is that doubt has been cast on the underlying shoreline change model. It is regarded by some coastal scientists as overly alarmist and an oversimplification of complex coastal responses to SLR (Cooper et al. 2020). If so, these values should be regarded as the upper end of risk projections. Nevertheless, these data also highlight clear increases with time and carbon emissions; for example, a difference of 1.6% between the two 2050 RCPs versus 3.5% for the 2100 RCPs. This is in line with accelerated SLR post-2050 under a high-emissions pathway.

From regional to local: Site-level impacts

From the above we can identify areas and sites that are presently at risk and/or that will be at risk in the future. In addition, documentation and model integration can also be used to

Table 3. Breakdown of threat and disturbance results from MarEA documentation and extant model integration for Eastern Libya.

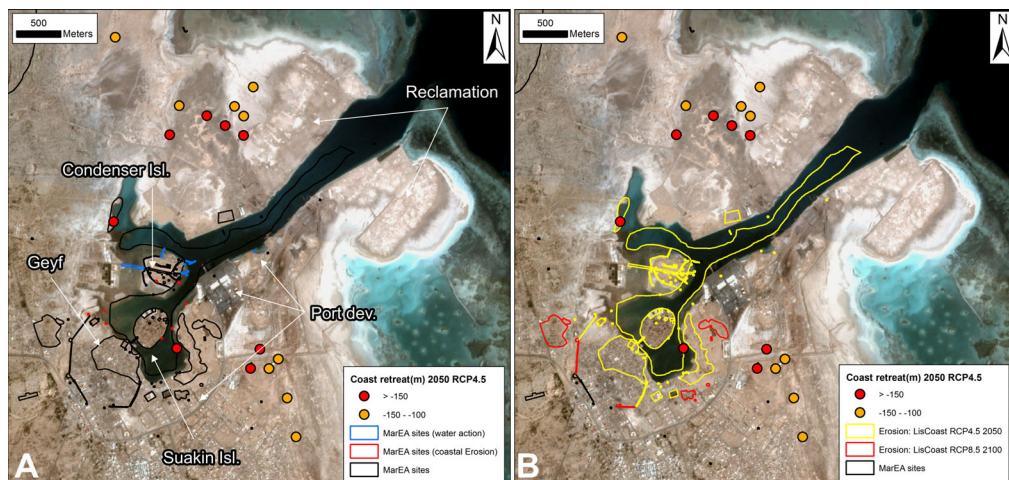

Analysis type	Model/Approach	Category/Timestep and RCP	Coastal subset (n = 180)	
			No. of sites	% of data set
Disturbance	MarEA documentation	Construction (All cert.)	42	23.3
		Construction (High cert.)	30	16.7
		Coast Erosion (All cert.)	26	14.4
		Coast Erosion (High cert.)	10	5.6
		Water Action (All cert.)	70	38.9
		Water Action (High cert.)	7	3.9
Disturbance	GSW	Land Loss	15	8.3
		Land Gain	7	3.9
Threat	MarEA documentation	Construction (All cert.)	42	23.3
		Construction (High cert.)	34	18.9
		Coast Erosion (All cert.)	26	14.4
		Coast Erosion (High cert.)	24	13.3
		Water Action (All cert.)	64	35.6
		Water Action (High cert.)	59	32.8
Threat	ESL: LISCoAsT + CoastalDEM	RCP4.5 2050	48	26.7
		RCP4.5 2100	54	30.0
		RCP8.5 2050	51	28.3
		RCP8.5 2100	59	32.8
Threat	SLR: LISCoAsT + CoastalDEM	RCP4.5 2050	22	12.2
		RCP4.5 2100	28	15.6
		RCP8.5 2050	26	14.4
		RCP8.5 2100	37	20.6
Threat	Coastal erosion/retreat: LISCoAsT shoreline change	RCP4.5 2050	45	25.0
		RCP4.5 2100	57	31.7
		RCP8.5 2050	47	26.1
		RCP8.5 2100	59	32.8

explore the reasons behind local to regional patterns of vulnerability and assess the validity of conclusions derived from model integration. Examples are presented here for illustration.

Eastern Libya

A hotspot of impact is located along the coast of Eastern Libya. Here, disturbance from erosion is evident from both GSW and MarEA documentation. Together, these indicate that 8–14% of coastal sites have been affected (Table 3). These patterns are corroborated by the literature and ground observations. For example, at the Hellenistic- and Roman-period coastal settlement of Tocra, recent satellite images highlight ongoing coastal erosion: the central part of the site has eroded by ~11 m between 2002 and 2019. This matches observations by Bennett et al. (2004), who identified this area as highly vulnerable because the cliff here is composed of easily eroded wadi deposits. A series of archaeological structures were also identified/recorded (Figure 11) eroding out of the cliff. Satellite imagery resolution is insufficient to distinguish the precise condition of these features. However, the amount of cliff retreat coupled with images showing that the adjacent beach is periodically stripped to bedrock suggests a low likelihood of their survival. This is further substantiated by reports from local partners who identify that erosion is ongoing (Figure 5B).

This threat of erosion is also identified for other sites along this coast (e.g., Apollonia: Figure 5A) and supported by LISCoAsT projections, which suggest that 25–26% of coastal sites will experience erosion impacts by 2050 and increasing to


Figure 11. Google Earth satellite imagery of Tocra (Libya) from (a) 2002 and (b) 2019 overlain by site plan from Bennett et al. (2004). Yellow dots indicate eroding/damaged structures identified by Bennett et al. (2004). The coastal cliff edge from 2002 (red) and 2019 (blue) has also been overlaid to highlight coastal retreat. See Figure 10 for site location.

32–33% by 2100 (Table 3). For SLR, based on the CoastalDEM90 and LISCoAsT modeling, long-term SLR is less of a threat than erosion: a maximum of ~20% of coastal sites will be affected by 2100 under RCP8.5. This is because the many documented sites are located >2 m above present sea level. However, flood impacts from episodic storms and accompanying ESL represent similar level of threat to erosion; 27–28% of coastal sites will be affected by 2050, and 30–33% by 2100 (Table 3). Overall, along this stretch of coastline the high degree of vulnerability is a product of both a concentration of archaeological sites, a natural propensity for coastal erosion, and the enhanced frequency and magnitude of ESL over the twenty-first century.

Suakin (Sudan)

In other cases, the pattern of vulnerability is also partly a product of the intensity and availability of previous research that was incorporated into the documentation process. This is exemplified by the central Sudanese coast, where a dense cluster is present in almost all disturbance and threat maps (Figures 7–10). This corresponds to Suakin; an Islamic port and settlement occupied since the tenth century AD. In the MarEA inventory, Suakin and its immediate environs include 99 documented records, which range from Medieval Islamic structures to British Colonial-era fortifications (Figure 12). This rich documentation has been enabled by published surveys, descriptions, and historic maps (Breen, Rhodes, and Forsythe 2015; Rhodes 2011; Breen et al. 2011). Thus, Suakin stands out as the rest of the Sudanese coastline is not well-studied. It also provides an example of where MarEA assessments can differ from model-generated projections.

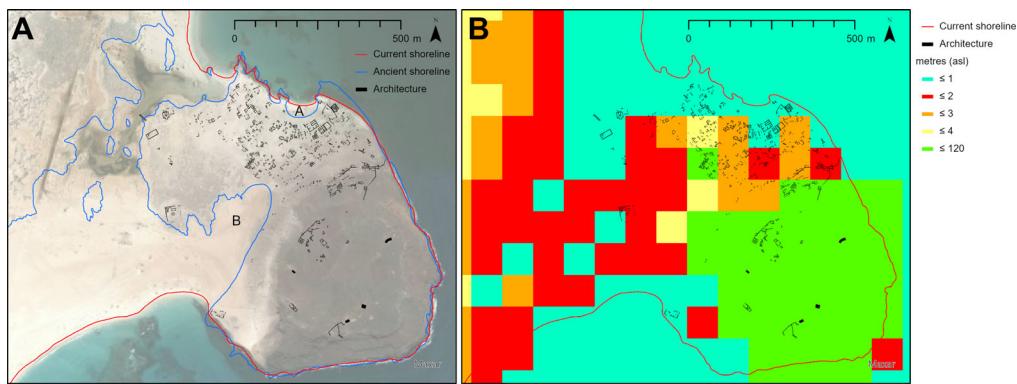
Here, the disturbance assessments and the conclusions based on GSW are broadly similar: a moderate proportion of sites have been impacted by processes such as water action, coastal erosion, and land loss (Table 4). The same is true of the flooding threat as modeled using LISCoAsT projections and CoastalDEM90: 8–10% of coastal sites will be impacted by ESL by 2050, increasing to 15–21% by 2100 and with fewer affected by long-term SLR (maximum of 9%). This is not significantly different to the 10% of coastal sites documented to be threatened by Water Action. However, future erosion

Figure 12. Projected threat at the historic port of Suakin (Sudan) based on (A) MarEA documentation and (B) LISCoAsT shoreline change projections. MarEA documentation shows sites projected to be impacted by coastal erosion (red polygons) and water action (blue polygons) at all certainty levels overlaid onto all documented sites (black polygons). LISCoAsT projections compare maximum (RCP8.5 2100; red) and minimum (RCP4.5 2050; yellow) numbers of sites at risk from coastal erosion/retreat. Also shown are the locations of LISCoAsT shoreline change projection sites (orange and red circles) for RCP4.5 2050. Text indicates locations of port development and recent reclamation, and key areas of archaeological significance: the historic core of Islamic Suakin (Suakin island and the Geyf) and center of British colonial operations (Condenser Island). See [Figure 10](#) for site location. Underlying satellite image dates from 10/09/2019 and is from Planet Team (2017).

threat projections are quite different. The LISCoAsT projections suggest that 82% of coastal sites will be at risk by 2050 and 95% by 2100. These figures are considerably higher than the combined threat of Coastal Erosion and Water Action from MarEA documentation (a maximum of 28% of coastal sites using all certainties). Several reasons can be advanced for this. The MarEA threat assessments in this case are based on comparison of satellite imagery and available literature, neither of which show clear past instances of extensive erosion or flooding. This could indicate that the LISCoAsT erosion projections are overestimates, particularly considering the criticisms of Cooper et al. (2020). Also, Suakin itself lies within a narrow protected and fetch-limited channel. This topographic feature is not well-resolved by the LISCoAsT data, while its sheltered setting may result in erosion being less severe than on the exposed open coast (Figure 12). Extensive anthropogenic modification including armoring of the shoreline and extensive land reclamation at the mouth of the channel (neither incorporated into LISCoAsT) might be expected to have additional protective effects.

Qana (Yemen)

Even where identified clusters of risk are small or relatively low-density, individual sites may also be at considerable risk. An example of this is the ancient port town of Qana (or Qani/Kané, present Bir ‘Ali) in Yemen, broadly dated between the first century BCE and the early seventh century CE. Architectural remains of the ancient town have been well preserved on the ground surface and are mostly situated on a relatively flat and


Table 4. Breakdown of threat and disturbance results from MarEA documentation and extant model integration for Suakin.

Analysis type	Model/Approach	Category/Timestep and RCP	Coastal subset (n = 99)	
			No. of sites	% of data set
Disturbance	MarEA documentation	Construction (All cert.)	19	19.2
		Construction (High cert.)	16	16.2
		Coast Erosion (All cert.)	3	3.0
		Coast Erosion (High cert.)	2	2.0
		Water Action (All cert.)	9	9.1
		Water Action (High cert.)	7	7.1
Disturbance	GSW	Land Loss	10	10.1
		Land Gain	0	0.0
Threat	MarEA documentation	Construction (All cert.)	12	12.1
		Construction (High cert.)	2	2.0
		Coast Erosion (All cert.)	8	8.1
		Coast Erosion (High cert.)	0	0.0
		Water Action (All cert.)	10	10.1
		Water Action (High cert.)	10	10.1
Threat	ESL: LISCoAsT + CoastalDEM	RCP4.5 2050	8	8.1
		RCP4.5 2100	15	15.2
		RCP8.5 2050	10	10.1
		RCP8.5 2100	21	21.2
Threat	SLR: LISCoAsT + CoastalDEM	RCP4.5 2050	8	8.1
		RCP4.5 2100	8	8.1
		RCP8.5 2050	8	8.1
		RCP8.5 2100	9	9.1
Threat	Coastal erosion/retreat: LISCoAsT shoreline change	RCP4.5 2050	80	80.8
		RCP4.5 2100	93	93.9
		RCP8.5 2050	81	81.8
		RCP8.5 2100	94	94.9

low-lying isthmus (Figure 13). Several dozen buildings of varying size have been identified, including sanctuaries, warehouses, workshops, and houses (Mouton, Sanlaville, and Suire 2006; Salles and Sedov 2010). The ancient harbor areas of the site on the north and south sides of the isthmus have now been infilled by sediments, which potentially have covered old harbor installations such as moorings and jetties, artifacts, and shipwreck remains (Davidde, Petriaggi, and Williams 2004). The site has been disturbed in modern times in various ways including bulldozing activity, archaeological excavation, and continuous use as a landing place for small-scale fishing. Future threats to the site include flooding as a result of projected sea-level rise related to climate change. CoastalDEM90 analysis suggest that more than half of the site (*ca.* 30 ha) is situated less than 4 m above present sea level (asl). Within this area are numerous archaeological features situated *<2* m asl. Given projected ESL of 1.6–1.7 m by 2050, and 2–2.4 m by 2100, this makes them vulnerable to flooding or increased wave action. This could damage and disturb the architectural remains and artifacts on the site's surface or within the site's ancient harbor areas.

Discussion

Current thinking in climate change adaptation suggests that there are commonalities in current needs including a requirement for secure baseline information from a combination of scientific data and local knowledge (IPCC 2019b, 99). For archaeology, documentation projects such as MarEA and EAMENA fulfill the first part of this by

Figure 13. (A) Site plan of Qana/Bir 'Ali (Yemen) indicating its main architectural surface features, current and ancient shoreline, and silted up harbors (A and B). Adapted from Mouton, Sanlaville, and Suire (2006, figures 5 and 10) with permission; copyright Persée (<https://www.persee.fr/>). Base map: GeoEye-1 satellite image (Maxar and Google Earth). (B) Classified digital terrain model (CoastalDEM90) overlying the Qana site plan, indicating elevations most at risk from sea-level rise and extreme sea levels (1 and 2 masl). See Figure 10 for site location.

providing evidence-based assessments of site locations, types, condition, disturbance, and threat. As demonstrated here, the resulting information can be analyzed in a stand-alone fashion, or integrated with other models in order to derive information on regional patterns of threat and disturbance. Consequently, there is now a feasible means of comparison across wide areas (including within and between countries), which is a first step toward prioritized action.

Initial results from standalone MarEA documentation find clear, albeit relatively limited, evidence of disturbance causes that could be exacerbated by climate change, such as coastal erosion. Examples of this concentrate particularly in Eastern Libya, but also with smaller hotspots in Syria, Sudan, and Oman. In quantitative terms, overall numbers are low: ~3–5% of documented sites (variation dependent on certainty levels). Using the same criteria, <2% of sites are documented as affected by flooding/inundation. However, integration of MarEA data with the GSW data set identifies up to 12% of sites potentially affected by long-term coastal retreat over the past 30 years.

This difference may be due to limitations in the data used for documentation. For instance, positive identification of erosion can be hindered by the quality and resolution of freely-available satellite imagery. Distinct eroding cliff lines (e.g., Tocra: Figure 11) are visible, but more subtle, low-lying, or less-distinct erosional features are harder to distinguish. Differences in shoreline position caused by waves and tides at time of image acquisition, coupled with positional shifts in successive images caused by georeferencing errors, also make it harder to determine if the coast has definitely retreated or advanced. This is further exacerbated where the temporal resolution of available imagery is limited and prevents shoreline comparison at regular intervals. For flooding, the episodic nature of storm flooding, coupled with limited temporal resolution of available imagery, reduces the probability of having an image of a given storm event. This is further reduced by the likelihood of cloud cover during storms. Thus, without high-quality supporting data, it can be difficult to definitively identify causes of coastal disturbance, particularly if they proceed at a slow pace, or episodically. Consequently, many sites are

instead documented with the more generic threat/disturbance causes “Water Action” or “Wind and/or Water Action.” If attribution is limited to high certainties only, then the combination of GSW integration and MarEA documentation suggest that at least 12–34% of coastal sites have experienced past disturbance from natural forces that could be exacerbated by climate change. Importantly, given the projected direction of travel of climate change, sites now at risk will remain so in the foreseeable future.

Regarding future threat, the MarEA documentation presents a similar pattern. Relatively low numbers are projected to be at risk based on coastal erosion (2–7%) and flooding/inundation (1–2%) causes. These values are perhaps unsurprising because threat assessments are based on available imagery and/or documentation. Thus, if disturbance by flooding is not observed, for the reasons outlined above, then it is unlikely to be identified as a threat. As with disturbance, though, the potential effects of flooding or erosion are also identifiable in the greater numbers classified as at risk from Water Action or Wind/Water Action causes (~35–48%). The spatial distribution of threat is similar to disturbance in that erosion is largely restricted to Eastern Libya and the Arabian/Persian Gulf, but water action extends across all surveyed areas (Figure 7).

Again, these values can be compared with those from external models: flooding based on LISCoAsT projected SLR and ESL combined with elevation values from CoastalDEM90, and erosion based on the LISCoAsT shoreline change model. Flood projections suggest that ~13% of all documented coastal sites will be impacted by long-term SLR by 2050, a figure which increases to ~18% by 2100 under RCP8.5. ESL is modeled to increase in magnitude and frequency in line with SLR (Voudoukas et al. 2018). As ESL values exceed SLR, the proportion of sites at risk from episodic flooding or wave action increases from at least ~24% in 2050 (RCP4.5) to ~34% in 2100 (RCP8.5). Whilst there is still likely to be some degree of regional variability in vulnerability given local variation in wave and tidal exposure, results to date suggest that all surveyed areas will experience this effect. The threat from erosion/coastal retreat is similar to that of ESL. Based on the LISCoAsT model, at least 31% of sites will be affected by 2050 (RCP4.5) increasing to ~43% by 2100. The caveat is that this model is probably the most tentative, particularly given shortcomings identified by Cooper et al. (2020) and also discrepancies noted in the Suakin example. Until improved modeling is available, these estimates should therefore be regarded as worst-case and/or low-probability scenarios.

Taking the above together it could be argued that up to ~39–58% of coastal sites (i.e., MarEA documentation: combined total of Flooding/Inundation, Water Action, Wind/Water Action, and Coastal Erosion, range reflects certainty classes) could be affected by some combination of erosion and/or flooding. Of these sites, ~13–14% will likely be affected by long-term SLR, and ~25–34% impacted by ESL by 2050. Given the well-established nature of SLR projections, coupled with use of the most recent global coastal elevation model (CoastalDEM90) there is reasonable confidence in these figures. It is possible that up to 33% of coastal sites will be affected by erosion or shoreline retreat by 2050 and almost 43% by 2100, but there is significant uncertainty in this estimate.

In addition to the above quantification, three additional general observations can be made. First, given the projected pattern of climate change, these problems will increase

over time. Up to 2050 impacts from erosion and flooding are fairly similar regardless of RCP, but post-2050, acceleration is likely under RCP8.5. This highlights that the future severity of impacts depends in large part on how wider society responds to the climate crisis. Second, given that the modern coastal zone contains the bulk of sites associated with maritime activities from the Later Holocene onwards, this places a unique subset of sites, such as harbors, fish traps, and coastal settlements, at risk. Third, although not the focus of this paper, the documentation exercise also hinted that anthropogenic actions comprise significant disturbances/threats, particularly in terms of infrastructure and urban expansion (see [Table 1](#)). Thus, as coastlines experience more pressure from demographic movements and population increase, the expectation is that this threat will increase. Large-scale coastal defense projects, coupled with intensive infrastructural change, are evident throughout the region. This means that while flooding and erosion spring to mind as the most destructive impacts of climate change on coastal archaeological sites, we should not ignore the likelihood that indirect human actions such as coastal infrastructure, urbanization, sand mining, and upstream damming and land-use change could also have a significant adverse impact. As such, this is an area where further research is required.

The analysis and observations presented here show that we can go some way to filling the gap in baseline knowledge of coastal heritage and climate change impacts in MENA. Equally importantly, they highlight where there are still uncertainties that require additional research to overcome. This is a consequence of data limitations (in terms of availability and resolution), the absence of up-to-date on-the-ground information, and also uncertainties in existing models. Often, we can identify that sites are located on or close to the current shoreline and thus will likely be affected by SLR, ESL, and erosion. However, the exact pattern of response is presently unclear. Modeling attempts, as done here using LISCoAsT, are possible, but there is doubt as to how well some of these approaches downscale to a site or local level, particularly when considering complex geomorphological responses (Cooper et al. 2020). In some respects, this is to be expected. Other studies have shown differences between broad-scale models or desk-based assessment and more detailed research, often incorporating field survey (Westley 2019; Westley and McNeary 2014; Hil 2020; Rivera-Collazo 2020), and illustrate the necessity of working at multiple scales to tackle different aspects of the climate change problem. The need for greater nuance in threat assessment also extends to other considerations, such as site significance or value. As presented here, risk quantification considers each site as equal regardless of whether it is, for example, an isolated single findspot or an extensive settlement. Thus, it is possible that regional to national patterns of vulnerability will change if this is included as a variable; for instance, with low-density clusters of high-value sites flagged up as having higher vulnerability than areas with more but lower-value sites, even though the climate change threat is the same. Therefore, areas of focus for future improvement could include: (1) refined threat assessment for particular sites or site types, chosen either because of risk levels or archaeological significance; (2) conducting on-the-ground field survey for both condition assessment and to assess coastal change that can be fed back into documentation and threat assessment; (3) developing and testing different approaches to threat assessment, such as vulnerability indices (e.g., Reeder-Myers 2015; Reimann et al. 2018), which can

integrate a range of threats including both natural and human, and potentially incorporate additional variables such as significance.

Conclusion

Scientific evidence indicates that climate change over the twenty-first century and beyond is inevitable. Some archaeological sites, particularly those on the coast, will be adversely impacted, in some cases damaged and in the worst cases completely destroyed. Baseline information is essential for archaeologists and heritage managers to start dealing with this problem, initially in terms of raising awareness and then providing practical information that can inform prioritization of attention and resources. Progress in addressing these impacts has been made, generally in North America and Europe, but other countries lack essential baseline information, such as up-to-date digital inventories onto which threat assessments can be built. In this paper, we have demonstrated how this gap can be filled for the MENA region via a newly developed digital geospatial inventory that incorporates damage and threat assessment. This forms part of a wider program of threat assessment in partnership with the EAMENA program. We show here that the MarEA inventory can be analyzed in different ways, either through direct use of integral disturbance/threat assessments or by geospatially extracting relevant data from existing models of environmental/climate change. Initial results highlight that a small core of coastal sites (<5%) is definitely affected by coastal erosion and will continue to be so in the future. However, potentially up to 34% of the documented coastal record may also have been affected by some combination of flooding, erosion, or storm action. Estimates suggest increased numbers will be at risk from climate change-related processes in the future; possibly exceeding 50% of documented coastal sites by the end of the century. SLR and ESL could impact up to 14–25% of sites by 2050 and 18–34% by 2100. Erosion projections estimate that over 30% of coastal sites could be impacted by 2050 and more than 40% by 2100. We stress, though, that these estimates are tentative. There is uncertainty stemming either from the underlying models and also variable quality of data available for the documentation process. Even so, these estimates indicate that there is currently a problem, and one which will increase over the twenty-first century with projected global climate changes and with a post-2050 acceleration if atmospheric GHG concentrations are not reduced. It also shows that coastal sites, which often form a unique component of the archaeological record, will be particularly strongly impacted via a combination of SLR, storms, erosion, and possibly human action directly or indirectly resulting from societal responses to climate change. More work remains to be done, both within and outside MENA, to safeguard the unique coastal component of the archaeological record. However, approaches that aim to develop baseline evidence provide a clear basis for initiating threat assessment regionally and nationally, ensuring a secure foundation on which future strategies of planning, prioritization, and adaptation can be built.

Acknowledgements

We thank Arcadia—a charitable fund of Lisbet Rausing and Peter Baldwin—for generously supporting the MarEA project and with particular thanks to our project liaisons Dr. Maja Komiko

and Dr. Mike Heyworth. We are indebted to our partners at the EAMENA project for their support, knowledge, and considerable assistance with the EAMENA database. We also thank our local partners and collaborators whose expertise and intimate knowledge of cultural heritage guide our work. Finally, we thank two anonymous reviewers for their thoughtful comments and suggestions.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Kieran Westley <http://orcid.org/0000-0002-0863-6762>
 Georgia Andreou <http://orcid.org/0000-0002-8557-9554>
 Crystal El Safadi <http://orcid.org/0000-0001-6399-5875>
 Harmen O. Huigens <http://orcid.org/0000-0002-2309-8077>
 Julia Nikolaus <http://orcid.org/0000-0002-8331-750X>
 Ash Smith <http://orcid.org/0000-0001-5312-1189>
 Lucy Blue <http://orcid.org/0000-0003-4202-1582>
 Colin Breen <http://orcid.org/0000-0001-5379-982X>

References

Anderson, D. G., T. G. Bissett, S. J. Yerka, J. J. Wells, E. C. Kansa, S. W. Kansa, K. N. Myers, R. C. DeMuth, and D. A. White. 2017. Sea-level rise and archaeological site destruction: An example from the Southeastern United States using DINAA (Digital index of North American archaeology). *PLoS One* 12 (11):e0188142. doi:[10.1371/journal.pone.0188142](https://doi.org/10.1371/journal.pone.0188142)

Andreou, G., L. Blue, C. Breen, C. E. Safadi, H. O. Huigens, J. Nikolaus, R. Ortiz-Vazquez, and K. Westley. 2020. Maritime endangered archaeology of the Middle East and North Africa: The MarEA project. *Antiquity* 94 (378):e36. doi:[10.15184/ajy.2020.196](https://doi.org/10.15184/ajy.2020.196)

Andreou, G. M., R. Opitz, S. W. Manning, K. D. Fisher, D. A. Sewell, A. Georgiou, and T. Urban. 2017. Integrated methods for understanding and monitoring the loss of coastal archaeological sites: The case of Tochni-Lakkia, South-Central Cyprus. *Journal of Archaeological Science: Reports* 12:197–208. doi:[10.1016/j.jasrep.2017.01.025](https://doi.org/10.1016/j.jasrep.2017.01.025)

Anzidei, M., F. Antonioli, K. Lambeck, A. Benini, M. Soussi, and R. Lakhdar. 2011. New insights on the relative sea level change during Holocene along the Coasts of Tunisia and Western Libya from archaeological and geomorphological markers. *Quaternary International* 232 (1-2): 5–12. doi:[10.1016/j.quaint.2010.03.018](https://doi.org/10.1016/j.quaint.2010.03.018)

Bang, P. F., and W. Scheidel. 2013. *The Oxford handbook of the state in the ancient Near East and Mediterranean*. New York: Oxford University Press.

Benjamin, J., A. Rovere, A. Fontana, S. Furlani, M. Vacchi, R. H. Inglis, E. Galili, F. Antonioli, D. Sivan, S. Miko, et al. 2017. Late Quaternary sea-level changes and early human societies in the Central and Eastern Mediterranean Basin: An interdisciplinary review. *Quaternary International* 449:29–57. doi:[10.1016/j.quaint.2017.06.025](https://doi.org/10.1016/j.quaint.2017.06.025)

Bennett, P. 2018. Notes from Libya. *Libyan Studies* 49:211–22. doi:[10.1017/lis.2018.23](https://doi.org/10.1017/lis.2018.23)

Bennett, P., and G. Barker. 2011. Protecting Libya's archaeological heritage. *African Archaeological Review* 28 (1):5–25. doi:[10.1007/s10437-010-9085-x](https://doi.org/10.1007/s10437-010-9085-x)

Bennett, P., A. Wilson, A. Buzaian, and A. Kattenberg. 2004. The effects of recent storms on the exposed coastline of Tocra. *Libyan Studies* 35:113–22. doi:[10.1017/S0263718900003745](https://doi.org/10.1017/S0263718900003745)

Besançon, J., L. Copeland, S. Muhsen, and P. Sanlaville. 1994. Prospection géomorphologique et préhistorique dans la région de Tartous (Syrie) [Geomorphological and prehistoric prospection in the Tartus region (Syria)]. *Paléorient* 20 (1):5–19. doi:[10.3406/paleo.1994.4600](https://doi.org/10.3406/paleo.1994.4600)

Basset, M., E. J. Anthony, and F. Bouchette. 2019. Multi-decadal variations in delta shorelines and their relationship to river sediment supply: An assessment and review. *Earth-Science Reviews* 193:199–219. doi:10.1016/j.earscirev.2019.04.018

Beyin, A., and J. J. Shea. 2007. Reconnaissance of prehistoric sites on the Red Sea coast of Eritrea. *Journal of Field Archaeology* 32 (1):1–16. doi:10.1179/009346907791071764

Bird, Eric, ed. 2010. *Encyclopedia of the world's coastal landforms*. Dordrecht: Springer International Publishing.

Blue, Lucy, ed. 2019. *In the footsteps of Honor Frost*. Leiden: Sidestone Press.

Boivin, N., R. Blench, and D. Q. Fuller. 2010. Archaeological, linguistic and historical sources on ancient seafaring: A multidisciplinary approach to the study of early maritime contact and exchange in the Arabian Peninsula. In *The evolution of human populations in Arabia. Vertebrate paleobiology and paleoanthropology*, ed. M. D. Petraglia and J. Rose, 251–78. Dordrecht: Springer.

Breen, C., W. Forsythe, L. Smith, and M. Mallinson. 2011. Excavations at the medieval Red Sea port of Suakin. *Azania: Archaeological Research in Africa* 46 (2):205–20. doi:10.1080/0067270X.2011.580147

Breen, C., D. Rhodes, and W. Forsythe. 2015. The Suakin dilemma: Conservation and heritage management in Eastern Sudan. *Conservation and Management of Archaeological Sites* 17 (2): 109–21. doi:10.1080/13505033.2015.1124178

Broodbank, C. 2013. *The making of the Middle Sea: A history of the Mediterranean from the beginning to the emergence of the classical world*. London: Thames and Hudson.

Brooks, N., J. Clarke, G. W. Ngaruiya, and E. E. Wangui. 2020. African heritage in a changing climate. *Azania* 55:287–328. doi:10.1080/0067270X.2020.1792177

Cattaneo, C., M. Beine, C. J. Fröhlich, D. Kniveton, I. Martinez-Zarzoso, M. Mastrorillo, K. Millock, E. Piguet, and B. Schraven. 2019. Human migration in the era of climate change. *Review of Environmental Economics and Policy* 13 (2):189–206. doi:10.1093/reep/rez008

Cauvin, J. 2000. *The birth of the gods and the origins of agriculture*. Cambridge: Cambridge University Press.

Charabi, Y. 2010. *Indian Ocean tropical cyclones and climate change*. Dordrecht: Springer.

Cook, I., R. Johnston, and K. Selby. 2019. Climate change and cultural heritage: A landscape vulnerability framework. *The Journal of Island and Coastal Archaeology*:doi:10.1080/15564894.2019.1605430

Cooper, J. A. G., and D. W. T. Jackson. 2019. Coasts in peril? A shoreline health perspective. *Frontiers in Earth Science* 7: 260. doi:10.3389/feart.2019.00260

Cooper, J. A. G., G. Masselink, G. Coco, A. D. Short, B. Castelle, K. Rogers, E. Anthony, A. N. Green, J. T. Kelley, O. H. Pilkey, et al. 2020. Sandy beaches can survive sea-level rise. *Nature Climate Change* 10 (11):993–5. doi:10.1038/s41558-020-00934-2

Cooper, J. A. G., M. C. O'Connor, and S. McIvor. 2020. Coastal defences versus coastal ecosystems: A regional appraisal. *Marine Policy* 111:102332. doi:10.1016/j.marpol.2016.02.021

Cooper, J. A. G., and J. Pile. 2014. The adaptation-resistance spectrum: A classification of contemporary adaptation approaches to climate-related coastal change. *Ocean & Coastal Management* 94:90–8. doi:10.1016/j.ocecoaman.2013.09.006

Daire, M. Y., E. Lopez-Romero, J. N. Proust, H. Regnault, S. Pian, and B. Shi. 2012. Coastal changes and cultural heritage (1): Assessment of the vulnerability of the coastal heritage in Western France. *The Journal of Island and Coastal Archaeology* 7 (2):168–82. doi:10.1080/15564894.2011.652340

Daly, C. 2011. Climate change and the conservation of archaeological sites: A review of impacts theory. *Conservation and Management of Archaeological Sites* 13 (4):293–310. doi:10.1179/175355212X13315728646058

Danti, M., S. Branting, and S. Penacho. 2017. The American Schools of Oriental Research cultural heritage initiatives: Monitoring cultural heritage in Syria and Northern Iraq by geospatial imagery. *Geosciences* 7 (4):95. doi:10.3390/geosciences7040095

Dasgupta, S., B. Laplante, S. Murray, and D. Wheeler. 2011. Exposure of developing countries to sea-level rise and storm surges. *Climatic Change* 106 (4):567–79. doi:10.1007/s10584-010-9959-6

Daujeard, C., C. Falguères, Q. Shao, D. Geraads, J.-J. Hublin, D. Lefèvre, M. E. Graoui, M. Rué, R. Gallotti, V. Delvigne, et al. 2020. Earliest African evidence of carcass processing and consumption in cave at 700 ka, Casablanca, Morocco. *Scientific Reports* 10 (1):4761. doi:[10.1038/s41598-020-61580-4](https://doi.org/10.1038/s41598-020-61580-4)

Davidde, B., R. Petriaggi, and D. F. Williams. 2004. New data on the commercial trade of the harbour of Kanē through the typological and petrographic study of the pottery. *Proceedings of the Seminar for Arabian Studies* 34:85–100.

Dawson, T. 2015. Eroding archaeology at the coast: How a global problem is being managed in Scotland, with examples from the Western Isles. *Journal of the North Atlantic* 901:83–98. doi:[10.3721/037.002.sp905](https://doi.org/10.3721/037.002.sp905)

Dawson, T., J. Hambly, A. Kelley, W. Lees, and S. Miller. 2020. Coastal heritage, global climate change, public engagement, and citizen science. *Proceedings of the National Academy of Sciences of the United States of America* 117 (15):8280–6. doi:[10.1073/pnas.1912246117](https://doi.org/10.1073/pnas.1912246117)

Defeo, O., A. McLachlan, D. S. Schoeman, T. A. Schlacher, J. Dugan, A. Jones, M. Lastra, and F. Scapini. 2009. Threats to sandy beach ecosystems: A review. *Estuarine, Coastal and Shelf Science* 81 (1):1–12. doi:[10.1016/j.ecss.2008.09.022](https://doi.org/10.1016/j.ecss.2008.09.022)

Deroïn, J.-P., R. B. Kheir, and C. Abdallah. 2017. Geoarchaeological remote sensing survey for cultural heritage management. Case Study from Byblos (Jbail, Lebanon). *Journal of Cultural Heritage* 23:37–43. doi:[10.1016/j.culher.2016.04.014](https://doi.org/10.1016/j.culher.2016.04.014)

Düring, B. S., and T. D. Stek. 2018. *The archaeology of imperial landscapes: A comparative study of empires in the ancient Near East and Mediterranean world*. Cambridge: Cambridge University Press.

El Raey, M. 2010. *Impact of sea level rise on the Arab region*. Dordrecht: Regional Center for Disaster Risk Reduction Arab Academy of Science, Technology and Maritime Transport.

El-Shahat, A., H. Minas, and S. Khomriara. 2014. Weathering of calcarenite monuments at Roman and Byzantine archaeological sites at Sabratha, Northwestern Libya: A pilot study. *African Archaeological Review* 31 (1):45–58. doi:[10.1007/s10437-014-9153-8](https://doi.org/10.1007/s10437-014-9153-8)

Elliott, P., and H. Williams. 2019. Evaluating sea-level rise hazards on coastal archaeological sites, Trinity Bay, Texas. *Journal of Island and Coastal Archaeology*. doi:[10.1080/15564894.2019.1701149](https://doi.org/10.1080/15564894.2019.1701149)

Erlandson, J. M. 2008. Racing a rising tide: Global warming, rising seas, and the erosion of human history. *The Journal of Island and Coastal Archaeology* 3 (2):167–9. doi:[10.1080/15564890802436766](https://doi.org/10.1080/15564890802436766)

Erlandson, J. M. 2012. As the world warms: Rising seas, coastal archaeology, and the erosion of maritime history. *Journal of Coastal Conservation* 16 (2):137–42. doi:[10.1007/s11852-010-0104-5](https://doi.org/10.1007/s11852-010-0104-5)

Esteves, L. 2014. *Managed realignment: A viable long-term coastal management strategy?* Dordrecht: Springer.

Excurra, P., and I. C. Rivera-Collazo. 2018. An assessment of the impacts of climate change on Puerto Rico's cultural heritage with a case study on sea-level rise. *Journal of Cultural Heritage* 32:198–209. doi:[10.1016/j.culher.2018.01.016](https://doi.org/10.1016/j.culher.2018.01.016)

Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, et al. 2007. The shuttle radar topography mission. *Reviews of Geophysics* 45 (2):RG2004. doi:[10.1029/2005RG000183](https://doi.org/10.1029/2005RG000183)

Fatorić, S., and E. Seekamp. 2017. Are cultural heritage and resources threatened by climate change? A systematic literature review. *Climatic Change* 142 (1-2):227–54. doi:[10.1007/s10584-017-1929-9](https://doi.org/10.1007/s10584-017-1929-9)

Fitzpatrick, S. M., T. C. Rick, and J. M. Erlandson. 2015. Recent progress, trends, and developments in island and coastal archaeology. *The Journal of Island and Coastal Archaeology* 10 (1):3–27. doi:[10.1080/15564894.2015.1013647](https://doi.org/10.1080/15564894.2015.1013647)

Flemming, N. C. 1965. Underwater survey of Apollonia. In *Marine archaeology. Developments during sixty years in the Mediterranean*, ed. J. Du Plat Taylor, 168–78. London: Hutchinson & Co.

Galili, E., A. Oron, and D. Cvikel. 2018. Five decades of marine archaeology in Israel. *Journal of Eastern Mediterranean Archaeology & Heritage Studies* 6:99–141. doi:[10.5325/jeasmedarcherstu.6.1-2.0099](https://doi.org/10.5325/jeasmedarcherstu.6.1-2.0099)

Galili, E., and B. Rosen. 2010. Preserving the maritime cultural heritage of the mediterranean, a cradle of cultures, religions and civilizations—the holy land perspective. *Journal of Coastal Conservation* 14 (4):303–15. doi:[10.1007/s11852-010-0107-2](https://doi.org/10.1007/s11852-010-0107-2)

Galili, E., B. Rosen, M. Weinstein-Evron, I. Hershkovitz, V. Eshed, and L. Kolska-Horwitz. 2020. Israel: Submerged prehistoric sites and settlements on the Mediterranean coastline—The current state of the art. In *The archaeology of Europe's drowned landscapes*, ed. G. Bailey, N. Galanidou, H. Peeters, H. Jöns, and M. Mennenga, 443–84. Dordrecht: Springer.

GEBCO Compilation Group. 2019. GEBCO 2019 grid.

Graham, E., J. Hambly, and T. Dawson. 2017. Learning from loss: Eroding coastal heritage in Scotland. *Humanities* 6 (4):87. doi:[10.3390/h6040087](https://doi.org/10.3390/h6040087)

Grant, K. M., E. J. Rohling, C. B. Ramsey, H. Cheng, R. L. Edwards, F. Florindo, D. Heslop, F. Marra, A. P. Roberts, M. E. Tamisiea, et al. 2014. Sea-level variability over five glacial cycles. *Nature Communications* 5:5076. doi:[10.1038/ncomms6076](https://doi.org/10.1038/ncomms6076)

Hambrecht, G., and M. Rockman. 2017. International approaches to climate change and cultural heritage. *American Antiquity* 82 (4):627–41. doi:[10.1017/aaq.2017.30](https://doi.org/10.1017/aaq.2017.30)

Harkin, D., M. Davies, E. Hyslop, H. Fluck, M. Wiggins, O. Merritt, L. Barker, M. Deery, R. McNeary, and K. Westley. 2020. Impacts of climate change on cultural heritage. *MCCIP Science Review* 2020:616–41. doi:[10.14465/2020.arc26.che](https://doi.org/10.14465/2020.arc26.che)

Hassan, M., H. Xie, and T. Rahmouni. 2018. The current built environment of the medieval forts on Arwad Island, Syria. In *Conserving cultural heritage: Proceedings of the 3rd international congress on science and technology for the conservation of cultural heritage*, ed. M. J. Mosquera and M. L. Almoraima Gil, 255–8. Leiden: CRC Press.

Heathcote, J., H. Fluck, and M. Wiggins. 2017. Predicting and adapting to climate change: Challenges for the historic environment. *The Historic Environment: Policy & Practice* 8 (2): 89–100. doi:[10.1080/17567505.2017.1317071](https://doi.org/10.1080/17567505.2017.1317071)

Heilen, M., J. H. Altschul, and F. Lüth. 2018. Modelling resource values and climate change impacts to set preservation and research priorities. *Conservation and Management of Archaeological Sites* 20 (4):261–84. doi:[10.1080/13505033.2018.1545204](https://doi.org/10.1080/13505033.2018.1545204)

Hesein, M. A. H. 2014. Bridging the Eastern and Western Mediterranean: The Roman harbour sites on the coast of Cyrenaica, North-Eastern Libya. PhD diss. University of Leicester.

Hil, G. 2020. Better management through measurement: Integrating archaeological site features into a GIS-based erosion and sea level rise impact assessment—Blueskin Bay. *The Journal of Island and Coastal Archaeology* 15 (1):104–26. doi:[10.1080/15564894.2018.1531331](https://doi.org/10.1080/15564894.2018.1531331)

Horden, P., and N. Purcell. 2000. *The corrupting sea: A study of Mediterranean history*. Oxford: Blackwell.

Hzami, A., E. Heggy, O. Amrouni, G. Mahé, M. Maanan, and S. Abdeljaouad. 2021. Alarming coastal vulnerability of the deltaic and sandy beaches of North Africa. *Scientific Reports* 11 (1): 2320. doi:[10.1038/s41598-020-77926-x](https://doi.org/10.1038/s41598-020-77926-x)

Inglis, R., W. Bosworth, N. Rasul, A. Al-Saeedi, and G. Bailey. 2019. Investigating the palaeoshorelines and coastal archaeology of the Southern Red Sea. In *Geological setting, palaeoenvironment and archaeology of the Red Sea*, ed. N. Rasul and I. Stewart, 553–81. Dordrecht: Springer.

IPCC. 2014. *Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change* [Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.)]. Ed. R. K. Pachauri and L. A. Mayer. Geneva: IPCC.

IPCC. 2019a. *Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems*. Ed. P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, et al. Geneva: Intergovernmental Panel on Climate Change.

IPCC. 2019b. *IPCC special report on the ocean and cryosphere in a changing climate*. Ed. H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, et al. Geneva: Intergovernmental Panel on Climate Change.

Ives, T. H., K. A. McBride, and J. N. Waller. 2018. Surveying coastal archaeological sites damaged by Hurricane Sandy in Rhode Island. *The Journal of Island and Coastal Archaeology* 13 (1): 66–89. doi:[10.1080/15564894.2017.1284961](https://doi.org/10.1080/15564894.2017.1284961)

Khakzad, S., A. Trakadas, M. Harpster, and N. Wittig. 2015. Maritime aspects of medieval Siraf, Iran: A pilot project for the investigation of coastal and underwater archaeological remains. *International Journal of Nautical Archaeology* 44 (2):258–76. doi:[10.1111/1095-9270.12085](https://doi.org/10.1111/1095-9270.12085)

Kopp, R. E., R. M. DeConto, D. A. Bader, C. C. Hay, R. M. Horton, S. Kulp, M. Oppenheimer, D. Pollard, and B. H. Strauss. 2017. Evolving understanding of Antarctic ice-sheet physics and ambiguity in probabilistic sea-level projections. *Earth's Future* 5 (12):1217–33. doi:[10.1002/2017EF000663](https://doi.org/10.1002/2017EF000663)

Kopp, R. E., E. A. Gilmore, C. M. Little, J. Lorenzo-Trueba, V. C. Ramenzoni, and W. V. Sweet. 2019. Usable science for managing the risks of sea-level rise. *Earth's Future* 7 (12):1235–69. doi:[10.1029/2018EF001145](https://doi.org/10.1029/2018EF001145)

Kopp, R. E., R. M. Horton, C. M. Little, J. X. Mitrovica, M. Oppenheimer, D. J. Rasmussen, B. H. Strauss, and C. Tebaldi. 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. *Earth's Future* 2 (8):383–406. doi:[10.1002/2014EF000239](https://doi.org/10.1002/2014EF000239)

Krawiec, K. 2017. Medmerry, West Sussex, UK: Coastal evolution from the Neolithic to the medieval period and community resilience to environmental change. *The Historic Environment: Policy & Practice* 8 (2):101–12. doi:[10.1080/17567505.2017.1317081](https://doi.org/10.1080/17567505.2017.1317081)

Kulp, S. A., and B. H. Strauss. 2019. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. *Nature Communications* 10 (1):4844. doi:[10.1038/s41467-019-12808-z](https://doi.org/10.1038/s41467-019-12808-z)

Lambeck, K., and J. Chappell. 2001. Sea level change through the last glacial cycle. *Science* 292 (5517):679–86. doi:[10.1126/science.1059549](https://doi.org/10.1126/science.1059549)

Lambeck, K., A. Purcell, N. C. Flemming, C. Vita-Finzi, A. M. Alsharekh, and G. N. Bailey. 2011. Sea level and shoreline reconstructions for the Red Sea: Isostatic and tectonic considerations and implications for hominin migration out of Africa. *Quaternary Science Reviews* 30 (25-26): 3542–74. doi:[10.1016/j.quascirev.2011.08.008](https://doi.org/10.1016/j.quascirev.2011.08.008)

Leidwanger, J. 2020. *Roman seas: A maritime archaeology of Eastern Mediterranean economies*. New York: Oxford University Press.

Liverani, M., and S. Tabatabai. 2014. *The ancient Near East: History, society and economy*. London: Routledge.

Luijendijk, A., G. Hagenars, R. Ranasinghe, F. Baart, G. Donchyts, and S. Aarninkhof. 2018. The state of the world's beaches. *Scientific Reports* 8 (1):6641. doi:[10.1038/s41598-018-24630-6](https://doi.org/10.1038/s41598-018-24630-6)

Marcucci, L., E. Badel, F. Genchi, O. Munoz, E. Quintana Morales, I. Béguier, and G. Vianini. 2014. New investigations at the prehistoric shell midden of Ras Al-Hamra 6 (Sultanate of Oman): Results of the 2012 and 2013 excavation seasons. *Proceedings of the Seminar for Arabian Studies* 44:235–56.

Marriner, N., and C. Morhange. 2008. Preserving Lebanon's coastal archaeology: Beirut, Sidon and Tyre. *Ocean & Coastal Management* 51 (5):430–41. doi:[10.1016/j.ocecoaman.2008.01.005](https://doi.org/10.1016/j.ocecoaman.2008.01.005)

Marriner, N., C. Morhange, and N. Carayon. 2008. Ancient tyre and its harbours: 5000 years of human-environment interactions. *Journal of Archaeological Science* 35 (5):1281–310. doi:[10.1016/j.jas.2007.09.003](https://doi.org/10.1016/j.jas.2007.09.003)

McGovern, T. H. 2018. Burning libraries: A community response. *Conservation and Management of Archaeological Sites* 20 (4):165–74. doi:[10.1080/13505033.2018.1521205](https://doi.org/10.1080/13505033.2018.1521205)

Mentaschi, L., M. I. Vousdoukas, J. F. Pekel, E. Voukouvalas, and L. Feyen. 2018. Global long-term observations of coastal erosion and accretion. *Scientific Reports* 8 (1):12876. doi:[10.1038/s41598-018-30904-w](https://doi.org/10.1038/s41598-018-30904-w)

Morhange, C., P. Pirazzoli, N. Marriner, L. F. Montaggioni, and T. Nammour. 2006. Late Holocene relative sea-level changes in Lebanon, Eastern Mediterranean. *Marine Geology* 230 (1-2):99–114. doi:10.1016/j.margeo.2006.04.003

Morris, R. L., T. M. Konlechner, M. Ghisalberti, and S. E. Swearer. 2018. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence. *Global Change Biology* 24 (5):1827–42. doi:0.1111/gcb.14063. doi:10.1111/gcb.14063

Moussaid, J., A. A. Fora, B. Zourarah, M. Maanan, and M. Maanan. 2015. Using automatic computation to analyze the rate of shoreline change on the Kenitra coast. *Ocean Engineering* 102: 71–7. doi:10.1016/j.oceaneng.2015.04.044

Mouton, M., P. Sanlaville, and J. Suire. 2006. 'Le Port Sudarabique de Qâni': Paléogéographie et Organisation Urbaine. *Comptes-rendus des séances de l'année - Académie des inscriptions et belles-lettres* 150 (2):777–808. doi:10.3406/crai.2006.87078

Muis, S., M. Verlaan, H. C. Winsemius, J. C. J. H. Aerts, and P. J. Ward. 2016. A global reanalysis of storm surges and extreme sea levels. *Nature Communications* 7:11969. doi:10.1038/ncomms11969

Murphy, P., D. Thackray, and E. Wilson. 2009. Coastal heritage and climate change in England: Assessing threats and priorities. *Conservation and Management of Archaeological Sites* 11 (1): 9–15. doi:10.1179/135050309X12508566208281

Nash, C. L., and H. A. Wholey. 2018. Prioritising heritage resources in a time of loss: Sea level rise and archaeological resources of the middle Atlantic region, US. *Conservation and Management of Archaeological Sites* 20 (4):285–95. doi:10.1080/13505033.2018.1558392

Newton, L. S., and J. Zarins. 2019. *Dhofar through the ages: An ecological, archaeological and historical landscape*. Oxford: Archaeopress.

O'Rourke, M. J. E. 2017. Archaeological site vulnerability modelling: The influence of high impact storm events on models of shoreline erosion in the Western Canadian Arctic. *Open Archaeology* 3 (1):1–16. doi:10.1515/opar-2017-0001

Pattyn, F., and M. Morlighem. 2020. The uncertain future of the Antarctic ice sheet. *Science* 367 (6484):1331–5. doi:10.1126/science.aaz5487

Pekel, J. F., A. Cottam, N. Gorelick, and A. S. Belward. 2016. High-resolution mapping of global surface water and its long-term changes. *Nature* 540 (7633):418–22. doi:10.1038/nature20584

Petraglia, M. D., P. S. Breeze, and H. S. Groucutt. 2019. Blue Arabia, Green Arabia: Examining human colonisation and dispersal models. In *Geological setting, palaeoenvironment and archaeology of the Red Sea*, ed. N. Rasul and I. Stewart, 675–83. Dordrecht: Springer.

Pizzinato, C., and C. Beltrame. 2012. A project for the creation of an underwater archaeological park at Apollonia. *Underwater Technology* 30 (4):217–24. doi:10.3723/ut.30.217

Planet Team. 2017. Planet application program interface: In space for life on earth. Accessed November 1, 2020. <https://api.planet.com>.

Poulos, S. E., and M. B. Collins. 2002. Fluvial sediment fluxes to the Mediterranean Sea: A quantitative approach and the influence of dams. *Geological Society Special Publication* 191 (1): 227–45. doi:10.1144/GSL.SP.2002.191.01.16

Pourkerman, M., N. Marriner, C. Morhange, M. Djamali, S. Amjadi, H. Lahijani, A. N. Beni, M. Vacchi, H. Tofighian, and M. Shah-Hoesseini. 2018. Tracking shoreline erosion of "at risk" coastal archaeology: The example of ancient Siraf (Iran, Persian Gulf). *Applied Geography* 101: 45–55. doi:10.1016/j.apgeog.2018.10.008

Ramos, J., D. Bernal, S. Domínguez-Bella, D. Calado, B. Ruiz, M. J. Gil, I. Clemente, J. J. Durán, E. Vijande, and S. Chamorro. 2008. The Benzú rockshelter: A Middle Palaeolithic site on the north African coast. *Quaternary Science Reviews* 27 (23-24):2210–8. doi:10.1016/j.quascirev.2008.08.030

Rateb, A., and A. Z. Abotalib. 2020. Inferencing the land subsidence in the Nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019. *The Science of the Total Environment* 729:138868. doi:10.1016/j.scitotenv.2020.138868

Raynal, J. P., F. Z. Sbihi Alaoui, D. Geraads, L. Magoga, and A. Mohi. 2001. The earliest occupation of North-Africa: The Moroccan perspective. *Quaternary International* 75 (1):65–75. doi:10.1016/S1040-6182(00)00078-1

Rayne, L., J. Bradbury, D. Mattingly, G. Philip, R. Bewley, and A. Wilson. 2017. From above and on the ground: Geospatial methods for recording endangered archaeology in the Middle East and North Africa. *Geosciences* 7 (4):100. doi:[10.3390/geosciences7040100](https://doi.org/10.3390/geosciences7040100)

Rayne, L., N. Sheldrick, and J. Nikolaus. 2017. Endangered archaeology in Libya: Recording damage and destruction. *Libyan Studies* 48:23–49. doi:[10.1017/lis.2017.7](https://doi.org/10.1017/lis.2017.7)

Reeder-Myers, L. A. 2015. Cultural heritage at risk in the twenty-first century: A vulnerability assessment of coastal archaeological sites in the United States. *The Journal of Island and Coastal Archaeology* 10 (3):436–45. doi:[10.1080/15564894.2015.1008074](https://doi.org/10.1080/15564894.2015.1008074)

Reeder-Myers, L. A., and M. D. McCoy. 2019. Preparing for the future impacts of megastorms on archaeological sites: An evaluation of flooding from Hurricane Harvey, Houston, Texas. *American Antiquity* 84 (2):292–301. doi:[10.1017/aaq.2018.85](https://doi.org/10.1017/aaq.2018.85)

Reimann, L., A. T. Vafeidis, S. Brown, J. Hinkel, and R. S. J. Tol. 2018. Mediterranean UNESCO world heritage at risk from coastal flooding and erosion due to sea-level rise. *Nature Communications* 9 (1):4161. doi:[10.1038/s41467-018-06645-9](https://doi.org/10.1038/s41467-018-06645-9)

Rhodes, D. 2011. The nineteenth-century colonial archaeology of Suakin. *International Journal of Historical Archaeology* 15 (1):162–89. doi:[10.1007/s10761-010-0132-8](https://doi.org/10.1007/s10761-010-0132-8)

Rivera-Collazo, I. C. 2020. Severe weather and the reliability of desk-based vulnerability assessments: The impact of Hurricane Maria to Puerto Rico's coastal archaeology. *The Journal of Island and Coastal Archaeology* 15 (2):244–63. doi:[10.1080/15564894.2019.1570987](https://doi.org/10.1080/15564894.2019.1570987)

Robinson, D., and A. Wilson, eds. 2011. *Maritime archaeology and ancient trade in the Mediterranean*. Oxford: Oxford Centre for Maritime Archaeology.

Robinson, M. H., C. R. Alexander, C. W. Jackson, C. P. McCabe, and D. Crass. 2010. Threatened archaeological, historic, and cultural resources of the Georgia coast: Identification, prioritization and management using GIS technology. *Geoarchaeology* 25 (3):312–26. doi:[10.1002/gea.20309](https://doi.org/10.1002/gea.20309)

Rosendahl Appelquist, L. 2013. Generic framework for meso-scale assessment of climate change hazards in coastal environments. *Journal of Coastal Conservation* 17 (1):59–74. doi:[10.1007/s11852-012-0218-z](https://doi.org/10.1007/s11852-012-0218-z)

Sabbioni, C., M. Cassar, P. Brimblecombe, J. Tidblad, R. Kozlowski, M. Drdácký, C. Saiz-Jimenez, T. Grønmoft, I. Wainwright, and X. Ariño. 2006. Global climate change impact on built heritage and cultural landscapes. *Proceedings of the International Conference on Heritage, Weathering and Conservation, HWC 2006*, ed. R. Fort, M. Alvarez de Buergo, M. Gomez-Heras, and C. Vazquez-Calvo, 395–401. London: Taylor & Francis.

Salles, J.-F., and A.V. Sedov, eds. 2010. *Qāni'. Le Port Antique Du Hadramawt Entre La Méditerranée, l'Afrique et l'Inde. Fouilles Russes 1972, 1985-1989, 1991, 1993-1994* [Qāni'. The Ancient Port of Hadramawt between the Mediterranean, Africa and India. Russian Excavations 1972, 1985-1989, 1991, 1993-1994]. Turnhout: Brepols.

Scerri, E. M. L., C. Shipton, L. Clark-Balzan, M. Frouin, J.-L. Schwenninger, H. S. Groucott, P. S. Breeze, A. Parton, J. Blinkhorn, N. A. Drake, et al. 2018. The expansion of later Acheulean hominins into the Arabian Peninsula. *Scientific Reports* 8 (1):17165. doi:[10.1038/s41598-018-35242-5](https://doi.org/10.1038/s41598-018-35242-5)

Scerri, E. M. L., and E. E. Spinapolic. 2019. Lithics of the North African Middle Stone Age: Assumptions, evidence and future directions. *Journal of Anthropological Sciences* 97:9–43. doi:[10.4436/jass.97002](https://doi.org/10.4436/jass.97002)

Seland, E. H. 2011. The Persian Gulf or the Red Sea? Two axes in ancient Indian Ocean trade, where to go and why. *World Archaeology* 43:398–409. doi:[10.1080/00438243.2011.605844](https://doi.org/10.1080/00438243.2011.605844)

Semaan, L. 2016. *Desk based assessment of maritime archaeological sites on the Lebanese coast*. Report prepared for the Honor Frost Foundation. Unpublished report prepared for the Honor Frost Foundation. London, UK: Honor Frost Foundation.

Simmons, A. H. 2007. *The Neolithic revolution in the Near East: Transforming the human landscape*. Tuscon: University of Arizona Press.

Sinclair, A., R. Inglis, A. Shuttleworth, F. Foulds, and A. Alsharekh. 2019. Landscape archaeology, Palaeolithic survey and coastal change along the Southern Red Sea of Saudi Arabia. In *Geological setting, palaeoenvironment and archaeology of the Red Sea*, ed. N. Rasul and I. Stewart, 533–52. Dordrecht: Springer.

Stanley, J. D., and P. L. Clemente. 2017. Increased land subsidence and sea-level rise are submerging Egypt's Nile Delta coastal margin. *GSA Today* 27:4–11. doi:[10.1130/GSATG312A.1](https://doi.org/10.1130/GSATG312A.1)

Tosi, M. 1975. Notes on the distribution and exploitation of natural resources in ancient Oman. *Journal of Oman Studies* 1:187–206.

Trakadas, A. 2020. Natural and anthropogenic factors impacting Northern Morocco's coastal archaeological heritage: A preliminary assessment. *Journal of Island and Coastal Archaeology*. doi:[10.1080/15564894.2020.1837304](https://doi.org/10.1080/15564894.2020.1837304)

Vacchi, M., M. Ghilardi, R. T. Melis, G. Spada, M. Giaime, N. Marriner, T. Lorscheid, C. Morhange, F. Burjachs, and A. Rovere. 2018. New relative sea-level insights into the isostatic history of the Western Mediterranean. *Quaternary Science Reviews* 201:396–408. doi:[10.1016/j.quascirev.2018.10.025](https://doi.org/10.1016/j.quascirev.2018.10.025)

Van de Mieroop, M. 2004. *A history of the ancient Near East: Ca. 3000–323 BC*. Oxford: Blackwell.

Vousdoukas, M. I., L. Mentaschi, E. Voukouvalas, M. Verlaan, S. Jevrejeva, L. P. Jackson, and L. Feyen. 2018. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. *Nature Communications* 9 (1):2360. doi:[10.1038/s41467-018-04692-w](https://doi.org/10.1038/s41467-018-04692-w)

Vousdoukas, M. I., R. Ranasinghe, L. Mentaschi, T. A. Plomaritis, P. Athanasiou, A. Luijendijk, and L. Feyen. 2020. Sandy coastlines under threat of erosion. *Nature Climate Change* 10 (3): 260–3. doi:[10.1038/s41558-020-0697-0](https://doi.org/10.1038/s41558-020-0697-0)

Waha, K., L. Krummenauer, S. Adams, V. Aich, F. Baarsch, D. Coumou, M. Fader, H. Hoff, G. Jobbins, R. Marcus, et al. 2017. Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups. *Regional Environmental Change* 17 (6):1623–38. doi:[10.1007/s10113-017-1144-2](https://doi.org/10.1007/s10113-017-1144-2)

Walter, R. C., R. T. Buffler, J. H. Bruggemann, M. M. Guillaume, S. M. Berhe, B. Negassi, Y. Libsekal, H. Cheng, R. L. Edwards, R. von Cosel, et al. 2000. Early human occupation of the Red Sea coast of Eritrea during the last interglacial. *Nature* 405 (6782):65–9. doi:[10.1038/35011048](https://doi.org/10.1038/35011048)

Watkins, T. 2010. New light on Neolithic revolution in South-West Asia. *Antiquity* 84 (325): 621–34. doi:[10.1017/S0003598X00100122](https://doi.org/10.1017/S0003598X00100122)

Westley, K. 2019. Refining broad-scale vulnerability assessment of coastal archaeological resources, Lough Foyle, Northern Ireland. *The Journal of Island and Coastal Archaeology* 14 (2): 226–46. doi:[10.1080/15564894.2018.1435592](https://doi.org/10.1080/15564894.2018.1435592)

Westley, K., T. Bell, M. A. P. Renouf, and L. Tarasov. 2011. Impact assessment of current and future sea-level change on coastal archaeological resources—illustrated examples from Northern Newfoundland. *The Journal of Island and Coastal Archaeology* 6 (3):351–74. doi:[10.1080/15564894.2010.520076](https://doi.org/10.1080/15564894.2010.520076)

Westley, K., N. Carayon, C. Breen, and L. Blue. 2018. *Benchmarking the maritime cultural heritage of Syria*. Unpublished report prepared for the Honor Frost Foundation. London, UK: Honor Frost Foundation.

Westley, K., and R. McNear. 2014. Assessing the impact of coastal erosion on archaeological sites: A case study from Northern Ireland. *Conservation and Management of Archaeological Sites* 16 (3):185–211. doi:[10.1179/1350503315Z.00000000082](https://doi.org/10.1179/1350503315Z.00000000082)

World Bank. 2014. *Turn down the heat. Confronting the new climate normal*. Washington, DC: The World Bank.

Zerboni, A., A. Perego, G. Mariani, F. Brandolini, M. Al Kindi, E. Regattieri, G. Zanchetta, F. Borgi, V. Charpentier, and M. Cremaschi. 2020. Geomorphology of the Jebel Qara and Coastal Plain of Salalah (Dhofar, Southern Sultanate of Oman). *Journal of Maps* 16 (2):187–9. doi:[10.1080/17445647.2019.1708488](https://doi.org/10.1080/17445647.2019.1708488)