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Abstract 
The SARS-CoV-2 lineage B.1.1.7, now designated Variant of Concern 202012/01 (VOC) by 
Public Health England, originated in the UK in late Summer to early Autumn 2020. We examine 
epidemiological evidence for this VOC having a transmission advantage from several 
perspectives. First, whole genome sequence data collected from community-based diagnostic 
testing provides an indication of changing prevalence of different genetic variants through time. 
Phylodynamic modelling additionally indicates that genetic diversity of this lineage has changed 
in a manner consistent with exponential growth. Second, we find that changes in VOC 
frequency inferred from genetic data correspond closely to changes inferred by S-gene target 
failures (SGTF) in community-based diagnostic PCR testing. Third, we examine growth trends in 
SGTF and non-SGTF case numbers at local area level across England, and show that the VOC 
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has higher transmissibility than non-VOC lineages, even if the VOC has a different latent period 
or generation time. Available SGTF data indicate a shift in the age composition of reported 
cases, with a larger share of under 20 year olds among reported VOC than non-VOC cases. 
Fourth, we assess the association of VOC frequency with independent estimates of the overall 
SARS-CoV-2 reproduction number through time. Finally, we fit a semi-mechanistic model 
directly to local VOC and non-VOC case incidence to estimate the reproduction numbers over 
time for each. There is a consensus among all analyses that the VOC has a substantial 
transmission advantage, with the estimated difference in reproduction numbers between VOC 
and non-VOC ranging between 0.4 and 0.7, and the ratio of reproduction numbers varying 
between 1.4 and 1.8. We note that these estimates of transmission advantage apply to a period 
where high levels of social distancing were in place in England; extrapolation to other 
transmission contexts therefore requires caution. 

 
Introduction 
 
A novel SARS-CoV-2 lineage, originally termed variant B.1.1.7, is rapidly expanding its 
geographic range and frequency in England. The lineage was detected in November 2020, and 
likely originated in September 2020 in the South East region of England. As of 20 December 
2020, the regions in England with the largest numbers of confirmed cases of the variant are 
London, the South East, and the East of England. The variant possesses a large number of 
non-synonymous substitutions of immunologic significance 1. The N501Y replacement on the 
spike protein has been shown to increase ACE2 binding 2,3 and cell infectivity in animal models4, 
while the P618H replacement on the spike proteins adjoins the furin-cleavage site 5. The variant 
also possesses a deletion at positions 69 and 70 of the spike protein (Δ69-70) which has been 
associated with diagnostic test failure for the ThermoFisher TaqPath probe targeting the spike 
protein 6. Whilst other variants with Δ69-70 are also circulating in the UK, the absence of 
detection of the S gene target in an otherwise positive PCR test increasingly appears to be a 
highly specific marker for the B.1.1.7 lineage. Surveillance data from national community testing 
(“Pillar 2”) showed a rapid increase in S-gene target failures (SGTF) in PCR testing for 
SARS-CoV-2 in November and December 2020, and the B.1.1.7 lineage has now been 
designated Variant of Concern (VOC) 202012/01 by Public Health England (PHE).  
 
Phylogenetic studies carried out by the UK COVID-19 Genomics Consortium (COG-UK)7 
provided the first indication that the VOC has an unusual accumulation of substitutions and was 
growing at a large rate relative to other circulating lineages. Here we analyse VOC whole 
genomes collected between October and 5 December 2020 and find that the rate of increase in 
the frequency of VOC is consistent with a transmission advantage over other circulating 
lineages in the UK. To substantiate these findings, we investigate time trends in the proportion 
of PCR tests exhibiting SGTF across the UK on ~275,000 test results as a biomarker of VOC 
infection, and examine the relationship between local epidemic growth and the frequency of the 
VOC. We demonstrate that increasing reproduction numbers (‘R’ values) are associated with 
increased SGTF frequency among reported cases, our biomarker of VOC infection, and confirm 
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this association through a variety of analytical approaches. Critically, we find evidence that 
non-pharmaceutical interventions (NPIs) were sufficient to control non-VOC lineages to 
reproduction numbers below 1 during the November 2020 lockdown in England, but that at the 
same time the NPIs were insufficient to control the VOC. 
 
 
Origins and expansion of VOC 202012/01 
 
We examined the time and location of sampling of 1,904 VOC whole genomes collected 
between October and 5 December 2020, combined with a genetic background of 48,128 
genomes collected over the same period. Sequences of the VOC were widely distributed across 
199 lower tier local authorities (LTLAs) in England, but highly concentrated in the South East 
(n=875), London (n=636) and East of England (n=293). Relative to this genetic background, the 
growth of the VOC lineage is consistent with it having a selective advantage over circulating 
SARS-CoV-2 variants in England (Figure 1A). While rapid growth of the variant was first 
observed in the South East, similar growth patterns are observed later in London, East of 
England, and now more generally across England. Across these regions, we estimate similar 
growth differences between the VOC and non-VOC lineages of +49% to 53% per generation 
(Supporting Table S1) by fitting a logistic growth model to the frequency of VOC sequence 
samples through time and adjusting for an approximate mean generation time of SARS-CoV-2 
of 6.5 days (see Supporting Methods) 8,9. 
 
S gene target failure in SARS-CoV-2 testing as a biomarker for the VOC 
 
The UK has a high throughput national testing system for community cases, based in a small 
number of large laboratories. We were able to extend our genomic analyses to epidemiologic 
case data, because the VOC lineage is not detected in the S-gene target in an otherwise 
positive PCR test (ThermoFisher TaqPath as performed in the UK national testing system). 
Several SARS-CoV-2 variants can result in SGTF, but since mid-November, more than 97% of 
Pillar 2 PCR tests showing SGTF are due to the VOC lineage 10. Before mid-November 2020, 
the frequency of SGTF among PCR positives was a poorer proxy for frequency of the VOC. We 
therefore developed a Gaussian Markov Random Field model (see Supplementary Information, 
Figure S1)  to predict the proportion of SGTF cases attributable to the VOC lineage by area and 
week, here termed the true positive rate (TPR), and the number of SGTF cases attributable to 
the VOC. In turn, the corresponding false-positives were attributed to the S-gene positive case 
(S+) category. 
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Trends in SARS-CoV-2 cases with S gene target failure that are attributed to the VOC 
 
SGTF data were available for 35% of Pillar 2 positive test results between November 26 to 
December 13, 2020. Given the greater abundance of SGTF data, a more detailed picture of the 
VOC frequency over time can be discerned after our TPR adjustments. Overall, empirical and 
estimated frequencies of TPR-adjusted SGTF cases show a similar pattern of expansion as 
frequencies estimated from genetic data in terms of time, region, and rate of growth (Figure 1D). 
As of December 13, SGTF is detected in all regions of England (Figure S2), and the estimated 
frequency of TPR-adjusted SGTF ranges from 15% in Yorkshire and the Humber to 85% in the 
South East, where the VOC was first detected. Changes in COVID-19 infections correlate with 
raw (not adjusted for TPR) SGTF cases on a regional basis. Figures 2 and S3 shows the time 
trends of SGTF (S-) cases, S-gene positive cases (S+) and total PCR positive cases by NHS 
England Sustainability and Transformation Plan (STP) areas (a geographic subdivision of NHS 
Regions). Visually, it is clear that while lockdown successfully controlled S+ cases in virtually 
every STP, S- case numbers increased during lockdown. 

 

 

Figure 1. Expansion and growth of the VOC 202012/01  lineage. A) The number of UK LTLAs 
reporting at least one sampled VOC genome. B) Empirical (solid) and estimated (dash) 
frequency of TPR-adjusted SGTF in three regions of England. C) Empirical (points) and 
estimated (line) frequency (log odds) of VOC inferred from genomic data by epidemiological 
week. D) Empirical (points) and estimated (line) frequency (log odds) of SGTF based on the 
same data as B. 
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Figure 2. Case trends in a subset of NHS STP areas. Total cases reported are shown as a thick 
line. A subset of these - those tested in the 3 largest “Lighthouse” laboratories - were tested for 
SGTF. The total cases line is coloured according to percentage S- among those tested. Counts of 
S+ and S- reported via the PHE SGSS system are shown by the thin lines. The dates of the second 
lockdown are indicated by the vertical red lines. Nine representative NHS STP areas from all 
regions of England are ordered by decreasing percentage S- in the most recent week of data. Raw 
SGTF data are shown here (not adjusted for TPR), so S- cases in earlier weeks include other 
non-VOC lineages, especially outside the East and South East of England. Plots for all STP areas 
are shown in Figure S3. 
 
Transmission advantage of the VOC 
 
To examine the differences between S- and S+ growth rates, we focus on epidemiological 
weeks 46-50 (8th November-12th December). We estimate the total S- and S+ in each STP and 
week by adjusting counts upwards in proportion to total cases reported in each STP and week. 
We then calculate the week on week growth factor in both S- and S+ cases by dividing the case 
numbers in week t+1  by the case numbers in week t. Given an assumed mean generation time 
of SARS-CoV-2 of 6.5 days9, we correct these weekly growth factors by raising them to the 
power of to ensure they can be interpreted as approximate reproduction numbers. For each7

6.5  
STP and week, we compute both the ratio and difference of the resulting empirical reproduction 
number of the S-negative cases to that of the S-positive cases (Figure 3). Overall, the median 
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multiplicative advantage is 1.74 for the VOC, and the median additive advantage is 0.63, 
showing a clear advantage of the VOC for both metrics. 
 

 
Figure 3. Empirical data analysis of the advantage in weekly growth factors (cases in week t+1 
divided by cases in week t) for the VOC versus non-VOC lineages. Each point represents either 
the ratio (left) or difference (right) of weekly growth factors for the VOC versus non-variant for an 
NHS England STP area and week, using the raw SGTF data shown in Figure S1 (not correcting for 
TPR). Colours and shapes differentiate epi weeks. Numbers above 1 on the top plot and above 0 
on the bottom plot show a transmission advantage. The blue line represents the mean advantage 
for a particular proportion of VOC among all cases, and the grey lines the 95% envelope. Scatter 
at low frequencies largely reflects statistical noise due to low counts. 
 
 
Paired growth rate trends of the VOC and non-VOC lineages demonstrate an increase in the 
reproduction number 
 
We next tested the hypothesis that the higher growth rates of the VOC compared to other 
circulating lineages might be due solely to shorter generation times (e.g. a shorter incubation 
period), rather than increased  transmissibility (R). To this end, we compared the number of 
NHS STP areas in which both VOC and non-VOC cases increased or decreased (Table 1). If 
the VOC had the same reproduction number as non-VOC but a shorter generation time, VOC 
cases are expected to grow faster than non-VOC cases in areas where non-VOC grew. 
However VOC cases are expected to decline  faster than non-VOC cases where non-VOC 
declined. Furthermore, areas where VOC grew but non-VOC declined would, on average, be 
equally balanced by areas where the opposite was true. That is, if only the generation interval of 
the VOC had shortened , the proportion of areas with positive growth of the VOC and negative 
growth of the non-VOC would be highly correlated with the proportion of areas with negative 
growth of the VOC and positive growth of the non-VOC. However, of 168 STP-weeks (42 STP 
areas, weekly growth factors for weeks 46-49) there were 97 STP-weeks where growth was 
observed in S- and decline was observed in S+, but only 1 STP-week where the opposite was 
true (Table 1), indicating strong evidence against S+ and S- reproduction numbers being equal 
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(McNemar’s Chi-square test with continuity correction test statistic 92.02, p  < 1e-15). Comparing 
the empirical distribution of growth factors from S+ and S- with the nonparametric 
Kolmogorov–Smirnov test results in rejecting the null hypothesis ( p  < 1e-15) that the two arise 
from the same probability distribution. 
 
Table 1. Contingency table of VOC and non-VOC weekly growth factors derived from raw SGTF 
data within 42 NHS STP areas for weeks 46-49, stratified by increasing (>1) and declining 
incidence( . The imbalance in off-diagonal elements gives strong evidence of increased)≤ 1  
transmissibility, even if the VOC had an altered generation time distribution. 

 
 
Share of age groups among VOC and non-VOC cases 
 
To assess differences in the age distribution of VOC versus non-VOC cases, we considered S- 
and S+ case numbers in weeks 46-51 across NHS STP regions. Case numbers were 
standardised for differences in the population age composition in each area, weighted to 
compare S- cases from each NHS STP region and each epidemiological week with an equal 
number of S+ cases from that same STP and week (a case-control design), and aggregated 
over STP weeks. Accounting for binomial sampling variation and variation by area and week, 
we observe significantly more S- cases, our biomarker of VOC cases, among individuals aged 
0-19 as compared to S+ cases, and significantly fewer S- cases among individuals aged 60-79 
(Figure 4). This trend is seen in each of the regions of England most affected by the VOC thus 
far (East of England, London, South East and Midlands), and similar differences are seen 
between the raw (non-case control weighted, and non-age-standardised) age distributions of S+ 
and S- cases.  
 

 

 OC  V > 1  OC  V ≤ 1  

on OC  n − V > 1  34 1 

on OC  n − V ≤ 1  97 36 
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Figure 4. Age distribution of S-gene negative (S-) and S-gene positive (S+) PCR-positive pillar 2 
cases from the SGSS dataset (not adjusted for TPR). Case numbers are weighted to compare S- 
cases from each NHS STP region and epidemiological week with an equal number of S+ cases 
from that STP and week (a case-control design), and standardised for differences in the age 
composition of each STP area. (A) Age distribution of S- and S+ cases. (B) Ratio of S- to S+ 
proportions of cases in each 10 year band. Results shown are for weeks 46-51. Ages were capped 
at 80. 95% empirical confidence intervals calculated by bootstrapping over STP areas and weeks, 
and sampling variation within STP areas and weeks. 
 
 
Regression analysis of VOC transmissibility 
 
To investigate the effect of VOC frequency on the overall time-varying reproduction number, Rt, 
we undertook a number of regression analyses. We conduct our analyses at two different 
spatial scales - lower tier local authority (LTLA) and NHS STP areas. For each, we estimated Rt 
by week and area using data on pillar 2 testing, deaths and hospitalisations using a previously 
described model 9,11. Figure 5 shows the empirical relationship between weekly estimates of R t at 
STP level and the frequency of the VOC estimates using genomic data. 
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Figure 5: Relationship between genomic frequency of the VOC lineage among all genomes plotted 
against the time varying reproduction number for each week. Each datapoint is an STP area.  
 
 
 
We apply a range of frequentist models with a bootstrapping procedure to account for 
non-normality in responses, as well as a Bayesian regression which explicitly models VOC 
frequency, such that it simultaneously informs the parameter for binomially-distributed 
observations of frequency and the R t estimates. The role of geography in explaining variance of 
Rt  was examined using both fixed and random effects. These models were applied to both 
genomic-based frequency estimates and TPR-adjusted SGTF proportions of pillar 2 cases for 
which S-gene data was available. Given this definition and the approximately 1 week generation 
time of SARS-CoV-2, we expect Rt to have stronger association with VOC frequency 1 week 
earlier. We therefore present regressions of R t against frequency at week t-1 for our default 
analysis (where t spans weeks 44-50), and a regression of R t against frequency at week t is 
provided in the Supplementary Information. 
 
Regression results are reported in Table 2 (Table S2 for sensitivity analysis). We estimate the 
additive effect on R t, i.e., the increase or decrease in R t (using R t as response in the linear 
model) due to the variant. As an example, with an additive effect size of 0.4, an area with an Rt 
of 0.8 without the VOC would have an R t of 1.2 if only the VOC was present. As expected, 
models which allow for fixed effects of week and region give lower effect sizes for the VOC than 
random effect models, given the latter constrain week and time effects more than fixed effect 
models, due to the assumptions that such effects arise from normal distributions. The Bayesian 
model results closely resemble those from the frequentist random effects model. 
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The results in Table 2 show a clear association between the VOC and R t. However, this 
analysis cannot prove causality. The estimated additive effect is specific to the conditions that 
prevailed in England during the time period examined.  
 
Table 2. Estimated additive change of reproduction numbers of VOC compared with other variants 
for different regression models, spatial resolutions, and data used to estimate the prevalence of 
the VOC. Analysis uses Rt estimates  from weeks 44-50 and data on the proportion of the VOC one 
week earlier, to take account of the generation time of SARS-CoV-2.  

 
 
Estimating reproduction numbers for VOC and non-VOC independently 
 
We estimated the reproduction number of the VOC via phylodynamic analysis of whole genome 
sequences from Pillar 2 national SARS-CoV-2 testing, sampled up to December 6, 2020. First, 
we fitted a non-parametric skygrowth  model 12 by maximum likelihood to 776 genomes that we 
selected from England in inverse proportion to the number of diagnosed cases sequenced in 
each region by week (see Supporting Methods). This model indicates that the effective 
population size of VOC 202012/01 grew at a relatively stable rate of 58% per week from 
September 20  to December 6, corresponding to a reproduction number of 1.59. Estimates of 
growth rate were insensitive to uncertainty in the molecular clock rate of evolution. Second, we 
fitted the model to genomes from four regions with more than fifty sequences, Kent (n=701), 
Greater London (n=606), Essex (n=131), and Norfolk (n=81). This regional analysis indicated 
growth rates ranging from 58% to 92% per week, corresponding to reproduction numbers 
between 1.56 and 1.95 (Figure S6).  Finally, we carried out a Bayesian non-parametric coalescent 
analysis using the Skygrid model 13 using the same set of 776 genomes. This analysis showed 
growth until the start of November followed by a plateau for the month of November coincident 
with the second English lockdown (Figure S7). This suggests the lockdown constrained growth 
of the VOC, but was insufficient to cause a reduction in incidence. To estimate parameter values 
we also estimated the initial growth rate of the VOC lineage under a parametric logistic growth 

 

Model Spatial 
Resolution 

Data for Variants Estimated effect [95% CI] 

Fixed STP Genomic 0.48 [0.31, 0.85] 

Random STP Genomic 0.67 [0.52, 1.11]  

Bayes STP Genomic 0.68 [0.44, 0.93] 

Fixed LTLA TPR-adjusted SGTF 0.42 [0.33, 0.58] 

Random LTLA TPR-adjusted SGTF 0.52 [0.45, 0.69] 

Fixed  STP TPR-adjusted SGTF 0.36 [0.11, 0.58] 

Random STP TPR-adjusted SGTF 0.47 [0.25, 0.70]  

Bayes STP TPR-adjusted SGTF 0.48 [0.31, 0.63] 
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coalescent model 14. Under this model we estimated a growth rate of 71.5 per year, corresponding to 
a doubling time of 3.7 days (95% CrI: 2.4 – 4.9) and a reproduction number of 2.27 (1.84 – 2.73). By 
comparison, a simple exponential growth model over this entire period yields a growth rate of 27.9 
with a doubling time of 9.1 days (7.4, 11.2) and reproductive number of 1.50 (1.40 – 1.60).  
 
In a parallel epidemiological analysis, we estimated VOC and non-VOC pillar 2 case numbers 
by STP area using TPR-corrected SGTF frequencies applied to overall PHE pillar 2 case 
numbers. We then estimate R t by week separately for VOC and non-VOC, using the same 
model previously used to generate overall (non lineage-stratified) R t estimates11. We first fit the 
unstratified model to estimate the infection ascertainment ratio (numbers of infections being 
identified as positive cases) and infection seeding (initial infections in each region). For seeding, 
we use the estimated infections from our unstratified model. The mean number of daily 
infections for week 42 and 43 are used for seeding both VOC and non-VOC models. The 
fraction of SGTF cases is used to distribute infections for seeding between VOC and non-VOC 
in weeks 42 and 43. We then compute R t estimates for weeks 45-50, to avoid the seeding 
assumptions affecting R t estimates. Figure 6A shows the mean posterior difference between R t 
estimates for VOC and non-VOC for week 48 and 50, while figure 6B shows plots median R t 
estimates for VOC and non-VOC across all NHS regions for weeks 45-50. The R t estimates for 
VOC are greater than those for non-VOC for 94% of STP-week pairs (points above the diagonal 
in Figure 6B). Figure S4 shows the mean posterior difference between R t estimates for VOC 
and non-VOC for all weeks 45-50, while Figure S5 shows the ratio of R t estimates. The mean R t 
difference across weeks 45-50 is 0.51 [95% CrI: -0.09 - 1.10] which was computed from the set 
of 42x6 (STP x week) posteriors of R t estimated for the VOC and non-VOC. The mean ratio of 
the estimated R t for the VOC and non-VOC was 1.56 [95%CI: 0.92 - 2.28] for the same period, 
see Figure S5. Aggregating across all STPs we find that the mean R t  during the second English 
lockdown across all STPs was 1.45 [0.91-1.89] for the VOC and 0.92 [0.86-1.06] for non-VOC 
strains.  
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Figure 6: (A) Map of the difference in median Rt  estimates for VOC and non-VOC variants for all 
STPs for weeks 48 and week 50. (B) Scatterplot of the reproduction numbers of VOC (S-) and 
non-VOC (S+) by STP and week. Point size indicates frequency of the VOC, while shape and 
colour signify week and NHS region, respectively. 
 
 
Discussion 
 
While evidence has accumulated that substitutions associated with the B.1.1.7 lineage are 
associated with significant changes in virus phenotype 2–4,15, assessing the extent to which these 
changes lead to meaningful differences in transmission between humans is challenging and 
cannot be evaluated experimentally. When randomised experimental studies are not possible, 
observational studies provide stronger evidence if consistent patterns are seen in multiple 
locations and at multiple times. While rapidly increasing frequency of a new lineage within a viral 
population is consistent with a selective advantage, it is also possible that increases in 
frequency may be caused by founder effects or genetic drift, especially for genetic variants 
which are repeatedly introduced from overseas16,17.  But in contrast to previous genetic variants 
which have achieved high prevalence, we see expansion of the VOC from within the United 
Kingdom and a pattern of faster epidemic growth in tandem with expansion of the VOC has 
been repeated in multiple regions.  In this paper we have focussed on spatiotemporally stratified 
analyses using a variety of statistical approaches to evaluate the relationship between 
SARS-CoV-2 transmission intensity and the frequency of the VOC, B.1.1.7 during 
November-December 2020 in different UK regions.  
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Assessment of the transmission characteristics of the VOC (B.1.1.7) was aided by the high 
correlation between its frequency and the occurrence of S-gene target failure (SGTF) in routine 
PCR testing of community cases of COVID-19 associated with the Δ69-70 deletion present in 
the VOC lineage (Figure 1 and S1). S-gene positivity results were available for over a third of all 
PCR-positive community COVID-19 cases for November and December 2020, allowing us to 
use SGTF frequency as a proxy for VOC frequency, and thus estimate VOC and non-VOC 
incidence trends by region over that time period. We see a very clear visual association 
between SGTF frequency and epidemic growth in nearly all areas (Figures 2 and S3), which is 
reinforced by empirical assessment of area-specific week on week growth factors of VOC and 
non-VOC case numbers (Figure 3) and by formal regression analyses of the association 
between estimates of local R t and VOC frequency estimated from SGTF data (Table 2).  
 
Finally, we used the SGTF data to independently estimate R t by region and week for the VOC 
and non-VOC variants (Figures 6 and S4) and derived similar estimates for the increase in Rt 
associated with the VOC. This latter analysis is perhaps the most powerful, as no parametric 
assumptions are made about the relationship between R t of the VOC and that of non-VOC 
strains. 
 
Phylodynamic modelling provides additional information about growth of the VOC in October 
during a period when SGTF data is sparse. Although not apparent in all analyses, this suggests 
that the VOC expanded rapidly in October, with growth slowing (but not reversing) during 
national lockdown in November (Figures S6 and S7).  
 
We were also able to rule out the hypothesis that increased incidence growth rates in the VOC 
are solely due to a change in the latent period or generation time distribution, but not the 
reproduction number itself (Table 1), since we see a large and statistically significant imbalance 
between regions where the VOC increased and where the non-VOC decreased, and vice-versa. 
A change solely in, for instance, the latent period would not be expected to change the direction 
of incidence growth.  
 
We quantified the transmission advantage of the VOC relative to non-VOC lineages in two 
ways: as an additive increase in R that ranged between 0.4 and 0.7, and alternatively as a 
multiplicative increase in R that ranged between a 50% and 75% advantage. We were not able 
to distinguish between these two approaches in goodness-of-fit, and either is plausible 
mechanistically. A multiplicative transmission advantage would be expected if transmissibility 
had increased in all settings and individuals, while an additive advantage might reflect increases 
in transmissibility in specific subpopulations or contexts. More generally, the temporal context is 
important; these estimates of transmission advantage apply to a period where high levels of 
social distancing were in place in England; extrapolation to other transmission contexts, without 
detailed knowledge of the drivers of transmission, requires caution.  
 
We observe a small but statistically significant shift towards under 20s being more affected by 
the VOC  than non-VOC variants (Figure 4), even after controlling for variation by week and 
region. However, as with our earlier results, this observation does not resolve the mechanism 
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that might underlie these differences. Differences between the age-distributions of VOC and 
non-VOC community cases  may result from the overall increase in transmissibility of the VOC 
(especially during a time where lockdown was in force but schools were open), increased 
susceptibility of under 20s, or more apparent symptoms (and thus a propensity to seek testing) 
for the VOC in that age range.  
 
There are a number of limitations to our analysis. The genomic and epidemiological data 
analysed was collected as part of routine surveillance, and thus may not be an entirely 
representative sample of SARS-CoV-2 infections in England over the time period considered. 
We also focussed on relatively simple, data-driven analyses using relatively simple models 
making  parsimonious assumptions, rather than, for instance, attempting to model the long-term 
transmission dynamics of VOC and non-VOC lineages more mechanistically. We also did not 
attempt to explicitly model the spatiotemporal correlation intrinsic in infectious disease data, 
especially when considering the spread of a new variant from a point source. Doing so is an 
important priority for future work, but will require explicit incorporation of data on population 
movement patterns.  
 
Early versions of our analyses informed the UK government policy response to this VOC and 
that of other countries. The substantial transmission advantage we have estimated the VOC to 
have over prior viral lineages poses major challenges for ongoing control of COVID-19 in the UK 
and elsewhere in the coming months. Social distancing measures will need to be more stringent 
than they would have otherwise. A particular concern is whether it will be possible to maintain 
control over transmission while allowing schools to reopen in January 2021. These policy 
questions will be informed by the ongoing urgent epidemiological investigation into this variant, 
most notably examining evidence for any changes in severity, but also giving more nuanced 
understanding into transmissibility changes, for instance in the household setting.  
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Supplementary Information 
 
Methods  
 
All code and data is available at https://github.com/mrc-ide/covid19-variant-N501Y 
 
Logistic growth model applied to variant frequency data  
 
The logistic growth model fitted to VOC frequency data arises from a simple mechanistic model 
for competition between two strains. Let established lineages have a reproduction number R 
and let the VOC have reproduction number R (1+s). According to this model, the log odds of 
observing a variant over time  will be proportional to ( R /g )st, where R  is assumed to be constant 
over weeks 44-49, g  is the generation time, s is a selection coefficient (assumed to be constant) 
and t is time.  If these conditions are met, s can be interpreted as a multiplicative change in the 
reproduction number or  as a change in the generation time or as some combination of these 
factors. From available data on times of sampling each variant, the compound parameter ( R /g)s 
can be estimated. An approximate estimate of s  is obtained by treating  R=1  and generation time 
g =6.5 days as a constant for weeks 44-49. In the text, we refer to s as the change in growth per 
generation , and is comparable to multiplicative changes in R t estimated using other methods. 
 
Phylodynamic analysis  
 
Analysis was based on Pillar 2 whole genome sequences with known Upper Tier Local Authority 
(UTLA). Maximum likelihood non-parametric phylodynamic analysis was carried out by: 1) 
estimating a maximum likelihood phylogeny in IQtree 18 (HKY model of sequence evolution); 2) 
We removed duplicated identical sequences and estimated a time-scaled phylogeny using 
treedater19 using a strict molecular clock. The molecular clock rate of evolution was constrained 
to 0.0005 - 0.0015 substitutions per site per year. Small branch lengths in the tree were 
collapsed and polytomies randomly resolved to produce 20 new variations on the dated ML tree. 
3) The skygrowth model was then fitted to these dated trees with parameters 64 time steps and 
tau bounded between 0.0025-20. Growth rate estimates were translated to reproduction 
numbers using the method of Wallinga and Lipsitch 20 in the epitrix  R package and using serial 
intervals from Flaxman et al.9 The main text reports the median growth rate over time. A 
sensitivity analysis was carried out with the molecular clock rate fixed at 0.001 substitutions per 
site per year which yielded only marginally different estimates of the median growth rate.  
 
Sequence sample weights were used to select samples for phylodynamic modelling. Weights, 
assigned to sequence samples according to their UTLA and their collection date, correspond to 
the number of confirmed cases represented by each sequence in a UTLA relative to other 
UTLAs on the same date. To smooth over sparsity, case and sample counts were summed over 
the fourteen days prior to the date. Confirmed cases were accessed from the ONS API 
(https://api.coronavirus.data.gov.uk). Code to compute sequence sample weights is available at 
https://github.com/robj411/sequencing_coverage . 
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Bayesian coalescent phylodynamic analysis was performed using BEAST v1.10.4 14 employing 
the Skygrid non-parametric approach 21 and exponential and logistic growth parametric models. 
A Jukes-Cantor model of substitution and a strict molecular clock were assumed. MCMC chains 
were run for 100M states, removing 10M as ‘burn-in’ and then thinning to 9000 samples from 
the posterior. Parameters were summarised and demographic curves reconstructed using 
Tracer v1.7.2 22.  
 
SGTF as a biomarker for the VOC and frequency of SGTF over time  
 
Data on SGTF among pillar 2 tests was obtained from the 3 largest (“Lighthouse”) PCR testing 
laboratories and integrated into the PHE Second Generation Surveillance System (SGSS) 
database. We also obtained the total number of cases reported by Public Health England. 
Application of SGTF as a diagnostic for the VOC provides a large advantage over genomic 
sequencing in terms of cost, speed, and the sample size of available test results. We extracted 
275,571 S target positive (S+) and 96,070 S target negative (S-) test results collected between 1 
October and 19 December, 2020 and examined the potential to use SGTF cases (S-) as a 
biomarker for the VOC lineage. While the tests are not a representative sample of infections 
over this time period, they are a representative sample of tests within a given region and week 
and thus provide information about the relative abundance of the VOC versus other variants 
over time and between regions.  
 
Other lineages have been observed to carry Δ69-70 which is associated with SGTF and which 
would have a similar impact on the TaqPath assay. The diagnostic specificity of SGTF will 
therefore vary over time and space as it depends on the abundance of other lineages with 
Δ69-70. This deletion is mostly found in global lineage B.1.258 and is highly linked with the 
spike N439K variant23. Lineage B.1.258 has circulated in the UK since June 2020 where it is 
now widespread. However, the frequency of this variant has been relatively stable since 
October 2020.  
 
In order to capture diagnostic uncertainty with SGTF, we fitted a spatio-temporal model of the 
frequency of the VOC relative to other variants carrying Δ69-70. We fitted a generalized additive 
model 24,25 to counts of genomes classified 26 as belonging to the VOC lineage or genomes which 
do not belong to the VOC lineage but still carry Δ69-70. Counts were tabulated by LTLA and epi 
week. We used a cubic spline to model trends over time, and correlation between neighbouring 
LTLAs was modeled with a Gaussian Markov Random Field (GMRF). This model was used to 
predict the true positive rate (TPR) - the probability that a sample collected at a particular time 
and place belongs to the VOC lineage, given that it carries  Δ69-70. Figure S1 shows how this 
prediction has changed over weeks spanning November 2020. From week 50 onwards, we 
assumed the TPR was 1 across England. The fitted model thus provided an estimate of the true 
positive rate (TPR) of using SGTF as a proxy for VOC frequency as a function of time and 
region in England (Figure S2).  
 
Regression analysis of VOC transmissibility 
 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.30.20249034doi: medRxiv preprint 

https://paperpile.com/c/1A10Ln/7Ze8
https://paperpile.com/c/1A10Ln/3b9c
https://paperpile.com/c/1A10Ln/nEJm
https://paperpile.com/c/1A10Ln/aeyj
https://paperpile.com/c/1A10Ln/phA5+5xTs
https://paperpile.com/c/1A10Ln/2MlA


 

Using reported COVID-19 PCR-positive case counts and deaths, we estimated the time-varying 
reproduction numbers R t for epidemiological weeks 44-50 in each LTLA and STP in England. 
These estimates were obtained from a previously developed 11 Bayesian semi-mechanistic 
transmission model with a latent weekly random walk process that does not include underlying 
factors that drive transmission. The STP model is based on pillar 2 cases only, and includes 
hospital admissions as an additional input; the LTLA model is based on both pillar 1 and pillar 2 
data. Further model information can be found in previous publications 9,27. These R t estimates 
refer to the reproduction number of the infections that gave rise to the infections at time t . Given 
this definition and the approximately 1 week generation time of SARS-CoV-2, we would expect 
Rt to be most closely associated with VOC frequency 1 week earlier. We therefore present 
regressions of R t against frequency at week t-1 for our default analysis (where t spans weeks 
44-50), but present results for regression of R t against frequency at week t as a sensitivity 
analysis in Supplementary Information. 
 
We consider two data sources when estimating the proportion of the VOC: Genomic-based 
frequency estimates and TPR-adjusted SGTF proportions of pillar 2 cases for which S-gene 
data was available. For the SGTF-based estimates, frequency estimates were available for all 
STPs and LTLAs for the weeks 43-49 (294 STP-weeks in total). When using genomic data, 7 
STP-weeks in the week range 43-49 had no sampled genomes, leaving 287 STP-weeks for 
analysis, for which we had an average of 137 genomes per STP week (of which on average 7 
were the VOC).  
 
We use two types of frequentist models. The first uses a fixed effect for each area, the second 
uses a random effect for each area. Fixed effects of epidemiological week were included in both 
cases. Confidence intervals for the fixed and random effects models were computed through a 
bootstrapping method which resamples the areas with replacement and also samples the 
counts of VOC in each week/area pair based on the observed counts. This bootstrap aims to 
account for potential skewness and non-normality of responses, dependence within areas and 
the randomness in the proportion of the VOC sampled within an area. When using 
genomic-based frequency estimates we excluded STP-weeks that had fewer than 5 genetic 
profiles, as these were deemed to not give reliable estimates of the proportion of VOC. This 
removed a further 14 out of the 287  STP-weeks from those analyses.  
 
We also implemented a Bayesian regression model 28 at STP level, taking into account 
uncertainty in the frequency estimates and uncertainty in the R t estimates. VOC frequency was 
modelled explicitly, such that it simultaneously informed the parameter for binomially-distributed 
observations of frequency and the R t estimates. The regression for R t included terms for the 
VOC frequency, the week (modelled with a smooth spline) and the area as a factor. The formula 
to describe the binomial frequency data includes a linear function of time with an 
area-dependent slope, and was fitted to the genome counts and the counts of S-negative cases 
separately.  
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Table S1.  Estimated growth difference per generation of B.1.1.7 by 
English administrative region based on a maximum likelihood estimation 
of logistic growth in variant frequency and assuming a 6.5 day generation 
time and Rt=1 for established lineages. Confidence intervals are based on 
likelihood profiles 

 MLE %Growth difference 
per generation (95% 
confidence interval) 

SGTF MLE 
%Growth difference 
per generation 

South East 49 (43-55) 54 

London 49 (43-54) 60 

East of England 53 (44-62) 67 

West Midlands  59 

East Midlands  56 

North West  58 

Yorkshire and  
The Humber 

 40 

North East  75 

South West   48 
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Table S2. Estimated additive change of reproduction numbers of VOC compared with non-VOC 
using different regression models, spatial resolutions, and data to estimate the prevalence of the 
VOC. Analyses use data on the proportion of the VOC and estimates of Rt in weeks 44-50. 

 

  

 

Model Spatial 
Resolution 

Data for Variants Estimated effect [95% CI] 

Fixed STP Genomic 0.34 [0.16, 0.60] 

Random STP Genomic 0.52 [0.35, 0.85] 

Bayes STP Genomic 0.54 [0.33, 0.77] 

Fixed LTLA TPR-adjusted SGTF 0.45 [0.40, 0.59] 

Random LTLA TPR-adjusted SGTF 0.53 [0.49, 0.67] 

Fixed  STP TPR-adjusted SGTF 0.35 [0.15, 0.56] 

Random STP TPR-adjusted SGTF 0.44 [0.27, 0.65] 

Bayes STP TPR-adjusted SGTF 0.43 [0.30, 0.56] 
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Figure S1 | Estimate of true positive rates for classification of B.1.1.7 infection given SGTF 
result (S-) as a function of time and UK region. The colour gradient shows the probability of 
sampling a B.1.1.7 sequence conditional on sampling any sequence with Δ69-70.  
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Figure S2. Empirical (point) and estimated (line) frequencies of TPR-adjusted SGTF frequencies 
over time. The size of points correspond to the number of samples observed by day. 
Confidence intervals show 95% estimated sampling error for daily proportions. 
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Figure S3. Case trends in all NHS STP areas, ordered by decreasing frequency of S- in the last 
week shown. Total cases reported are shown as a thick line. A subset of these - those tested in 
the 3 largest “Lighthouse” laboratories - were tested for SGTF. The total cases line is coloured 
according to percentage S- among those tested. Counts of S+ and S- reported via the PHE 
SGSS system are shown by the thin lines. The dates of the second lockdown are indicated by 
the vertical red lines. Raw SGTF data are shown here (not adjusted for TPR), so S- cases in 
earlier weeks include other non-VOC lineages, especially outside the East and South East of 
England. 
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Figure S4:  Map of the  difference in median Rt estimates for VOC and non-VOC variants for all 
STPs between week 45 to week 50. The darker orange color indicates the additive advantage 
VOC has over non-VOC variant for Rt, whereas the darker green color shows the advantage for 
non-VOC variant over VOC.  
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Figure S5. Map of the ratio of median Rt estimates for VOC and non-VOC variants for all STPs 
between week 45 to week 50. Darker color indicates the higher multiplicative advantage for VOC 
variant in comparison to the non-VOC variant. The mean of the ratio between R estimates for S- 
and S+ for all posterior samples across weeks 45 to 50 and all STPs is 1.56, with 95% CI [0.92 - 
2.28]1 . 
 
  

1 We calculated this as the posterior mean and 2.5-97.5 quantiles of the set of 42x6 posterior medians of 
the distributions (R_{S-} - R_{S+}), one per STP-week 
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Figure S6.  Maximum likelihood skygrowth estimates of the effective population size of the VOC 
through time in England and in four areas of England with more than 80 whole genome 
sequences. In the upper right panel the molecular clock rate of evolution was fixed at 0.001 
substitutions per site per year. In all other analyses the rate was estimated and bound between 
0.0005 and 0.0015 substitutions per site per year.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.30.20249034doi: medRxiv preprint 



 

  

 

 

Figure S7. Bayesian estimates of effective population size through time based on 776 genomes 
sampled between October and December 6. Top and bottom panels show estimates based on a 
Bayesian skygrid model overlaid with fits of different parametric models. A) Estimates based on 
a logistic growth model. B) Estimates from an exponential growth model.  
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Zhang 93 , Miss Marta Gallis 93  and Miss Stavroula F Louka 93 . 
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Samples and logistics, and Software and analysis tools: 
Dr Igor Starinskij 48 . 
  
Sequencing and analysis, and Software and analysis tools: 
Dr Chris J Illingworth 47 , Dr Chris Jackson 47 , Ms Marina Gourtovaia 99 , Gerry Tonkin-Hill 99 , Kevin Lewis 99 , 
Dr Jaime M Tovar-Corona 99 , Dr Keith James 99 , Dr Laura Baxter 94 , Dr Mohammad T. Alam 94 , Dr Richard 
J Orton 48 , Dr Joseph Hughes 48 , Dr Sreenu Vattipally 48 , Dr Manon Ragonnet-Cronin 39 , Dr Fabricia F. 
Nascimento 39 , Mr David Jorgensen 39 , Ms Olivia Boyd 39 , Ms Lily Geidelberg 39 , Dr Alex E Zarebski 23 , Dr 
Jayna Raghwani 23 , Dr Moritz UG Kraemer 23 , Joel Southgate 10,  69 , Dr Benjamin B Lindsey 93  and Mr 
Timothy M Freeman 93 . 
  
Software and analysis tools, and Visualisation: 
Jon-Paul Keatley 99 , Dr Joshua B Singer 48 , Leonardo de Oliveira Martins 70 , Dr Corin A Yeats 14 , Dr Khalil 
Abudahab 14,  114 , Mr Ben EW Taylor 14,  114  and Mirko Menegazzo 14 . 
  
Leadership and supervision: 
Prof John Danesh 99 , Wendy Hogsden 46 , Dr Sahar Eldirdiri 21 , Mrs Anita Kenyon 21 , Dr Jenifer Mason 43 , 
Mr Trevor I Robinson 43 , Prof Alison Holmes 38,  103 , Dr James Price 38,  103 , Prof John A Hartley 82 , Dr Tanya 
Curran 3 , Dr Alison E Mather 70 , Dr Giri Shankar 69 , Dr Rachel Jones 69 , Dr Robin Howe 69  and Dr Sian 
Morgan 9 . 
  
Metadata curation: 
Dr Elizabeth Wastenge 53 , Dr Michael R Chapman 34,  88,  99 , Mr Siddharth Mookerjee 38,  103 , Dr Rachael 
Stanley 54 , Mrs Wendy Smith 15 , Prof Timothy Peto 59 , Dr David Eyre 59 , Dr Derrick Crook 59 , Dr Gabrielle 
Vernet 33 , Dr Christine Kitchen 10 , Huw Gulliver 10 , Dr Ian Merrick 10 , Prof Martyn Guest 10 , Robert Munn 10 , 
Dr Declan T Bradley 63,  72 , and Dr Tim Wyatt 63 . 
  
Project administration: 
Dr Charlotte Beaver 99 , Luke Foulser 99 , Sophie Palmer 88 , Carol M Churcher 88 , Ellena Brooks 88 , Kim S 
Smith 88 , Dr Katerina Galai 88 , Georgina M McManus 88 , Dr Frances Bolt 38,  103 , Dr Francesc Coll 19 , Lizzie 
Meadows 70 , Dr Stephen W Attwood 23 , Dr Alisha Davies 69 , Elen De Lacy 69 , Fatima Downing 69 , Sue 
Edwards 69 , Dr Garry P Scarlett 76 , Mrs Sarah Jeremiah 83  and Dr Nikki Smith 93 . 
  
Samples and logistics: 
Danielle Leek 88 , Sushmita Sridhar 88,  99 , Sally Forrest 88 , Claire Cormie 88 , Harmeet K Gill 88 , Joana Dias 88 , 
Ellen E Higginson 88 , Mailis Maes 88 , Jamie Young 88 , Michelle Wantoch 7 , Sanger Covid Team 
(www.sanger.ac.uk/covid-team) 99 , Dorota Jamrozy 99 , Stephanie Lo 99 , Dr Minal Patel 99 , Verity Hill 90 , Ms 
Claire M Bewshea 91 , Prof Sian Ellard 73,  91 , Dr Cressida Auckland 73 , Dr Ian Harrison 66 , Dr Chloe Bishop 
66 , Dr Vicki Chalker 66 , Dr Alex Richter 85 , Dr Andrew Beggs 85 , Dr Angus Best 86 , Dr Benita Percival 86 , Dr 
Jeremy Mirza 86 , Dr Oliver Megram 86 , Dr Megan Mayhew 86 , Dr Liam Crawford 86 , Dr Fiona Ashcroft 86 , Dr 
Emma Moles-Garcia 86 , Dr Nicola Cumley 86 , Mr Richard Hopes 64 , Dr Patawee Asamaphan 48 , Mr Marc O 
Niebel 48 , Prof Rory N Gunson 100 , Dr Amanda Bradley 52 , Dr Alasdair Maclean 52 , Dr Guy Mollett 52 , Dr 
Rachel Blacow 52 , Mr Paul Bird 16 , Mr Thomas Helmer 16 , Miss Karlie Fallon 16 , Dr Julian Tang 16 , Dr 
Antony D Hale 49 , Dr Louissa R Macfarlane-Smith 49 , Katherine L Harper 49 , Miss Holli Carden 49 , Dr 
Nicholas W Machin 45,  64 , Ms Kathryn A Jackson 92 , Dr Shazaad S Y Ahmad 45,  64 , Dr Ryan P George 45 , Dr 
Lance Turtle 92 , Mrs Elaine O'Toole 43 , Mrs Joanne Watts 43 , Mrs Cassie Breen 43 , Mrs Angela Cowell 43 , 
Ms Adela Alcolea-Medina 32,  96 , Ms Themoula Charalampous 12,  42 , Amita Patel 11 , Dr Lisa J Levett 35 , Dr 
Judith Heaney 35 , Dr Aileen Rowan 39 , Prof Graham P Taylor 39 , Dr Divya Shah 30 , Miss Laura Atkinson 30 , 
Mr Jack CD Lee 30 , Mr Adam P Westhorpe 82 , Dr Riaz Jannoo 82 , Dr Helen L Lowe 82 , Miss Angeliki 
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Karamani 82 , Miss Leah Ensell 82 , Mrs Wendy Chatterton 35 , Miss Monika Pusok 35 , Mrs Ashok Dadrah 75 , 
Miss Amanda Symmonds 75 , Dr Graciela Sluga 44 , Dr Zoltan Molnar 72 , Mr Paul Baker 79 , Prof Stephen 
Bonner 79 , Ms Sarah Essex 79 , Dr Edward Barton 56 , Ms Debra Padgett 56 , Ms Garren Scott 56 , Ms Jane 
Greenaway 57 , Dr Brendan AI Payne 50 , Dr Shirelle Burton-Fanning 50 , Dr Sheila Waugh 50 , Dr Veena 
Raviprakash 17 , Ms Nicola Sheriff 17 , Ms Victoria Blakey 17 , ms Lesley-Anne Williams 17 , Dr Jonathan 
Moore 27 , Ms Susanne Stonehouse 27 , Dr Louise Smith 55 , Dr Rose K Davidson 89 , Dr Luke Bedford 26 , Dr 
Lindsay Coupland 54 , Ms Victoria Wright 18 , Dr Joseph G Chappell 97 , Dr Theocharis Tsoleridis 97 , Prof 
Jonathan Ball 97 , Mrs Manjinder Khakh 15 , Dr Vicki M Fleming 15 , Dr Michelle M Lister 15 , Dr Hannah C 
Howson-Wells 15 , Dr Louise Berry 15 , Dr Tim Boswell 15 , Dr Amelia Joseph 15 , Dr Iona Willingham 15 , Dr 
Nichola Duckworth 60 , Dr Sarah Walsh 60 , Dr Emma Wise 2, 111 , Dr Nathan Moore 2, 111 , Miss Matilde Mori 2, 
108,  111 , Dr Nick Cortes 2, 111 , Dr Stephen Kidd 2, 111 , Dr Rebecca Williams 33 , Laura Gifford 69 , Miss Kelly 
Bicknell 61 , Dr Sarah Wyllie 61 , Miss Allyson Lloyd 61 , Mr Robert Impey 61 , Ms Cassandra S Malone 6 , Mr 
Benjamin J Cogger 6 , Nick Levene 62 , Lynn Monaghan 62 , Dr Alexander J Keeley 93 , Dr David G Partridge 
78,  93 , Dr Mohammad Raza 78,  93 , Dr Cariad Evans 78,  93  and Dr Kate Johnson 78,  93 . 
   
Sequencing and analysis: 
Emma Betteridge 99 , Ben W Farr 99 , Scott Goodwin 99 , Dr Michael A Quail 99 , Carol Scott 99 , Lesley Shirley 
99 , Scott AJ Thurston 99 , Diana Rajan 99 , Dr Iraad F Bronner 99 , Louise Aigrain 99 , Dr Nicholas M Redshaw 
99 , Dr Stefanie V Lensing 99 , Shane McCarthy 99 , Alex Makunin 99 , Dr Carlos E Balcazar 90 , Dr Michael D 
Gallagher 90 , Dr Kathleen A Williamson 90 , Thomas D Stanton 90 , Ms Michelle L Michelsen 91 , Ms Joanna 
Warwick-Dugdale 91 , Dr Robin Manley 91 , Ms Audrey Farbos 91 , Dr James W Harrison 91 , Dr Christine M 
Sambles 91 , Dr David J Studholme 91 , Dr Angie Lackenby 66 , Dr Tamyo Mbisa 66 , Dr Steven Platt 66 , Mr 
Shahjahan Miah 66 , Dr David Bibby 66 , Dr Carmen Manso 66 , Dr Jonathan Hubb 66 , Dr Gavin Dabrera 66 , Dr 
Mary Ramsay 66 , Dr Daniel Bradshaw 66 , Dr Ulf Schaefer 66 , Dr Natalie Groves 66 , Dr Eileen Gallagher 66 , 
Dr David Lee 66 , Dr David Williams 66 , Dr Nicholas Ellaby 66 , Hassan Hartman 66 , Nikos Manesis 66 , Vineet 
Patel 66 , Juan Ledesma 67 , Ms Katherine A Twohig 67 , Dr Elias Allara 64,  88 , Ms Clare Pearson 64,  88 , Mr 
Jeffrey K. J. Cheng 94 , Dr Hannah E. Bridgewater 94 , Ms Lucy R. Frost 94 , Ms Grace Taylor-Joyce 94 , Dr 
Paul E Brown 94 , Dr Lily Tong 48 , Ms Alice Broos 48 , Mr Daniel Mair 48 , Mrs Jenna Nichols 48 , Dr Stephen N 
Carmichael 48 , Dr Katherine L Smollett 40 , Dr Kyriaki Nomikou 48 , Dr Elihu Aranday-Cortes 48 , Ms Natasha 
Johnson 48 , Dr Seema Nickbakhsh 48,  68 , Dr Edith E Vamos 92 , Dr Margaret Hughes 92 , Dr Lucille Rainbow 
92 , Mr Richard Eccles 92 , Ms Charlotte Nelson 92 , Dr Mark Whitehead 92 , Dr Richard Gregory 92 , Mr 
Matthew Gemmell 92 , Ms Claudia Wierzbicki 92 , Ms Hermione J Webster 92 , Ms Chloe L Fisher 28 , Mr 
Adrian W Signell 20 , Dr Gilberto Betancor 20 , Mr Harry D Wilson 20 , Dr Gaia Nebbia 12 , Dr Flavia Flaviani 31 , 
Mr Alberto C Cerda 96 , Ms Tammy V Merrill 96 , Rebekah E Wilson 96 , Mr Marius Cotic 82 , Miss Nadua 
Bayzid 82 , Dr Thomas Thompson 72 , Dr Erwan Acheson 72 , Prof Steven Rushton 51 , Prof Sarah O'Brien 51 , 
David J Baker 70 , Steven Rudder 70 , Alp Aydin 70 , Dr Fei Sang 18 , Dr Johnny Debebe 18 , Dr Sarah Francois 
23 , Dr Tetyana I Vasylyeva 23 , Dr Marina Escalera Zamudio 23 , Mr Bernardo Gutierrez 23 , Dr Angela 
Marchbank 10 , Joshua Maksimovic 9 , Karla Spellman 9 , Kathryn McCluggage 9 , Dr Mari Morgan 69 , Robert 
Beer 9 , Safiah Afifi 9 , Trudy Workman 10 , William Fuller 10 , Catherine Bresner 10 , Dr Adrienn Angyal 93 , Dr 
Luke R Green 93 , Dr Paul J Parsons 93 , Miss Rachel M Tucker 93 , Dr Rebecca Brown 93  and Mr Max 
Whiteley 93 . 
  
Software and analysis tools: 
James Bonfield 99 , Dr Christoph Puethe 99 , Mr Andrew Whitwham 99 , Jennifier Liddle 99 , Dr Will Rowe 41 , Dr 
Igor Siveroni 39 , Dr Thanh Le-Viet 70  and Amy Gaskin 69 . 
  
Visualisation: 
Dr Rob Johnson 39 . 
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1  Barking, Havering and Redbridge University Hospitals NHS Trust, 2  Basingstoke Hospital, 3  Belfast 

Health & Social Care Trust, 4  Betsi Cadwaladr University Health Board, 5  Big Data Institute, Nuffield 

Department of Medicine, University of Oxford, 6 Brighton and Sussex University Hospitals NHS Trust, 7 

Cambridge Stem Cell Institute, University of Cambridge, 8 Cambridge University Hospitals NHS 

Foundation Trust, 9  Cardiff and Vale University Health Board, 10 Cardiff University, 11 Centre for Clinical 

Infection & Diagnostics Research, St. Thomas' Hospital and Kings College London, 12 Centre for Clinical 

Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS 

Foundation Trust, 13 Centre for Enzyme Innovation, University of Portsmouth (PORT), 14 Centre for 

Genomic Pathogen Surveillance, University of Oxford, 15  Clinical Microbiology Department, Queens 

Medical Centre, 16  Clinical Microbiology, University Hospitals of Leicester NHS Trust, 17  County Durham 

and Darlington NHS Foundation Trust, 18  Deep Seq, School of Life Sciences, Queens Medical Centre, 

University of Nottingham, 19 Department of Infection Biology, Faculty of Infectious & Tropical Diseases, 

London School of Hygiene & Tropical Medicine, 20  Department of Infectious Diseases, King's College 

London, 21 Department of Microbiology, Kettering General Hospital, 22  Departments of Infectious 

Diseases and Microbiology, Cambridge University Hospitals NHS Foundation Trust; Cambridge, UK, 23 

Department of Zoology, University of Oxford, 24 Division of Virology, Department of Pathology, University 

of Cambridge, 25  East Kent Hospitals University NHS Foundation Trust, 26 East Suffolk and North Essex 

NHS Foundation Trust, 27  Gateshead Health NHS Foundation Trust, 28  Genomics Innovation Unit, Guy's 

and St. Thomas' NHS Foundation Trust, 29 Gloucestershire Hospitals NHS Foundation Trust, 30 Great 

Ormond Street Hospital for Children NHS Foundation Trust, 31 Guy's and St. Thomas’ BRC, 32 Guy's 

and St. Thomas’ Hospitals, 33  Hampshire Hospitals NHS Foundation Trust, 34  Health Data Research UK 

Cambridge, 35 Health Services Laboratories, 36 Heartlands Hospital, Birmingham, 37 Hub for 

Biotechnology in the Built Environment, Northumbria University, 38 Imperial College Hospitals NHS Trust, 

39  Imperial College London, 40  Institute of Biodiversity, Animal Health & Comparative Medicine, 41 

Institute of Microbiology and Infection, University of Birmingham, 42 King's College London, 43  Liverpool 

Clinical Laboratories, 44  Maidstone and Tunbridge Wells NHS Trust, 45 Manchester University NHS 

Foundation Trust, 46 Microbiology Department, Wye Valley NHS Trust, Hereford, 47  MRC Biostatistics 

Unit, University of Cambridge, 48 MRC-University of Glasgow Centre for Virus Research, 49 National 

Infection Service, PHE and Leeds Teaching Hospitals Trust, 50 Newcastle Hospitals NHS Foundation 

Trust, 51  Newcastle University, 52  NHS Greater Glasgow and Clyde, 53 NHS Lothian, 54 Norfolk and 

Norwich University Hospital, 55  Norfolk County Council, 56 North Cumbria Integrated Care NHS 

Foundation Trust, 57  North Tees and Hartlepool NHS Foundation Trust, 58 Northumbria University, 59 

Oxford University Hospitals NHS Foundation Trust, 60  PathLinks, Northern Lincolnshire & Goole NHS 

Foundation Trust, 61 Portsmouth Hospitals University NHS Trust, 62 Princess Alexandra Hospital 

Microbiology Dept., 63  Public Health Agency, 64 Public Health England, 65  Public Health England, 

Clinical Microbiology and Public Health Laboratory, Cambridge, UK, 66 Public Health England, Colindale, 

67  Public Health England, Colindale, 68  Public Health Scotland, 69 Public Health Wales NHS Trust, 70 
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Quadram Institute Bioscience, 71  Queen Elizabeth Hospital, 72 Queen's University Belfast, 73 Royal 

Devon and Exeter NHS Foundation Trust, 74  Royal Free NHS Trust, 75  Sandwell and West Birmingham 

NHS Trust, 76  School of Biological Sciences, University of Portsmouth (PORT), 77  School of Pharmacy 

and Biomedical Sciences, University of Portsmouth (PORT), 78 Sheffield Teaching Hospitals, 79  South 

Tees Hospitals NHS Foundation Trust, 80 Swansea University, 81 University Hospitals Southampton 

NHS Foundation Trust, 82  University College London, 83 University Hospital Southampton NHS 

Foundation Trust, 84 University Hospitals Coventry and Warwickshire, 85 University of Birmingham, 86 

University of Birmingham Turnkey Laboratory, 87 University of Brighton, 88 University of Cambridge, 89 

University of East Anglia, 90  University of Edinburgh, 91 University of Exeter, 92 University of Liverpool, 

93  University of Sheffield, 94 University of Warwick, 95  University of Cambridge, 96 Viapath, Guy's and St 

Thomas' NHS Foundation Trust, and King's College Hospital NHS Foundation Trust, 97  Virology, School 

of Life Sciences, Queens Medical Centre, University of Nottingham, 98 Wellcome Centre for Human 

Genetics, Nuffield Department of Medicine, University of Oxford, 99 Wellcome Sanger Institute, 100 West 

of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, 101 Department of Medicine, 

University of Cambridge, 102  Ministry of Health, Sri Lanka, 103 NIHR Health Protection Research Unit in 

HCAI and AMR, Imperial College London, 104  North West London Pathology, 105 NU-OMICS, 

Northumbria University, 106 University of Kent, 107  University of Oxford, 108 University of Southampton, 

109  University of Southampton School of Health Sciences, 110 University of Southampton School of 

Medicine, 111  University of Surrey, 112  Warwick Medical School and Institute of Precision Diagnostics, 

Pathology, UHCW NHS Trust, 113  Wellcome Africa Health Research Institute Durban and 114 Wellcome 

Genome Campus. 
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