Improving Android App Responsiveness through
Automated Frame Rate Reduction

James Callan and Justyna Petke

University College London (UCL), London, United Kingdom
{james.callan.19, j.petke}@ucl.ac.uk

Abstract. Responsiveness is one of the most important properties of
Android applications to both developers and users. Recent survey on
automated improvement of non-functional properties of Android appli-
cations shows there’s a gap in application of search-based techniques
to improve responsiveness. Therefore, we explore the use of genetic im-
provement (GI) to achieve this task. We extend Gin, an open source
GI framework, to work with Android applications. Next, we apply GI to
four open source Android applications, measuring frame rate as proxy for
responsiveness. We find that while there are improvements to be found
in Ul-implementing code (up to 43%), often applications’ test suites are
not strong enough to safely perform GI, leading to generation of many
invalid patches. We also apply GI to areas of code which have highest
test-suite coverage, but find no patches leading to consistent frame rate
reductions. This shows that although GI could be successful in improve-
ment of Android apps’ responsiveness, any such test-based technique is
currently hindered by availability of test suites covering Ul elements.

Keywords: Genetic Improvement - Search-Based Software Engineering - Re-
sponsiveness - Android - Mobile Applications

1 Introduction

Responsiveness is one of the most important qualities of Android applications
to their users. Inukollu et al. found that 59% of users would give a bad review to
an unresponsive app [17]. Khalid et al. [19] found that unresponsiveness was one
of the most frequent reasons that users left bad reviews on mobile applications.
Lim et al. [23] found that unresponsiveness was to blame 1/3 of the times when
users abandoned applications.

Despite the importance of app responsiveness, there is not much research on
its automated improvement. Given that the first Android version appeared only
in 2008, the discrepancy between the number of approaches for software improve-
ment for desktop vs. mobile applications is, perhaps, unsurprising. Recently Hort
et al. [16] conducted a survey on Android performance optimization. It reveals
that most approaches for responsiveness improvement focus on problem detec-
tion, rather than automated improvement. Among the most common techniques

2 James Callan and Justyna Petke

in the second category are: offloading and refactoring. Offloading [29], however,
requires external infrastructure, while refactoring-based approaches tend to fo-
cus on very specific improvements, like introducing concurrency to long running
processes [9] or combining HTTP requests [22]. Although these transformations
could indeed help improve responsiveness, we believe that the search space of mu-
tations could be combined and extended. With increase of the space of possible
code refactorings, the search space for finding improvements will inadvertently
increase. That’s why search-based approaches would be a good fit to explore it.
Notably, Hort et al. [16] do not report any search-based approaches for auto-
mated responsiveness improvement. With this work we intend to fill this gap.

In the desktop domain, Genetic Improvement (GI) has recently shown success
in improvement of various functional (e.g., bug fixing [3]) and non-functional
(e.g., runtime [21] or energy consumption [7]) properties. GI uses search-based
algorithms to navigate the space of patches to existing software. It uses a fitness
function that guides the search. Fitness could be based on test case failures, to
check whether the program behaves correctly, and/or other measure, such as
runtime to measure improvement of program’s execution time.

In order to apply GI to improvement of responsiveness, we must first define
the fitness function. Responsiveness, however, can be difficult to quantify. More-
over, measurements such as runtime are inherently noisy. Inspired by previous
work [14], we propose using the frame rate of an application as a metric for
responsiveness.

In this work we apply genetic improvement to improve Android app respon-
siveness. In particular, we extend an existing GI framework, Gin, to work on the
Android domain. Next, we use it to improve frame rate of four Android applica-
tions. We find improvement of up to 50%, though closer inspection reveals many
of the patches to be invalid, due to weak test suites — used as proxies for correct
program behaviour, as is common in GI work. Nevertheless, we found a valid
mutation that reduced frame rate by 43%. Subsequently, we apply GI on code
with high test-suite coverage. However, in this case, no consistent improvements
were found.

In summary, this work provides the following contributions:

— extension of an open source GI framework for the Android domain;

— first open source framework for automated frame rate reduction of Android
applications?;

— feasibility study for application of genetic improvement for the purpose of
automated improvement of Android app responsiveness.

Our results show that although GI could be successful in improvement of An-
droid apps’ responsiveness, any such test-based technique is currently hindered
by availability of test suites covering Ul elements.

The rest of the paper is divided as follows: Section 2 presents a short in-
troduction to genetic improvement; Section 3 outlines our proposed framework
for improving Android app responsiveness; Section 4 presents our methodology

! Available: https://github.com/AndroidGI/AndroidGI

Improving Android App Responsiveness 3

for the empirical study; with results in Section 5; Section 6 notes threats to va-
lidity of our work; Section 7 shows related work on automated improvement of
responsiveness of Android apps; while Section 8 concludes the paper.

2 Background

Genetic improvement uses automated search to improve existing software [27].
Typically it operates at the level of source code, though mutations to the binary,
assembly, and others have been tried. GI takes existing software, mutates it, gen-
erating sometimes thousands of software variants. Each variant is represented as
a list of edits to the original code. Typical mutations involve copying, deleting,
or replacing a code fragment, that being either a statement (most often), line or
other (e.g., a binary operator). The search space of the evolved programs is nav-
igated using a search strategy. Although historically genetic programming has
been used, recent work show that local search can be equally effective [6]. Al-
though the technique is simple, it has already been incorporated in the industry,
during development process [13].

Work on Android software improvement using GI is scarce — so far only
one work on GI exists in the Android domain [7], in which ‘deep parameters’
(constants not exposed to developers) were modified in order to find transforma-
tions which reduce the energy consumption of an application. The framework,
however, is not open source, and source code was re-factored so that the search
was conducted on an external file with parameters, causing upfront cost, and
limiting mutations that could be automatically applied.

In this work we investigate the power of more traditional GI to improve
another non-functional property of Android applications, namely their respon-
siveness.

3 Improvement of Android App Responsiveness Using GI

The main challenge of applying GI in the Android domain to improve responsive-
ness lies in defining and evaluating the fitness function. In the past, responsive-
ness has been measured using the execution time [12, 20, 28] of test cases. Whilst
this may capture responsiveness, it will be negatively impacted by long running
background processes which do not impact the actual responsiveness of the appli-
cation. Gordon et al. [11] measured the “user-perceived latency” of interactions
with applications, which is the time between a user input the completion of the
action it triggers. This metric requires user scenarios to be manually defined, in-
cluding start and end points, and does not allow us to utilise developer defined
UT tests. However, we chose to use frame rate as a proxy for responsiveness, as
it is both easily measured and directly captures delays in updates to the UL. An
application whose frames are not rendered in a timely manner will be unrespon-
sive. Therefore, fixing these delays will result in a more responsive application.
We believe that frame rate, and thus responsiveness, can be improved through
source code transformations.

4 James Callan and Justyna Petke

Desktop
Operating Android
System Device/Emulator
Stage 3: Stage 5:
Stage 2: 9 Stage 4: O
Stage 1)< <. Local Installation Device
Search Compilation Testing Testing
Empty Test Package —
Patch
T Test
Mutations Test Suite -~ — ~| Package —
APK
Current) Gradle Unit " | Android Application
Best Candidate Build Test Debug
patch Patch tool Filter Bridge
Best Test Patched L L Application | _| Measurement | |
Patch Results Source ™ APK Tool
Code
Test Results |«

Fig. 1: Genetic improvement framework for Android applications.

To measure an applications’ frame rate, we must exercise the application’s Ul
on a device or emulator, so we cannot rely solely on local unit tests. This means
that applications must be packaged and installed on a device or emulator, which
is a costly process. It also removes our ability to use optimisation techniques
such as in-memory compilation.

Therefore, we propose the general framework shown in Figure 1. The im-
provement process takes place across two devices: desktop and an emulator or
mobile device. All communication between the desktop device is performed by
the Android debug bridge, running on the desktop device.

In the desktop environment, new patches are generated, through mutation
and selection (Stage 1), patches are applied, applications are built and packaged
(Stage 2). Finally, local unit tests are run to determine whether or not a patch
should be installed on the actual device (Stage 3). This step is important to vastly
increase GI efficiency, as it reduces the number of program variants that need
to be packaged and installed on a device or emulator, in order to measure their
fitness. Patched applications which pass unit testing are then installed (Stage
4). On the Android device, modified versions of the application are exercised by
the test package, and fitness measurements can be taken (Stage 5).

This framework could be easily used to improve any non-functional property,
simply by specifying different measurement tools. It could also be extended to
automated program repair by removing the measurement of a non-functional

Improving Android App Responsiveness 5

property and using the number of passing tests as the fitness function. Different
search algorithms and mutation operators could also be tried in Stage 1 of the
process. This framework also allows for parallelisation of the fitness evaluation
process, by connecting multiple devices or emulators, though careful measures
need to be taken to achieve reliable measurements (depending on the fitness
function of interest).

4 Methodology

In order to investigate the effectiveness of genetic improvement for the purpose of
improvement of Android app responsiveness, we set out to answer the following
research questions:

RQ1 How effectively can genetic improvement optimise the responsiveness of
Android applications?
This question will explore how well simple line-level modifications to An-
droid applications can improve their responsiveness and how easily we can
automatically find effective transformations.

RQ2 What type of source code changes are effective at decreasing frame rate in
Android applications?
The changes that we find to have the largest impact on frame rate could be
used to inform developers of ways in which they can improve the responsive-
ness of their apps. They could also be useful in inspiring future automated
techniques for improving the responsiveness of Android applications.

RQ3 How expensive is it to improve the frame rate of Android applications using
genetic improvement?
This question will allow us to quantify whether it is worth it to run GI
in this manner. We will be able to present the balance of cost running vs
the improvement to allow developers to make an informed decision about
applying GI. We will also explore how the cost varies between applications
and what impacts the cost of running GI.

In order to answer our research questions we implemented the framework
presented in Figure 1, and run it on a selection of Android applications.

4.1 Framework

We realise the abstract framework presented in Figure 1 in the Gin GI tool [8].
We chose it as among non-functional property improvement GI tooling, Gin
is scalable to large real-world software and is optimised for Java — a popular
choice for Android software. We utilise the pre-existing functionality from Gin
which allows the generation and modification of source code files with line-level
changes. We also use the existing local search algorithm from Gin. By default,
local search is run for 100 steps, at each step either copying, deleting or replacing
a randomly selected line of code. We elected to run it for 400 steps to try to
increase the chances of finding effective changes.

6 James Callan and Justyna Petke

In order to run on Android and gather data for fitness evaluation, we have
modified the components which compile the projects being improved and run
their tests. We also added the functionality to install applications on Android
devices and measure their frame rendering statistics.

Fitness There are a number of different metrics which can be used to measure
frame rate. They include the frames per second (FPS), average time taken to
render a frame, and the number of delayed frames. In order to measure the
frame rate of an application, we first need to run it, exercising its Ul. We use Ul
tests for this purpose and use the built-in dumpsys gfrinfo tool to gather various
measures. The tool gives detailed statistics about the render times of frames of
a particular process. These statistics include the number of janky frames (those
that take longer than 1/60th of a second to render), the median and, various
percentiles (50th, 75th, 90th, 95th, 99th) of frame render time are given. We ran
the whole test suite of our selected applications 100 times, measuring all these
metrics, and found that the 95th percentile of frame render time to be least
noisy, thus we use it as our frame rate measurement. Improving this metric will
mean that the largest delays in responsiveness have been fixed.

Testing Patch evaluation consisted of running all test cases which covered the
area of code being modified to ensure that the functionality of the project had
been preserved. Ul tests also had to be run to measure the frame rate of the
application. To improve efficiency of the GI process, we identify test cases that
cover the given class for improvement, using jacoco [2]. Next, we use espresso [1]
to identify UT tests. Finally, we split the Ul tests into two, based on 60% delayed
frame rate measure. The reason for this split is two-fold: first, running tests on the
emulator or device is expensive, so we want to avoid unnecessary runs; second,
we want to have a held-out test suite to check generalisability of improvements
found. Therefore, for Stage 3 and Stage 5 of our GI process presented in Figure 1
we use Ul tests causing largest frame delays (over 60% frame delays), as well
as all non-UI tests covering a given class. If all tests pass at Stage 3, we keep
this program variant, and evaluate it’s improvement in Stage 5, where each
test is run 10 times, and median 95th percentile frame render time recorded.
Due to the measurement of frame rate sometimes missing the test execution
and not capturing the full execution of the test, small 3 second delays were
added to the end of each UI test. This allowed the frame rate measurement
to be consistently captured. Each performance test suite was then run until
200 frame measurements had been recorded. Before this the measurement could
experience noise, leading to false positive improvements. Once 200 frames have
been recorded we can see if the patch is in fact an improvement by comparing
the median proportion of delayed frames in each test to that of the current best
solution.

Search Before we used the default local search implemented in Gin, we con-
ducted a pre-study, to see if genetic programming (also implemented in Gin)

Improving Android App Responsiveness 7

might have been a better choice. Local search showed more promising results
than GP as it was able to find optimised solutions faster. This is in line with
the findings of Blot et al. [6]. We performed 20 runs on each of the selected
classes in each of the projects. This allows us to collect a large amount of data
and be confident about the efficacy of our setup, despite the non-deterministic
nature of GI. We perform statistical tests on our results in order to quantify the
effectiveness of GI at finding improvements.

4.2 Validation

For each final patch from each GI run, we use all tests covering a given class
for validation purposes. We ran each 10 times and record median frame rate
improvement. This allowed us to run statistical test on the results and see which
patches offered significant improvements. The number of delayed frames was
measured in the same way as during the GI runs. We performed this evaluation
on a real device rather than an emulator, to ensure that improvements were valid
in a real-world environment and test for device overfitting. We also conducted
manual analysis of the patches to confirm their validity.

4.3 Benchmarks: Mobile application Selection

We aim to improve real-world software and, therefore, choose to use real open
source applications. Since we are using the Gin improvement tool, our modi-
fications are limited to Java source code. Android applications may consist of
mixtures of Kotlin and Java source code, but only the part of the application
being modified needs to be written in Java. In our GI framework each patch
is validated using the test suite of the application. This limits us to improving
open source applications with areas of code which are well-tested. Moreover, we
need Ul tests to measure frame rate. Therefore, a number of criteria had to be
met by applications used in this study:

— The application must be open source and at least partly written in Java.
The application must be able to be compiled and deployed on an Android
Emulator.

The application must have sufficient areas of code covered by a test suite (at
least one class with 40% line coverage).

The application must contain at least one test that exercises it’s UL

The application must contain at least one non-trivial UI class. 2

Checking these criteria for a given app is costly (particularly test coverage).
The application must be downloaded, compiled, installed and tested. The cov-
erage of the unit tests and the instrumented tests must be measured separately.
Fortunately, Pecorelli et al. [26] performed an analysis of all applications from
FDroid, documenting both the number of tests and the coverage of those tests.

2 Based on manual judgement we decided to select applications with at least one UI
class with at least 100 lines of code.

8 James Callan and Justyna Petke

In order to curate a set of applications to evaluate our approach on, we
checked applications analysed in [26] in descending order of line coverage. We
then discarded applications which were not written in Java, those that could not
be compiled, those whose tests could not be run successfully, and those which
were too small for meaningful improvement to be found. If an application was
not discarded, the areas of the application covered by its test suite had to be
checked.

The first step in this process was to remove flaky tests - for two reasons.
Firstly, the jacoco test coverage plugin [2] requires all tests to pass so flaky tests
could disrupt the coverage measurement. Secondly, flaky tests may produce false
negatives in patch validation. If a test fails due to flakiness, rather than due to
the applied patch, it will make valid patch appear invalid. Thus, they must be
excluded from the experiments and, therefore, should be excluded from coverage
measurements. In some cases, build files had to be modified to remove conflicting
dependencies or enable test coverage measurement. No source code was modified
in this process.

When running GI on a desktop application, automated test generation tools
such as EvoSuite [10], can be used to supplement test suites and increase code
coverage. Sadly there are limited tools available for automated test generation for
Android applications and none that can automatically generate regression tests
were found. We found 3 tools which could generate automatic Ul test input,
however none worked on the recent versions of Android we ran our experiments
on. Even if they did work they generated no assertions so could not be used to
confirm patch validity. Therefore, the existing test suite of the application had
to be relied on to validate patches.

Due to the large cost of validating a suitable application and the rarity of
these applications, this process was repeated until 4 applications were found.
Beyond this point line coverage was less than 15% so it was unlikely that more
suitable applications would be found. Overall, we examined 192 applications,
and 188 were discarded.

Profiling Next, we profile each application we want to improve to identify
code where changes influencing frame rate are most likely to be found. We thus
focused on the Ul implementing classes, the activity, view, and fragment classes.
For each application we select the class which is most covered by the jankiest
UI tests, that has at least 100 lines of code. We added the second condition, as
classes with few lines of code are unlikely to hold improvements.

However, Ul tests often contain very few assertions, relative to the amount
of code which they exercise, and unit test for Ul classes are very uncommon.
Our proposed GI approach uses testing as a proxy for correctness. Because of
this, while targetting Ul-related classes may find the strongest improvements, it
may also find invalid improvements due to the weaknesses of the test oracle.

Therefore, for each application, we select a class for improvement which is
best covered by the whole test suite, and covered by at least one UI test, so we
could measure frame rate usage.

Improving Android App Responsiveness 9

Table 1: The number of tests cases and % line coverage for each of the selected
classes

App Name Class Name No. Tests|Line Cov.(%)
AnemnaPod | coeFragment (Exp2) 7 o8
Gmow [Tt D I
MictoPimer |y entertmpl (Exp2) 1 7
WikimediaCommons IA{EcOel;ttASZ:rVC%ZSEJEE));I‘zelzthProvider (Exp2) 12 gg

In order to identify covered classes we used the jacoco Android coverage
tool on each of the selected test cases Firstly, as jacoco only runs on whole
test suites, we added JUnit’s @Ignore decorators to all tests but the test case
being investigated. We then ran jacoco on the modified test suite and extracted
the coverage information, this process was repeated for each test. The classes
which were most commonly exercised were then manually analysed to check for
suitability, as described above.

Table 1 shows the final set of applications we found using our selection proce-
dure, including the classes we identified using our profiling procedure and their
test coverage.

4.4 Physical setup

Our experiments were run on a research cluster, with 16GB of RAM and an
Intel Xeon €5 CPU, with an emulator using Android version 7. The evaluation
of improvements was performed on a NOKIA 9 running Android version 10.

5 Results

Below we present the results of our experiments. In our first set of experiments
(Expl) we ran GI 20 times on the class in each of the four projects which was
most covered by janky UI tests. In our second experiment, for each project,
(Exp2) we ran GI on the class with the highest line coverage, that was also
covered by at least one UI test.

5.1 RQ1: Improvements to responsiveness

In order to answer RQ1, we present the improvement of frame rate before and
after our patches are applied. Improvement is presented as the percentage de-
crease in the 95th percentile of frame render time. We also performed the Mann-
Whitney U statistical test with the null hypothesis: “There is no difference be-
tween the frame rate of the unpatched application and the patched application.”

10 James Callan and Justyna Petke

Table 2: Improvements achieved in poorly tested Ul classes

Project No. improvements found|Max. % dec in 95th per. render time
AntennaPod 0 0.0
Gnu Cache 1 11.11
MicroPinner 1 5.56
Wikimedia Commons 8 50.00
Table 3: Improvements achieved in well tested classes
Project No. improvements found|Max. % dec in 95th per. render time
AntennaPod 0 0.00
Gnu Cache 0 0.00
MicroPinner 1 5.26
Wikimedia Commons 0 0.00

for each patch discovered. This is to determine whether or not the improvements
were statistically significant at the 95% confidence level. We treat those improve-
ments as which are not statistically significant as 0% improvements. Tables 2
and 3 show our results.

We find that only 11 out of 160 of the GI runs performed found statistically
significant improvements and 8 of those were in one application. In the vast
majority of cases no improvements were found and the GI execution simply
returned an empty patch. In 7 cases in the first experiment, patches were found
which suggested improvements during search, however, validation resulted in
them being found not to offer statistically significant improvements.

We also measure the execution time and memory usage of the patches where
statistically significant improvements to frame rate were found, in order to quan-
tify the way frame rate improvements affect other metrics for responsiveness.
However, we find that where improvements are found, there is very little effect
on either memory consumption or execution time. These measurements are noisy
and may not be sensitive to the types of improvements which we found.

There is also the chance that the applications simply are not unresponsive
enough to find significant improvements. Visual observation of UI tests does show
noticeable improvements, though not significant. This shows that indeed frame
rate measurements we take are more sensitive to Ul changes, and have real, albeit
small, impact. If tests were deliberately made to expose the unresponsive areas
of applications, we may have an even better chance of finding improvements.

5.2 RQ2: Types of Improvements

To understand the types of improvement which can improve the frame rate of
an application, we undertook a manual investigation of patches. We investigated
the edits of the patch which was found to offer the most improvement in each
project in order to find the most effective changes.

Improving Android App Responsiveness 11

] é
i = e =S

MicroPinner AntennaPod wikiMedia GnuCache MicroPinner AntennaPod wikiMedia GnuCache

Time Taken to Run Gl (Hours)
Time Taken to Run Gl (Hours)

(a) Times taken for experiments on UI (b) Times taken for experiments on well
classes covered classes

Fig. 2: Boxplots of the Time Taken for Each Run on Each Project in Hours

One patch in particular offered significantly better improvements than any
other. A patch to the WikiMedia Commons application offered improvements
of 50% to frame render time. This patch contained 3 edits, 1 more than any
other patch found. 2 of these edits remove text from the screen, making the
whole patch invalid. However, one of the changes removes a line setting the
gravity of a drop down menu’s animation. Running this single change alone still
produces a 43% improvement to frame render time, showing that it is the most
important change. When deploying the modified version of the app we can see
that opening and closing the drop down menus is significantly smoother and
there is no obvious visual impairment to the animation. This improvement will
not have large effects on the execution time or memory consumption of the test
suite, however, it does make the application run more smoothly from a users
perspective, fixing a stuttering animation.

It is possible that there are other opportunities for this kind of change avail-
able. However, the majority of open source applications have no tests and those
that do have very poor coverage [26].

In the cases were improvements found turned out to be invalid, again the
classes being improved did not have adequate coverage and the test which did
cover were not very robust. Some patches removed lines of text which were meant
to be displayed or prevented a dialog box from being displayed. In some cases the
lines which were removed were covered but there were no assertions to check that
the text was being displayed correctly. Much stronger regression testing would
be needed to remove the risk of invalid patches being produced. This issue was
not found for the single improving patch produced for well-covered classes, only
on the UI classes with lower coverage.

12 James Callan and Justyna Petke

5.3 RQ3: Cost of Improving Responsiveness

In order to answer RQ3, to evaluate the cost of improvement, we timed the
execution of each GI run. The results of this evaluation can be found in Figure 2.
The runs took between 2 and 16 hours to complete. All of the experiments took
a total of 883 hours of compute time.

The execution time varied greatly between projects and the runs on particular
projects. This variance comes from differing lengths of test suites and the number
of patches which could be built, and therefore tested, that were found. Trying to
target classes which are covered by small, fast test suites would help to reduce
the cost of GI.

Running tests on the emulator is very expensive, and almost certainly re-
sponsible for the long runtimes. When analysing the Wikimedia commons setup
used for the About Activity class we find that running the unit test filter only
requires a median of 5s over 10 runs. Whereas compiling, installing, and running
the UI tests once takes a median of 2 minutes and 12 seconds over 10 runs.
When running GI on Android in the future, it may be significantly faster to
target properties that can be measured exclusively using local tests, removing
the need for an emulator or real device.

6 Threats to Validity

There are a number of threats to the validity of this work. Below we present
these threats and the actions taken to mitigate them.

Noise in Measurements Whilst the fitness measurement only showed a
small amount of noise when tested, these small deviations could still produce
false positives for improvements. In order to mitigate this threat, we conduct
repeated measurements and statistical tests on all improvements, in order to
verify that the improvements are real.

Stochastic Search Using randomised search may result in us ‘getting lucky’,
and finding improvements that would not be likely to be found in subsequent
runs. In order to show how our approach works generally, we perform 20 runs
for each experimental setup (160 runs total).

Overfitting As our patches are generated on a single emulator there is a
chance that they will not translate to other, real world hardware. In order to test
this, we validate all improvements that are found on a real device. Improvements
may also be overfitted to the set of tests used during fitness evaluations. To test
for this overfitting, a larger set of tests is used to validate the patches that
are found, checking if any of them fail, along with how much of an impact the
improvements have on other test cases.

7 Related Work

A recent survey [16] revealed several approaches for improving Android app
responsiveness.

Improving Android App Responsiveness 13

Offloading is a popular technique for improving the responsiveness of applica-
tions [5, 11,12, 18, 20, 28]. When offloading, expensive computation is performed
on an external server, saving both computational effort and energy usage on the
actual device. The main challenge of offloading is dynamically deciding what
should be offloaded. Offloading requires developers to create an external infras-
tructure, e.g., using cloud computing, to perform computation. This could be
complex and costly for developers. In this work, we propose finding purely local
changes to applications which do not require the set up of external hardware.

Pre-fetching is another technique used to improve responsiveness [4, 15, 30].
Online resources are asynchronously fetched before they are needed so that the
user does not have to wait for the request to be executed. Pre-fetching is limited
to improving a limited number of operations, and is not applicable to many
applications.

Local transformations for improving responsiveness of applications have also
been considered. Hecht et al. [14] tested the impact of repairing Android code
smells on frame rate. Lin et al. [24] developed a tool to automatically refactor
code into asynchronous tasks. Yijung et al [25] automatically refactored ineffi-
cient local database writes for applications in order to improve responsiveness.

None of the discovered related work considers utilising a larger set of refac-
torings and using search-based approaches to navigate this space.

8 Conclusions and Future Work

In this work we present a genetic improvement approach for improvement of
responsiveness of Android applications. Even though we report negative results,
our research also revealed several avenues for future research.

Whilst genetic improvement is capable of finding improvements to the frame
rate of Android applications it is greatly limited by the number of and distribu-
tion of available tests. In order for genetic improvement to be applied successfully,
applications need more Ul tests to allow janky areas of code to be exposed and
more unit testing of Ul elements increasing the code coverage.

In future work we plan to extend the traditional set of operators with refac-
torings specialised for responsiveness. We also plan to expand our research to
investigate the power of GI to improve other properties of Android applications.
We also plan to use multi-objective search, as naturally improvements to respon-
siveness might negatively influence other software properties, such as memory
consumption. We would also aim to speed up GI for Android, if we can success-
fully find improvements using only local tests, we can avoid having to package
and install the application, greatly speeding up fitness evaluations. We believe
that despite current obstacles related to testing, future automated improvement
tooling for Android will benefit from search-based approaches, such as genetic
improvement.

Acknowledgements This work was funded by the EPSRC fellowship EP/P023991/1.

14

James Callan and Justyna Petke

References

N

10.

11.

12.

13.

14.

15.

Espresso for UI testing, https://developer.android.com/training/testing/espresso/
Jacoco, https://docs.gradle.org/current /userguide/jacoco_plugin.html

Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug
fixing. pp. 162 — 168 (07 2008)

Baumann, P., Santini, S.: Every byte counts: Selective prefetching for mobile appli-
cations. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1(2) (Jun 2017),
https://doi.org/10.1145/3090052

. Berg, F., Diirr, F., Rothermel, K.: Increasing the efficiency and re-

sponsiveness of mobile applications with preemptable code offloading. In:
2014 IEEE International Conference on Mobile Services. pp. 76-83 (2014).
https://doi.org/10.1109/MobServ.2014.20

Blot, A., Petke, J.: Empirical comparison of search heuristics for genetic improve-
ment of software. IEEE Transactions on Evolutionary Computation pp. 1-1 (2021).
https://doi.org/10.1109/TEVC.2021.3070271

Bokhari, M.A., Bruce, B.R., Alexander, B., Wagner, M.: Deep parameter opti-
misation on android smartphones for energy minimisation: a tale of woe and a
proof-of-concept. In: GECCO (Companion). pp. 1501-1508. ACM (2017)

. Brownlee, A.E.L., Petke, J., Alexander, B., Barr, E.T., Wagner, M., White, D.R.:

Gin: Genetic improvement research made easy. In: Proceedings of the Genetic and
Evolutionary Computation Conference. pp. 985-993. GECCO ’19, Association for
Computing Machinery (2019). https://doi.org/10.1145/3321707.3321841

Feng, R., Meng, G., Xie, X., Su, T., Liu, Y., Lin, S.: Learning performance opti-
mization from code changes for android apps. In: 2019 IEEE International Con-
ference on Software Testing, Verification and Validation Workshops (ICSTW). pp.
285-290 (2019). https://doi.org/10.1109/ICSTW.2019.00067

Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented
software. In: SIGSOFT FSE. pp. 416-419. ACM (2011)

Gordon, M.S., Hong, D.K., Chen, P.M., Flinn, J., Mahlke, S., Mao, Z.M.: Acceler-
ating mobile applications through flip-flop replication. In: Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and Services.
p- 137-150. MobiSys ’15, Association for Computing Machinery, New York, NY,
USA (2015), https://doi.org/10.1145/2742647.2742649

Gordon, M.S., Jamshidi, D.A., Mahlke, S., Mao, Z.M., Chen, X.: Comet: Code
offload by migrating execution transparently. In: Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation. p. 93-106. OSDI’12,
USENIX Association, USA (2012)

Haraldsson, S.O., Woodward, J.R., Brownlee, A.E.L., Siggeirsdottir, K.: Fixing
bugs in your sleep: how genetic improvement became an overnight success. In:
Bosman, P.A.N. (ed.) Genetic and Evolutionary Computation Conference, Berlin,
Germany, July 15-19, 2017, Companion Material Proceedings. pp. 1513-1520. ACM
(2017), https://doi.org/10.1145/3067695.3082517

Hecht, G., Moha, N., Rouvoy, R.: An empirical study of the performance im-
pacts of android code smells. In: 2016 IEEE/ACM International Conference on
Mobile Software Engineering and Systems (MOBILESoft). pp. 59-69 (2016).
https://doi.org/10.1109/MobileSoft.2016.030

Higgins, B.D., Flinn, J., Giuli, T.J., Noble, B., Peplin, C., Watson, D.: In-
formed mobile prefetching. In: Proceedings of the 10th International Con-
ference on Mobile Systems, Applications, and Services. p. 155-168. MobiSys

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Improving Android App Responsiveness 15

'12, Association for Computing Machinery, New York, NY, USA (2012),
https://doi.org/10.1145/2307636.2307651

Hort, M., Kechagia, M., Sarro, F., Harman, M.: A survey of performance optimiza-
tion for mobile applications. IEEE Transactions on Software Engineering (TSE)
(2021)

Inukollu, V., Keshamoni, D., Kang, T., Inukollu, M.: Factors influncing quality of
mobile apps: Role of mobile app development life cycle. International Journal of
Software Engineering & Applications 5 (10 2014)

Kemp, R., Palmer, N., Kielmann, T., Bal, H.: Cuckoo: a computation offloading
framework for smartphones. In: 2nd Int. Conf. on Mobile Computing, Applications,
and Services (MobiCASE 2010) (2010)

Khalid, H., Shihab, E., Nagappan, M., Hassan, A.E.: What do mobile app users
complain about? IEEE Software 32(3), 70-77 (2014)

Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: Dy-
namic resource allocation and parallel execution in the cloud for mobile
code offloading. Proceedings - IEEE INFOCOM 945-953, 945-953 (03 2012).
https://doi.org/10.1109/INFCOM.2012.6195845

Langdon, W.B.: Performance of genetic programming optimised bowtie2 on
genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 8,
1 (2015)

Li, D., Lyu, Y., Gui, J., Halfond, W.G.J.: Automated energy optimization of http
requests for mobile applications. In: Proceedings of the 38th International Confer-
ence on Software Engineering. p. 249-260. ICSE ’16, Association for Computing
Machinery, New York, NY, USA (2016)

Lim, S.L., Bentley, P., Kanakam, N., Ishikawa, F., Honiden, S.: Investigat-
ing country differences in mobile app user behavior and challenges for soft-
ware engineering. IEEE Transactions on Software Engineering 41 (09 2014).
https://doi.org/10.1109/TSE.2014.2360674

Lin, Y., Okur, S., Dig, D.: Study and refactoring of android asyn-
chronous programming (t). In: 2015 30th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). pp. 224-235 (2015).
https://doi.org/10.1109/ASE.2015.50

Lyu, Y., Li, D., Halfond, W.G.J.: Remove rats from your code: Automated op-
timization of resource inefficient database writes for mobile applications. In: Pro-
ceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. p. 310-321. ISSTA 2018, Association for Computing Machinery, New
York, NY, USA (2018), https://doi.org/10.1145/3213846.3213865

Pecorelli, F., Catolino, G., Ferrucci, F., De Lucia, A., Palomba, F.: Testing of
mobile applications in the wild: A large-scale empirical study on android apps.
ICPC 20, Association for Computing Machinery, New York, NY, USA (2020),
https://doi.org/10.1145/3387904.3389256

Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward,
J.R.: Genetic improvement of software: A comprehensive survey. IEEE Trans. Evol.
Comput. 22(3), 415-432 (2018)

Ra, M., Sheth, A., Mummert, L., Pillai, P., Wetherall, D., Govindan, R.: Odessa:
enabling interactive perception applications on mobile devices. In: MobiSys ’11
(2011)

Saarinen, A., Siekkinen, M., Xiao, Y., Nurminen, J., Kemppainen, M., Hui, P.:
Can offloading save energy for popular apps? (08 2012)

Yang, Y., Cao, G.: Prefetch-based energy optimization on smartphones. IEEE
Transactions on Wireless Communications 17(1), 693-706 (2017)

