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Abstract

Background: Keratoconus is a disorder characterized by progressive thinning and distortion of the cornea. If detected at an
early stage, corneal collagen cross-linking can prevent disease progression and further visual loss. Although advanced forms are
easily detected, reliable identification of subclinical disease can be problematic. Several different machine learning algorithms
have been used to improve the detection of subclinical keratoconus based on the analysis of multiple types of clinical measures,
such as corneal imaging, aberrometry, or biomechanical measurements.

Objective: The aim of this study is to survey and critically evaluate the literature on the algorithmic detection of subclinical
keratoconus and equivalent definitions.

Methods: For this systematic review, we performed a structured search of the following databases: MEDLINE, Embase, and
Web of Science and Cochrane Library from January 1, 2010, to October 31, 2020. We included all full-text studies that have
used algorithms for the detection of subclinical keratoconus and excluded studies that did not perform validation. This systematic
review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) recommendations.

Results: We compared the measured parameters and the design of the machine learning algorithms reported in 26 papers that
met the inclusion criteria. All salient information required for detailed comparison, including diagnostic criteria, demographic
data, sample size, acquisition system, validation details, parameter inputs, machine learning algorithm, and key results are reported
in this study.

Conclusions: Machine learning has the potential to improve the detection of subclinical keratoconus or early keratoconus in
routine ophthalmic practice. Currently, there is no consensus regarding the corneal parameters that should be included for
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assessment and the optimal design for the machine learning algorithm. We have identified avenues for further research to improve
early detection and stratification of patients for early treatment to prevent disease progression.

(JMIR Med Inform 2021;9(12):e27363) doi: 10.2196/27363
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Introduction

Background
Keratoconus is a bilateral ectatic disease of the cornea that can
cause visual loss through corneal distortion and scarring [1,2].
The prevalence of keratoconus varies from 1 in 375 people in
Northern Europe [3] to as high as 1 in 48 in some ethnic groups
[4,5], with studies suggesting a higher incidence in
Middle-Eastern, West Indian, and Asian populations with faster
progression [6-8]. The onset of the disease typically occurs after
puberty, with subsequent progression at a variable rate over 2
to 3 decades [6]. A recent meta-analysis found that patients <17
years are likely to progress more than 1.5 D in Kmax over 12
months, and those with steeper Kmax of more than 55 D are
likely to have at least 1.5 D Kmax progression [6].

As the disease advances, corneal distortion can reach a stage
where spectacle-corrected vision is inadequate, and patients
must rely on soft or rigid contact lenses to achieve good
functional vision [9]. However, contact lenses are not always
tolerated, and visual impairment can severely affect quality of
life [10,11]. In the natural course of the disease, approximately
20% of the patients are offered a corneal transplant to improve
their vision but at the risk of postoperative complications (eg,
microbial keratitis and inflammation), potential allograft
rejection, and transplant failure [7,12,13]. Most individuals with
keratoconus are identified because of the symptoms of visual
disturbance or an increase in astigmatism at refraction.
Therefore, it is inevitable that most individuals with keratoconus
are detected at a stage when visual deterioration has already
occurred [14].

The detection of keratoconus at an earlier stage has become
increasingly relevant since the introduction of corneal collagen
cross-linking (CXL). This is a photochemical treatment of the
cornea with UV-A light following the application of riboflavin
(vitamin B2), which can arrest the progression of keratoconus
in 98.3% of the eyes even in relatively advanced cases [15-20].
The benefit of early treatment to minimize visual loss is clear,
and there is evidence that it is cost-effective [21-23], but the
mechanism to improve early diagnosis by community-based
optometrists is challenging because asymptomatic patients with
subclinical disease are unlikely to seek review [14]. Improved
detection will probably require improved access or efficient
community screening with expensive imaging equipment [24].

Machine learning is a branch of artificial intelligence centered
on writing a software capable of learning from data in an
autonomous fashion by minimizing a loss function or
maximizing the likelihood [25]. It can be broadly classified as
either supervised or unsupervised learning [26]. In supervised

learning, the algorithm is trained with input data labeled with
a desired output so that it can predict an output from unlabeled
input data [27]. In comparison, in unsupervised learning, the
algorithm is not trained using labeled data. Instead, the algorithm
is used to identify patterns or clusters in the data [28]. When
applied to the field of keratoconus detection, machine learning
may be used to analyze a large number of corneal parameters
that can be derived from corneal imaging as well as other clinical
and biometric measures such as visual acuity and refraction to
predict the disease [29]. It can also be applied directly to
imaging data to work at the pixel level [30]. Deep learning, a
specific branch of machine learning, uses artificial neural
networks (NNs) with multiple layers to process input data [31].
It is particularly well suited to the segmentation or classification
of corneal images [32]. Both machine learning and deep learning
may facilitate superior diagnostic ability that, when implemented
as automated screening tools, could result in significant advances
in case detection, mitigating both the cost of new imaging
hardware and the burden on ophthalmic health care professionals
[33]. In addition, through unsupervised learning, it may be
possible to discover previously unknown disease subtypes or
features [34,35].

Unlike diabetic retinopathy, which uses a widely adopted
diagnostic grading system (Early Treatment Diabetic
Retinopathy Study) [36] and in which the diagnosis of early
disease is based on the presence of discrete entities on the retina
(eg, microaneurysms), the diagnostic grading of subclinical
keratoconus has not yet reached the same level of consensus
[37]. Frequently used grading systems such as Amsler-Krumeich
[38] and ABCD [39] do not specifically include a grade for
subclinical keratoconus. More detailed information about
keratoconus grading systems is available in Multimedia
Appendix 1 [37-43].

Case Definition for Keratoconus
Several terms describe the early stage of keratoconus before
vision is affected, including forme fruste keratoconus (FFKC),
keratoconus suspect, subclinical keratoconus, and preclinical
keratoconus. The most commonly used terms are FFKC and
subclinical keratoconus, but there is no consensus on their
definition [44].

We have included all papers that contain an identifiable
subgroup of eyes with any of the aforementioned definitions
because of the overlap in the nomenclature and lack of evidence
as to which, if any, pose a particular risk for progression to
clinical keratoconus. We excluded papers that only consider
eyes with established keratoconus.
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Objectives
The aim of this study is to critically evaluate the literature on
the algorithmic detection of subclinical keratoconus and its
equivalent definitions. Advanced keratoconus is relatively easy
to diagnose clinically, such that developing machine learning
algorithms to identify advanced disease has limited utility.
Therefore, we directed this review to publications that have
included detection of subclinical keratoconus because
identifying these individuals would allow for early treatment
with CXL to reduce the likelihood of disease progression and
visual loss. We have structured our review both around the
different types of available input data (parameters, indices, and
corneal imaging systems) and the machine learning algorithms
for keratoconus detection. In addition, we investigated the
validation methodology within each study and assessed the
potential for bias.

Research Questions
Our specific research questions are as follows:

1. Research question 1: What input data types have been used
within subclinical keratoconus detection algorithms and
how have they performed?

2. Research question 2: What machine learning algorithms
have been used for subclinical keratoconus detection and
how have they performed?

3. Research question 3: How was algorithm validation handled
among the selected manuscripts?

Methods

Search Strategy
We conducted a literature review of the evidence for the utility
of machine learning applied to the detection of keratoconus
published between January 1, 2010, and October 31, 2020. The
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) Statement 2009 criteria [45] was followed
to search 4 bibliographic databases: MEDLINE, Embase, Web
of Science, and Cochrane Library using keyword search on their
title, abstract, and keywords. The review was not registered,
and no protocol was prepared.

We used the following keyword search for literature review in
bibliographic databases: ((keratoconus) OR (cornea* protru*)
OR (cornea* ectasia)) AND ((algorithm) OR (machine learn*)
OR (deep learn*) OR (artificial intelligence) OR (detect*) OR
(diagnos*) OR (screen*) OR (examin*) OR (analys*) OR
(investigat*) OR (identif*) OR (discover*) OR (interpret*) OR
(test*))

Inclusion and Exclusion Criteria
We included studies that investigated the detection of early
keratoconus or included a subgroup of patients with early
disease, as defined by one of the following terms: subclinical
keratoconus, FFKC, preclinical keratoconus, suspected
keratoconus, unilateral keratoconus (normal fellow eye), and
asymmetric ectasia (normal fellow eye) and any definition
considered equivalent to the aforementioned terms. The studies
should have reported the performance of their model on a data
set that was separate from the training data set (often called a
validation or a test set). This includes splitting of the data set
into training and test sets (eg, 70% training and 30% testing),
K-fold cross-validation (an extension of simple splitting, but
the process is repeated K times, eg, when K=10, partition the
data set into 90% for training the model and 10% for testing,
and the process is repeated 10 times by choosing a different
10% partition each time for testing), or evidence of a validation
study where the aim is to assess a previously derived model on
a new data set (also known as an external validation). Finally,
the full-text article should be available, and only papers
published in English were considered.

We excluded papers based on the detection of early keratoconus
defined as Amsler-Krumeich stages 1 or 2, as this represents
established keratoconus with both clinical and topographical
features [46].

Data Synthesis
On the basis of the inclusion criteria, 2 reviewers (HM and
JPOL) screened the initial results. These results were then
screened for the exclusion criteria by HM and NP. The PRISMA
diagram is presented in Figure 1. Any disagreements in meeting
the inclusion or exclusion criteria were resolved by discussion.
Once the set of articles was finalized, 2 reviewers (HM and
JPOL) analyzed each article and extracted the following
information in a master table presented in Multimedia Appendix
2 [14,47-71]: author and year, title, system, sample source,
country, age, gender, number of eyes for each group, diagnosis
details, validation details, input details, input types, method,
classification groups, sensitivity, specificity, accuracy, precision,
area under the receiver operating characteristic curve (AUC),
and source code availability. We summarized the most important
information for all the results in Table 1. The main effect
measures sought were sensitivity and specificity. If these
statistics were not directly available from the article, they were
calculated manually using their standard definitions [72]. To
visually compare the results, we plotted the sensitivity and
specificity across all studies for diagnostic criteria and detection
systems in Multimedia Appendix 3.
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Figure 1. Filtering steps taken to accept or exclude studies in the systematic review.
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Table 1. Summary of the 26 published studies that included the use of machine learning for the detection of subclinical keratoconus.

Results (%)MethodInput typesFellow

eyea
Number of eyesSystemStudy

SpecificitySensitivitySubclinical
keratoconus

Normal

97.792SVMbElevation, ker-
atometry,

No4261259SiriusArbelaez et al
[47]

pachymetry, and
aberrometry

9692DAcPachymetry, ker-
atometry, eleva-

No3469OrbscanSaad et al [48]

tion, and Dis-
placement

97.293.6DTdKeratometry,
pachymetry, ele-

Yes47177GALILEISmadja et al
[49]

vation, aberrome-
try, demographic,
and indices

7833Linear regressionElevation and
displacement

No2450CSO topography sys-
tem

Ramos-Lopez
et al [50]

9094RFe, SVM, K-near-

est neighbors, LoRf,

Keratometry,
pachymetry, and
demographic

No4939PentacamCao et al [14]

DA, Lasso regres-

sion, DT, and NNg

83.378.1DAKeratometry,
pachymetry,

No32245Orbscan IIzBuhren et al
[51]

aberrometry, and
elevation

98.170.8DAPachymetry, ker-
atometry, eleva-

Yes24104Orbscan IIzChan et al
[52]

tion, and displace-
ment

9090NNKeratometry,
pachymetry, ele-

Yes1560PentacamKovacs et al
[53]

vation, indices,
and displacement

8263DAKeratometry,
aberrometry, and
indices

Yes62114OPD-scanSaad et al [54]

97.979.1SVMKeratometry,
pachymetry, and
aberrometry

No67194Pentacam HRRuiz Hidalgo
et al [55]

7561SVMKeratometry,
pachymetry, and
indices

No2344Pentacam HRRuiz Hidalgo
et al [56]

84.583.7DAPachymetry, ele-
vation, and ker-
atometry

Yes77147Pentacam HRXu et al [57]

9690.4RF, SVM, and LoRPachymetry, ele-
vation, keratome-

Yes94480Pentacam+Corvis STAmbrosio et al
[58]

try, and Biome-
chanical

10091.7LoRKeratometryNo5550PentacamSideroudi et al
[59]

9190LoRBiomechanicalYes62253Corvis STFrancis et al
[60]
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Results (%)MethodInput typesFellow

eyea
Number of eyesSystemStudy

SpecificitySensitivitySubclinical
keratoconus

Normal

1488UnsupervisedElevation,
pachymetry, and
aberrometry

No7961970SS-1000 CASIAYousefi et al
[61]

96.685.2DA, SVM, naive
Bayes, NN, and RF

Pachymetry, ele-
vation, indices,
and displacement

Yes1882980Pentacam HRLopes et al
[62]

8363RFPachymetry, ele-
vation, keratome-
try, and biome-
chanical

Yes50105Pentacam+Corvis STSteinberg et al
[63]

95.697.8NNElevation and
pachymetry

Yes90312PentacamIssarti et al
[64]

95.677.2RFKeratometry, ele-
vation,
pachymetry,
aberrometry, and
indices

Yes72221RCTVue+PentacamChandapura et
al [65]

98.276.5CNNhHeat mapsNo2021368Pentacam HRXie at al [66]

97.228.5CNNHeat mapsNo28170TMS-4+Penta-
cam+Corvis ST

Kuo et al [67]

94.798.5NNKeratometry, ele-
vation,
pachymetry, in-
dices, and demo-
graphic

Yes3355Pentacam+ultrahigh
resolution optical coher-
ence tomography

Shi et al [68]

98.594LoRKeratometry,
pachymetry, and
displacement

Yes5066MS-39Toprak et al
[69]

7085.2NNElevation and
Pachymetry

Yes117304Pentacam HRIssarti et al
[70]

9689.525 machine learning
methods compares

Keratometry,
pachymetry, and
aberrometry

No7911970SS-1000 CASIALavric et al
[71]

aFellow eye indicates whether the study defined subclinical keratoconus as the fellow eye of an individual with apparently unilateral keratoconus, with
no clinical or topographical features of keratoconus.
bSVM: support vector machine.
cDA: discriminant analysis.
dDT: decision tree.
eRF: random forest.
fLoR: logistic regression.
gNN: neural network.
hCNN: convolutional neural network.

Bias Assessment
When assessing bias within the included studies, we used a
tailored version of the QUADAS (Quality Assessment of
Diagnostic Accuracy Studies)-2 tool [73], which consists of 4
domains: patient selection, index test, reference standard, flow,
and timing. The 26 studies were assessed by 3 reviewers (HM,
JPOL, and NP) such that each study was assessed by at least 2
reviewers.

Results

Overview
We identified 1998 potentially relevant papers published
between 2010 and 2020. After filtering, we included 26 articles
in our qualitative analysis. Table 1 summarizes these results,
and a more extensive version can be found in Multimedia
Appendix 2. To address research question 1, the results are
discussed in terms of their input data. Charts displaying
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aggregate sensitivity and specificity can be found in Multimedia
Appendix 3. To address research question 2, the results are
considered in terms of the machine learning algorithms. Figures
2 and 3 present organizational diagrams of data categorization
and machine learning algorithms, respectively. To maintain

consistency, we opted to use the term subclinical keratoconus
throughout regardless of the nomenclature used by the original
authors. The original term is included in parenthesis, and details
of the exact definition can be found in Multimedia Appendix
2.

Figure 2. Organizational diagram of relevant data types reported to be used for the detection of subclinical keratoconus.

Figure 3. Organizational diagram of relevant machine learning algorithms used for the detection of subclinical keratoconus.

Research Question 1: What Input Data Types Have
Been Used Within Subclinical Keratoconus Detection
Algorithms and How Have They Performed?
This section is subdivided according to the input data types used
for the detection of subclinical keratoconus, as presented in the
organizational chart in Figure 2.

Aberrometry
Aberrometry was used to detect subclinical keratoconus in 31%
(8/26) of the papers [47-49,51,55,61,65,71]. Aberrations are
produced by imperfections in the optical quality of the refracting
surface of the eye, including the cornea and the lens.
Higher-order aberrations (HOAs) are measured from the
distortion of a plane wavefront of light passing through the
optics of the eye. However, HOAs can also be derived indirectly

from the measurement of any distortion (eg, elevation) of the
corneal surfaces. They can be described as a set of Zernike
polynomials or with Fourier analysis. Using the Zernike method,
aberrations can be subclassified as lower-order aberrations and
HOAs. Lower-order aberrations include simple defocus (myopia
or hyperopia) and regular astigmatism, which account for
approximately 90% of the refractive error of the normal eye
[74]. The most clinically relevant HOAs are spherical aberration,
coma, and trefoil that cannot be corrected by glasses or a soft
contact lens. In keratoconus, the irregular distortion of the front
and back surfaces of the cornea causes visually significant
HOAs. Arbelaez et al [47] analyzed these parameters in their
subclinical keratoconus detection model and included a weighted
sum of HOAs (known as the Baiocchi-Calossi-Versaci index)
and the root mean square of HOAs. Moreover, 5 other studies
also used derived Zernike aberrometry data [48,49,51,65,71].
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Corneal Imaging Data and Derived Parameters

Overview

Corneal images were used to detect subclinical keratoconus in
96% (25/26) of the papers. There are various acquisition
techniques, including Scheimpflug optics (Pentacam [Oculus
GmbH] or Sirius [CSO]), anterior segment optical coherence
tomography (AS-OCT; MS-39 [CSO], or CASIA [Tomey]),
and horizontal slit-scanning systems such as Orbscan II (Bausch
& Lomb). These systems incorporate a software that processes
the images to derive numerical indices or secondary images,

such as heat maps, to visualize various aspects of corneal shape.
These parameters can be classified as measurements of the
corneal surface radius of curvature (keratometry), elevation or
depression of a point on the corneal surface from the mean
(elevation map), corneal thickness (pachymetry), or
displacement from the apex of the cornea. Figure 4 illustrates
the main parameter types in a schematic diagram. Figure 5
shows an example of the Pentacam heat map for an eye with
subclinical keratoconus. See Multimedia Appendix 4 for an
example of advanced keratoconus (fellow eye for the same
patient).

Figure 4. Schematic diagram illustrating the 4 basic corneal parameters that can be measured using corneal imaging. (A) pachymetry. (B) displacement:
distance between the apex of the cornea and the point of minimum thickness. (C) and (D) represent 2 methods of calculating the best-fit sphere (BFS).
In (C) the BFS is fitted to both the normal peripheral posterior surface (blue) and the abnormal anterior protrusion of the central posterior surface (green).
In (D) the BFS is fitted to only the normal peripheral posterior surface (blue) excluding the abnormal central posterior surface (green), leading to a
larger relative elevation than in (C). (E) the smallest radius of curve of the astigmatic corneal surface corresponds to the largest refractive power (Kmax)
and the largest radius of curve corresponds to the smallest refractive power (Kmin). CCT: central corneal thickness.
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Figure 5. Heat maps of a subclinical keratoconus eye derived from Scheimpflug corneal imaging using the Pentacam HR device. The axial/sagittal
map (A) depicts the curvature of the anterior corneal surface in dioptres and shows mild inferior steepening, while the pachymetry map (C) shows
thinning in the same region. The front and back elevation maps (B and D, respectively) show a moderate increase in inferior elevation. BFS: best-fit
sphere; OS: left eye.

In the following subsections, we briefly discuss the use of
quantitative measures derived from corneal imaging when used
in isolation or in combination with machine learning models.

Keratometry Parameters

Keratometric data are one of the most commonly used
parameters in the literature, with 69% (18/26) of the papers
incorporating keratometry as one of the parameters in their
model [14,47-49,51-54,56,57,59,61,65,68,71,75]. Keratometric
parameters measure the radius of curvature of the anterior or
posterior corneal surfaces. Examples include the meridian with
the minimum corneal radius of curvature (corresponding to
Kmax) and maximum curvature (corresponding to Kmin). When
looking at individual keratometric parameters derived using
Fourier analysis for subclinical keratoconus detection, Sideroudi
et al [59] achieved a predictive accuracy of over 90% using
higher-order irregularities, asymmetry, and regular astigmatism,
primarily in the corneal periphery.

Elevation Parameters

Overall, 62% (16/26) of the papers incorporated elevation
parameters in their analysis [47-53,57,58,61-65,68,70]. Elevation
represents points above or below the BFS of the corneal surface
measured in microns (Figure 4). For the posterior cornea, this
is measured either as the divergence from the best fit of the
whole posterior corneal diameter or as the divergence from the
best fit of the annulus of the peripheral posterior corneal surface

outside the central 4 mm [76]. The latter method, the
Belin-Ambrosio map, better describes the central corneal
elevation, which is a feature of keratoconus. Values can be
presented as either color-coded maps or individual parameters
such as maximum anterior elevation, maximum posterior
elevation, or derived data such as aberrometry.

Posterior corneal curvature consistently outperforms other
parameters in the discrimination of subclinical keratoconus
[47,49,56,57]. Its inclusion increases the sensitivity of a support
vector machine (SVM) from 75.2% to 92% and precision from
57.4% to 78.8% but has a limited impact on specificity [47].
Posterior corneal curvature, measured using a Pentacam
(Scheimpflug) device and analyzed using an SVM, was also
found to be an important parameter for sensitivity and much
less so for specificity and AUC [14]. Similarly, using the Galilei
(Scheimpflug) device, the posterior asphericity asymmetry index
was found to be the variable with the most discriminatory power
when differentiating normal from subclinical keratoconus,
followed by corneal volume [49]. Conversely, analysis of
anterior surface topographical parameters and aberrometry using
the random forest algorithm did not discriminate subclinical
keratoconus (very asymmetric ectasia-normal topography) from
normal eyes [65].

Saad et al [54] showed that combining parameters obtained
from the anterior corneal curvature corneal wavefront and
Placido-derived indices lead to a better discriminative ability
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between normal and subclinical keratoconus eyes (FFKC) over
a Placido-only–based algorithm.

Displacement Parameters

A total of 23% (6/26) of the papers used displacement
parameters in their analysis [48,50,52,53,62,75]. These represent
measures such as the displacement of the point of minimum
corneal thickness from the corneal apex. Of these, 3 papers used
the displacement of the thinnest point from the geometric center
of the cornea in their model [48,52,77]. Kovacs et al [53] used
the vertical and horizontal decentration of the thinnest point
and found them to be the best parameters to discriminate normal
fellow eyes of keratoconus from control eyes using an NN.

Pachymetry Parameters

Overall, 77% (20/26) of the papers used pachymetry data in
their model, making it one of the most commonly used
parameters in the literature [14,47-49,51-53,55-58,61-65,69-71].
Pachymetry is the thickness of the cornea, measured using either
ultrasound or imaging techniques. Simple examples include
central corneal thickness and the thinnest point of the cornea.
A reduction in the thickness of the central cornea is a
fundamental biomarker of keratoconus [2].

Summary Indices

In total, 23% (6/26) of the papers used summary indices in their
model [14,49,53,65,68,78]. In addition to single-parameter
measurements (eg, central corneal thickness), tomographic
systems such as the Pentacam can combine measurements to
compute derived indices that estimate the regularity of corneal
shape. Basic indices such as the index of surface variance, index
of vertical asymmetry, or index of height asymmetry are formed
from multiple data points. Composite indices are formed from
other indices and data points. Examples include the Keratoconus
index, keratoconus percentage index, and Belin/Ambrosio
enhanced ectasia display (BAD-D). In a recent study, Shi et al
[68] used 6 indices from the Pentacam along with keratometric,
elevation, and pachymetric parameters derived from the
Pentacam and ultrahigh resolution optical coherence tomography
to create an NN classifier to discriminate between normal and
subclinical keratoconus eyes. Using 50 normal eyes, 38 eyes
with keratoconus, and 33 eyes with subclinical keratoconus,
they achieved 98.5% sensitivity and 94.7% specificity. However,
the results require further validation because of the small number
of eyes in this group. Furthermore, the authors did not include
a comparison between existing detection metrics, such as
BAD-D.

Heat Maps

A total of 8% (2/26) of the papers used heat maps in their
detection model [66,67]. Modalities such as Scheimpflug and
AS-OCT capture images at various corneal meridians and
subsequently use these data to derive the heat maps that facilitate
visual interpretation of the data, although there is extrapolation
of the data in areas between the imaged meridians. For example,
the Pentacam can translate the raw images into several types of
color heat maps (eg, axial curvature, posterior or anterior
elevation, and regional pachymetry) based on the same original
tomography data set. Prediction models applied to images often
use convolutional NNs (CNNs), and studies applying these

methods are discussed in detail in the next section addressing
research question 2. To the best of our knowledge, no system
has used raw pixel values from Scheimpflug or AS-OCT images
directly when detecting subclinical keratoconus.

Biomechanical Data
Overall, 12% (3/26) of the papers incorporated biomechanical
data in their analysis [58,60,63]. Corneal biomechanics refers
to the distortion response of the cornea to an applied force. The
Ocular Response Analyzer (Reichert Ophthalmic Instruments)
uses a puff of air directed to the cornea, and the deformation
response is measured. Two common indices have been reported:
corneal hysteresis and corneal resistance factor. However, there
is disagreement regarding their utility in the diagnosis of
keratoconus [79,80]. Another device using the same principle
is the Corvis ST (Oculus Optikgeräte GmbH), which uses a
high-speed Scheimpflug camera to measure distortion in
cross-sectional images. Numerous studies have described the
application of machine learning to analyze biomechanical data,
but very few validated their results; therefore, they have been
excluded from this review. Ambrosio et al [58] combined
Pentacam and Corvis ST data to create the Tomographic and
Biomechanical Index, and this was followed up with a validation
study [63]. Francis et al [60] used biomechanical data from the
Corvis ST device when diagnosing keratoconus and achieved
very high sensitivity (99.5%) and specificity (100%). However,
when validating their model, they have only discriminated
between 2 groups—a group combining subclinical keratoconus
and keratoconus eyes, and a group of normal eyes. This
represents an easier problem than including a distinction
between normal and subclinical keratoconus eyes.

Demographic Risk Factors
A total of 15% (4/26) of the papers chose to include
demographic data, such as age or sex, in their model
[14,49,62,68]. Cao et al [14] demonstrated that sex was an
important parameter in a minimum set that achieved the highest
AUC using the random forest method, although their data set
was small (49 subclinical keratoconus and 39 control eyes).
Ethnicity, a major association with disease prevalence, risk of
progression, disease severity, and acute corneal hydrops in Asian
and Black populations [81], was not included in any model,
although some studies have examined single ethnicities [66].
Ethnicity as a parameter should be considered by future
investigators. No studies included other risk factors such as
atopy and eye rubbing as model parameters, and these should
be considered in future studies.

Research Question 2: What Machine Learning
Algorithms Have Been Used for Subclinical
Keratoconus Detection and How Have They
Performed?
In most cases, researchers have used combinations of parameters
and indices within machine learning algorithms to diagnose
subclinical keratoconus. This section is subdivided according
to the machine learning techniques that were applied. Figure 3
presents an organizational diagram of the relevant machine
learning algorithms. There are several other algorithms, but
discussion of these is beyond the scope of the review, and we
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have chosen to include only the methods found in our Results
section.

Neural Networks

Overview

NNs consist of a series of interconnected layers of neurons and
are thus loosely modeled on the structure within the human
brain. Each neuron computes a nonlinear function of its inputs,
and the network is trained until the output aligns optimally with
the ground truth labels. Kovacs et al [53] used a combination
of 15 keratometric, pachymetric, and elevation parameters in
an NN classifier to discriminate healthy corneas from fellow
eyes of patients with unilateral keratoconus. The patient data
included 60 normal eyes from 30 patients, 60 bilateral
keratoconus eyes from 30 patients, and 15 normal eyes from
patients presenting with unilateral keratoconus. When classifying
the normal eyes of the patients with unilateral keratoconus with
clinical grading as a reference, they achieved 90% sensitivity
and 90% specificity. They took a novel approach of training on
both the eyes of the patients, which allowed them to incorporate
the effect of any intereye asymmetry when detecting unilateral
keratoconus. Shi et al [68] combined keratometric, elevation,
and pachymetric parameters derived from Pentacam images and
ultrahigh resolution optical coherence tomography to create an
NN classifier for discriminating normal from subclinical
keratoconus eyes. Using Pentacam elevation and pachymetry
maps within a hybrid NN model, Issarti et al [64] demonstrated
superiority over other common diagnostic indices such as
BAD-D and topographical keratoconus classification.

Convolutional Neural Networks

When images are used for analysis, NNs with a large number
of processing layers such as CNNs are often employed because
of their ability to make inferences from 2D or 3D data structures
through deep learning [82]. For example, Xie et al [66] used
data from 1368 normal eyes, 202 eyes with early keratoconus,
389 eyes with more advanced keratoconus, and 369 eyes with
subclinical (suspected) keratoconus to develop an automatic
classifier. They achieved 76.5% sensitivity and 98.2% specificity
when classifying subclinical keratoconus. However, the heat
maps used were produced by Pentacam; therefore, it should be
noted that the technique may not be transferable to other systems
or even future Pentacam software iterations. Kuo et al [67]
included 150 normal, 170 keratoconus, and 28 subclinical eyes
in their study and used the Tomey TMS-4 topography system
to produce corneal heat maps and trained 3 different CNN
architectures (VGG16, InceptionV3, and ResNet152). When
attempting to identify the 28 subclinical keratoconus eyes, they
applied the VGG16 model and achieved barely satisfactory
results with an accuracy of 28.5% when a threshold of 50% was
applied. These results suggest that subclinical keratoconus
cannot yet be detected with high sensitivity using CNNs on heat
map images.

Decision Trees
The classification of data in a decision tree uses a binary
decision at each node in the tree to determine the branch to take
next. Starting from the root, the classification is determined by
following each branch to its terminal node. Smadja et al [49]

used a decision tree to classify normal, keratoconus, and
subclinical (FFKC) keratoconus eyes. They enrolled 177 normal
eyes, 148 keratoconus eyes, and 47 subclinical eyes. They used
55 parameters (including curvature, elevation, corneal
wavefront, corneal power, pachymetry, and age) collected from
the Galilei dual Scheimpflug camera, achieving 93.6%
sensitivity and 97.2% specificity when classifying subclinical
from normal. Cao et al [14] also evaluated a decision tree
algorithm for classifying subclinical keratoconus but achieved
lower sensitivity (82%) and specificity (78%). They attributed
the comparatively inferior performance to the fact that Smadja
et al [49] used additional machine-specific indices that they did
not have access to.

Random Forests

Random forests combine a large number of decision trees into
a single model [83]. Lopes et al [62] compared this method with
other methods (naive Bayes, NNs, SVMs, and discriminant
analysis) by training models on 71 post–laser-assisted in situ
keratomileusis (LASIK) ectasia eyes, 298 post-LASIK eyes
without ectasia, and 183 eyes with keratoconus. They included
keratometry, pachymetry, elevation, and various Pentacam
indices. The models were validated on an external data set
containing 298 normal eyes (stable LASIK), 188 keratoconus
eyes (very asymmetric ectasia-ectatic), and 188 subclinical eyes
(very asymmetrical ectasia-normal topography). The latter 2
groups were collected from the same set of patients. They found
that the random forest model performed best when detecting
subclinical eyes with an 85.2% sensitivity. This accuracy is
lower than that of other comparable studies, which is probably
caused by their inclusion of external validation rather than an
inferior model. The authors also note that their model classifies
among 3 groups, whereas other related studies (such as that by
Arbelaez et al [49]) only classify between 2 groups (eg,
subclinical vs normal). This important distinction is expanded
upon in the Discussion section.

Discriminant Analysis
Discriminant analysis uses a linear combination of variables
that optimally separate 2 or more classes of data. Xu et al [57]
used this method to classify eyes as either normal, subclinical
keratoconus, or keratoconus. In total, 147 normal eyes, 139 eyes
with keratoconus, and 77 eyes with subclinical keratoconus
were included in the training set and verified on a separate set
of 97 normal and 49 subclinical keratoconus eyes. They applied
the Zernike fitting method to corneal pachymetry and elevation
data derived from the Pentacam and achieved an AUC of 92.8%
when discriminating subclinical keratoconus. Saad et al [54]
also used discriminant analysis to classify eyes as either
subclinical (FFKC) keratoconus or normal. They used a
combination of wavefront aberrometry and Placido disc indices
in their model with a total of 8 parameters using the OPD-Scan
(Nidek Co Ltd). The model was trained on 114 normal and 62
subclinical eyes and validated on 93 normal and 82 subclinical
eyes. Using training data only, the model achieved 89%
sensitivity and 92% specificity, but when applied to the
validation set, the accuracy dropped significantly to 63%
sensitivity and 82% specificity. This highlights the need for
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external validation when reporting the performance of the
detection algorithms.

Support Vector Machines
SVMs translate data into a higher-dimensional space where a
dividing line (known as a hyperplane) separates the data such
that the distance between the hyperplane and any given data
point is maximized [26]. When 8 different machine learning
algorithms were compared for classifying subclinical
keratoconus on the same data set, SVMs achieved the highest
sensitivity (94%) [14]. Arbelaez et al [47] achieved even higher
sensitivities using SVMs with a large data set of 1259 normal
eyes and 426 with subclinical keratoconus. They used 200 eyes
from each group for training and the remainder for testing,
achieving 92% sensitivity and 97.7% specificity. Ruiz Hidalgo
et al [56] used 25 topographic or tomographic Pentacam-derived
parameters to verify their SVM model. They included 131
patients in their study and provided results for 2 classifications
from separate hospitals: Antwerp University Hospital and
Rothschild Foundation, Paris. When classifying the 4 groups
(keratoconus, subclinical, normal, and postrefractive surgery),
the sensitivity for subclinical keratoconus detection was 61%
compared with that of the Antwerp University Hospital
classification and 100% compared with that of the Rothschild
classification. This was a comprehensive validation study that
compared multiple methods with 2 subjective reference
standards. Only a small number of subclinical keratoconus cases
(approximately 20) were included in this study, and a larger
study is required to verify these results.

Logistic Regression
Logistic regression is commonly used to perform classification
from a set of independent variables [26]. It transforms its output
using the sigmoid function to return a probability that can then
be thresholded for classification. When classifying subclinical
keratoconus, 3 studies used this technique exclusively
[59,60,75]. Sideroudi et al [59] used logistic regression to
explore the diagnostic capacity of Fourier-derived posterior
keratometry parameters (spherical component, regular
astigmatism, asymmetry, and irregular astigmatism) extracted
from Pentacam Scheimpflug images. They included 50 normal
eyes, 80 eyes with keratoconus, and 55 with subclinical
keratoconus (defined as a clinically normal eye with abnormal
topography, where the fellow eye has advanced keratoconus)
and validated their model on 30% of the data set. Their model
attained 91.7% sensitivity and 100% specificity when classifying
between subclinical keratoconus and normal eyes. Although
these results are among the best reported, the study has yet to
be validated using an external data set. Other studies
implemented logistic regression as part of a wider comparison
of machine learning algorithms [14,58].

Comparative Studies
Few studies have applied multiple machine learning algorithms
to the same data set. Cao et al [14] tested 8 machine learning
algorithms on the same data set of 39 normal control eyes and
49 eyes with subclinical keratoconus. Age, sex, and 9 corneal
parameters from the Pentacam tomography were used, and the
authors found that random forest, SVM, and K-nearest neighbors

had the best performance. Random forests had the highest AUC
of 0.97, SVM had the highest sensitivity (94%), and K-nearest
neighbors had the best specificity (90%). Although they verified
their results with 10-fold cross-validation, it would be instructive
to repeat the analysis on a larger external data set. Ambrosio et
al [58] also performed an analysis across algorithms including
logistic regression, SVMs, and random forests to classify
between 4 groups: normal, keratoconus, very asymmetrical
ectasia-ectatic, and subclinical keratoconus (very asymmetric
ectasia-normal). They used both Scheimpflug tomography and
biomechanical data and included 480 normal eyes, 204 eyes
with keratoconus, 72 eyes classified as very asymmetrical
ectasia-ectatic, and 94 subclinical keratoconus eyes. When
considering subclinical keratoconus, the random forest model
performed the best, with 90.4% sensitivity and 96% specificity.
The final model was named the Tomography and Biomechanical
Index and was validated by leave-one-out cross-validation,
resulting in as many models as there were subjects (N=850).
Lopes et al [62] also performed a comparative analysis and
found that random forests performed best when trying to classify
3 groups of eyes (including subclinical eyes). Lavric et al [71]
provided the largest comparative study for detecting subclinical
keratoconus. The authors included 1970 normal eyes, 390 eyes
with keratoconus, and 791 subclinical (FFKC) keratoconus eyes
in their study and used keratometric, pachymetric, and
aberrometric data from the CASIA AS-OCT system in their
analysis across 25 different machine learning algorithms. When
they classified the 3 groups simultaneously, they found that the
most accurate method was SVM, which attained 89.5%
sensitivity for the detection of subclinical keratoconus, and the
results were validated using 10-fold cross-validation. The
limitations of this study include the use of the CASIA ectasia
screening index (ESI) for the classification of the severity of
keratoconus, which may not agree with clinical diagnosis, and
that the analyzed parameters are closely tied to the CASIA
device, which limits generalizability to other systems.

Unsupervised Learning
Unsupervised learning represents a distinct approach to the
detection of subclinical keratoconus by attempting to identify
groups of similar eyes without prelabeled data. Yousefi et al
[61] used a 2-step approach that combined dimensionality
reduction and density-based clustering to cluster a cohort of
3156 eyes categorized according to the ESI index as either
normal, keratoconus, and subclinical (FFKC) keratoconus. They
included 420 topography, elevation, and pachymetry parameters,
and the algorithm produced 4 clusters of eyes with similar
characteristics. When comparing their results with a reference
standard (ESI), the model did not create a distinct grouping that
separated the subclinical eyes from other eyes (sensitivity 88%
and specificity 14%), suggesting poor correlation when
compared with ESI alone. Furthermore, they did not compare
their results with clinically labeled data.

Research Question 3: How Was Algorithm Validation
Handled Among the Selected Manuscripts?
Although most studies performed internal validation by splitting
the original data set into training and test sets, we identified 5
replication papers that validated a published model on a new
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data set [48,51,52,56,63]. Ruiz Hidalgo et al [56] verified their
SVM technique presented in 2016 [55]. The authors found that
when using the Antwerp University Hospital classification,
there was approximately 18% decrease in sensitivity, whereas
when using the Rothschild classification, there was
approximately 21% increase in sensitivity. These discrepancies
highlight the problems associated with subjective classification
and the absence of ground truth. Furthermore, when multiple
groups were included in the analysis; that is, normal,
keratoconus, subclinical keratoconus, and postrefractive surgery
eyes, it was noted that the accuracy decreased from 93.1% in
discriminating normal from FFKC to 88.8%. However, this
paper presented the most comprehensive methodology because
the authors not only verified their results on a new sample
population with multiple target classes but also compared their
results with other methods and included 2 subjective reference
standards.

Buhren et al [51] validated their model defined in 2010 [84].
When comparing their discriminant function derived from
anterior and posterior corneal surface wavefront data, they
reported approximately 22% decrease in sensitivity and
approximately 9% decrease in specificity. This decrease was
likely caused by overfitting in the original study. Saad et al [48]
and Chan et al [52] validated the same discriminant analysis
model presented by Saad et al [77]. Saad et al [48] reported
sensitivity (92%) and specificity (96%), roughly in line with
their previous study, which indicates that their method is reliable
and does not suffer from overfitting. Chan et al [52] validated
the original model in patients from different ethnic backgrounds
(Asian). They reported approximately 21% decrease in
sensitivity, which they attributed to overfitting in the original
study; however, their specificity was almost equivalent.
Steinberg et al [63] validated the work presented by Ambrosio
et al [58]. They reported approximately 27% decrease in
sensitivity and approximately 13% decrease in specificity when
applying the same thresholds.

Bias Assessment
In general, patient selection was found to have a high risk of
bias (19/26, 73% of studies) because most studies were
case-control (thus susceptible to selection bias) and did not use
consecutive or random samples. Multimedia Appendix 5
[14,47-71] contains the results of applying the QUADAS-2 tool
when considering the risk of bias. The index test was also
generally found to have a high risk of bias (21/26, 81% of
studies) because of the lack of external validation. As there is
no gold standard for subclinical keratoconus diagnosis, we could
not assess the bias for the reference standard; therefore, all
papers were marked as unclear. Finally, patient flow was found
to have a low risk of bias (21/26, 81% of studies) because
although chronological information was sparse, the same
analysis was usually applied to all patients.

Discussion

Research Question 1: What Input Data Types Have
Been Used Within Subclinical Keratoconus Detection
Algorithms and How Have They Performed?
The data most commonly used for building subclinical
keratoconus detection algorithms are numeric keratometry or
pachymetry parameters; hence, according to our review,
algorithms based on these tend to have the highest performance.
These parameters are derived from a variety of imaging systems
and devices and are then incorporated into different
combinations to build a classification system or an index.
Inevitably, individual systems produce parameters that may not
be comparable across devices, and for proprietary reasons, the
raw data are generally not available to derive these parameters.
Therefore, comparison or replication across systems is difficult.
Heat maps provide a visual representation of either corneal
elevation, pachymetry, or curvature, which are helpful for the
visual interpretation of results. However, heat maps require
interpolation or extrapolation of data, which may introduce
inaccuracies when included in the model. To the best of our
knowledge, there are no studies that have analyzed actual
pixel-level corneal imaging data (Scheimpflug or AS-OCT),
probably because access to these data is restricted to commercial
machines such as the Pentacam, which impedes bulk export to
train machine learning algorithms.

We also noted that many studies do not incorporate details of
patient demographics and associated diseases, such as age, sex,
ethnicity, and atopy, which can influence the risk of developing
keratoconus. Incorporating these data into these models may
help define the population to which an algorithm applies,
particularly as there are phenotypic indices that an algorithm
can identify from images that humans cannot identify by manual
inspection [85].

Research Question 2: What Machine Learning
Algorithms Have Been Used for Subclinical
Keratoconus Detection and How Have They
Performed?
Subclinical keratoconus studies typically involve univariate or
multivariate analyses. For univariate studies, receiver operating
characteristic analysis is performed, as each parameter is
included to quantify their diagnostic ability. However, because
none of the univariate studies we identified performed an
out-of-sample validation, they were all excluded. For
multivariate studies, machine learning is used to create a
detection model using multiple parameters. These algorithms
have already demonstrated comparable performance to
experienced ophthalmologists in the identification of retinopathy
of prematurity [86] and retinal disease progression [87]. Machine
learning–based research into the detection of subclinical
keratoconus has largely focused on supervised learning
techniques, such as decision trees, SVM, logistic regression,
discriminant analysis, NNs, and CNNs. Logistic regression may
be superior to NNs when parameters from a single imaging
modality are considered [14,68], with a potentially greater role
for NNs when a large number of potentially interacting
parameters are combined, such as for multiple imaging
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modalities [68]. Unsupervised learning has also been evaluated
for the detection of subclinical keratoconus, although it relies
on identifying patterns in large amounts of data; hence, it may
not translate to a different data set of a different size and with
different properties. In addition, with the exception of the study
by Yousefi [61], none of the papers provided access to the
source code for their algorithms or a description of the
hyperparameters, which makes it difficult to reproduce and
validate the results with external data sets.

Research Question 3: How Was Algorithm Validation
Handled Among the Selected?
We excluded papers that did not include a validation arm for
the study, and the vast majority of initially identified studies
did not appropriately validate their results. For any type of
automatic classifier, validating the results on a data set distinct
from the trained set is critical in determining the generalizability
of the model to other data sets. With the exception of the studies
by Saad et al [48] and Hidalgo et al [56], it is clear that studies
attempting to validate a prior method reported significant
decreases in sensitivity and specificity in comparison with their
original results. This shows that even when techniques such as
cross-validation are performed, the best method for validation
is an independent out-of-sample data set, and its absence may
introduce bias. Ideally, this external data set would be larger
and more representative of the general population.

Strengths and Limitations
The primary strength of this study is that we present a
comprehensive review of all studies published in English
between January 1, 2010, and October 31, 2020, on the use of
machine learning for the detection of subclinical keratoconus.
Our focus on the detection of subclinical keratoconus addresses
an important unmet clinical need for an effective machine-based
technique to identify keratoconus at its earliest stage. This would
move us closer to potential screening without significant
demands on clinicians and clinical services. Subclinical disease
diagnosis is more challenging than the detection of advanced
disease, where the opportunity to prevent progression has
already been lost. In this respect, our review builds on recent
clinical trials of CXL to prevent keratoconus progression in
children and young adults [15,88,89]. To present a balanced
and comprehensive overview, we have combined the expertise
of computer scientists (HM and NP) familiar with the
development of machine learning for clinical medicine with the
input from clinicians (JPOL, DG, and ST) who are experienced
in keratoconus management. We have considered and compared
the literature in terms of both clinical input data and machine
learning methodology, which allows the reader to gain a wider
perspective of the problem.

However, there are limitations to our search methods and
inclusion criteria. As with any systematic review, articles that
did not include the relevant key terms or were not appropriately
indexed by the literature databases may have been missed. When
considering our inclusion criteria based on subclinical disease,
some studies may have been missed because of a lack of
consensus on definition. In addition, where there was no form
of validation, we excluded the study; thus, our results represent
only the articles that have some degree of generalizability.

A further limitation is the difficulty in comparing the
performance of the approaches described in the manuscripts;
direct comparisons were not possible because of the variation
of multiple study design factors such as subclinical disease
definition, parameter choice, data set source, and machine
learning algorithm. Finally, a limitation regarding case definition
that applies to all studies is the uncertainty in the relationship
between subclinical keratoconus and other nonprogressive
abnormalities of corneal shape.

Challenges and Future Directions
Our systematic review identified several challenges from the
literature and avenues for future research.

Case Definition, Gold Standard, and Ground Truth
Precise comparisons between the results of publications are
problematic because of the ambiguous definition of early
keratoconus and the absence of a gold standard examination
technique. The most common definition of subclinical
keratoconus is an eye with topographic findings that is at least
suspicious of keratoconus and with confirmed keratoconus in
the fellow eye. FFKC is usually defined as an eye that has both
normal topography and slit-lamp examination but with
keratoconus in the fellow eye [44]. With this differentiation,
subclinical keratoconus will be easier to detect than FFKC, and
studies using the former definition are likely to produce more
accurate results because the problem becomes easier to solve.
The problems of making statistical comparisons in the absence
of a gold standard have been discussed extensively by
Umemneku et al [90]. The authors suggest that latent class
analysis, composite reference standards, or expert panel analysis
may be appropriate in these circumstances.

Even if a precise definition of early subclinical keratoconus was
established, the absence of ground truth data is relevant when
evaluating the precision of data acquisition. For example,
measurements of keratoconus taken by different operators or
repeated on different days may lead to variations in the results.
Flynn et al [91] found that keratometric measurements from
Scheimpflug images (Pentacam) were more reproducible in
early keratoconus (mean central K ≤53 D) compared with those
in more advanced keratoconus (mean central K>53 D), although
a cohort with subclinical keratoconus was not included. In
contrast, Yang et al [92] found that biomechanical parameters
(Corvis ST) had acceptable repeatability in both normal and
keratoconus eyes.

Another issue we identified when comparing studies was the
variation in the number of groups that were classified. The
studies often started with multiple groups (usually 3, eg, FFKC,
keratoconus, and normal); however, 21 papers chose to report
their accuracy results from a model trained to classify between
just 2 groups (eg, FFKC and normal), whereas 5 papers reported
results for classifying between all groups. Classifying all groups
is a more realistic clinical scenario, but it presents a more
challenging problem because the features of the different groups
can overlap. Complete details of the number of groups
associated with the accuracy results are presented in Multimedia
Appendix 2.
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Study Size and Statistical Power
The size of the study is critical when developing a reliable
detection system. In particular, the accuracy of machine learning
models is directly related to the amount of training data. When
considering eyes with subclinical keratoconus, only 2 studies
included more than 500 eyes [61,71]. None of the papers
included a priori power calculations to estimate the size of the
cohort to be studied.

Study Design
None of the reported studies evaluated the performance of their
method against masked observers; thus, they may introduce
detection bias. The initial classification is often made by
considering the fellow eye with keratoconus as a factor in the
decision-making process, whereas the algorithm does not have
this information. Hence, it would be interesting to design a study
where, having already decided on the ground truth diagnosis,
a new clinician is asked to evaluate the eye using the same
information as the algorithm (ie, only the images or parameters).
This situation is closest to real-life screening where a prospective
patient (without a history of keratoconus in either eye) is
examined for risk of keratoconus.

Subclinical keratoconus is, by definition, the least affected eye
of highly asymmetrical keratoconus. An assumption is that any
parameters of subclinical disease that differ from the values for
normal corneas are the result of keratoconus. However, it has
not been demonstrated prospectively that all eyes in such a
cohort will progress to the clinical disease state. Although true
unilateral keratoconus is thought not to exist [37], this has not
been proven, and it is possible that some eyes with subclinical
keratoconus are not at risk of progression and that some of the
abnormal parameters in this group are not the result of
keratoconus. It would be valuable to conduct a prospective study
in which eyes that do not develop clinical keratoconus over time
are used as lower-risk examples.

External Validation and Generalizability to Real-world
Data
To be useful, it is essential that a detection algorithm can
generalize beyond the limited data set from which the model
was developed and benchmarked, which requires external
validation in out-of-sample data sets. The creation of a large
open-source data set of keratoconus images could serve as a
reference standard to develop a benchmark for external
validation. We also recommend that journals adhere to the
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis guidelines so that all
published methods are externally validated. When generalizing
to external data sets the source and quality of the data should
be considered. Data from a referral hospital may not represent
the general population, who might be the target for screening
programs, with an underrepresentation of eyes with mild disease.

Other Challenges
There are several other considerations, such as keratoconus
progression and the translation of a detection algorithm into a

medical device that can be implemented in the real world, but
these issues are beyond the scope of this review. Nevertheless,
these points are discussed in Multimedia Appendix 6
[37,39,93-102].

New Avenues of Research
On the basis of the results of this review, there is a need for
further fundamental research, particularly for analysis based on
the raw pixel values of corneal imaging rather than only derived
parameters. Furthermore, a multimodal solution could be
developed by combining these raw images with other
parameters, such as biomechanical, demographic, and genetic
data. Demographic data such as age, sex, ethnicity, and allergic
eye disease are known risk factors for progressive keratoconus,
and a family history of keratoconus is also a risk factor that
should also be included in diagnostic algorithms. Environmental
risk factors, including eye rubbing, have been associated with
keratoconus progression, although eye rubbing is difficult to
quantify. A genetic predisposition to keratoconus is supported
by heritability studies in twins, linkage analysis in families, and
population-level genome-wide association studies [103]. From
these studies, genetic risk scores have been derived, which could
be included in machine learning models for the detection of
subclinical keratoconus. Ideally, a prospective study should be
performed in a large cohort of young (<30 years of age) patients
with subclinical keratoconus to monitor disease progression.
Training should be conducted on large data sets with the explicit
aim of detecting subclinical keratoconus, and the resulting model
should be externally validated on a new data set. Finally, a range
of machine learning techniques should be applied to the same
data set along with detailed comparison statistics.

Conclusions
We have conducted the most comprehensive review to date on
machine learning algorithms for the detection of subclinical
keratoconus. Early detection of keratoconus to enable treatment
and prevent sight loss is a public health priority, and the use of
machine learning algorithms has the potential to make the
diagnostic process more efficient and widely available. We have
summarized the relevant publications in terms of their input
data and the choice of algorithm and identified whether studies
performed appropriate validation. We have identified the
challenges of obtaining accurate data sets for training machine
learning algorithms and the need for a consistent, objective, and
agreed definition of subclinical keratoconus. New avenues of
research have been identified that combine multimodal source
data with biomechanical, demographic, and genomic data.
Defining disease progression and modeling progression to the
point where there is sight loss are areas that may benefit from
further research. We believe this up-to-date review is important
to enable researchers, clinicians, and public health policymakers
to understand the current state of the research and provide
guidance for future health service planning.
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