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ABSTRACT ARTICLE HISTORY
Micropolar continua are shown to be the generalisation of Received 28 June 2021
nematic liquid crystals through perspectives of order  Accepted 17 September
parameters, topological and geometrical considerations. 2021

Mlcropplar contlnL{a and nem?tlc I|qu|2d .crystalls are KEYWORDS
recognised as antipodals of S° and $° in projective Conserved current;
geometry. We show that position-dependent rotational topological invariance;
axial fields in kinematic micropolar continua can be homotopy; Cosserat
considered as solutions of anisotropic Higgs fields, continuum; Skyrmion
characterised by integers N. We emphasise that the

identical integers N are topological invariants through

homotopy classifications based on defects of order

parameters and a finite energy requirement. Magnetic

monopoles and Skyrmions are investigated based on the

theories of defects of continua in Riemann-Cartan manifolds.

1. Introduction
1.1. Background and motivation

If we can find a solution space for a given system, there might be a number of
solutions that can be transformed continuously around the most stable sol-
ution. If these comparable and equivalent solutions form a distinct set under
an internal symmetry, we might associate the set of solutions with a group
structure within the allowed finite energy of the system. This observation
shares many similarities in describing defects of a body that can undergo
smooth deformations but restores its original shape when the deformational
factors are removed.

Defects of a deformable body can be classified by a set of equivalent classes
when we consider a compatibility condition that is derivable from a simple
integrable equation to obtain the solution space. In turn, integers might be
assigned to those classifications of defects by group theoretical approaches.

The simplest example would be an assignment of an identity element {0} to
contain all configurations of classical elastic deformations. In this particular set
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of configuration, small fluctuations are allowed to retain the elasticity around
the stable solution of the system. Other than the classical elastic regime, we
can assign a class {1} to emphasise features that differ from those of the
classic elastic deformations. This kind of assignment prohibits solution
configurations of the class {1} to continuously transform into that of the class
{0} without violating the finite energy requirement.

Instead of assigning integers by hand, we would like to see under what sys-
tematic assignment of an infinite range of integers can allow us to investigate
the group classification of the large class of solution space into a discrete set
of configurations. We will take two different approaches to understand the
integer-valued assignment. One is based on the theory of defects in a given
order parameter space and another approach is originated from the boundary
conditions of field configurations. These integer-valued assignments will yield
the topologically invariant quantities through various physical models.

In describing the defects in differentiable manifolds, the continuum theory
contains deformational measures related to curvature and torsion. These
measures are caused by broken symmetries of rotations and translations. In
formulating micro or macroscopic rotations, a number of models are inves-
tigated by using a simple ansatz such as the global uniaxial field of the
rotations or small rotational angles, often in one-dimensional static case
due to the complicated nonlinear nature of the problem. In realistic inhomo-
geneous settings, one eventually includes axial fields and angular variables of
the rotation, depending on space and time in the given manifold, such as the
Riemann-Cartan manifold, especially if one is interested in torsion and cur-
vature at the same time.

We would like to investigate the consequences when we consider arbitrary
position-dependent axial fields of SO(3), and its implications to physical
systems that contain SO(3) as its symmetry (sub)group in relation to the assign-
ment of the integers when we classify the solution space.

This paper is organised as follows. In Section 1, we briefly introduce the micro-
scopic theory of continuum physics followed by the constructions of torsion and
curvature tensors in Riemann-Cartan manifolds among other measures of
defects. Topological and geometrical considerations of nematic liquid crystals
and a definition of an order parameter space in the context of homotopy
groups are given in Section 2. In Section 3, we consider links between integer-
valued invariants and systems with soliton solutions accompanied by construc-
tion of conserved currents with the homotopy classification. In Section 4, micro-
polar continua are interpreted in relation with Skyrmions using the measures of
defects introduced in Section 1. This relation turns out to be the general case of
the discussions in Section 2 using the projective geometry.

We use u, v, p for spacetime coordinates, i,j,k for space indices and a,b,c for
internal indices differ from the coordinate labels. We assume indices of vectors
are naturally raised and indices of derivatives are naturally lowered, and a
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metric tensor with its signature (+ 1, — 1, ..., — 1) in n spatial dimensions
with one time component for tensors defined in (n + 1)-dimensional differen-
tiable manifolds.

1.2. Micropolar theory

In the theory of classical elasticity, the motion of a body consisting of a bulk of
particles P can be written as a function of a position vector x = x(X, t) in a
spatial configuration dependent on the original position X written in a refer-
ence configuration and time ¢, in the usual rectangular Cartesian coordinate
system. A displacement vector u describes an evolution of a point particle at
P with a vector X, to a point p with x. This can be written in a spatial description
of u(x, t) = x — X(x, t). And a derivative of u gives rise to a definition of a
deformation gradient tensor by

Fy = g—)’z’; Fu =RUy (1)
where the lower case indices indicate the quantities in the spatial frame and
the upper cases are for the quantities in the reference frame. The second
expression for Fyy in (1) is written in the form of the classical polar decompo-
sition with a rotation R and a symmetric positive-definite stretch U in three
dimensions.

A microcontinuum, pioneered by the Cosserat brothers [1], is a continu-
ous collection of deformable and stable (indestructible) materials points, i.e.
with nonzero determinants of Fj;. The characteristic aspect of the theory
with a microstructure is that we assume the microelement to exhibit an
inner structure attached to vectors called directors, which span the internal
three-dimensional space. The most general elasticity theories with micro-
structures contain nine additional degrees of freedom originated from the
internal deformations such as microrotations, microcompressions and micro-
shears. Comprehensive accounts of microcontinuum theories and its develop-
ments can be found in [2-4].

For the inner structure, we assign a new set of directors E in the reference
configuration and & in the spatial configuration to describe the microdeforma-
tions. So, in addition to the classical elasticity, the transformation of directors
Ex — & is governed by a rank-two tensor Y € GL(3; R), defined by

& = xi(Xx, HEK. 2)

If we restrict the general microdeformations to be rigid, one deals with a much-
simplified model with three degrees of freedom of the microrotation, in
addition to the classical translational deformation field. The resulting model
is often referred to as the Cosserat elasticity or the micropolar theory, and
Xxx becomes the element of SO(3), see Figure 1.
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Figure 1. The transformation of the inner structure of the microelement is illustrated with cen-
troids positioned at P and p, in the reference configuration and the spatial configuration,
respectively. This shows how the directors E in the original body in the region R- undergoes
the microdeformation under . to become &, while the original body experiences displace-
ment to become the deformed configuration in the region R under the macroscopic displace-
ment u.

A solution for the dynamical case for the micropolar elasticity is obtained in
[5] from the most general total energy functional

Viotal = Velastic(F > R) + chrvature(ﬁ) + Vinteraction(F > F) + Vcoupling(F > F) (3)

Each individual energy functional is written in terms of the macroscopic defor-
mation gradient tensor F and the microrotation R = x which can be con-
veniently represented by a rotational angle ® about a normalised axis ns,

R-j = cos O §; + (1 — cos O)ns;nz; — €;xnzy sin O, (4)
where € is the totally antisymmetric Levi-Civita symbol in three dimensions.
The representation (4) can be easily translated to the well-known Rodrigues’
formula. We will use the overline to denote the microdeformational quantities
henceforth, whenever we need to distinguish them.

Equations of motion for the system are obtained from the variational prin-
ciple of the energy functionals (3) with respect to F and R independently after
including kinetic terms. A set of simple ansatz to the system is applied in
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obtaining analytic solutions, such as (i) material points can only experience
microrotations about a fixed axis, (ii) macroscopic displacements occur along
the same fixed axis of the microrotation, and (iii) macroscopic elastic displace-
ments and microrotations are both governed by longitudinal deformational
waves that propagate with the same wave speed.

Under these assumptions, a set of coupled nonlinear partial differential
equations is obtained and further reduced to the equation of motion for the
microrotation in a form of the so-called double sine-Gordon equation [6]

b
940 — 320 + m?sin O + Esin 20 =0, (5)

where m and b are real constant parameters, determined by a set of elastic
moduli in the individual energy functionals of (3), and X is a rescaled x-axis.
From this, a microrotational solution ®(x, t) is obtained that propagates
along the x-axis with speed v

O(x, ) = 4 arctan e TV £S, (6)

for some constant § and a parameter k depend on the set of elastic moduli of
Viotal- In the process of solving (5), boundary conditions are proposed, based
on elasticity considerations for the displacement propagation. These are con-
verted to the boundary conditions for the microrotation propagation,

O(+ 00,t) >0 and 0,0(+ oo, 1) — 0. (7)

These elastic boundary conditions emphasise that once the deformational dis-
turbances have passed, the configuration will return to the original one and a
point of a deformable body does not experience any deformation when it is
far away from the point where the deformation currently occurs.

1.3. Torsion in Riemann-Cartan manifolds

In continuum physics, curvature and torsion are based on the sources of two
distinct defects, called disclination and dislocation, respectively [7-10]. In
developing a theory for the generalised local symmetry under the Poincaré
group in the curved spacetime, the needs for the non-Riemann manifold
arise naturally, which can contain Cartan’s torsion [11]. Essentially the
notion of torsion has become evident in completing the theory with the spin-
ning particles coupled to the torsion [12-16].

Inspired from similarities and its applicabilities in describing the defects in
Riemann-Cartan manifolds, links between the theories of continuum physics
and the Einstein—Cartan theory were investigated in [17-19]. Recent develop-
ments can be found in [20-23], including compatibility conditions based on the
non-simply connected manifolds and geometrical approaches to the defect
theory based on the non-metricity. Since the Riemann curvature tensor
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satisfies various geometrical identities such as Bianchi’s identities, it is natural
to expect that these identities also play a role in continuum mechanics if one
considers the possibility that the Riemann curvature tensor can contain both
measures of pure curvature originated from the metric tensor, and torsion
which might arise independently of the metric field.

Now, the metric tensor emerges as a secondary quantity defined in terms of
tetrad fields

o = €5eb8a, (8)

where a,b,c are tangent space indices. This tells us that the metric tensor g, is
obtained from the flat Euclidean metric 6, by a set of deformations, governed
by an element eZ(x) € GL(N; R) at each point x in the given manifold. A dual
field to e, is defined by E¥ satisfying the relations e}, E, = &, and e E; = ;.

A vanishing metricity V,g,, = 0 is imposed to give rise to the definition of
the general affine connection F;\W and the spin connection w#ab, as a conse-
quence of a covariantly vanishing tetrad Vel = 0,

Fi‘w = Eﬁ‘wuabei + e2d,e". 9)

This general affine connection is not assumed to be symmetric in the lower
indices.

Since any deformation can be regarded as a combination of rotation, shear
and dilatation, in the language of the (micro)continuum theory, we can apply
the polar decomposition to the tetrad fields similar to that of (1),

¢ =RYUS,  EY=R}'UL (10)

where R, is a rotation and UZ is a symmetric positive-definite tensor. Under
these decompositions, one finds that the metric tensor (8) is blind to the
rotational field R, but only dependents on the stretch U.

The Riemann curvature tensor is defined in terms of the general affine con-
nection

R, =00 — o, +I% I —T6T), . (11)
And a torsion tensor is defined by
A A A
T, =T,-T,. (12)

We define a contortion tensor K, by a difference between the general affine
connection and a metric compatible connection I'? , also known as the Chris-
toffel symbol

Fﬁo‘ = rﬂo‘ + vao" (13)

The contortion satisfies the antisymmetric property K’\W =—-K, M)‘. From this,



32 (&) Y.LEE

a dislocation density tensor K is defined by [24-26],
Kij = Ejleikl. (14)

The vanishing Riemann curvature (11) and its related measures imply the
theory is in the regime of elasticity. And a set of partial differential equations
may lead to an integrability condition, which is sometimes called the compat-
ibility condition. In [27], a universal expression of the compatibility condition
is studied under the setting of the vanishing curvature tensor in three dimen-
sions. This yields two distinct classes of compatibility conditions, one for the
vanishing torsion and another for the non-vanishing torsion. The former is
well known by Vallée’s classical result [28]. This result states that the vanishing
Riemann curvature tensor in the deformed body yields the compatibility con-
ditions equivalent to the Saint-Venant compatibility conditions [29-34]

Curl A+ Cof A=0 (15)

where A is a 3 x 3 matrix defined by the stretches U and its derivatives. We
defined (Curl U);; = €jundnUin and (Cof U);; = 5 €ims€jnt Upnn U

The case for the vanishing Riemann tensor but nonzero torsion is known by
Nye’s result [35], with an additional condition U, = 6; in (10)

Curll’ 4+ Cof I' = 0, (16)
where Nye’s tensor I’ is defined in terms of the contortion tensor,

1 k1
F,] = _Eeilej . (17)
Two compatibility conditions (15) and (16) are shown to be derivable from a

universal expression written by the Einstein tensor Gj, in three dimensions
G = Curl Q) + Cof (), (18)

where the quantity (), is defined by a contraction of the spin connection
O, = —%eabcwibc. This derivation is based on the fact that the vanishing
Riemann curvature tensor implies the vanishing Einstein tensor in three
dimensions.

There are two important consequences we would like to mention here, under
the setting UZ = SZ, which is equivalent to the trivial metric tensor (8), and the
nonzero torsion. The Riemann curvature tensor (11) can be written entirely in
terms of contortions using the decomposition (13),

Rpa;w = 8Mvaa - aVKpp,o' + KP,LL)\KAVO' - KPV/\K/\;LO" (19)

and, due to the modification in the tetrad e}, = R%, BZ, the dislocation density
tensor (14) can be written by the product of (micro)rotation R and its derivative

K = RTCurl R. (20)
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It is well-known that the existence of dislocations, or equivalently torsion
tensors, can be verified by following a small initially closed path in crystal
lattice structures to see if the path is broken. In a similar manner, the
nonzero curvature can be confirmed from angular deviations in a set of initially
parallely aligned vectors. For this reason, in examining the nonzero torsion in
the defects, a set of large field configurations can be classified as the equivalent
classes by an assignment between a unit sphere S and a space where the micro-
rotations are assumed to be non-trivial. Hence, it is the first homotopy group,
also called the fundamental group, for line defects in three dimensions treating
SO(3) as its order parameter,

m(SO(3)) = Z,. (21)

This suggests that we can have two distinct classifications for the compatibility
conditions under the vanishing Riemann curvature tensor. One of them is for
the trivial class, the classical elastic regime with zero torsion. So that all defor-
mations belong to the identical compatible condition (15), namely, a class {0}.
In this class, all configurations can be continuously deformed to the trivial one
under the general diffeomorphism. Another classification is the microdeforma-
tional description for which we can assign a class {1} with the nonzero torsion.
In this class, configurations cannot continuously deform into those in the class
{0}. The second classification {1} will be the configurations satisfying Nye’s
compatibility condition (16).

We consider a systematic homotopy classification of defects using nematic
liquid crystals in some simple cases next.

2. Nematic liquid crystals
2.1. Homotopy of order parameters

In a sequential representation of a fibre F, a total space E and its projected base
space M of F — E — M, we can express real and complex projective spaces
using the Hopf fibrations. We write some of the important fibrations for
n-dimensional spheres S" as follows

S0 §" — RP, (22a)
St 2+l . Cp. (22b)

Particular interests arise when we consider the homotopy group relation on
these fibrations. For example, suppose that the given manifold M is simply con-
nected. Then any simple closed-loop contained in the given manifold can be
continuously deformed into another loop and eventually can be deformed to
a point. Then, by definition of the fundamental group, we will have a trivial
homotopy (M) == {0}. Since all §", n > 2 are simply connected, while RP"
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for n > 2 are not, we have m;(§8") = {0} for n > 2. Moreover, by the Lifting
Properties of the fundamental group [36] between the non-simply connected
space and its universal covering space, there is an isomorphism

7, (S") = m,(RP") =~ 7, n > 2. (23)

This will be useful when one considers the homotopy of an order parameter
space M = RP". Specifically, an order parameter space M can be regarded as
an image of a function W (x) for x € E,

V:E— M. (24)

As the system undergoes some phase transitions, either by an external factor or
spontaneously, the symmetry G in M may be altered to be its subgroup H. Con-
sequently, there may be regions where the degrees of the order are not uniquely
defined. These regions are characterised by a modified quotient group G/H.
These regions are called the defects and the names of defect with respective
dimension d are (i) monopole: a point-like defect in d=0, (ii) vortex: a
string-like defect in d =1, (iii) domain wall: a sheet-like defect in d =2. These
defects can be understood in connection with topological invariant quantities
and can be found in diverse physical systems with order parameters describing
the defects of distinct nature [10, 37-42]. In [43] the connection between the
phase transitions that originated from the spontaneous symmetry breaking
and those based on the topological nature is studied. These topological invar-
iants are the classification of the defects for a given dimension belonging to
one of the equivalence classes given by the homotopy group of the order par-
ameter space M. This means that the homotopy classification determines the
allowed range of configurations to be deformed continuously within the
given equivalence class.

In practice, after we identify the order parameter space M of (24), in order to
determine the homotopy groups, we will proceed according to the following
steps.

(1) We identify the dimension m of the manifold M where the medium is
defined. This can be different from the dimension of physical space
where the medium is placed.

(2) We take account of the dimensionality d of the physically possible defect.

(3) We identify the n-sphere S” which surrounds the region of defects.

In general [37], the dimension of §" is restricted by the d-dimensional defect
in an m-dimensional medium and is classified by the homotopy group
(M), n=m-—d—1. (25)

This expression can be seen as the defects with dimension d are being measured
by a probe of a dimension n of S" separated by a line. All of them are contained
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in the manifold of interest with a dimension m. We can assign the degrees of the
defect from the measure with a ruler §” a point in the manifold M. This will
show the continuous deformation from one description of the defect to other
in the form of equivalent classes, hence the homotopy group representation.
A particularly intuitive case is that when there is an isomorphism between
the order parameter M and m-sphere S”. This allows us to investigate the poss-
ible class of defects by relatively simple homotopic considerations of counting
the number of windings of Spny> Tepresenting the physical space, over SI, repre-
senting the space where the order parameter is defined with a possible internal
symmetry. The homotopy plays the role of assigning these two manifolds,

— S

;hy int* (26)

This will give us an explicit expression ,(S™) to obtain a clue whether the
classification of defects are trivial {0}, or something else. A less intuitive case
is when M = RP" but the homotopy can be found by using the relations
(23). It is widely known that the real projective space RP? can be viewed as a
manifold for nematic liquid crystals [10, 39, 42, 44, 45]. We would like to see
how the notion of directors can be used in topological and geometrical perspec-
tives when we are looking for the classification of defects using the Hopf
fibration (22a).

2.2. Nematic liquid crystals as projective space of S?

Given the order parameter space M = §™, this space can be further reduced to
its submanifold if there exists a set of equivalent relations on the sphere. For
example, if we can identify two points {n, — n} as antipodals on the sphere
$%, with a normalisation condition n - n = 1, then we can write the quotient
space using (22a) for n=2

RP? =~ §? /{antipodal}. (27)

The right-hand side of (27) is topologically equivalent to a hemisphere, and we
can flatten it to obtain a disk and its boundary. Hence, by following a schematic
process [36, 46] of removing the redundancy on $* we can write RP* as a union
of a disk D? and its boundary dD?. In general, we can regard the real projective
space RP" as an n-dimensional disk D" with the ideal points on the boundary
dD" == §"~1, 5o that we can write

RP" =~ D" U D" =~ D" U §" L. (28)

There is an additional important feature in the projective space. The projective
space can be non-orientable, which is equivalent to say that it may contain a
Mobius band. This is because after we identify the antipodals on the disk, we
can cut the cylindrical portion of D? U 9D? half, and then half twist to match
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the antipodals to form a Mébius band. This gives us the most compact topolo-
gical representation of the real projective space RP?, by a union of a Mébius
band M? and a disk D?

RP? =~ M? U D*. (29)

In the case of nematic liquid crystals, we can take the order parameter as the
measure of the degree of alignment among the molecules. We take the director
of nematic liquid crystals by a vector ny, representing the average direction of
the rigid rod-like molecular structure. This suggests the rotational symmetry is
broken while the translational symmetry still holds through the symmetry
reduction process from the completely random state. Although the molecule
might possess an apparently distinguishable head and tail feature, we do not
distinguish the directors, i.e. if the molecules are aligned in one direction,
then it possesses a discrete symmetry of ny — —ny. We assume that this
vector satisfies the normalisation ny - ny = 1.

We see that the identification of ny = —ny is nothing but the identification
of the antipodals on $? C R’ with outward-directed normalised vectors are
attached to it. Further, if we assign a point of the nematic liquid crystals by a
map V:5? — M of (24), the order parameter space of the nematic liquid crys-
tals is defined in the projective plane RP?. For the director fields depend on the
position, this emphasises the difference between the physical space $?> bounded
by the topological character and the order parameter space RP? due to the
identification ny = —ny. Therefore, using (27), we can write an expression
of the homotopy group

wn(Sz/{antipodal}) =~ 7, (RP?). (30)

It is worth noting that in [47], a similar observation was made, but from the
lattice space of grains, that the discrete symmetry can induce a non-orientable
structure.

Now, we follow the prescribed steps in determining the homotopy group.
For the line defects, we have n=1 in (25), and this gives the first homotopy
group we can work with,

m(RP?) = 7, = {0, 1}. (31)

This implies that there exist two distinct classifications of line defects in nematic
liquid crystals. The class {0} is that one can be continuously deformed into a
uniform configuration. The class {1} represents the non-trivial defect, a stable
vortex, which does not decay into the state of {0} class. For the point-like
defect, the dimensionality of S" becomes n =2, and the corresponding hom-
otopy group is now

m(RP?) = 7. (32)
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This indicates that there are point-like defects in nematic liquid crystals
classified by an infinite range of integers.

The idea of linking integers with the homotopy group is a central ingredient
to represent the topological invariants in our discussion. The notion of the
topological invariance becomes much clearer when we consider boundary con-
ditions in nonlinear O(n) models with field constraints n-n =1 for n € R".
These boundary conditions are restricted by the finite energy requirement
leading to the integer-valued conserved charges.

3. Topological invariants and conserved currents
3.1. Conserved currents, winding numbers and homotopy

We would like to define conserved currents J* and its associated total charges Q
in general d =n+1 dimensions. The form of the current is different from the
conventionally derived quantities, such as Noether’s current, from the continu-
ous symmetry in the Lagrangian of the system leading to the conservation of
energy and momentum. The associated topologically invariant total charge Q
can be a conserved mass, an electric charge, a magnetic charge or a quantum
number depending on the physical models. We investigate the geometrical
origin of the intuitive and apprehensible notion of the integer-valued charge
Q. We are particularly interested in showing the relation

Q=N, N€eZ (33)

leading to various consequences and interpretations. The forms of the currents
J# might appear ad hoc at first sight but its construction will be justified later
within the finite energy requirement.

Let us begin with a normalised (1 + 1)-dimensional configuration n,

n, = (cos (N(x, t)), sin(Ne(x, t))). (34)

The current J* is defined by

1
T = o € en,d,my, (35)
T

where n, = n, for a,b = 1,2 and €"” are totally antisymmetric Levi-Civita symbols
in two dimensions. We can see that the current is conserved 9, J* = 0 by its con-
struction. The associated total charge Q is defined by an integration of the time
component of the current over all space, and can be evaluated by

Q= [P dx =5 (8400, = b~ 0,0 (6)
v

We note that from the conservation equation, the charge Q must be a time-inde-
pendent quantity, hence it possesses an intrinsic topological property.
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For the finite energy requirement, the total charge must be localised. This
means if the amplitude of ¢(+ oo, t) increases (or decreases) indefinitely or
is not contained in a small oscillation, we cannot expect to have the finite-
valued total charge. This will eventually violate the finite energy requirement
for the given system, hence appropriate boundary conditions on ¢(x, t) must
be imposed in order to obtain physically meaningful solutions.

Now we impose the boundary conditions on ¢(x, t) in such a way that either
d(H 00, t) = p(— 00, t) or P(+ 0, t) # P(— o, t). For the former, the total
charge becomes zero which gives the configurations belong to the class {0}.
For the latter, if we further specify the condition to be
P00, t) — dp(— 0, t) = 2, then we obtain Q=N, leading to the integer-
valued infinite classes. We note that this analysis agrees with the boundary con-
ditions we imposed in the case of the deformational wave propagation in (6)
and the well-known sine-Gordon system. In both cases, since we have the loca-
lised soliton solutions, it is natural to expect to have the integer-valued con-
served charge while the distinct asymptotic values might impose different
interpretation when we consider the elastic deformation.

The identical integer-valued result can be obtained in a static two-dimen-
sional case from the purely geometric interpretation. That is, the integer N is
the integration of the total changes in the angular variable f(¢) for
¢ = ¢(x, y) along the simple closed contour C divided by 2, which is the
genuine and intuitive notion of the counting the winding number

1
N= ZT§C df. (37)

The homotopy in this case is a map from S! to S', hence identical to the (1 + 1)
dimensional case, the classification is

IOEYA (38)

Specifically, we can define the two-dimensional static configuration for the nor-
malised vortex field n, identical to (34) but now ¢ = arctan (y/x). Then we can
evaluate the identical form of the current (35), with i,j are spatial indices,

. 1 .. N flz

= — dendiny, = —— 39

J 2 aOjltp 2 ( )

where r* = x* + y? and #1, = (x, y)/r. From this expression, we note that the
current is not defined at the origin, in agreement with the definition of the
vortex field. And its divergence must be proportional to the two-dimensional
Dirac delta function, to write

. N
9] =

=— 27 &(r). (40)
2
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Therefore, we will obtain the integer N if we integrate (40),
N= jdzx a,J. (41)

Hence, regardless of time-dependent or static configurations, we will obtain the
conserved total charge Q = N under the identical form of the current J* for a
given dimensionality.

As the natural extension to (2 4+ 1) dimensions, retaining both the normal-
isation condition and the encoded integer N, the simplest form of the field
configuration can be written with an additional angular variable [48, 49] to
the field n,,

n; = (sin f0cos N, sin Osin N, cos 0), (42)

where 0 is a polar angle and ¢ is an azimuthal angle. In particular, the static
configuration with N=1 in (42) is called the hedgehog field n,, introduced
by Polyakov [50].

Next, we would like to consider the mechanism that lies beneath in evaluat-
ing the integrations in the arbitrary dimensions to assure the integer-valued Q
in accordance with the homotopy classification. In d = (n + 1) dimensions, the
field configuration can be defined by

ng = (sin wg(r)ng_;, coswy(r)), d=>3 (43)

where r = (x1, ..., x4), r = |r| and n, = n,. We are not restricted to the phys-
ical space in defining the field configuration (43) in the Cartesian coordinate
system, but it also can be used in defining the configuration in some abstract
internal manifolds that share the same topological structure with RY.

The field configuration (43) satisfies n; - n; = 1 and each angular function
w,(r) imposes boundary conditions. Specifically, all field configurations must
approach to a fixed configuration as r — 0. This fixed configuration is some-
times called a vacuum solution that gives a zero-energy solution. Therefore, the
physical solution space can be compactified to the sphere Sy Consequently,
innt’
straint on the field 4, and the sphere S7,  gives precisely the homotopy classifi-
cations

the mapping between the field configuration on the sphere S, due to the con-

m(S") = 7. (44)
For the general d-dimensional case, we can write the conserved current by

1

Jh = EETOM fde e n Mg 9, Mg, -+ Oy Mg (45)
where the factor n! comes from an obvious number of permutations. The factor

[ dQy is the area of a unit n-sphere S” embedded in the d dimensions. This will
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give us the topological invariant charge Q by the integration
Q= jddx P (46)

To see this, for the Euclidean length element x, defined by the strictly positive-
definite metric tensor, the arbitrary volume element d%x in (46) can be con-
verted to

dx = dQ,dx x* 1. (47)

Hence the factor f d€}; in (45) will be cancelled out exactly in the integration. In
the static d-dimensional Euclidean space, the conserved current is the identical
form of (45), but with the spatial coordinates. The current will take a form of

; N 7
N S 48
d f de ri-1 ( )
which yields a d-dimensional Dirac delta function
; N
3 = ———( | 44 )8 (r). 49
= o (] 404) 20 (19)

The form of the integration for the charge Q is simply, by using the divergence
theorem,

Q= j dx 9;] = jds,»]". (50)

The factor dS; on the right-hand side of (50) is an area of a sphere $4-1 in the
direction of J'. Hence (50) gives Q=N identically. In the case of the static
configuration, we can obtain the integer N as the winding number from the
geometrical consideration on the field configuration n; in which the integer
N is embedded naturally. In the case of the time-dependent field configuration,
the integer N can be obtained from the integration (46) if we impose appropri-
ate boundary conditions for the angular variables, based on the finite energy
requirement.

Nonetheless, the field configuration (43) is not unique for the purpose of
obtaining the topological invariants Q=N but it significantly simplifies the
task of evaluating the corresponding currents and charges. Other forms of
the current can be found in [51, 52] based on the lower bound for the finite-
energy consideration.

3.2. Monopoles

The three-dimensional case in our discussion deserves special attention when
one considers monopoles. We would like to reinterpret some of features of
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the magnetic monopole in connection with the theory of defects we discussed
so far. Our approach will highlight advantages in using the field configuration
ns of (42) in expressing the associated charge Q in its integration of the current
J' and in visualising the anisotropic field configuration.

In searching for the system that may contain soliton solutions in the hope of
the integer-valued charge Q, one finds that the existence of soliton solution is
severely restricted by the dimension of the system and its constituents [53].
For example, the Yang-Mills theory alone cannot impose the soliton solution
in (3 + 1) dimensions. But if one insists to have a non-trivial topological invar-
iant, one needs to consider a coupled system of gauge vector fields and scalar
fields.

The appearance of the gauge field A7 can be understood from at least two
scenarios in the current occasion. First one follows from the requirement of
the locally invariant symmetry group with position-dependent parameters in
the group generator, promoted from the global symmetry. This leads to the
minimal prescription of replacing the ordinary differential derivatives by the
covariant derivatives. The second case is explicitly shown by Polyakov [50] in
the process of removing the possible divergence of the solution 9,,¢” in accord-
ance with the finite-energy condition. These cases lead to the identical replace-
ment of

9ud® — Dp® = 0, + g Al ¢ (51)
in the Lagrangian for the coupled system of the Higgs fields ¢ and gauge vector
fields Aj in (3 + 1) dimensions, given by

ﬁle d)aD,ud)a_lGa Gapw_é(d)ad)a_FZ)Z (52)
27 VR 4
where wa = 0,AS — 8VAZ + ge“bcAZAf, and g, A > 0, F are some real constant
parameters. The field configurations are given by
¢" = n3,F(r) and A} = €uunzW(r). (53)

where n; = n3, are (42), and the arbitrary radial functions F(r) and W(r) satisty
the boundary conditions as r — oo,

F(r)y — F and W(r) — l (54)
gr

We note that the Higgs field is in the identical form with axial fields
O(x,t) =n;0 in the exponential representation of the rotation,
exp [i® - L] € SO(3), where L is the generator of the rotational group.

The Lagrangian (52) is invariant under the local SU(2) group and we might
expect this contains the electromagnetic field quantities, such as an Abelian
F,, = d,A, — 3,A* under U(1). Since we are dealing with the (3+1)
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dimensional case with a,b,c = 1,2,3, we need to consider the following modified
form of the currents [54], differs from (45)

. 1

= %e“”pae“hcavnaapnhagnc (55)
where we put the fields n, by ¢”/|F(r)| = n;. Now the associated total charge
can be obtained from the integration over the topological density j°,

1 y
Q= 8_77,[ Px e’]keabcainaajnbaknc
) (56)
= 8—j x eijke“hcai(naajnhaknc),
T

in which we used €”"? = €’*. The form of the integration in the last line of (56)
is exactly the integration for the derivative of current J' in the three-dimen-
sional static case of (48). Using the three-dimensional Dirac delta function of
(49), it is straightforward to see that Q = N.

Because it manifests a static solution now, it signals that we are allowed to fix
the gauge Aj(x) = 0 for all x. This further leads us to obtain the condition for
the finite energy requirement in the Hamiltonian. From this observation, we
obtain the trivial vacuum solution that gives a zero-energy solution
D;¢{,. = 0 and the non-trivial solution that minimises the energy satisfying
the boundary conditions (54).

The Lagrangian (52) differs from the energy functions of Cosserat elasticity
or the nonlinear O(n) models. It includes the gauge field so that D,¢"* — 0
imposes a different meaning from that of 9,¢" — 0 to minimise the energy
functional as r — oo. That is, provided the condition D;¢" — 0 is satisfied,
we might have nonzero component of 9,,¢" if there exists a cancelling contri-
bution from the gauge field A§. In other words, ¢* will tend to the vacuum sol-
ution ¢§,. pointing different directions in the internal space. Hence, the
physical solution space can be compactified to be S;hy
the internal space is S7,,. Therefore, the corresponding homotopy is precisely
m(8?) 2= Z of (44) for n=2. This is indeed the homotopy classification for
the point-like defect, the monopole, according to (25).

For the sake of completeness, we show this is the magnetic monopole. Max-

well’s equations in the Gaussian unit are given by

and by the normalisation,

3, F* = 4mk’ (57)

where k* is the electric current. The dual field is defined by P = 1€"P7F,,
which satisfies 9,F*’ = 0. This homogeneous conservation equation of the
dual field is the Gauss’s law stating that the magnetic flux over the closed
surface must vanish.
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Following 't Hooft’s gauge-invariant definition [55] for the generalised non-
Abelian field tensor F ,,, we write

1
Fuv = 1aGS,, — . € n,DnyDyn,. (58)

Under the configuration (58), unlike conventional Maxwell’s equations, the
derivative of the dual tensor F*' = 1 €*"P”F ,, does not vanish but yields the
current (55)

~ 1 4
81,va = 2— E“vpa—fabcavnaapnbaa'nc = _7TJM (59)

Comparing with (57), we conclude that the magnetic current is j*/g. Moreover,
the total magnetic monopole charge m can be obtained by the following inte-
gration,

m:ljd3xj0:ljd3x a,-]leN. (60)
8 8 8

Therefore, the non-vanishing current for the monopole can be obtained and the
charge is Q=N in the unit of 1/g. ’t Hooft used N=1 configuration with the
hedgehog field ny,, and its corresponding solutions under A — 0 are known
as the Prasad-Sommerfield solution [56].

Now, let us consider the vacuum solution corresponding to the {0} classifi-
cation under r — oo. This must correspond to the field configuration with Q =
N=0. We use (42) explicitly with N=0 in n3, rather than fixing the configur-
ation in an arbitrary direction in finding the ¢,  configuration. This gives,

¢ =F(1,0,0). (61)

vac

In the region where ¢, _ is defined, the generalised field 7" becomes the usual
description  for  the  Abelian  electromagnetism  under  U(1),
Fuw = 0,AL — E)vAIIL. Since Q=N=0, no monopole can exist in the region
where ¢, is defined. Moreover, if a field configuration ¢” belongs to the {0}
classification, then it must be of the form ¢” = ¢{,_ + (].’)J? for some small fluctu-
ation cl)]‘? so that ¢ can continuously deform into ¢, . This is the transform-
ation that moves the field configuration ¢” towards the region in which
Maxwell’s Equation (57) are well defined, see Figure 2.

In an N = 1 configuration, the field ¢“ is pointing radially outward according
to the hedgehog configuration. The monopole, belongs to the {1} classification,
cannot decay into the vacuum under the finite-energy condition. This again
confirms that the magnetic monopoles arise in the static case in which we
fixed the gauge Aj = 0 with Fy; = 0 hence no electric fields are defined in the
Q # 0 sector.

The field ¢ either can point some fixed direction or can be continuously
deformed into the nearby configuration, without violating the finite energy
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Figure 2. Two-dimensional vortex field configurations with various integers N using (34) and its
corresponding n; fields on S? of (42) are shown where n3(N = 1) is essentially the isotropic dis-
tribution of the hedgehog configuration ny,.

within the given Q = N sector in the range of a small fluctuation. In this respect,
this classification is comparable to the sine-Gordon system and the microrota-
tional deformation (6) in which the different Q sectors correspond to the
different values that the field could take asymptotically. In Figure 2, we
compare the field configurations for Q = —1,0,1,2 cases, arise from the vortex
field n, of (34) embedded in n; of (42). We notice that when N # 1, the
field configuration becomes an anisotropic distribution of n3. In Ref. [48], it
is shown that the hedgehog configuration n, is the only isotropic configuration
for the magnetic monopole that complies the finite energy requirement.

Although the magnetic monopole we considered here includes the gauge
fields to yield the covariant derivatives in the asymptotic behaviours, the con-
struction of the conserved currents is not affected by the presence of gauge
fields. This is because the currents are not originated from the Lagrangian
but from the intrinsic nature.

4. Micropolar continua and Skyrme’s model

We would like to focus on the field configuration n itself constituting the intrin-
sically conserved current J*. This will include Skyrme’s model as the spinor
system in which the relation between SU(2) and SO(3) signifies its role in
various forms of the representation. It is hinted in [57] that the order parameter
for the micropolar continua can be taken as SO(3) or RP?, and the elements of
R € SO(3) are mentioned briefly in [58] as the antipodals on $°. In this section,
we show that the topological and geometrical generalisation of nematic liquid
crystals are micropolar continua. This approach is different from that of [59].
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4.1. Rotations of SO(3) and SU(2)

An element U of a unitary rotational group SU(2) can be represented by a
complex 2 x 2 matrix, defined by

U— ng +ins  ing + ny
o in1 — Ny Ny — il’l3

):n4-1+i(n-a'). (62)

where o = (01, 03, 03) are Pauli matrices, I is a 2 x 2 identity matrix and the
real parameters ny, = (n;, 1z, 13, n4) can be defined according to (43),

ny = (sin w(r)ns, cos w(r)). (63)

Now, the normalisation constraint ny - ny = 1 can be justified by the unitary
condition of UTU = I, which also states that n, is defined on S*. Using the
properties of Pauli matrices and n, of (63), the representation (62) can be trans-
lated into

U = explio(r)(n; - o)] = cos w(r) - I + i(n;3 - o) sin o(r). (64)

An explicit relation between R € SO(3) and U € SU(2) can be explained in
several ways, but we take the correspondence used by Skyrme [60],

1
Rj = tr(o; U'oU) (65)

where i,j =1,2,3. A straightforward calculation of (65) by inserting the matrix
elements of U of (62) gives another representation of R;; in terms of (n;, ny),

Rij = 2nin; — 2€;xning + 6,']-(21131 —1). (66)

Moreover, by seting w(r) = ©®/2 of (63) and substituting into (66), we will
recover the previous representation (4).

4.2. Spinor structure and 2m rotation

A system with spinors is characterised by its acquisition of an additional minus
sign to its original state after a 27 rotational transition and returning to its
initial state after a full 47 rotation. This peculiar character of spinors has
been observed in many physical systems [61-63], and it is particularly well-
known in particle physics [64-67] that the spin-1/2 particle takes the 4w
rotational transition to return to its original state.

Now, since the correspondence between SU(2) and SO(3) is given by (65)
where each of these are transformations defined on the respective space S
and S%, there must exist an explicit relation between $* and S%. Such a relation
can be understood by the Hopf fibration. In particular, the fibration
§' — & — §? gives a unique identification CP! 2 §? by the fibration (22b).
For n=1 case, we have an isomorphism in terms of complex projective space
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CP! = §%/S! == §%. To see this relation more closely, we define a complex
doublet z € C? which lives on $*. The doublet can be obtained from a state
10, for example, acted by U € SU(2) of (62)

Z:U(l):(cosw(r)—i—icosesinw(r))’ (67)

0 ie'™N? sin 0sin w(r)

where we used (63) for U as a particular example of such a coordinate represen-
tation of CP'. We see that the normalisation condition ny - n, = 1 is translated
to the condition z'z = 1. Hence, we can interpret z as the wavefunction of spin-
1/2 particle field invariant under the U(1) phase transformation z — e“z, in
addition to the originally imposed symmetry SU(2). So, we can recognise the
field configuration as the complex projective space CP!, under the equivalence
relation z ~ {z for { € C and [{| = 1, as expected. In the case of the real pro-
jective space, we take the fibration (22a) for n=3. So that the corresponding
quotient space is RP* = $*/7Z,, in which we recognise Z, the antipodals
{n, —n} on $°. Some non-trivial homotopy groups from the fibrations of
real and complex projective spaces are

1, (CPY) == 7,(S%/S!) == m,(§?) == 7, (68a)
m(RP?) = 7(S?/S°) = Z,. (68b)

We note that (68b) is the homotopy we considered in (21) and we see the iso-
morphism

SO(3) = RP’ = §°/7,. (69)

Identifying antipodals with fibrations (22) can be regarded as the spontaneous
symmetry breaking, in some cases of phase transitions that we discussed in
Section 2.1. The modified symmetry in the order parameter space G — G/H
will induce a corresponding homotopy group relation m,(G) — m,(G/H). If
G is simply-connected then we can work with much-simplified homotopy [68]

m(G/H) == m(H). (70)

For example, if the original symmetry of the system is G = SU(2) and the
reduced symmetry is H = U(1) or H = SO(3) so that the symmetries of the
order parameter space of defects are modified to G/H, then we have

m(SU2)/U(1)) = m(UQ1)) = Z, (71a)
m(SU(2)/SO(3)) = m(SO(3)) = Z,. (71b)

In view of the changes in the symmetry of the system SU(2) — SU(2)/U(1), the
relation (71a) is the homotopy for the region where the magnetic monopole is
defined (the nonzero Q sector). And the second relation (71b) is the homotopy
(21). This observation suggests that the compatibility conditions we mentioned
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in Section 1 might be originated from a larger simply-connected group struc-
ture that contains SO(3) as its subgroup, the spinor structure.

Now, the relation between S* and S? can be understood in terms of the
asymptotic limit r — oo, especially when we consider the vacuum solutions.
For this purpose, the Hopf map H:S* — $? is particularly useful, which gives
an explicit expression for the transformations from the complex doublets
z € §? into the anisotropic rotational axial fields n; € S2, defined by

H(z) — z' oz (72)

where o are the Pauli matrices. One such coordinate representation of CP! is
given by an explicit use of (67). Next, we would like to consider the 3-sphere
§* C R*(= C?) and its projection according to the fibration (22a) in explaining
the nature of the boundary conditions for vacuum configuration. We consider a
map that induces an element U € SU(2) from a point r € R® where
r = (x, y, z) is not necessarily a normalised vector,

r— (o-r+il)(o-r—iD)7!

1 (244 G+ 2(ix + y) (73)
141 2(ix — y) 4y +i-27)

It is easy to check that the 2 x 2 matrix on the right-hand side of (73) is indeed
an element of U € SU(2). Further, we can restrict the domain r-space as the
subspace RP* C R’ to construct a correspondence P:RP> — §°. And it is
easy to see the corresponding representation (73) satisfies the boundary con-
dition for U € SU(2)

U:{H r—= %, (74)

—1 r=0.

We can define a field configuration on $® by using (63) with w(r) = ©/2
ng = | sin 9 n cos9 (75)
4 — 2 3 2 N

Then we can set a coordinate of the north pole on §* by 1. = (0, 0, 0, 1) for
©® = 0 as shown in Figure 3. This corresponds to the point r — 0 on the pro-
jected space RP?. Now, we apply an element of U € SU(2) on the state 1 to
see the transition by the angular variable ©, as the phase changes from the north
pole to the south pole along a great circle. The south pole denoted by n, corre-
sponds to the point r = 0 of RP® accordingly. But, by the boundary conditions
(74) and the projective property, we see that the coordinate of the south pole
will be ny = (0, 0,0, — 1) with @ = 277.

This means the original state from the north pole acquires a minus sign while
the phase transition undergoes the 27 rotation on §° along the great circle.
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Ny : (0,0,0,1) = r - ¢

2

no : (0,0,0 — 1)

Figure 3. The correspondence between S* and its projection RP? is shown with the asymptotic
values of U € SU(2) acting on the point of S3. In particular, the transition of a field configuration
starting from n., to ng is the phase rotation from zero to 277 on S3. This is a transition that is
projected on the RP? plane by bringing a point from infinity to the origin.

From this, the north pole ns and south pole ny on S* satisfy the asymptotic
behaviours on RP?, while the transition of the element U € SU(2) changes
+I — —I as the phase changes from 0 to 2. In particular, when it reaches
the middle stage of the transition where ® = m, the state will be on the plane
of an equator bounded by S$% Then the field configuration becomes
ny = (n3, 0), the field configuration of the normalised magnetic monopole
(53) in four dimensions, see Figure 3.

This establishes a direct link between the state lives on S acted by SU(2) and
the state lives on RP? acted by SO(3) once the antipodals are identified. But
what physical system shall we put on $*> and RP? acted upon by these rotations,
respectively, to see any physical correspondence? And what is the meaning of
identifying the antipodals when one brings an actual physical system to the
manifold? We will take such a state on $* as Skyrmions and we will justify
that we can put micropolar continua on the projective space RP* next.

4.3. Skyrmions

Skyrme [69-72] defined the field of the complex doublet z € C* acted by an
element of U € SU(2) which lies on §?, as we defined in (67). The construction
of this field comes from the fact that two independent SO(3) transformations
acting on the intrinsic elementary particle spin space and the isospin space.
Skyrme used a pion triplet (7°, 77", 77~) where each of this is a meson, the com-
position of a quark and its antiquark. Then the property of SU(2) as the double
cover of SO(3) is used to contain the doublets z. Therefore, two independent
tull circles in each SO(3) for the spin-isospin coupled field means one 4 full
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circle on $*. We note that an isospin space operator has nothing to do with the
physical spin space but it acts on the three states of the pion field, and its gen-
erators I share the same group structure with that of the generators L of SO(3).

Skyrme introduced a field B , in (3 + 1) dimensions as a gradient of the pion
field, or equivalently a gradient of U € SU(2) on $° by

9,U = io"B*,U (76)

where a,b,c=1,2,3 are isospin space indices. Then using an identity
tr(o®a?) = 28, one can obtain

1
B, = z—itr(UToﬂaﬂU). (77)

Further, by inserting the representation (66), directly into the definition (77), an
equivalent expression of B, can be obtained by

1
B =—1 € Rp4d,R 4. (78)
Now, let us suppress the index notation for the coordinates u, v =1, 2, 3 for
now. Then we notice that the term on right-hand side Rp;0,R.4 is precisely
the form of the contortion tensor K, of (13) under the condition UfL = 8Z,
when it is further applied by global rotations Q € SO(3) according to QTKQ.

This gives a relation between B, field and Nye’s tensor (17) as follows,

B = IF“
i =5 (79)

This relation between two fields gives us a unique identification in what we have
discussed in Section 1.3, the compatibility conditions.

We note that since B“M is in the Maurer-Cartan form by definition, or
ioB = U'dU, it must satisfy the Maurer-Cartan equation

dB = —B A B. (80)

After applying Levi-Civita symbols and using the relation (79), we find that the
Maurer-Cartan Equation (80) is precisely our compatibility condition for Nye’s
tensor (16)

Curl' 4+ Cof I' = 0. (81)

We recall that this is essentially derived from the vanishing Riemann curvature
(19) but nonzero torsion.

In [71], Skyrme used an explicit field configuration for (67) with the com-
ponents of (75), but the field n; is given by the tetrad field e;-rotated hedgehog
field

nz = e’;my, (82)
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representing the transformation of the spin-isospin system. The constraint
ns - n3 = 1 immediately indicates that the tetrad field %, must be orthogonal
matrices that rotate coordinate and isospin space. On the other hand, the
tetrad field el of (10) rotates coordinate and tangent space, and this will be
reduced to the microrotation e, = R% under the condition Uz = 82. This
might explain the consistent results (81) and (80), in two distinct physical
systems, which are again equivalent to the vanishing Riemann curvature
tensor of the form (19) expressed by the Maurer—Cartan equation in terms of
the contortion K = RTdR,

dK =—-KAK. (83)

Skyrmions are (3 + 1)-dimensional field configurations for the quantised invar-
iant number defined by the total charge of the integration of conserved current
J#* defined in (45) for d =4

JH = o e“v’\pe“denaavnba,\ncapnd (84)
for a,b,c,d=1,2,3,4 and n, = ny of (63). This topological invariant number is
regarded as a particle-like quantity and postulated to be a baryon number. In
particular, under the configuration (82), we obtain the topological invariant
charge Q=N=1, one proton or neutron. The integer N=1 comes entirely
from the hedgehog field n;,. In other words, if we use the general axial configur-
ation such as (63) or (67), we will obtain a baryon number Q = N by the follow-
ing integration of the topological density of the current (84),

1
N = jd3x J° = —j &*x detB. (85)
2
Using the relation with Nye’s tensor (79), this can be rewritten by
1
N=-— d’x detT. 86
(477)4 (80

Furthermore, after a rather lengthy calculation using the relation with the con-
tortion (17), this further becomes

N

=562 j Px tr(K A K A K). (87)
All three expressions (85), (86) and (87) will give identical topological invariant
integer N satisfying the finite energy requirement we considered. The form of
the integration (86) is noted in [73, 74] in the context of Cosserat elasticity
without referring to the Skyrmions.

When N =1, the integration (85) states that a proton (Q = 1) cannot decay
into the pions (Q=0) [71, 72]. We can rephrase this statement by saying that
the field configuration belongs to the homotopy class {1} cannot continuously
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deform to be in the class {0}. And the integration (86) or (87) states that the
point defects belongs to the non-trivial class {1}, emphasising the nonzero
torsion, differ from that of the class {0}.

Therefore, we conclude that the defects in pion fields cannot be measured by
means of the metric compatible connection, since it gives only zero curvature in
three dimensions leading to the compatibility condition (81). What remains to
describe the non-trivial defects is the nonzero torsion, which manifestly links
the integrals (85) and (87) via the field configuration n; for the class {1}, the
isotropic hedgehog field.

It is worth noting that the integration (87) can be derived from a Chern-
Simons type action in terms of the contortion, seen as gauge fields [75],

1 2
S=—|dxtr| KAdK+-KAKAK). (88)
4 3

Varying the action S of (88) with respect to the contortion, one arrives at the

equation of motion (83), the vanishing Riemann tensor with nonzero torsion
of (19).

4.4. Micropolar continua in the projective space

Let us begin with the fibration (22a) $® — $* — RP? for n = 2. This gives rise to
the order parameter space for nematic liquid crystals by identifying antipodals
ny = —ny on S? as we saw in Section 2.2. The natural extension of this con-
sideration would be

S0 83 — RP. (89)

We now know the suitable setting for the physical system that lives on $° is the
spinor complex doublet z of (67) with the invariants N are embedded in it.
There is one remaining problem in understanding the fibration (89), when it
comes to the actual physical model. This is to interpret the geometrical
meaning of identifying the antipodals on S°. In case of 2, it comes to the realis-
ation quite intuitively with the aid of the molecular structure of nematic liquid
crystals and the relatively simple geometrical property of the director field.

As before, identifying the antipodals will be the statement similar to that of
nematic liquid crystals but we put the antipodals to be two identifiable normal-
ised axial field n; of (42), where the antipodals imply n; = —n3 along with the
outward-directed rays on $3. Now, we must have an additional degree of
freedom to describe the vectors on $* under the normalisation constraint.
The natural candidate for this would be the position-dependent angular vari-
able O(r).

As shown in Figure 4, suppose a spinor on the north pole 7., of $* undergoes
the angular transition along the great circle $* with the orientation of the spin
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by following, for example, a left-hand thumb aligned with the axis of rotation
initially. Then when it reaches the south pole n, through 27 rotation it will
acquire an additional minus sign in the assigned vector and we can take
these two points on the $* as the pair of antipodals. We can apply identical
analysis on any set of antipodals on the sphere separated by the 27 rotation
along the path S°.

Now, we know that the topological identification of antipodals means that,
by the fibration, the quotient space of $*/{antipodals} 2 RP?. On the other
hand, the geometrical identification of antipodals is equivalent to the statement
that the rotation of 277 — ® about n; is identifiable to the rotation ® about —n;
as indicated in Figure 4. This is precise the statement of the rotation R € SO(3).
Therefore, the isomorphism is clearly (69). This justifies the identification of
antipodals on $* both geometrical and topological point of views.

In the case of nematic liquid crystals, the angular variable (i.e. the phase tran-
sition) has been always a fixed ® = 7 to be restricted on §?> C S*. Hence there
has been no need for the angular variable consideration but the identification
nx = —ny suffices the description for the antipodals on S2. Further, if we con-
sider R as the microrotation, then we can conclude that geometrical identifi-
cation of antipodals on S* is the micropolar continuum that lives on RP?
governed by the microrotational deformation of the angular function ©(r)
about the anisotropic axial field n;. Nonetheless, the form of the solution (6)
satisfies ®(+ o) — 0, in accordance with Figure 3, but as one approaches
the core of the Skyrmion we have ®(0) = . Hence, our particular solution
(6) in (1 + 1) dimensions would be suitable for some modified Skyrme’s
model with its centre may not be at the origin.

We can envision the space of axial fields on the sphere, as space filled with
tiny grains rotating independently along with rotational angles about axes
determined by position-dependent parameters {®(r), n3}. Once we identify

ng

iS? K?

—ng

Figure 4. Suppose we have started from two states with identical spin orientations on the same
axis on 3. As one spinor configuration undergoes a transition along the great circle, separating
from the initial configuration which is kept in the initial state, the spin configuration changes
gradually. When the phase reaches its 27 rotation, the spin configuration becomes complete
opposite.
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the antipodals on $°, these grains are projected to RP? constituting micropolar
continua satisfying the boundary conditions we discussed in (74). Moreover, we
can regard the microrotation Rj; as the order parameter in varying the energy
function as we mentioned in Section 1.2,

oV, oV,
total and tﬁtal ’ (9 0)
oF OoR
where Vi, is given by (3). Since the microrotation R can be represented by the
angular variable O(r) and the axial vector n; we can take the order parameter of

the micropolar continuum equipped with the integer N by
1
Qu = <n3an3b - 5 8,15)@(1’), (91)

where n3, = n3 of (42) for a,b=1,2,3. There is a clear isomorphism between
Q. of (91) and the microrotational matrix ﬁ,-j represented by (4). This leads
us to the following consequences.

Firstly, the symmetric and traceless matrix form of the order parameter Qg
of (91) can be viewed as a natural generalisation of that of nematic liquid crys-
tals given in [10, 59]. This also agrees with the form of Higgs tensors ¢*’, pos-
tulated by Polyakov [50]. Then, this implies that if we put Q,, in place of ¢” in
the Lagrangian (52) in (14 1) dimensions dropping the gauge field, the
equation of motion will be of the form

v
aQah

where V is the potential. This will be further reduced by applying the normal-
isation condition on the field configuration n; - n; = 1 to yield

8M8MQab +

0 (92)

wv
aQ;
where % is the rescaled x-axis and V is the modified potential accordingly.
Under the isomorphism of Q. = R, the variation of Vi, with respect to the
microrotation in (90) is just our dynamic equation of motion (5) yielding the
microrotational angle ® in (1 + 1) dimensions. This observation also reinforces
the statement that our formulation in deriving the equations of motion is equiv-
alent to the approach from the constitutive equations with the order parameter
given in [4, 76] using the free energy formalism.

Depending on the form of potential V', the equation of motion (93) can be
either the simple ¢* theory, Klein-Gordon type, sine-Gordon type or more
exotic form we encountered in solving the chiral case in [77]. In particular,
the sine-Gordon system is a special case when we put b=0 in the double
sine-Gordon system of (5). This will further reduce to the Klein-Gordon type
system when only small angle is allowed. This suggests there might be a

3“@ - 8&&@ +

0 (93)
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direct link between the solution space as the prescriptions of the deformable
configuration and the topological invariant quantity N € Z.

Secondly, identifying the antipodals on $® corresponds to matching two
opposite spin orientations, or to glueing together as shown in Figure 4. But
there is another point of view to understand this topological identification,
instead of recognising them as the element of RP?. This is identical to the con-
struction of a Klein bottle in $°. It is well know that the Klein bottle K> can be
constructed in $* C R* without a self-intersection unlike the usual Klein bottle
we are familiar with, and K° is homeomorphic [36, 46] to the connected sum of
two projective planes RP?. This is a generalisation that can be seen from the fact
that the gluing antipodals on S$? will lead to the construction of the M&bius band
and the gluing antipodals on S* will result in the construction of the Klein
bottle, see Figure 4.

We know that the projective space RP? is a union of $* and D? using (28),
and RP? is a union of a disk D? and a Mobius band M? of (29). Therefore, iden-
tifying the antipodals on the sphere $? and S* implies that we can write the cor-
respondence between the projective space RP? and the Klein bottle K* by

RP* — (M* U D?) U (M* U D?) = RP*#RP* =~ K’ (94)

where # indicates the connected sum along the common disk D?. The relation
between a Klein bottle and two (chiral) M6bius bands can be produced easily by
corresponding representations of fundamental polygons.

Although we can only imagine the difficulties in providing the experimental
justifications, we summarise the mathematical relations between S% and §? con-
cisely. This can be written in the following commuting diagram in terms of the
set of morphisms (H, I, H,) in the category of fibre bundle structures
S = {3, RP3, Z,, m, ,} and M = {S%, RP?, Z5, m,, ,} for Skyrmions and
magnetic monopoles, bearing in mind micropolar continua and nematic struc-
tures are its respective antipodals,

i

S § x 7, $ = RpP°
(H, I)[ Hl le (95)
M: & xZ, —> & -5 RP?

where H is the Hopf map (72), I is the identify map, H, is a restricted Hopf map
on the projective space, i; are the group action on the spheres defined by Z,,
and 1; are projections from the total space to the base space.

5. Conclusion and outlook

We established the firm relation between the nematic liquid crystals on §? and
the projective plane RP? by identifying the antipodals in topological and
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geometrical points of views. As an extension of this idea, we took the physical
model on $* as the Skyrmions based on the recognition that the spin-isospin
symmetry for the pion field constitutes the transformation of the spinors
acted by SU(2).

This successfully led us to the realisation that the order parameter space of
the micropolar continua is the projective space RP®> when we identify the
antipodals on §°, which comes naturally through the correspondence
between SU(2) and SO(3). This generalisation is consistent in the topological
and geometrical sense accompanied by the symmetric traceless represen-
tations of the order parameters for nematic liquid crystals and Higgs
tensor, respectively.

We considered the criteria for the soliton solution in the framework of the
finite energy requirement in connection with the intuitive elastic boundary con-
ditions for the microrotational deformation governed by the soliton solution of
the angular variable ®(r). This led us to the conserved topological invariant as
the integer N, corresponding to the homotopic classification and the associated
conserved charge Q in arbitrary dimensions.

The vortex field n, with its geometrically characteristic winding number N is
used to define the d-dimensional field configuration n; in the nonlinear O(#n)
theory. In particular, we showed that the field configuration for the topological
invariants is the position-dependent axial field n; of the three-dimensional
microrotation in which the isotropic hedgehog configuration is the rather
special case. This further led us to show that it can be consistently extended
to the cases of 't Hooft-Polyakov monopole and Skyrmions. Also it suggests
the possible construction of the multipole with anisotropic configurations of
N> 1, and multi-baryon configurations provided individual point-like defects
are in the localised configurations of the weakly interacting limit, given the
additive nature of the homotopy m,(8") = Z.

We investigated the "t Hooft-Polyakov magnetic monopole within the scope
of the defect classifications by the homotopy. Skyrmions were shown as the
description of the defects in the pion field of the nonzero torsion case but
with zero curvature, through the compatibility conditions based on the vanish-
ing Einstein tensor in three dimensions. We showed that the defects of the spin-
isospin system can be interpreted in the framework of the defects theory in the
Riemann-Cartan manifold.
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