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Abstract—Optical ultrasound imaging uses light to both gen-
erate and detect pulse-echo ultrasound. Recently, we presented
a fibre-optic optical ultrasound imaging probe comprising 64
sources and a single receiver that allowed for video-rate, free-
hand imaging. However, its low number of sources limited
the image contrast when using Delay-and-Sum reconstruction.
Here, we present an alternative image formation paradigm for
optical ultrasound based on model-based inversion, where the
low number of sources allows for direct (i.e., non-iterative)
inversion under modest hardware requirements. The model accu-
rately incorporates the aperture geometry, frequency-dependent
source directivity, and performance variation across the aperture,
thereby reducing image artefacts associated with these properties.
The method achieves a 15 dB gain in image contrast compared
to Delay-and-Sum, at a similar image formation time.

Index Terms—Model-based inversion, optical ultrasound, im-
age formation, singular value decomposition, regularisation

I. INTRODUCTION

Biomedical ultrasound imaging is conventionally performed
using imaging probes based on piezoelectric or capacitive
micro-machined ultrasound transducers (¢cMUTs) [1]. While
such probes generate high-quality images, their frequency
and bandwidths (and thus penetration and resolution) are
typically fixed during fabrication, and the presence of metal
and electronics results in adverse interactions (e.g., interfer-
ence or heating) with strong electromagnetic fields such as
encountered during X-ray or magnetic resonance imaging.

Recently, an optical ultrasound (OpUS) imaging paradigm
has been presented, which uses light to both generate and
detect ultrasound. Ultrasound is generated via photoacoustic
conversion of excitation light into ultrasound [2] at an optically
absorbing coating deposited at the tip of an optical fibre.
Back-scattered ultrasound signals are detected by optically
resonant detectors, such as Fabry-Pérot cavities [3] or ring
resonators [4], fabricated at the tip of another optical fibre.
Such fibre-optic OpUS probes can have miniature lateral
dimensions (diameter: < 1 mm), exhibit immunity to electro-
magnetic interference, and emit highly broadband ultrasound
(commonly a fractional bandwidth of 150 — 200% centered
around 15 MHz [5]) that allows for dynamic control over
penetration depth and resolution [6].

High-quality fibre-optic OpUS imaging has been demon-
strated using two types of imaging probes. First, two-fibre
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probes (one transmitter, one receiver) have been mechanically
scanned on the benchtop to generate 2D or 3D ex vivo
images [3], [5], [7]-[12], or used in vivo to achieve M-
mode imaging [13]. While these probes yielded high-quality
images, acquisition times of minutes for 2D, or hours for
3D, prohibited clinical use. Second, a handheld imaging
probe comprising a single fibre-optic ultrasound detector and
64 fibre-optic sources has been demonstrated to allow for
video-rate, real-time 2D imaging using a flexible, handheld
probe [14]. While this probe achieved a high frame rate, the
applied image reconstruction algorithm combined with its low
number of sources limited the image contrast.

Image reconstruction in OpUS typically relies on Delay-
and-Sum (DaS), which is equivalent to dynamic fo-
cussing [15]. This algorithm assumes that actual pulse-echo
signal originating from an image pixel and detected across the
aperture sums coherently, whereas other signal components
(e.g. clutter, noise) average out to zero. While this works
well for large numbers of channels (conventional electronic
linear arrays comprise hundreds of elements each operating
in duplex), this assumption is invalid for low channel counts
such as observed in the handheld OpUS probe [14]. The image
quality of low channel count OpUS images can be improved by
exploiting cross-channel coherence using, for instance, short-
lag spatial coherence (SLSC) [16] or Delay-Multiply-and-
Sum (DMaS) [17]. However, such algorithms only yield small
improvements for low channel counts, and in addition are non-
linear in nature which complicates image interpretation.

Here, we present an alternative image formation method
based on model-based inversion, as commonly applied itera-
tively in photoacoustic imaging [18]. However, in this work we
exploit the low channel count of the handheld OpUS imaging
probe by performing direct instead of iterative model-based
inversion. This direct model-based inversion (DMI) enables
simultaneous inversion for a range of array properties (such
as temporal source signature, source directivity, aperture ge-
ometry, and performance variation across the aperture) under
only moderate computational hardware requirements and sub-
second image formation time.

II. METHODS

A. Direct model-based inversion

Model-based inversion in imaging is a class of techniques that
assumes an accurate “forward model” is available to numeri-
cally predict the measured signals B for a given contrast R.
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Fig. 1. Construction of system matrix P. a) Schematic of the image
geometry, showing the source positions in blue, the detector position in red,
and two point scatterers in magenta and green. b) Pulse-echo B-scans are
computed for a point scatterer placed in each image pixel location using
an acoustical model incorporating the probe geometry, temporal signature,
source directivity, and performance variation across the aperture. For clarity,
the A-scans were envelope-detected in this visualisation. ¢) These B-scans are
reshaped into column vectors, and stored in the corresponding columns of the
system matrix.

If this model is linear, the forward problem can be described
as a matrix-vector multiplication

B =PR, (1)

where P is a matrix describing the physical, spatial and tem-
poral properties of the imaging system. In practice, however,
the contrast function R is the variable of interest and only B
is known.

In principle, equation 1 can be solved for R by computing
the inverse of P. However, this matrix is usually not invertible
(for instance, this matrix is rarely square), and hence R can
only be approximated by the matrix-vector multiplication

R~P B, 2)

where P~ is the pseudo-inverse of system matrix P. Similar
to the forward problem, the contrast function (or image) can
then be obtained via a single matrix-vector multiplication.
Due to memory limitations, matrix P~! can typically only
be stored for modestly sized problems, such as those with low
channel counts or small numbers of image pixels.

For the OpUS probe considered here, the construction of
system matrix P is depicted in Fig. 1. A point scatterer
of unit strength is placed in pixel 7 in the image, which is
equivalent to a binary contrast (reflectivity) function R where
the corresponding element is set to 1:

, 1 ifj=1

R; = , 3
J 0 otherwise )

where j is the element counter. Next, an acoustic model is used
to compute pulse-echo B-scan B(k,t), where k € [1, Ny
and ¢ indicate the A-scan number and time, respectively. Note

that only a single detector is used; consequently, the number of
A-scans equals the number of sources (/Ng..). The resulting B-

scan B(k,t) is then reshaped into a column-vector to form the
i-th column of system matrix P. This process is repeated for
all N, image pixels, resulting in a system matrix comprising
N X Ngre X Nimg elements, where Ny is the number of time
samples.

B. Acoustic model

Each of the 64 fibre-optic ultrasound sources was modelled
as a circular piston transducer, and the pressure generated at
the location of the point scatterer was computed using the
spatio-temporal impulse response H (r,t) implemented in the
FOCUS toolbox for MATLAB [19] at a temporal sampling
rate of 2.5 GHz. The piston transducers were modelled as
velocity sources, and the generated pressure was hence given
by the temporal convolution of the impulse response with the
temporal derivative of the particle velocity at the transducer
surface [20]. The single fibre-optic ultrasound detector exhibits
a broadband and nearly omni-directional response [3], [21];
for simplicity it was therefore modelled as a point source
using the free-space Green’s function [1]. Finally, a band-pass
filter F' (5 — 15 MHz) was applied to match the model to the
experimental system, and the signals were down-sampled to a
sampling rate of 62.5 MHz. To reduce memory consumption,
all computations were performed in single precision.

For computational efficiency, the convolutions were per-
formed in the frequency domain. For a single scatterer located
in each image pixel ¢, the pulse-echo B-scan was computed
as

B(kv t) = f_l{g(ﬁmg,i - Fsrc,k; W)'
efiwlfimg,if"—:recl/c

wlk,w) - F@)}, @

4 |7:;mg,i - Frecl

where Timg i, Terc,k» and 7. are the coordinates of image
pixel i, source k, and the single receiver, respectively, and ¢
is the speed of sound. Operators ~ and F~! indicate spectral
notation and the inverse Fourier transform, respectively.

The particle velocity at the transducer surface v(k,t) was
computed for each of the sources via stabilised spectral
division (or Wiener filtering) of experimental pulse-echo data
(obtained for a single, stationary point scatterer) by the im-
pulse response, i.e.,

B(k,w) (zwﬂ) ’

o(k,w) = 3 (&)

iwH (zwﬁ)* + [e . max|iwﬂ'|}

where H = H (Tscat — Tsre,k,w) Was introduced for brevity,
Tscat 18 the location of the physical point scatter, and stabili-
sation constant € = 1% was determined empirically to avoid
over-fitting of noise.

C. Numerical implementation and computational load

Pseudo-inversion of the system matrix P was performed via
singular value decomposition (SVD), resulting in an approxi-
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Fig. 2. Direct model-based inversion (DMI) versus conventional Delay-and-Sum reconstruction. Left - Schematic of the phantom geometry, vessel
lumen and needle trajectory (top) and photograph of the optical ultrasound imaging probe (bottom). Right - Optical ultrasound images at different time
points acquired using Delay-and-Sum (top) and DMI image formation (bottom) under Tikhonov regularisation (o« = 1%). All frames are shown on the same
logarithmic scale using a 40 dB dynamic range. TMM: tissue-mimicking material.

mate decomposition (in the least-squares sense)
P ~USV/, 6)

where U and V are unitary matrices, operator ' indicates the
transpose, and S is a diagonal matrix containing the singular
values. The singular value decomposition was truncated to
obtain a square matrix S (equivalent to using the ‘econ’
flag in MATLAB). Pseudo-inversion was then achieved by

P l~VS U, (7

where S™! is computed using two regularisation techniques
to avoid over-fitting of noise: Moore-Penrose, where

STl = 1/8:i
(22 0

if S;; > ov-max S
) 3)

otherwise

with stabilisation parameter 0 < o < 1, and Tikhonov (or Lg)
regularisation, where

1 Sii

i SZ + (a-max S)*

©))

In this work, the image measured 10 mm by 7 mm,
with pixel dimensions of 50 pym (lateral) by 25 pm (axial),
resulting in N, = 56481 pixels. Temporally, IV; = 1004
samples were simulated or recorded, at a sampling rate of
62.5 MHz, for all Ny, = 64 channels. System matrix P thus
required 13.5 GB of memory to store in single precision, and
was computed in approximately 37 minutes. During SVD,
the matrices U, S and V combined ~required an additional
37.3 GB of memory. Pseudo-inverse P~! was computed in-
place to overwrite P (thus avoiding 13.5 GB of memory).
Once the SVD and pseudo-inverse were computed (which
required 11.4 hours), all other matrices were cleared, and DMI
image formation required just 13.5 GB of memory and 0.6 s
per frame on an i7-9700K CPU. By comparison, a single DaS

frame was reconstructed in 0.51 s on the same hardware.

D. Experimental design

To demonstrate DMI experimentally, a tissue-mimicking phan-
tom comprising a wall-less blood vessel was fabricated in 10%
w/w poly(vinyl) alcohol (PVA) cryogel [22] and submerged in
water. A needle (23G) was inserted into the vessel lumen (see
Fig. 2) under continuous 2D OpUS imaging at a frame rate of
11 Hz. Image frames were reconstructed using conventional
DaS and DMI, under both Moore-Penrose and Tikhonov
regularisation for various values of «.

III. RESULTS

DMI under Tikhonov regularisation (o« = 1%) achieved a
significant improvement in image quality compared to con-
ventional DaS reconstruction (Fig. 2). Image artefacts were
strongly reduced, while actual signals from the vessel wall
and needle were retained. This resulted in a 15 dB gain in
image contrast. Tikhonov regularisation utilised all singular
values when computing the pseudo-inverse (after stabilisation;
see Eq. 9), whereas Moore-Penrose regularisation disregarded
a large proportion of the singular values (Eq. 8). Consequently,
Tikhonov regularisation yielded more accurate images, re-
gardless of stabilisation parameter o (Fig. 3). For Tikhonov
regularisation, a value of o = 1% was empirically determined
to yield the best DMI images. Moore-Penrose regularisation
using @ = 10% retained too few singular values to form a
meaningful image.

IV. DISCUSSION AND CONCLUSION

This paper shows how direct model-based inversion (DMI)
image formation can lead to a significant reduction in image
artefacts and clutter compared to conventional DaS reconstruc-
tion, resulting in a 15 dB gain in contrast. The underlying
model includes a range of factors, such as array geometry,
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Fig. 3. The effect of regularisation. Direct model-based inversion images
(at t = O s) obtained using Tikhonov (top) and Moore-Penrose (bottom) reg-
ularisation, for three values of stabilisation parameter o = [10%, 1%, 0.1%)].

number and location of transducer elements, source signature
and directivity, and performance variation across the aperture,
which are simultaneously accounted for upon inversion.

However, the contrast gain was limited by saturation of the
A-scans obtained experimentally due to the high echogenicity
of the needle, which was not accounted for in the model.
Further improvements might be possible if this saturation can
be avoided. In addition, other regularisation techniques (for
instance, total variation or generalised Tikhonov) might yield
even better images. Looking at Fig. 3, the optimal value of the
regularisation parameter « appears to vary with axial depth;
thus, a depth-dependent value for o could be considered.

The presented DMI approach only considers 2D imaging
and in-plane events. This means that out-of-plane clutter is
not accurately accounted for. While in principle this could be
included in the model, the computational requirements render
a direct inversion unlikely in this case. In addition, a homoge-
neous speed of sound is assumed, and attenuation is neglected
as incorporating and inverting for these effects would only
be possible using iterative methods, which are unrealistic
for real-time applications. Despite these limitations, however,
the significant improvement in image quality suggests the
numerical model for the imaging system is highly accurate.
The image formation accuracy could be further improved using
a fully experimentally-derived system matrix that incorporates
the electronics, optics, and data acquisition systems.

The method requires modest computational capabilities that
are available in modern workstations, and requires image
formation times that are similar to those of conventional
DaS. The singular value decomposition, pseudo-inversion, and
matrix-vector multiplications could each be significantly accel-
erated using modern Graphical Processing Unit (GPU) cards
(currently equipped with up to 48 GB of VRAM memory),
which could result in image formation times in the order of
tens of milliseconds. Thus, DMI image formation shows great
promise for improving the image quality of OpUS in real-time,
and could be applied to other ultrasound modalities featuring
low channel counts, such as intravascular ultrasound (IVUS)
or systems with sparse arrays.
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