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Micropolar continua as projective space of Skyrmions
Yongjo Lee

Department of Mathematics, University College London, London, UK

ABSTRACT
Micropolar continua are shown to be the generalisation of
nematic liquid crystals through perspectives of order
parameters, topological and geometrical considerations.
Micropolar continua and nematic liquid crystals are
recognised as antipodals of S3 and S2 in projective
geometry. We show that position-dependent rotational
axial fields in kinematic micropolar continua can be
considered as solutions of anisotropic Higgs fields,
characterised by integers N. We emphasise that the
identical integers N are topological invariants through
homotopy classifications based on defects of order
parameters and a finite energy requirement. Magnetic
monopoles and Skyrmions are investigated based on the
theories of defects of continua in Riemann–Cartan manifolds.
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1. Introduction

1.1. Background and motivation

If we can find a solution space for a given system, there might be a number of
solutions that can be transformed continuously around the most stable sol-
ution. If these comparable and equivalent solutions form a distinct set under
an internal symmetry, we might associate the set of solutions with a group
structure within the allowed finite energy of the system. This observation
shares many similarities in describing defects of a body that can undergo
smooth deformations but restores its original shape when the deformational
factors are removed.

Defects of a deformable body can be classified by a set of equivalent classes
when we consider a compatibility condition that is derivable from a simple
integrable equation to obtain the solution space. In turn, integers might be
assigned to those classifications of defects by group theoretical approaches.

The simplest example would be an assignment of an identity element {0} to
contain all configurations of classical elastic deformations. In this particular set
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of configuration, small fluctuations are allowed to retain the elasticity around
the stable solution of the system. Other than the classical elastic regime, we
can assign a class {1} to emphasise features that differ from those of the
classic elastic deformations. This kind of assignment prohibits solution
configurations of the class {1} to continuously transform into that of the class
{0} without violating the finite energy requirement.

Instead of assigning integers by hand, we would like to see under what sys-
tematic assignment of an infinite range of integers can allow us to investigate
the group classification of the large class of solution space into a discrete set
of configurations. We will take two different approaches to understand the
integer-valued assignment. One is based on the theory of defects in a given
order parameter space and another approach is originated from the boundary
conditions of field configurations. These integer-valued assignments will yield
the topologically invariant quantities through various physical models.

In describing the defects in differentiable manifolds, the continuum theory
contains deformational measures related to curvature and torsion. These
measures are caused by broken symmetries of rotations and translations. In
formulating micro or macroscopic rotations, a number of models are inves-
tigated by using a simple ansatz such as the global uniaxial field of the
rotations or small rotational angles, often in one-dimensional static case
due to the complicated nonlinear nature of the problem. In realistic inhomo-
geneous settings, one eventually includes axial fields and angular variables of
the rotation, depending on space and time in the given manifold, such as the
Riemann–Cartan manifold, especially if one is interested in torsion and cur-
vature at the same time.

We would like to investigate the consequences when we consider arbitrary
position-dependent axial fields of SO(3), and its implications to physical
systems that contain SO(3) as its symmetry (sub)group in relation to the assign-
ment of the integers when we classify the solution space.

This paper is organised as follows. In Section 1, we briefly introduce themicro-
scopic theory of continuum physics followed by the constructions of torsion and
curvature tensors in Riemann–Cartan manifolds among other measures of
defects. Topological and geometrical considerations of nematic liquid crystals
and a definition of an order parameter space in the context of homotopy
groups are given in Section 2. In Section 3, we consider links between integer-
valued invariants and systems with soliton solutions accompanied by construc-
tion of conserved currents with the homotopy classification. In Section 4, micro-
polar continua are interpreted in relation with Skyrmions using the measures of
defects introduced in Section 1. This relation turns out to be the general case of
the discussions in Section 2 using the projective geometry.

We use m, n, r for spacetime coordinates, i,j,k for space indices and a,b,c for
internal indices differ from the coordinate labels. We assume indices of vectors
are naturally raised and indices of derivatives are naturally lowered, and a
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metric tensor with its signature (+ 1, − 1, . . . , − 1) in n spatial dimensions
with one time component for tensors defined in (n+ 1)-dimensional differen-
tiable manifolds.

1.2. Micropolar theory

In the theory of classical elasticity, the motion of a body consisting of a bulk of
particles P can be written as a function of a position vector x = x(X, t) in a
spatial configuration dependent on the original position X written in a refer-
ence configuration and time t, in the usual rectangular Cartesian coordinate
system. A displacement vector u describes an evolution of a point particle at
P with a vector X, to a point pwith x. This can be written in a spatial description
of u(x, t) = x− X(x, t). And a derivative of u gives rise to a definition of a
deformation gradient tensor by

FkL = ∂xk
∂XL

, FkL = R l
k UlL (1)

where the lower case indices indicate the quantities in the spatial frame and
the upper cases are for the quantities in the reference frame. The second
expression for FkL in (1) is written in the form of the classical polar decompo-
sition with a rotation R and a symmetric positive-definite stretch U in three
dimensions.

A microcontinuum, pioneered by the Cosserat brothers [1], is a continu-
ous collection of deformable and stable (indestructible) materials points, i.e.
with nonzero determinants of FkL. The characteristic aspect of the theory
with a microstructure is that we assume the microelement to exhibit an
inner structure attached to vectors called directors, which span the internal
three-dimensional space. The most general elasticity theories with micro-
structures contain nine additional degrees of freedom originated from the
internal deformations such as microrotations, microcompressions and micro-
shears. Comprehensive accounts of microcontinuum theories and its develop-
ments can be found in [2–4].

For the inner structure, we assign a new set of directors JK in the reference
configuration and jk in the spatial configuration to describe the microdeforma-
tions. So, in addition to the classical elasticity, the transformation of directors
JK � jk is governed by a rank-two tensor x [ GL(3; R), defined by

jk = xkK(XK , t)JK. (2)

If we restrict the general microdeformations to be rigid, one deals with a much-
simplified model with three degrees of freedom of the microrotation, in
addition to the classical translational deformation field. The resulting model
is often referred to as the Cosserat elasticity or the micropolar theory, and
xkK becomes the element of SO(3), see Figure 1.
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A solution for the dynamical case for the micropolar elasticity is obtained in
[5] from the most general total energy functional

Vtotal = Velastic(F, R)+ Vcurvature(R)+ Vinteraction(F, R)+ Vcoupling(F, R). (3)

Each individual energy functional is written in terms of the macroscopic defor-
mation gradient tensor F and the microrotation R = x which can be con-
veniently represented by a rotational angle Θ about a normalised axis n3,

Rij = cosQ dij + (1− cosQ)n3in3j − eijkn3k sinQ, (4)

where eijk is the totally antisymmetric Levi-Civita symbol in three dimensions.
The representation (4) can be easily translated to the well-known Rodrigues’
formula. We will use the overline to denote the microdeformational quantities
henceforth, whenever we need to distinguish them.

Equations of motion for the system are obtained from the variational prin-
ciple of the energy functionals (3) with respect to F and R independently after
including kinetic terms. A set of simple ansatz to the system is applied in

Figure 1. The transformation of the inner structure of the microelement is illustrated with cen-
troids positioned at P and p, in the reference configuration and the spatial configuration,
respectively. This shows how the directors JK in the original body in the region R0 undergoes
the microdeformation under xkK to become jk while the original body experiences displace-
ment to become the deformed configuration in the region R under the macroscopic displace-
ment u.
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obtaining analytic solutions, such as (i) material points can only experience
microrotations about a fixed axis, (ii) macroscopic displacements occur along
the same fixed axis of the microrotation, and (iii) macroscopic elastic displace-
ments and microrotations are both governed by longitudinal deformational
waves that propagate with the same wave speed.

Under these assumptions, a set of coupled nonlinear partial differential
equations is obtained and further reduced to the equation of motion for the
microrotation in a form of the so-called double sine-Gordon equation [6]

∂ttQ− ∂x̂x̂Q+m2 sinQ+ b
2
sin 2Q = 0, (5)

where m and b are real constant parameters, determined by a set of elastic
moduli in the individual energy functionals of (3), and x̂ is a rescaled x-axis.
From this, a microrotational solution Q(x, t) is obtained that propagates
along the x-axis with speed v

Q(x, t) = 4 arctan e+k(x−vt)+d, (6)

for some constant δ and a parameter k depend on the set of elastic moduli of
Vtotal. In the process of solving (5), boundary conditions are proposed, based
on elasticity considerations for the displacement propagation. These are con-
verted to the boundary conditions for the microrotation propagation,

Q(+1, t) � 0 and ∂mQ(+1, t) � 0. (7)

These elastic boundary conditions emphasise that once the deformational dis-
turbances have passed, the configuration will return to the original one and a
point of a deformable body does not experience any deformation when it is
far away from the point where the deformation currently occurs.

1.3. Torsion in Riemann–Cartan manifolds

In continuum physics, curvature and torsion are based on the sources of two
distinct defects, called disclination and dislocation, respectively [7–10]. In
developing a theory for the generalised local symmetry under the Poincaré
group in the curved spacetime, the needs for the non-Riemann manifold
arise naturally, which can contain Cartan’s torsion [11]. Essentially the
notion of torsion has become evident in completing the theory with the spin-
ning particles coupled to the torsion [12–16].

Inspired from similarities and its applicabilities in describing the defects in
Riemann–Cartan manifolds, links between the theories of continuum physics
and the Einstein–Cartan theory were investigated in [17–19]. Recent develop-
ments can be found in [20–23], including compatibility conditions based on the
non-simply connected manifolds and geometrical approaches to the defect
theory based on the non-metricity. Since the Riemann curvature tensor
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satisfies various geometrical identities such as Bianchi’s identities, it is natural
to expect that these identities also play a role in continuum mechanics if one
considers the possibility that the Riemann curvature tensor can contain both
measures of pure curvature originated from the metric tensor, and torsion
which might arise independently of the metric field.

Now, the metric tensor emerges as a secondary quantity defined in terms of
tetrad fields

gmn = eame
b
ndab, (8)

where a,b,c are tangent space indices. This tells us that the metric tensor gmn is
obtained from the flat Euclidean metric dab by a set of deformations, governed
by an element eam(x) [ GL(N; R) at each point x in the given manifold. A dual
field to eam is defined by Ema satisfying the relations eamE

n
a = dnm and eanE

n
b = dab.

A vanishing metricity ∇lgmn = 0 is imposed to give rise to the definition of
the general affine connection Gl

mn and the spin connection v a
m b, as a conse-

quence of a covariantly vanishing tetrad ∇mean = 0,

Gl
mn = Elav

a
m be

b
n + ela∂me

a
n. (9)

This general affine connection is not assumed to be symmetric in the lower
indices.

Since any deformation can be regarded as a combination of rotation, shear
and dilatation, in the language of the (micro)continuum theory, we can apply
the polar decomposition to the tetrad fields similar to that of (1),

eam = Ra
bU

b
m, Ema = R b

a Um
b (10)

where Ra
b is a rotation and Ub

m is a symmetric positive-definite tensor. Under
these decompositions, one finds that the metric tensor (8) is blind to the
rotational field R, but only dependents on the stretch U.

The Riemann curvature tensor is defined in terms of the general affine con-
nection

Rr
smn = ∂mG

r
ns − ∂nG

r
ms + G

r
mlG

l
ns − G

r
nlG

l
ms. (11)

And a torsion tensor is defined by

Tl
mn = Gl

mn − Gl
nm. (12)

We define a contortion tensor Kr
ns by a difference between the general affine

connection and a metric compatible connection G
◦
r
ns, also known as the Chris-

toffel symbol

Gr
ns = G

◦
r
ns + Kr

ns. (13)

The contortion satisfies the antisymmetric property Kl
mn = −K l

nm . From this,
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a dislocation density tensor K is defined by [24–26],

Kij = e jklK
kl
i . (14)

The vanishing Riemann curvature (11) and its related measures imply the
theory is in the regime of elasticity. And a set of partial differential equations
may lead to an integrability condition, which is sometimes called the compat-
ibility condition. In [27], a universal expression of the compatibility condition
is studied under the setting of the vanishing curvature tensor in three dimen-
sions. This yields two distinct classes of compatibility conditions, one for the
vanishing torsion and another for the non-vanishing torsion. The former is
well known by Vallée’s classical result [28]. This result states that the vanishing
Riemann curvature tensor in the deformed body yields the compatibility con-
ditions equivalent to the Saint-Venant compatibility conditions [29–34]

CurlL+ Cof L = 0 (15)

where Λ is a 3× 3 matrix defined by the stretches U and its derivatives. We
defined (CurlU)ij = e jmn∂mUin and (Cof U)ij = 1

2 eimse jntUmnUst.
The case for the vanishing Riemann tensor but nonzero torsion is known by

Nye’s result [35], with an additional condition Uc
m = dcm in (10)

CurlG+ Cof G = 0, (16)

where Nye’s tensor Γ is defined in terms of the contortion tensor,

Gij = − 1
2
eiklK

k l
j . (17)

Two compatibility conditions (15) and (16) are shown to be derivable from a
universal expression written by the Einstein tensor Gia in three dimensions

G = CurlV+ Cof V, (18)

where the quantity Vai is defined by a contraction of the spin connection
Vai = − 1

2 eabcv
bc
i . This derivation is based on the fact that the vanishing

Riemann curvature tensor implies the vanishing Einstein tensor in three
dimensions.

There are two important consequences we would like to mention here, under
the setting Ub

m = dbm, which is equivalent to the trivial metric tensor (8), and the
nonzero torsion. The Riemann curvature tensor (11) can be written entirely in
terms of contortions using the decomposition (13),

Rr
smn = ∂mK

r
ns − ∂nK

r
ms + Kr

mlK
l
ns − Kr

nlK
l
ms, (19)

and, due to the modification in the tetrad eam = Ra
bd

b
m, the dislocation density

tensor (14) can be written by the product of (micro)rotation R and its derivative

K = RTCurlR. (20)
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It is well-known that the existence of dislocations, or equivalently torsion
tensors, can be verified by following a small initially closed path in crystal
lattice structures to see if the path is broken. In a similar manner, the
nonzero curvature can be confirmed from angular deviations in a set of initially
parallely aligned vectors. For this reason, in examining the nonzero torsion in
the defects, a set of large field configurations can be classified as the equivalent
classes by an assignment between a unit sphere S1 and a space where the micro-
rotations are assumed to be non-trivial. Hence, it is the first homotopy group,
also called the fundamental group, for line defects in three dimensions treating
SO(3) as its order parameter,

p1(SO(3)) � Z2. (21)

This suggests that we can have two distinct classifications for the compatibility
conditions under the vanishing Riemann curvature tensor. One of them is for
the trivial class, the classical elastic regime with zero torsion. So that all defor-
mations belong to the identical compatible condition (15), namely, a class {0}.
In this class, all configurations can be continuously deformed to the trivial one
under the general diffeomorphism. Another classification is the microdeforma-
tional description for which we can assign a class {1} with the nonzero torsion.
In this class, configurations cannot continuously deform into those in the class
{0}. The second classification {1} will be the configurations satisfying Nye’s
compatibility condition (16).

We consider a systematic homotopy classification of defects using nematic
liquid crystals in some simple cases next.

2. Nematic liquid crystals

2.1. Homotopy of order parameters

In a sequential representation of a fibre F, a total space E and its projected base
space M of F a E � M, we can express real and complex projective spaces
using the Hopf fibrations. We write some of the important fibrations for
n-dimensional spheres Sn as follows

S0 a Sn � RPn, (22a)

S1 a S2n+1 � CPn. (22b)

Particular interests arise when we consider the homotopy group relation on
these fibrations. For example, suppose that the given manifoldM is simply con-
nected. Then any simple closed-loop contained in the given manifold can be
continuously deformed into another loop and eventually can be deformed to
a point. Then, by definition of the fundamental group, we will have a trivial
homotopy p1(M) � {0}. Since all Sn, n ≥ 2 are simply connected, while RPn
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for n ≥ 2 are not, we have p1(Sn) � {0} for n ≥ 2. Moreover, by the Lifting
Properties of the fundamental group [36] between the non-simply connected
space and its universal covering space, there is an isomorphism

pn(S
n) � pn(RP

n) � Z, n ≥ 2. (23)

This will be useful when one considers the homotopy of an order parameter
space M � RPn. Specifically, an order parameter space M can be regarded as
an image of a function C(x) for x [ E,

C : E −� M. (24)

As the system undergoes some phase transitions, either by an external factor or
spontaneously, the symmetry G inMmay be altered to be its subgroupH. Con-
sequently, there may be regions where the degrees of the order are not uniquely
defined. These regions are characterised by a modified quotient group G/H.
These regions are called the defects and the names of defect with respective
dimension d are (i) monopole: a point-like defect in d = 0, (ii) vortex: a
string-like defect in d = 1, (iii) domain wall: a sheet-like defect in d = 2. These
defects can be understood in connection with topological invariant quantities
and can be found in diverse physical systems with order parameters describing
the defects of distinct nature [10, 37–42]. In [43] the connection between the
phase transitions that originated from the spontaneous symmetry breaking
and those based on the topological nature is studied. These topological invar-
iants are the classification of the defects for a given dimension belonging to
one of the equivalence classes given by the homotopy group of the order par-
ameter space M. This means that the homotopy classification determines the
allowed range of configurations to be deformed continuously within the
given equivalence class.

In practice, after we identify the order parameter spaceM of (24), in order to
determine the homotopy groups, we will proceed according to the following
steps.

(1) We identify the dimension m of the manifold M where the medium is
defined. This can be different from the dimension of physical space
where the medium is placed.

(2) We take account of the dimensionality d of the physically possible defect.
(3) We identify the n-sphere Sn which surrounds the region of defects.

In general [37], the dimension of Sn is restricted by the d-dimensional defect
in an m-dimensional medium and is classified by the homotopy group

pn(M), n = m− d− 1. (25)

This expression can be seen as the defects with dimension d are being measured
by a probe of a dimension n of Sn separated by a line. All of them are contained
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in the manifold of interest with a dimensionm. We can assign the degrees of the
defect from the measure with a ruler Sn a point in the manifold M. This will
show the continuous deformation from one description of the defect to other
in the form of equivalent classes, hence the homotopy group representation.

A particularly intuitive case is that when there is an isomorphism between
the order parameterM andm-sphere Sm. This allows us to investigate the poss-
ible class of defects by relatively simple homotopic considerations of counting
the number of windings of Snphy, representing the physical space, over S

m
int repre-

senting the space where the order parameter is defined with a possible internal
symmetry. The homotopy plays the role of assigning these two manifolds,

Snphy −� Smint. (26)

This will give us an explicit expression pn(Sm) to obtain a clue whether the
classification of defects are trivial {0}, or something else. A less intuitive case
is when M � RPn but the homotopy can be found by using the relations
(23). It is widely known that the real projective space RP2 can be viewed as a
manifold for nematic liquid crystals [10, 39, 42, 44, 45]. We would like to see
how the notion of directors can be used in topological and geometrical perspec-
tives when we are looking for the classification of defects using the Hopf
fibration (22a).

2.2. Nematic liquid crystals as projective space of S2

Given the order parameter space M � Sm, this space can be further reduced to
its submanifold if there exists a set of equivalent relations on the sphere. For
example, if we can identify two points {n, − n} as antipodals on the sphere
S2, with a normalisation condition n · n = 1, then we can write the quotient
space using (22a) for n = 2

RP2 � S2/{antipodal}. (27)

The right-hand side of (27) is topologically equivalent to a hemisphere, and we
can flatten it to obtain a disk and its boundary. Hence, by following a schematic
process [36, 46] of removing the redundancy on S2 we can write RP2 as a union
of a disk D2 and its boundary ∂D2. In general, we can regard the real projective
space RPn as an n-dimensional disk Dn with the ideal points on the boundary
∂Dn � Sn−1, so that we can write

RPn � Dn < ∂Dn � Dn < Sn−1. (28)

There is an additional important feature in the projective space. The projective
space can be non-orientable, which is equivalent to say that it may contain a
Möbius band. This is because after we identify the antipodals on the disk, we
can cut the cylindrical portion of D2 < ∂D2 half, and then half twist to match
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the antipodals to form a Möbius band. This gives us the most compact topolo-
gical representation of the real projective space RP2, by a union of a Möbius
band M2 and a disk D2

RP2 � M2 < D2. (29)

In the case of nematic liquid crystals, we can take the order parameter as the
measure of the degree of alignment among the molecules. We take the director
of nematic liquid crystals by a vector nN, representing the average direction of
the rigid rod-like molecular structure. This suggests the rotational symmetry is
broken while the translational symmetry still holds through the symmetry
reduction process from the completely random state. Although the molecule
might possess an apparently distinguishable head and tail feature, we do not
distinguish the directors, i.e. if the molecules are aligned in one direction,
then it possesses a discrete symmetry of nN � −nN. We assume that this
vector satisfies the normalisation nN · nN = 1.

We see that the identification of nN = −nN is nothing but the identification
of the antipodals on S2 , R3 with outward-directed normalised vectors are
attached to it. Further, if we assign a point of the nematic liquid crystals by a
map C : S2 � M of (24), the order parameter space of the nematic liquid crys-
tals is defined in the projective plane RP2. For the director fields depend on the
position, this emphasises the difference between the physical space S2 bounded
by the topological character and the order parameter space RP2 due to the
identification nN = −nN. Therefore, using (27), we can write an expression
of the homotopy group

pn(S
2/{antipodal}) � pn(RP

2). (30)

It is worth noting that in [47], a similar observation was made, but from the
lattice space of grains, that the discrete symmetry can induce a non-orientable
structure.

Now, we follow the prescribed steps in determining the homotopy group.
For the line defects, we have n = 1 in (25), and this gives the first homotopy
group we can work with,

p1(RP
2) � Z2 = {0, 1}. (31)

This implies that there exist two distinct classifications of line defects in nematic
liquid crystals. The class {0} is that one can be continuously deformed into a
uniform configuration. The class {1} represents the non-trivial defect, a stable
vortex, which does not decay into the state of {0} class. For the point-like
defect, the dimensionality of Sn becomes n = 2, and the corresponding hom-
otopy group is now

p2(RP
2) � Z. (32)
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This indicates that there are point-like defects in nematic liquid crystals
classified by an infinite range of integers.

The idea of linking integers with the homotopy group is a central ingredient
to represent the topological invariants in our discussion. The notion of the
topological invariance becomes much clearer when we consider boundary con-
ditions in nonlinear O(n) models with field constraints n · n = 1 for n [ Rn.
These boundary conditions are restricted by the finite energy requirement
leading to the integer-valued conserved charges.

3. Topological invariants and conserved currents

3.1. Conserved currents, winding numbers and homotopy

We would like to define conserved currents Jm and its associated total chargesQ
in general d = n+1 dimensions. The form of the current is different from the
conventionally derived quantities, such as Noether’s current, from the continu-
ous symmetry in the Lagrangian of the system leading to the conservation of
energy and momentum. The associated topologically invariant total charge Q
can be a conserved mass, an electric charge, a magnetic charge or a quantum
number depending on the physical models. We investigate the geometrical
origin of the intuitive and apprehensible notion of the integer-valued charge
Q. We are particularly interested in showing the relation

Q = N, N [ Z (33)

leading to various consequences and interpretations. The forms of the currents
Jm might appear ad hoc at first sight but its construction will be justified later
within the finite energy requirement.

Let us begin with a normalised (1+ 1)-dimensional configuration nv

nv = cos (Nf(x, t)), sin (Nf(x, t))
( )

. (34)

The current Jm is defined by

Jm = 1
2p

emneabna∂nnb, (35)

where nv = na for a,b = 1,2 and emn are totally antisymmetric Levi-Civita symbols
in two dimensions. We can see that the current is conserved ∂mJm = 0 by its con-
struction. The associated total charge Q is defined by an integration of the time
component of the current over all space, and can be evaluated by

Q =
∫
J0 dx = N

2p
f(+1, t)− f(−1, t)[ ]. (36)

We note that from the conservation equation, the charge Qmust be a time-inde-
pendent quantity, hence it possesses an intrinsic topological property.
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For the finite energy requirement, the total charge must be localised. This
means if the amplitude of f(+1, t) increases (or decreases) indefinitely or
is not contained in a small oscillation, we cannot expect to have the finite-
valued total charge. This will eventually violate the finite energy requirement
for the given system, hence appropriate boundary conditions on f(x, t) must
be imposed in order to obtain physically meaningful solutions.

Now we impose the boundary conditions on f(x, t) in such a way that either
f(+1, t) = f(−1, t) or f(+1, t) = f(−1, t). For the former, the total
charge becomes zero which gives the configurations belong to the class {0}.
For the latter, if we further specify the condition to be
f(+1, t)− f(−1, t) = 2p, then we obtain Q =N, leading to the integer-
valued infinite classes. We note that this analysis agrees with the boundary con-
ditions we imposed in the case of the deformational wave propagation in (6)
and the well-known sine-Gordon system. In both cases, since we have the loca-
lised soliton solutions, it is natural to expect to have the integer-valued con-
served charge while the distinct asymptotic values might impose different
interpretation when we consider the elastic deformation.

The identical integer-valued result can be obtained in a static two-dimen-
sional case from the purely geometric interpretation. That is, the integer N is
the integration of the total changes in the angular variable f (f) for
f = f(x, y) along the simple closed contour C divided by 2p, which is the
genuine and intuitive notion of the counting the winding number

N = 1
2p

∮
C
df . (37)

The homotopy in this case is a map from S1 to S1, hence identical to the (1+ 1)
dimensional case, the classification is

p1(S
1) � Z. (38)

Specifically, we can define the two-dimensional static configuration for the nor-
malised vortex field nv identical to (34) but now f = arctan (y/x). Then we can
evaluate the identical form of the current (35), with i,j are spatial indices,

Ji = 1
2p

eijeabna∂jnb = N
2p

n̂2
r

(39)

where r2 = x2 + y2 and n̂2 = (x, y)/r. From this expression, we note that the
current is not defined at the origin, in agreement with the definition of the
vortex field. And its divergence must be proportional to the two-dimensional
Dirac delta function, to write

∂iJ
i = N

2p
2p d2(r). (40)
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Therefore, we will obtain the integer N if we integrate (40),

N =
∫
d2x ∂iJ

i. (41)

Hence, regardless of time-dependent or static configurations, we will obtain the
conserved total charge Q =N under the identical form of the current Jm for a
given dimensionality.

As the natural extension to (2+ 1) dimensions, retaining both the normal-
isation condition and the encoded integer N, the simplest form of the field
configuration can be written with an additional angular variable [48, 49] to
the field nv,

n3 = sin u cosNf, sin u sinNf, cos u
( )

, (42)

where θ is a polar angle and f is an azimuthal angle. In particular, the static
configuration with N = 1 in (42) is called the hedgehog field nh, introduced
by Polyakov [50].

Next, we would like to consider the mechanism that lies beneath in evaluat-
ing the integrations in the arbitrary dimensions to assure the integer-valued Q
in accordance with the homotopy classification. In d = (n+ 1) dimensions, the
field configuration can be defined by

nd = ( sinvd(r)nd−1, cosvd(r)), d ≥ 3 (43)

where r = (x1, . . . , xd), r = |r| and n2 = nv. We are not restricted to the phys-
ical space in defining the field configuration (43) in the Cartesian coordinate
system, but it also can be used in defining the configuration in some abstract
internal manifolds that share the same topological structure with Rd.

The field configuration (43) satisfies nd · nd = 1 and each angular function
vd(r) imposes boundary conditions. Specifically, all field configurations must
approach to a fixed configuration as r � 1. This fixed configuration is some-
times called a vacuum solution that gives a zero-energy solution. Therefore, the
physical solution space can be compactified to the sphere Snphy. Consequently,
the mapping between the field configuration on the sphere Snint, due to the con-
straint on the field nd, and the sphere Snphy gives precisely the homotopy classifi-
cations

pn(S
n) � Z. (44)

For the general d-dimensional case, we can write the conserved current by

Jm = 1

n!
�
dVd

emm1···mneaa1···anna∂m1
na1 · · · ∂mn

nan , (45)

where the factor n! comes from an obvious number of permutations. The factor�
dVd is the area of a unit n-sphere Sn embedded in the d dimensions. This will
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give us the topological invariant charge Q by the integration

Q =
∫
ddx J0. (46)

To see this, for the Euclidean length element x, defined by the strictly positive-
definite metric tensor, the arbitrary volume element ddx in (46) can be con-
verted to

ddx = dVd dx xd−1. (47)

Hence the factor
�
dVd in (45) will be cancelled out exactly in the integration. In

the static d-dimensional Euclidean space, the conserved current is the identical
form of (45), but with the spatial coordinates. The current will take a form of

Ji = N�
dVd

r̂
rd−1

, (48)

which yields a d-dimensional Dirac delta function

∂iJ
i = N�

dVd

∫
dVd

( )
dd(r). (49)

The form of the integration for the charge Q is simply, by using the divergence
theorem,

Q =
∫
ddx ∂iJ

i =
∫
dSiJ

i. (50)

The factor dSi on the right-hand side of (50) is an area of a sphere Sd−1 in the
direction of Ji. Hence (50) gives Q =N identically. In the case of the static
configuration, we can obtain the integer N as the winding number from the
geometrical consideration on the field configuration nd in which the integer
N is embedded naturally. In the case of the time-dependent field configuration,
the integer N can be obtained from the integration (46) if we impose appropri-
ate boundary conditions for the angular variables, based on the finite energy
requirement.

Nonetheless, the field configuration (43) is not unique for the purpose of
obtaining the topological invariants Q =N but it significantly simplifies the
task of evaluating the corresponding currents and charges. Other forms of
the current can be found in [51, 52] based on the lower bound for the finite-
energy consideration.

3.2. Monopoles

The three-dimensional case in our discussion deserves special attention when
one considers monopoles. We would like to reinterpret some of features of
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the magnetic monopole in connection with the theory of defects we discussed
so far. Our approach will highlight advantages in using the field configuration
n3 of (42) in expressing the associated charge Q in its integration of the current
Ji and in visualising the anisotropic field configuration.

In searching for the system that may contain soliton solutions in the hope of
the integer-valued charge Q, one finds that the existence of soliton solution is
severely restricted by the dimension of the system and its constituents [53].
For example, the Yang–Mills theory alone cannot impose the soliton solution
in (3+ 1) dimensions. But if one insists to have a non-trivial topological invar-
iant, one needs to consider a coupled system of gauge vector fields and scalar
fields.

The appearance of the gauge field Aa
m can be understood from at least two

scenarios in the current occasion. First one follows from the requirement of
the locally invariant symmetry group with position-dependent parameters in
the group generator, promoted from the global symmetry. This leads to the
minimal prescription of replacing the ordinary differential derivatives by the
covariant derivatives. The second case is explicitly shown by Polyakov [50] in
the process of removing the possible divergence of the solution ∂mf

a in accord-
ance with the finite-energy condition. These cases lead to the identical replace-
ment of

∂mf
a −� Dmf

a = ∂mf
a + geabcAb

mf
c (51)

in the Lagrangian for the coupled system of the Higgs fields fa and gauge vector
fields Aa

m in (3+ 1) dimensions, given by

L = 1
2
Dmf

aDmfa − 1
4
Ga
mnG

amn − l

4
(fafa − F2)2 (52)

where Ga
mn = ∂mAa

n − ∂nAa
m + geabcAb

mA
c
n and g, l . 0, F are some real constant

parameters. The field configurations are given by

fa = n3aF(r) and Aa
m = emabn3bW(r). (53)

where n3 = n3a are (42), and the arbitrary radial functions F(r) andW(r) satisfy
the boundary conditions as r � 1,

F(r) −� F and W(r) −� 1
gr
. (54)

We note that the Higgs field is in the identical form with axial fields
Q(x, t) = n3Q in the exponential representation of the rotation,
exp [iQ · L] [ SO(3), where L is the generator of the rotational group.

The Lagrangian (52) is invariant under the local SU(2) group and we might
expect this contains the electromagnetic field quantities, such as an Abelian
Fmn = ∂mAn − ∂nAm under U(1). Since we are dealing with the (3+ 1)
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dimensional case with a,b,c = 1,2,3, we need to consider the following modified
form of the currents [54], differs from (45)

jm = 1
8p

emnrseabc∂nna∂rnb∂snc (55)

where we put the fields na by fa/|F(r)| = n3. Now the associated total charge
can be obtained from the integration over the topological density j0,

Q = 1
8p

∫
d3x eijkeabc∂ina∂jnb∂knc

= 1
8p

∫
d3x eijkeabc∂i(na∂jnb∂knc),

(56)

in which we used e0nnr = eijk. The form of the integration in the last line of (56)
is exactly the integration for the derivative of current Ji in the three-dimen-
sional static case of (48). Using the three-dimensional Dirac delta function of
(49), it is straightforward to see that Q =N.

Because it manifests a static solution now, it signals that we are allowed to fix
the gauge Aa

0(x) = 0 for all x. This further leads us to obtain the condition for
the finite energy requirement in the Hamiltonian. From this observation, we
obtain the trivial vacuum solution that gives a zero-energy solution
Dif

a
vac = 0 and the non-trivial solution that minimises the energy satisfying

the boundary conditions (54).
The Lagrangian (52) differs from the energy functions of Cosserat elasticity

or the nonlinear O(n) models. It includes the gauge field so that Dmf
a � 0

imposes a different meaning from that of ∂mf
a � 0 to minimise the energy

functional as r � 1. That is, provided the condition Dif
a � 0 is satisfied,

we might have nonzero component of ∂mf
a if there exists a cancelling contri-

bution from the gauge field Aa
u. In other words, fa will tend to the vacuum sol-

ution fa
vac pointing different directions in the internal space. Hence, the

physical solution space can be compactified to be S2phy and by the normalisation,
the internal space is S2int. Therefore, the corresponding homotopy is precisely
p2(S2) � Z of (44) for n = 2. This is indeed the homotopy classification for
the point-like defect, the monopole, according to (25).

For the sake of completeness, we show this is the magnetic monopole. Max-
well’s equations in the Gaussian unit are given by

∂mF
mn = 4pkn (57)

where km is the electric current. The dual field is defined by F̃mn ; 1
2 e

mnrsFrs
which satisfies ∂mF̃mn = 0. This homogeneous conservation equation of the
dual field is the Gauss’s law stating that the magnetic flux over the closed
surface must vanish.
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Following ’t Hooft’s gauge-invariant definition [55] for the generalised non-
Abelian field tensor Fmn, we write

Fmn = naG
a
mn −

1
g
eabcnaDmnbDnnc. (58)

Under the configuration (58), unlike conventional Maxwell’s equations, the
derivative of the dual tensor F̃mn ; 1

2 e
mnrsF rs does not vanish but yields the

current (55)

∂nF̃mn = 1
2g

emnrseabc∂nna∂rnb∂snc = 4p
g
jm. (59)

Comparing with (57), we conclude that the magnetic current is jm/g. Moreover,
the total magnetic monopole charge m can be obtained by the following inte-
gration,

m = 1
g

∫
d3x j0 = 1

g

∫
d3x ∂iJ

i = 1
g
N. (60)

Therefore, the non-vanishing current for the monopole can be obtained and the
charge is Q =N in the unit of 1/g. ’t Hooft used N = 1 configuration with the
hedgehog field nh, and its corresponding solutions under l � 0 are known
as the Prasad-Sommerfield solution [56].

Now, let us consider the vacuum solution corresponding to the {0} classifi-
cation under r � 1. This must correspond to the field configuration with Q =
N = 0. We use (42) explicitly with N = 0 in n3, rather than fixing the configur-
ation in an arbitrary direction in finding the fa

vac configuration. This gives,

fa
vac = F(1, 0, 0). (61)

In the region where fa
vac is defined, the generalised field Fmn becomes the usual

description for the Abelian electromagnetism under U(1),
Fmn = ∂mA1

n − ∂nA1
m. Since Q =N = 0, no monopole can exist in the region

where fa
vac is defined. Moreover, if a field configuration fa belongs to the {0}

classification, then it must be of the form fa = fa
vac + fa

f for some small fluctu-
ation fa

f so that fa can continuously deform into fa
vac. This is the transform-

ation that moves the field configuration fa towards the region in which
Maxwell’s Equation (57) are well defined, see Figure 2.

In an N = 1 configuration, the field fa is pointing radially outward according
to the hedgehog configuration. The monopole, belongs to the {1} classification,
cannot decay into the vacuum under the finite-energy condition. This again
confirms that the magnetic monopoles arise in the static case in which we
fixed the gauge Aa

0 = 0 with F0i = 0 hence no electric fields are defined in the
Q = 0 sector.

The field fa either can point some fixed direction or can be continuously
deformed into the nearby configuration, without violating the finite energy
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within the given Q =N sector in the range of a small fluctuation. In this respect,
this classification is comparable to the sine-Gordon system and the microrota-
tional deformation (6) in which the different Q sectors correspond to the
different values that the field could take asymptotically. In Figure 2, we
compare the field configurations for Q =−1,0,1,2 cases, arise from the vortex
field nv of (34) embedded in n3 of (42). We notice that when N = 1, the
field configuration becomes an anisotropic distribution of n3. In Ref. [48], it
is shown that the hedgehog configuration nh is the only isotropic configuration
for the magnetic monopole that complies the finite energy requirement.

Although the magnetic monopole we considered here includes the gauge
fields to yield the covariant derivatives in the asymptotic behaviours, the con-
struction of the conserved currents is not affected by the presence of gauge
fields. This is because the currents are not originated from the Lagrangian
but from the intrinsic nature.

4. Micropolar continua and Skyrme’s model

Wewould like to focus on the field configuration n itself constituting the intrin-
sically conserved current Jm. This will include Skyrme’s model as the spinor
system in which the relation between SU(2) and SO(3) signifies its role in
various forms of the representation. It is hinted in [57] that the order parameter
for the micropolar continua can be taken as SO(3) or RP3, and the elements of
R [ SO(3) are mentioned briefly in [58] as the antipodals on S3. In this section,
we show that the topological and geometrical generalisation of nematic liquid
crystals are micropolar continua. This approach is different from that of [59].

Figure 2. Two-dimensional vortex field configurations with various integers N using (34) and its
corresponding n3 fields on S2 of (42) are shown where n3(N = 1) is essentially the isotropic dis-
tribution of the hedgehog configuration nh.
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4.1. Rotations of SO(3) and SU(2)

An element U of a unitary rotational group SU(2) can be represented by a
complex 2× 2 matrix, defined by

U = n4 + in3 in1 + n2
in1 − n2 n4 − in3

( )
= n4 · I + i(n · s). (62)

where s = (s1, s2, s3) are Pauli matrices, I is a 2× 2 identity matrix and the
real parameters n4 = (n1, n2, n3, n4) can be defined according to (43),

n4 = sinv(r)n3, cosv(r)( ). (63)

Now, the normalisation constraint n4 · n4 = 1 can be justified by the unitary
condition of U†U = I, which also states that n4 is defined on S3. Using the
properties of Pauli matrices and n4 of (63), the representation (62) can be trans-
lated into

U = exp iv(r)(n3 · s)[ ] = cosv(r) · I + i(n3 · s) sinv(r). (64)

An explicit relation between R [ SO(3) and U [ SU(2) can be explained in
several ways, but we take the correspondence used by Skyrme [60],

Rij = 1
2
tr siU

†sjU
( )

(65)

where i,j = 1,2,3. A straightforward calculation of (65) by inserting the matrix
elements of U of (62) gives another representation of Rij in terms of (ni, n4),

Rij = 2ninj − 2eijknkn4 + dij(2n
2
4 − 1). (66)

Moreover, by seting v(r) = Q/2 of (63) and substituting into (66), we will
recover the previous representation (4).

4.2. Spinor structure and 2π rotation

A system with spinors is characterised by its acquisition of an additional minus
sign to its original state after a 2p rotational transition and returning to its
initial state after a full 4p rotation. This peculiar character of spinors has
been observed in many physical systems [61–63], and it is particularly well-
known in particle physics [64–67] that the spin-1/2 particle takes the 4p
rotational transition to return to its original state.

Now, since the correspondence between SU(2) and SO(3) is given by (65)
where each of these are transformations defined on the respective space S3

and S2, there must exist an explicit relation between S3 and S2. Such a relation
can be understood by the Hopf fibration. In particular, the fibration
S1 a S3 � S2 gives a unique identification CP1 � S2 by the fibration (22b).
For n = 1 case, we have an isomorphism in terms of complex projective space
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CP1 � S3/S1 � S2. To see this relation more closely, we define a complex
doublet z [ C

2 which lives on S3. The doublet can be obtained from a state
10, for example, acted by U [ SU(2) of (62)

z = U
1
0

( )
= cosv(r) + i cos u sinv(r)

ieiNf sin u sinv(r)
( )

, (67)

where we used (63) for U as a particular example of such a coordinate represen-
tation of CP1. We see that the normalisation condition n4 · n4 = 1 is translated
to the condition z†z = 1. Hence, we can interpret z as the wavefunction of spin-
1/2 particle field invariant under the U(1) phase transformation z � eiaz, in
addition to the originally imposed symmetry SU(2). So, we can recognise the
field configuration as the complex projective space CP1, under the equivalence
relation z � zz for z [ C and |z| = 1, as expected. In the case of the real pro-
jective space, we take the fibration (22a) for n = 3. So that the corresponding
quotient space is RP3 � S3/Z2, in which we recognise Z2 the antipodals
{n, − n} on S3. Some non-trivial homotopy groups from the fibrations of
real and complex projective spaces are

p2(CP
1) � p2(S

3/S1) � p2(S
2) � Z, (68a)

p1(RP
3) � p1(S

3/S0) � Z2. (68b)

We note that (68b) is the homotopy we considered in (21) and we see the iso-
morphism

SO(3) � RP3 � S3/Z2. (69)

Identifying antipodals with fibrations (22) can be regarded as the spontaneous
symmetry breaking, in some cases of phase transitions that we discussed in
Section 2.1. The modified symmetry in the order parameter space G � G/H
will induce a corresponding homotopy group relation pn(G) � pn(G/H). If
G is simply-connected then we can work with much-simplified homotopy [68]

p2(G/H) � p1(H). (70)

For example, if the original symmetry of the system is G = SU(2) and the
reduced symmetry is H = U(1) or H = SO(3) so that the symmetries of the
order parameter space of defects are modified to G/H, then we have

p2(SU(2)/U(1)) � p1(U(1)) � Z, (71a)

p2(SU(2)/SO(3)) � p1(SO(3)) � Z2. (71b)

In view of the changes in the symmetry of the system SU(2) � SU(2)/U(1), the
relation (71a) is the homotopy for the region where the magnetic monopole is
defined (the nonzero Q sector). And the second relation (71b) is the homotopy
(21). This observation suggests that the compatibility conditions we mentioned
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in Section 1 might be originated from a larger simply-connected group struc-
ture that contains SO(3) as its subgroup, the spinor structure.

Now, the relation between S3 and S2 can be understood in terms of the
asymptotic limit r � 1, especially when we consider the vacuum solutions.
For this purpose, the Hopf map H : S3 � S2 is particularly useful, which gives
an explicit expression for the transformations from the complex doublets
z [ S3 into the anisotropic rotational axial fields n3 [ S2, defined by

H(z) −� z†sz (72)

where s are the Pauli matrices. One such coordinate representation of CP1 is
given by an explicit use of (67). Next, we would like to consider the 3-sphere
S3 , R4(� C

2) and its projection according to the fibration (22a) in explaining
the nature of the boundary conditions for vacuum configuration. We consider a
map that induces an element U [ SU(2) from a point r [ R3 where
r = (x, y, z) is not necessarily a normalised vector,

r � s · r + iI( ) s · r − iI( )−1

= 1
1+ r2

x2 + y2 + (i+ z)2 2(ix+ y)
2(ix− y) x2 + y2 + (i− z)2

( )
.

(73)

It is easy to check that the 2× 2 matrix on the right-hand side of (73) is indeed
an element of U [ SU(2). Further, we can restrict the domain r-space as the
subspace RP3 , R3 to construct a correspondence P :RP3 −� S3. And it is
easy to see the corresponding representation (73) satisfies the boundary con-
dition for U [ SU(2)

U = +I r � 1,

−I r = 0.

{
(74)

We can define a field configuration on S3 by using (63) with v(r) = Q/2

n4 = sin
Q

2
n3, cos

Q

2

( )
. (75)

Then we can set a coordinate of the north pole on S3 by n1 = (0, 0, 0, 1) for
Q = 0 as shown in Figure 3. This corresponds to the point r � 1 on the pro-
jected space RP3. Now, we apply an element of U [ SU(2) on the state n1 to
see the transition by the angular variableΘ, as the phase changes from the north
pole to the south pole along a great circle. The south pole denoted by n0 corre-
sponds to the point r = 0 of RP3 accordingly. But, by the boundary conditions
(74) and the projective property, we see that the coordinate of the south pole
will be n0 = (0, 0, 0, − 1) with Q = 2p.

This means the original state from the north pole acquires a minus sign while
the phase transition undergoes the 2p rotation on S3 along the great circle.
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From this, the north pole n1 and south pole n0 on S3 satisfy the asymptotic
behaviours on RP3, while the transition of the element U [ SU(2) changes
+I � −I as the phase changes from 0 to 2p. In particular, when it reaches
the middle stage of the transition where Q = p, the state will be on the plane
of an equator bounded by S2. Then the field configuration becomes
n4 = (n3, 0), the field configuration of the normalised magnetic monopole
(53) in four dimensions, see Figure 3.

This establishes a direct link between the state lives on S3 acted by SU(2) and
the state lives on RP3 acted by SO(3) once the antipodals are identified. But
what physical system shall we put on S3 and RP3 acted upon by these rotations,
respectively, to see any physical correspondence? And what is the meaning of
identifying the antipodals when one brings an actual physical system to the
manifold? We will take such a state on S3 as Skyrmions and we will justify
that we can put micropolar continua on the projective space RP3 next.

4.3. Skyrmions

Skyrme [69–72] defined the field of the complex doublet z [ C
2 acted by an

element of U [ SU(2) which lies on S3, as we defined in (67). The construction
of this field comes from the fact that two independent SO(3) transformations
acting on the intrinsic elementary particle spin space and the isospin space.
Skyrme used a pion triplet (p0, p+, p−) where each of this is a meson, the com-
position of a quark and its antiquark. Then the property of SU(2) as the double
cover of SO(3) is used to contain the doublets z. Therefore, two independent
full circles in each SO(3) for the spin-isospin coupled field means one 4p full

Figure 3. The correspondence between S3 and its projection RP3 is shown with the asymptotic
values of U [ SU(2) acting on the point of S3. In particular, the transition of a field configuration
starting from n1 to n0 is the phase rotation from zero to 2p on S3. This is a transition that is
projected on the RP3 plane by bringing a point from infinity to the origin.
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circle on S3. We note that an isospin space operator has nothing to do with the
physical spin space but it acts on the three states of the pion field, and its gen-
erators I share the same group structure with that of the generators L of SO(3).

Skyrme introduced a field Ba
m in (3+ 1) dimensions as a gradient of the pion

field, or equivalently a gradient of U [ SU(2) on S3 by

∂mU = isaBa
mU (76)

where a,b,c = 1,2,3 are isospin space indices. Then using an identity
tr(sasb) = 2dab, one can obtain

Ba
m = 1

2i
tr U†sa∂mU
( )

. (77)

Further, by inserting the representation (66), directly into the definition (77), an
equivalent expression of Ba

m can be obtained by

Ba
m = − 1

4
eabcRbd∂mRcd. (78)

Now, let us suppress the index notation for the coordinates m, n = 1, 2, 3 for
now. Then we notice that the term on right-hand side Rbd∂mRcd is precisely
the form of the contortion tensor Kbmc of (13) under the condition Ub

m = dbm,
when it is further applied by global rotations Q [ SO(3) according to QTKQ.

This gives a relation between Ba
m field and Nye’s tensor (17) as follows,

Ba
i =

1
2
Ga

i. (79)

This relation between two fields gives us a unique identification in what we have
discussed in Section 1.3, the compatibility conditions.

We note that since Ba
m is in the Maurer–Cartan form by definition, or

isB = U†dU, it must satisfy the Maurer–Cartan equation

dB = −B ^ B. (80)

After applying Levi–Civita symbols and using the relation (79), we find that the
Maurer–Cartan Equation (80) is precisely our compatibility condition for Nye’s
tensor (16)

CurlG+ Cof G = 0. (81)

We recall that this is essentially derived from the vanishing Riemann curvature
(19) but nonzero torsion.

In [71], Skyrme used an explicit field configuration for (67) with the com-
ponents of (75), but the field n3 is given by the tetrad field eai-rotated hedgehog
field

n3 = eainh, (82)
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representing the transformation of the spin-isospin system. The constraint
n3 · n3 = 1 immediately indicates that the tetrad field eai must be orthogonal
matrices that rotate coordinate and isospin space. On the other hand, the
tetrad field eam of (10) rotates coordinate and tangent space, and this will be
reduced to the microrotation eai = Ra

i under the condition Ub
m = dbm. This

might explain the consistent results (81) and (80), in two distinct physical
systems, which are again equivalent to the vanishing Riemann curvature
tensor of the form (19) expressed by the Maurer–Cartan equation in terms of
the contortion K = RTdR,

dK = −K ^ K. (83)

Skyrmions are (3+ 1)-dimensional field configurations for the quantised invar-
iant number defined by the total charge of the integration of conserved current
Jm defined in (45) for d = 4

Jm = 1
12p2

emnlreabcdna∂nnb∂lnc∂rnd (84)

for a,b,c,d = 1,2,3,4 and na = n4 of (63). This topological invariant number is
regarded as a particle-like quantity and postulated to be a baryon number. In
particular, under the configuration (82), we obtain the topological invariant
charge Q =N = 1, one proton or neutron. The integer N = 1 comes entirely
from the hedgehog field nh. In other words, if we use the general axial configur-
ation such as (63) or (67), we will obtain a baryon number Q =N by the follow-
ing integration of the topological density of the current (84),

N =
∫
d3x J0 = − 1

2p2

∫
d3x detB. (85)

Using the relation with Nye’s tensor (79), this can be rewritten by

N = − 1

(4p)2

∫
d3x detG. (86)

Furthermore, after a rather lengthy calculation using the relation with the con-
tortion (17), this further becomes

N = 1
96p2

∫
d3x tr K ^ K ^ K( ). (87)

All three expressions (85), (86) and (87) will give identical topological invariant
integer N satisfying the finite energy requirement we considered. The form of
the integration (86) is noted in [73, 74] in the context of Cosserat elasticity
without referring to the Skyrmions.

When N = 1, the integration (85) states that a proton (Q = 1) cannot decay
into the pions (Q = 0) [71, 72]. We can rephrase this statement by saying that
the field configuration belongs to the homotopy class {1} cannot continuously
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deform to be in the class {0}. And the integration (86) or (87) states that the
point defects belongs to the non-trivial class {1}, emphasising the nonzero
torsion, differ from that of the class {0}.

Therefore, we conclude that the defects in pion fields cannot be measured by
means of the metric compatible connection, since it gives only zero curvature in
three dimensions leading to the compatibility condition (81). What remains to
describe the non-trivial defects is the nonzero torsion, which manifestly links
the integrals (85) and (87) via the field configuration n3 for the class {1}, the
isotropic hedgehog field.

It is worth noting that the integration (87) can be derived from a Chern–
Simons type action in terms of the contortion, seen as gauge fields [75],

S = 1
4p

∫
d3x tr K ^ dK + 2

3
K ^ K ^ K

( )
. (88)

Varying the action S of (88) with respect to the contortion, one arrives at the
equation of motion (83), the vanishing Riemann tensor with nonzero torsion
of (19).

4.4. Micropolar continua in the projective space

Let us begin with the fibration (22a) S0 a S2 � RP2 for n = 2. This gives rise to
the order parameter space for nematic liquid crystals by identifying antipodals
nN = −nN on S2 as we saw in Section 2.2. The natural extension of this con-
sideration would be

S0 a S3 � RP3. (89)

We now know the suitable setting for the physical system that lives on S3 is the
spinor complex doublet z of (67) with the invariants N are embedded in it.
There is one remaining problem in understanding the fibration (89), when it
comes to the actual physical model. This is to interpret the geometrical
meaning of identifying the antipodals on S3. In case of S2, it comes to the realis-
ation quite intuitively with the aid of the molecular structure of nematic liquid
crystals and the relatively simple geometrical property of the director field.

As before, identifying the antipodals will be the statement similar to that of
nematic liquid crystals but we put the antipodals to be two identifiable normal-
ised axial field n3 of (42), where the antipodals imply n3 = −n3 along with the
outward-directed rays on S3. Now, we must have an additional degree of
freedom to describe the vectors on S3 under the normalisation constraint.
The natural candidate for this would be the position-dependent angular vari-
able Q(r).

As shown in Figure 4, suppose a spinor on the north pole n1 of S3 undergoes
the angular transition along the great circle S2 with the orientation of the spin
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by following, for example, a left-hand thumb aligned with the axis of rotation
initially. Then when it reaches the south pole n0 through 2p rotation it will
acquire an additional minus sign in the assigned vector and we can take
these two points on the S3 as the pair of antipodals. We can apply identical
analysis on any set of antipodals on the sphere separated by the 2p rotation
along the path S2.

Now, we know that the topological identification of antipodals means that,
by the fibration, the quotient space of S3/{antipodals} � RP3. On the other
hand, the geometrical identification of antipodals is equivalent to the statement
that the rotation of 2p−Q about n3 is identifiable to the rotation Θ about−n3
as indicated in Figure 4. This is precise the statement of the rotation R [ SO(3).
Therefore, the isomorphism is clearly (69). This justifies the identification of
antipodals on S3 both geometrical and topological point of views.

In the case of nematic liquid crystals, the angular variable (i.e. the phase tran-
sition) has been always a fixed Q = p to be restricted on S2 , S3. Hence there
has been no need for the angular variable consideration but the identification
nN = −nN suffices the description for the antipodals on S2. Further, if we con-
sider R as the microrotation, then we can conclude that geometrical identifi-
cation of antipodals on S3 is the micropolar continuum that lives on RP3

governed by the microrotational deformation of the angular function Q(r)
about the anisotropic axial field n3. Nonetheless, the form of the solution (6)
satisfies Q(+1) � 0, in accordance with Figure 3, but as one approaches
the core of the Skyrmion we have Q(0) = p. Hence, our particular solution
(6) in (1+ 1) dimensions would be suitable for some modified Skyrme’s
model with its centre may not be at the origin.

We can envision the space of axial fields on the sphere, as space filled with
tiny grains rotating independently along with rotational angles about axes
determined by position-dependent parameters {Q(r), n3}. Once we identify

Figure 4. Suppose we have started from two states with identical spin orientations on the same
axis on S3. As one spinor configuration undergoes a transition along the great circle, separating
from the initial configuration which is kept in the initial state, the spin configuration changes
gradually. When the phase reaches its 2p rotation, the spin configuration becomes complete
opposite.
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the antipodals on S3, these grains are projected to RP3 constituting micropolar
continua satisfying the boundary conditions we discussed in (74). Moreover, we
can regard the microrotation Rij as the order parameter in varying the energy
function as we mentioned in Section 1.2,

dVtotal

dF
and

dVtotal

dR
, (90)

where Vtotal is given by (3). Since the microrotation R can be represented by the
angular variableQ(r) and the axial vector n3 we can take the order parameter of
the micropolar continuum equipped with the integer N by

Qab = n3an3b − 1
3
dab

( )
Q(r), (91)

where n3a = n3 of (42) for a,b = 1,2,3. There is a clear isomorphism between
Qab of (91) and the microrotational matrix Rij represented by (4). This leads
us to the following consequences.

Firstly, the symmetric and traceless matrix form of the order parameter Qab

of (91) can be viewed as a natural generalisation of that of nematic liquid crys-
tals given in [10, 59]. This also agrees with the form of Higgs tensors fab, pos-
tulated by Polyakov [50]. Then, this implies that if we put Qab in place of fa in
the Lagrangian (52) in (1+ 1) dimensions dropping the gauge field, the
equation of motion will be of the form

∂m∂
mQab + ∂V

∂Qab
= 0 (92)

where V is the potential. This will be further reduced by applying the normal-
isation condition on the field configuration n3 · n3 = 1 to yield

∂ttQ− ∂x̂x̂Q+ ∂Ṽ
∂Qij

= 0 (93)

where x̂ is the rescaled x-axis and Ṽ is the modified potential accordingly.
Under the isomorphism of Qab � R, the variation of Vtotal with respect to the
microrotation in (90) is just our dynamic equation of motion (5) yielding the
microrotational angleΘ in (1+ 1) dimensions. This observation also reinforces
the statement that our formulation in deriving the equations of motion is equiv-
alent to the approach from the constitutive equations with the order parameter
given in [4, 76] using the free energy formalism.

Depending on the form of potential V , the equation of motion (93) can be
either the simple f4 theory, Klein-Gordon type, sine-Gordon type or more
exotic form we encountered in solving the chiral case in [77]. In particular,
the sine-Gordon system is a special case when we put b = 0 in the double
sine-Gordon system of (5). This will further reduce to the Klein-Gordon type
system when only small angle is allowed. This suggests there might be a
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direct link between the solution space as the prescriptions of the deformable
configuration and the topological invariant quantity N [ Z.

Secondly, identifying the antipodals on S3 corresponds to matching two
opposite spin orientations, or to glueing together as shown in Figure 4. But
there is another point of view to understand this topological identification,
instead of recognising them as the element of RP3. This is identical to the con-
struction of a Klein bottle in S3. It is well know that the Klein bottle K3 can be
constructed in S3 , R4 without a self-intersection unlike the usual Klein bottle
we are familiar with, and K3 is homeomorphic [36, 46] to the connected sum of
two projective planesRP2. This is a generalisation that can be seen from the fact
that the gluing antipodals on S2 will lead to the construction of the Möbius band
and the gluing antipodals on S3 will result in the construction of the Klein
bottle, see Figure 4.

We know that the projective space RP3 is a union of S2 and D3 using (28),
and RP2 is a union of a disk D2 and a Möbius bandM2 of (29). Therefore, iden-
tifying the antipodals on the sphere S2 and S3 implies that we can write the cor-
respondence between the projective space RP3 and the Klein bottle K3 by

RP3 −� M2 < D2( )
< M2 < D2( ) � RP2#RP2 � K3 (94)

where # indicates the connected sum along the common disk D2. The relation
between a Klein bottle and two (chiral)Möbius bands can be produced easily by
corresponding representations of fundamental polygons.

Although we can only imagine the difficulties in providing the experimental
justifications, we summarise the mathematical relations between S3 and S2 con-
cisely. This can be written in the following commuting diagram in terms of the
set of morphisms (H, I, Hp) in the category of fibre bundle structures
S = {S3, RP3, Z2, p1, c1} and M = {S2, RP2, Z2, p2, c2} for Skyrmions and
magnetic monopoles, bearing in mind micropolar continua and nematic struc-
tures are its respective antipodals,

S: S3 × Z2 −−−−�c1
S3 −−−−�p1

RP3

(H, I)
||
�

H
||
�

Hp

||
�

M: S2 × Z2 −−−−�c2
S2 −−−−�p2

RP2

(95)

whereH is the Hopf map (72), I is the identify map,Hp is a restricted Hopf map
on the projective space, ci are the group action on the spheres defined by Z2,
and pi are projections from the total space to the base space.

5. Conclusion and outlook

We established the firm relation between the nematic liquid crystals on S2 and
the projective plane RP2 by identifying the antipodals in topological and
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geometrical points of views. As an extension of this idea, we took the physical
model on S3 as the Skyrmions based on the recognition that the spin-isospin
symmetry for the pion field constitutes the transformation of the spinors
acted by SU(2).

This successfully led us to the realisation that the order parameter space of
the micropolar continua is the projective space RP3 when we identify the
antipodals on S3, which comes naturally through the correspondence
between SU(2) and SO(3). This generalisation is consistent in the topological
and geometrical sense accompanied by the symmetric traceless represen-
tations of the order parameters for nematic liquid crystals and Higgs
tensor, respectively.

We considered the criteria for the soliton solution in the framework of the
finite energy requirement in connection with the intuitive elastic boundary con-
ditions for the microrotational deformation governed by the soliton solution of
the angular variable Q(r). This led us to the conserved topological invariant as
the integer N, corresponding to the homotopic classification and the associated
conserved charge Q in arbitrary dimensions.

The vortex field nv with its geometrically characteristic winding number N is
used to define the d-dimensional field configuration nd in the nonlinear O(n)
theory. In particular, we showed that the field configuration for the topological
invariants is the position-dependent axial field n3 of the three-dimensional
microrotation in which the isotropic hedgehog configuration is the rather
special case. This further led us to show that it can be consistently extended
to the cases of ’t Hooft-Polyakov monopole and Skyrmions. Also it suggests
the possible construction of the multipole with anisotropic configurations of
N > 1, and multi-baryon configurations provided individual point-like defects
are in the localised configurations of the weakly interacting limit, given the
additive nature of the homotopy pn(Sn) � Z.

We investigated the ’t Hooft-Polyakov magnetic monopole within the scope
of the defect classifications by the homotopy. Skyrmions were shown as the
description of the defects in the pion field of the nonzero torsion case but
with zero curvature, through the compatibility conditions based on the vanish-
ing Einstein tensor in three dimensions. We showed that the defects of the spin-
isospin system can be interpreted in the framework of the defects theory in the
Riemann-Cartan manifold.
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