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ABSTRACT
If a software execution is disrupted, witnessing the execution at
a later point may see evidence of the disruption or not. If not, we
say the disruption failed to propagate. One name for this phenom-
enon is software robustness, but it appears in different contexts
in software engineering with different names. Contexts include
testing, security, reliability, and automated code improvement or re-
pair. Names include coincidental correctness, correctness attraction,
transient error reliability, and other. As witnessed, it is a dynamic
phenomenon but any explanation with predictive power must nec-
essarily take a static view. As a dynamic/static phenomenon it is
convenient to take a statistical view of it which we do by way of
information theory. We theorise that for failed disruption propaga-
tion to occur, a necessary condition is that the code region where
the disruption occurs is composed or succeeded with a subsequent
code region that (statically) suffers entropy loss over all executions–
and the higher the entropy loss, the higher the likelihood that dis-
ruption in the first region fails to propagate to the downstream
observation point. We survey different research silos that address
this phenomenon and explain how the theory can be exploited in
software engineering.

CCS CONCEPTS
• Software and its engineering→ Software reliability.
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1 INTRODUCTION
With the ever increasing size and complexity of software, and the
plethora of devices and environments in which it is run, ensuring
its correct function under all conditions is an inherently difficult
task. The software quality concept of robust software is thus of
great importance. In the taxonomy of software dependability [4],
robustness is defined as “dependability with respect to external
faults, which characterizes a system reaction to a specific class of
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faults.” The classes of faults might not only relate to users providing
invalid inputs, but also to physical factors. This makes robustness
center stage in the fields of safety-critical systems, such as space
shuttles, but also chip design, where environmental conditions,
such as fluctuations of electric currents, are hard to predict.

It is thus unsurprising that robustness considerations are most
often seen during the software testing stage. Beizer et al. [7] state
that around 80% of more mature software’s test suites are composed
of robustness tests. Shahrokni and Feldt [20] conducted a system-
atic literature review on software robustness. They concluded that
“robustness verification and validation (V&V) is the largest focus
group in software robustness phases”, with testing being the main
technique used in this category. Shahrokni and Feldt also note
that the second largest category concerns design solutions for ro-
bustness. Taking robustness consideration upfront during software
architecture design can help avoid future failures. Of course, it is
not an easy task given the number of unpredictable conditions
under which software could be run. Shahrokni and Feldt’s survey
shows that the most common strategy has been to use wrappers
that try to prevent errors from propagation. This category contains
self-healing and antifragile software that try to detect and repair er-
rors during runtime. Alternative strategies for increasing software’s
robustness propose use of more robust programming languages.

Both robustness testing and the techniques for designing robust
software aim to ensure the system functions correctly in the pres-
ence of invalid inputs or stressful environmental conditions. In
other words, aim that errors arising from such conditions do not
propagate, so do not hinder the system’s functional behaviour. If
we treat software as a black-box, from a user’s perspective, as long
as the output is correct, it is of little importance how much the
error might have propagated throughout the code. However, from
a software tester’s perspective, the point at which the error could
have been observed (i.e., the placement and observation power of
the oracle) is of uttermost value. Traditionally error-handling tech-
niques would be put into place to limit failed error propagation [2].
However, the rise of techniques for the improvement of software’s
non-functional behaviour sheds new light on the role of robustness.

Although, historically code has been regarded as brittle [17],
Langdon and Petke [14] argued it is not as fragile as previously
thought. This observation stemmed from their work on genetic im-
provement [18], in particular, automated improvement of software’s
runtime. The plastic surgery hypothesis [5], which underpins much
work on automated program repair, also challenges the view of
code as inherently brittle. The underlying assumption of the afore-
mentioned automated software improvement techniques is that
robustness of code can be exploited to find better software variants.
Currently such techniques usually have to navigate a prohibitively
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large space of software changes, which can be compared to search-
ing for a needle in a haystack. Identification of robust code regions,
where local disruption would not be propagated to the point of
changing software’s functionality, would be of great value.

Prediction of robust code regions could benefit both software
testers aiming to find possibly critical errors that sometimes fail to
propagate, and software engineers aiming to automatically improve
code. Androutsopoulos et al. [2] investigated the relationship be-
tween failed error propagation and a concept from information the-
ory, namely conditional entropy. They empirically showed strong
correlations between the two, opening avenues for future work.

In what follows we present how entropy loss analysis can be
used as a predictor for failed disruption propagation, and how the
presented theory can be exploited in software engineering.

2 SOFTWARE ROBUSTNESS AND ITS
FLAVOURS

Even though the concept of software robustness has been an es-
tablished term for many years, the rise of automated software im-
provement techniques has brought new views and new terminology,
which we briefly discuss in this section.

Definition 2.1 (Robustness [1]). Robustness is the degree to which
a system or component can function correctly in the presence of
invalid inputs or stressful environmental conditions.

Back in 2012, with the rise of pioneering work on automated
program repair, Schulte et al. [19] introduced the concept of soft-
ware mutational robustness. It is described as the fraction of random
mutations to program code that leave the program’s behaviour
unchanged. In 2019 Harrand et al. [10] presented a conceptual repli-
cation of Schulte et al.’s study and defined code plasticity as the
code’s “intrinsic capability at being changed to another code, while
keeping functional correctness, with respect to a given test suite”.
They state that the conceptual difference with software mutational
robustness is that the latter reasons “about the ability to tolerate
perturbations”, while code plasticity aims to characterise “the abil-
ity of code to exist in multiple forms. It should be noted that the
plasticity term has first been used by Barr et al. [5], in the plastic
surgery hypothesis, which states that “Changes to a codebase con-
tain snippets that already exist in the codebase at the time of the
change, and these snippets can be efficiently found and exploited.”

Both Schulte et al. [19] and Harrand et al. [10] introduce mea-
sures which can be viewed as proxies for software robustness, in
that the higher these measures are the more robust the software is,
with respect to the given test suite.

Definition 2.2 (Software Mutational Robustness and Neutral Vari-
ant Rate [10, 19]). Let 𝑀 (𝑃) = 𝑉 be the set of program variants
generated by applying mutations from 𝑀 to the program 𝑃 . Let
𝑉𝑐 ⊂ 𝑉 denote all program variants that compile and 𝑉𝑇 ⊂ 𝑉𝑐
denote all program variants that pass all the tests in 𝑃 ’s test suite
𝑇 . Then software mutational robustness (SMR) and neutral variant
rate (NVR) are calculated as follows:

SMR =
|𝑉𝑇 |
|𝑉 | NVR =

|𝑉𝑇 |
|𝑉𝑐 |

(1)

The above measures are also in line with traditional measures
for software robustness, in that they are defined with respect to a
given test suite.

Another term related to robustness that has been discussed in
the field of automated program repair is antifragile software. It
was inspired by the definition of antifragility by Taleb [23] which
states that “a system is antifragile if it thrives and improves when
facing errors” [15]. Monperrus provides examples of antifragile
software [15], including self-healing systems [22], that are fault-
tolerant, and those that self-inject bugs during production, such as
encountered in the discipline of chaos engineering [6]. The concept
of fragility has also appeared in the work on non-functional prop-
erty improvement and was empirically investigated by Langdon
and Petke [14]. In that work it is used as a synonym for robustness.

The above-mentioned authors of antifragile software and code
plasticity terminology published a paper together on “correctness
attraction”, as defined below:

Definition 2.3 (Correctness Attraction [9]). An execution perturba-
tion is a runtime change of the value of one variable in a statement
or an expression. An execution perturbation has three characteris-
tics: the time when the change occurs (e.g. at the second and the
fourth iterations of a loop condition), the location in the code (e.g.
on variable ‘i’ at line 42) and the perturbation model – what is this
change according to the type of the location? (e.g. +1 on an integer
value). The perturbation space for an input is composed of all possi-
ble unique perturbed executions according to a perturbation model,
for that given input. Correctness attraction is the phenomenon by
which the correctness of an output is not impacted by execution
perturbation. Correctness attraction means that one can perturb an
execution while keeping the output correct according to a perfect
oracle.

Danglot et al. [9] related the concept of correctness attraction to
antifragility and robustness using correctness ratio, which they
define as the “percentage of correct executions over the whole
perturbation space”. In particular, if, in their experiments, a program
point had correctness ratio of 100% it was deemed antifragile. It was
called robust if the ratio was above 75%. This shows that indeed
antifragility is regarded as a subset of robustness in this body of
work.

The above terms either provide synonyms for robustness, or
specialise it to a particular case. We will use the term “robustness”
throughout this paper. We also note that there are different terms to
describe code changes under which robust code would function as
intended. These changes have been classified as errors (also faults
or bugs), mutations, or perturbations. In this work we use the term
“disruption” to cover all types of such changes.

Another term worth mentioning that relates to software robust-
ness, and has been used in the automated program repair field, is
coincidental correctness [11]. It can include failed error propaga-
tion as well as the case where, in spite of the error being exercised,
there is no state infection, as it “arises when a defective program
produces the correct output despite the fact that the defect within
was exercised” [3]. Sometimes the two cases are distinguished using
the propagation, infection, execution (PIE) framework, for example,
in work by Jahangirova et al. [13].
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The concept of failed error propagation also corresponds to
the difference between weak and strong mutation testing [16]. In
particular, a program mutation𝑚 is weakly killed by a test case 𝑡 , if
the execution of 𝑡 on the original program and its mutant produces
different program states. The disruption𝑚, however, does not need
to propagate to the output. If it does, we say that 𝑚 is strongly
killed. In non-functional genetic improvement [18] , weak, but not
strong mutants are desired.

We will use the term “failed disruption propagation” to mean
execution with infection without successful propagation [24].

3 AN ENTROPY-BASED PREDICTIVE MODEL
We first present a model of disruption propagation failure, and show
how robustness can be explained by it.

Assume a deterministic, imperative program language and con-
sider a program, 𝑃 , in this language together with its Control Flow
Graph 𝐺 (𝑃). Assume there is a random variable, 𝐼𝑃 , in the initial
states of 𝑃 . Consider the set of all executions of 𝑃 , 𝐸 (𝑃). Then there
is a random variable 𝐸 (𝑃) whose events are the executions of 𝑃
with the same probability distribution as 𝐼𝑃 . Consider the collecting
semantics of 𝑃 that collects all the states that may occur at each
program point in 𝐺 (𝑃) as a result of executions in 𝐺 (𝑃). Then 𝐼𝑃
induces a random variable in possible states at each program point
in 𝐺 (𝑃) as a result of all the executions in 𝐸 (𝑃)

Suppose that an observer is observing a property of a state at
a program point 𝑜𝑝 in 𝐺 (𝑃) resulting from an execution. The ob-
server may observe the whole state (strongest observation power)
or some property of it (weaker observation power). For example, in
software testing it is common for the oracle (observer) to assess the
correctness of the output of a program, output being a property of
the final state.

Consider that the execution is disrupted at some program point,
𝑑𝑝 , occurirng before the observation point, producing a state that is
not expected for that execution. This could be caused by an undis-
covered error in 𝑃 ’s syntax, deliberate mutation of the syntax, a
disruption of an execution state via lasers, gamma rays, microwaves
or program instrumentation, or the exploitation of a security vul-
nerability. How can the observer fail to witness an unexpected state
at a subsequent program point in𝐺 (𝑃), at 𝑜𝑝? Two conditions have
to be met:

(1) There is a program fragment, 𝐹 , where 𝐹 is the chop of
source 𝑑𝑝 and sink 𝑜𝑝 [12], and 𝐹 (𝑠) = 𝑡 , 𝐹 (𝑠 ′) = 𝑡 ′, where
𝑠 is the expected state at 𝑑𝑝 , 𝑠 ′ is the disruption state at
𝑑𝑝 and 𝑡 and 𝑡 ′ respectively are the resulting states at the
observation point, 𝑜𝑝 , in each case.

(2) The observer observes a property of a state and 𝛼 (𝑡) =

𝛼 (𝑡 ′), where 𝛼 : Σ → 𝐴 is the function that extracts the
property value from the observed state, Σ is the set of all
possible states and 𝐴 the set of possible values of the ob-
served property.

An example of the second condition is a test oracle that checks
the program output for each test. Perhaps output is a truth value
evaluated using the final state. Then function 𝛼 is the evaluation
function mapping the set of final states to Boolean. Making 𝛼 ex-
plicit explains two papers with very different results. Assi et al. ex-
amined coincidental correctness in the Defects4J benchmark suite

Figure 1: Simplified FDP model. Here 𝐹 (𝑠) = 𝐹 (𝑠 ′) and 𝛼 is
identity.

of Java programs [3]. Each program comes with at least two ver-
sions, with and without real faults, as well as test cases. Using the
test cases they found coincidental correctness to be highly preva-
lent in Defects4J. On the other hand, Jahangirova et al. examined
the same benchmark, but generated their own tests and used the
final state as an oracle [13]. By contrast, they found negligible failed
error propagation (Assi et al.’s strong coincidental correctness) at
unit test level although this increased considerably at system level.

The first condition is problematic as it is completely dependent
on the exact disruption state and its relation to the semantics of 𝐹 .
Ideally, software engineering would like to be able to predict when
code regions such as 𝐹 have a high likelihood of causing failed
disruption propagation (FDP). Note that, for a given execution
observation to fail, function 𝛼 ◦ 𝐹 must collide the two different
inputs at output. The diagram in Figure 1 illustrates the concept in
the scenario where 𝐹 (𝑠) = 𝐹 (𝑠 ′) and 𝛼 is identity, i.e. the observer
observes the whole state.

Previous work has suggested function entropy loss as a good
predictor of the likelihood of range collisions, better than simple in-
put/output size ratios [8]. Experimental evidence has borne this out.
Androutsopoulos et al. have experimentally demonstrated strong
rank correlations (> 0.95) between entropy loss measures and likeli-
hood of failed error propagation [2], while Assi et al. have provided
indirect evidence, given the intuition that larger code and longer
execution paths correlate with more entropy loss. They noted that
test cases were more likely to suffer coincidental correctness if
the execution paths were longer and “comprised a higher number
of conditional, modulo, multiplication, division, and invocation
statements” [3].

Entropy,H , is a statistic of a probability distribution that mea-
sures how disordered or, alternatively, how regular the distribution
is. It is defined as the expected value of the log of the inverse prob-
ability 𝑝 across the support [21]. For a random variable 𝑋 :

H(𝑋 ) = −
∑︁
𝑥 ∈𝑋

𝑝 (𝑥) 𝑙𝑜𝑔 𝑝 (𝑥)

Entropy loss over all executions of a computation can be mea-
sured as the conditional entropy of the inputs given the outputs.
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Figure 2: Robust Code Region (blue shaded area)

Below we use the Chain Rule as a proxy definition of conditional
entropy.

Given random variables in inputs, 𝐼𝑛, and outputs, 𝑂 , the condi-
tional entropy of 𝐼𝑛 given𝑂 ,H(𝐼𝑛 |𝑂), is given via the Chain Rule
as H(𝐼𝑛 |𝑂) = H(𝐼𝑛,𝑂) − H (𝑂) where H(𝐼𝑛,𝑂) is the entropy
of the joint random variable ⟨𝐼𝑛,𝑂⟩. When 𝑂 is a function of 𝐼𝑛
the calculation is simpler withH(𝐼𝑛 |𝑂) = H(𝐼𝑛) −H (𝑂) but this
only holds in deterministic languages.

Consider this example of failed disruption propagation (FDP):
x = 3 * x; // error, should be x = x + 2;
if (x > 0 )

x = x % 4; // F ( entropy loss region)
else x = x;

Assuming we have the following two test cases: 𝑡1 : 𝑥 = 3 and
𝑡2 = −5, if we only run 𝑡1, we will miss the error, as the output of
the original and modified code will be 1. However, if we run 𝑡2, 𝑥
will equal to −15 , and not the intended −3.

It is the loss of entropy in the function 𝛼 ◦𝐹 that is a good predic-
tor of the probability of FDP at a given program point. How does
this model of FDP connect to software robustness? Our intuition is
that rather than programs being robust, it is regions of programs
that are robust.

4 PROSPECTS
We expect that an entropy loss region affects not just a single pro-
gram point but a robust region of program points (code). This region
is created by being composed with a following region which has
significant entropy loss as in Figure 2. The entropy loss region has
a masking or occluding effect on the robust region for an observer
of a later program point. Disruptions have a lower chance of being
detected, the code is more plastic, less fragile, and more resistant
to tampering, as is the state and the program data in this region.

We can predict robust regions by identifying entropy loss regions
via estimates produced with dynamic or static analyses. Prediction
of robust code regions could benefit both software testers aiming
to find possibly critical errors that sometimes fail to propagate, and
software engineers aiming to automatically improve code. Further
away, on the horizon, is investigating the relationship between
program input-output equivalence and robustness, offering the
possibility of controlling robustness in programs, both increasing

and decreasing it so that, for example, code robustness can be
increased after testing and prior to deployment.

5 CONCLUSIONS
We have discussed software robustness, making a case that robust-
ness is a probabilistic, non-functional property of programs that
can be explained by a model of failed disruption propagation (FDP).
We have argued that this model unites differently named software
phenomena in the software engineering research literature, such
as code plasticity and correctness attraction. Then we have argued,
on the basis of experimental evidence, that information theory
provides a suitable abstraction, via entropy loss, that enables pre-
diction of FDP. We have hypothesised that program robustness is
actually a property of program regions that are “guarded” from the
observer/oracle by high entropy loss regions. In future work we
intend to develop these ideas further and apply these to diverse
areas of software engineering.
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