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Highlights  8 

• Intestinal microbiota can directly and indirectly affect drug response.    9 
• Over 180 drugs are known to be susceptible to direct gut bacterial metabolism.  10 
• Hundreds of drugs possess the ability to alter gut microbiome composition.  11 
• Machine learning may be leveraged to predict drug-microbiome interactions.   12 
• Several challenges face machine learning’s translation to the clinic. 13 

Abstract  14 

Pivotal work in recent years has cast light on the importance of the human microbiome in 15 
maintenance of health and physiological response to drugs. It is now clear that gastrointestinal 16 

microbiota have the metabolic power to promote, inactivate, or even toxify the efficacy of a drug 17 

to a level of clinically relevant significance. At the same time, it appears that drug intake has the 18 

propensity to alter gut microbiome composition, potentially affecting health and response to 19 
other drugs. Since the precise composition of an individual’s microbiome is unique, one’s drug-20 

microbiome relationship is similarly unique. Thus, in the age of evermore personalised medicine, 21 
the ability to predict individuals’ drug-microbiome interactions is highly sought. Machine 22 
learning (ML) offers a powerful toolkit capable of characterising and predicting drug-microbiota 23 

interactions at the individual patient level. ML techniques have the potential to learn the 24 
mechanisms operating drug-microbiome activities and measure patients’ risk of such 25 

occurrences. This review will outline current knowledge at the drug-microbiota interface, and 26 
present ML as a technique for examining and forecasting personalised drug-microbiome 27 

interactions. When harnessed effectively, ML could alter how the pharmaceutical industry and 28 
healthcare professionals consider the drug-microbiome axis in patient care.   29 
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1. Uncovering the Drug-Microbiome Relationship  36 

Described as the ‘last organ’, the human microbiome encompasses trillions of microorganisms 37 

residing within a myriad of ecological niches of the human body. Bacteria, fungi, and archaea 38 
represent key living microbes, known as microbiota; whereas phages, viruses, and plasmids are 39 
principal non-living elements of the microbiome (Berg et al., 2020). Collectively, these 40 
microorganisms present a dynamic, diverse, and complex genetic reservoir that exists in 41 
interactive flux with itself and human cells (Huttenhower et al., 2012). The scale of the 42 

microbiome is substantial; commensal bacteria alone are more numerous than human cells and 43 
encode for 150 times more unique genes than their human host (Qin et al., 2010; Sender et al., 44 
2016). The majority of microbiota reside in the lower gastrointestinal (GI) tract and are known as 45 
the human gut microbiome (HGM). In possessing such genetic diversity, the HGM can be 46 
considered as having the metabolic capacity of the liver (Scheline, 1968).  47 

 Pioneering work of the 19th century by Nobel Laureate Robert Koch and Louis Pasteur 48 

cast light on bacteria as causes of disease (Robert Koch (Biographical), 1967). Whilst marking a 49 
medical milestone, and facilitating the treatment of countless infectious diseases worldwide, the 50 
perception of microorganisms as solely pathogenic has widely persisted. As such, the presence of 51 
microorganisms on, within, and in proximity to the human body is often regarded negatively, and 52 

widespread global overuse of antimicrobials persists (Malik and Bhattacharyya, 2019). In reality, 53 
the importance of the microbiome for human health, and the significance of maintaining 54 

microbial diversity, are now only being realised (Manor et al., 2020; Proctor et al., 2019; Uzan-55 
Yulzari et al., 2021). Numerous diseases, including metabolic syndrome, autoimmune 56 
dysfunction, inflammatory bowel disease, and neurological disorders have been linked to a 57 

dysbiotic HGM with varying degrees of mechanistic insight (Cryan et al., 2020; Jostins et al., 58 
2012; Markle et al., 2013; Vrieze et al., 2012). Generally, the microbiome’s metabolic functions 59 

enable physiological processes critical for human health. Microbial enzymes possess significant 60 
functional redundancy, capable of transforming many chemically distinct substrates (Tian et al., 61 

2020). For example, gut microbiota regulate half of all intestinally derived serotonin, synthesise 62 
several vitamins, and break down macronutrients (such as fibre) that are otherwise indigestible 63 

by human cells (Fung et al., 2019; Oliphant and Allen-Vercoe, 2019).  64 

While the role of the HGM in maintaining good health is broadly recognised, it is not 65 
well understood. The extent to which the microbiome affects the physiological action of drugs 66 
has only recently begun to emerge. The first case of microbial drug metabolism was discovered 67 
in the 1930s when an early sulphonamide antibiotic, Prontosil, was found to require activation by 68 

intestinal bacteria for therapeutic action (Fuller, 1937). Despite this early realisation most known 69 
drug-microbiome interactions have only been characterised following the turn of the century, 70 

enabled by advancing genomic, metabolomic, and microbiological methods (Huttenhower et al., 71 
2012). Over 180 drugs are now recognised as substrates for gut bacterial enzymes, and thus 72 
vulnerable to direct enzymatic transformation in vivo (Hatton et al., 2019; Zimmermann et al., 73 
2019a). It is becoming clear that microbial metabolism can significantly affect the clinical 74 
response to drugs. An individual’s microbiome composition is thought to be as unique as a 75 

fingerprint (Franzosa et al., 2015). Consequently, microbiome heterogeneity may represent a 76 
significant cause of variability in patients’ physiological, and thus clinical, response to drug 77 
treatment (Vinarov et al., 2021). In addition, the drug-microbiome relationship can be regarded 78 
as bidirectional: as the microbiome can affect drugs, the administration of drugs can similarly 79 
affect the microbiome. With new studies linking dysbiosis to disease frequently emerging, it is 80 
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prudent to understand how drugs may impact commensals and therefore, human health (Maier et 81 
al., 2018).  82 

In clinical practice, variability in patients’ drug response frequently leads to dosing 83 
difficulties, adverse reactions, and failures in clinical trials (Harrison, 2016; Madla et al., 2021). 84 
If drug-microbiome interactions could be predicted at the individual patient level, then a portion 85 
of this variability could be forecast and thus accounted for. Moreover, prediction of how drugs 86 

may affect individuals’ microbiome compositions could lead to changes in treatment, whereby 87 
microbiome health is a considered factor at the point of prescribing. As such, the occurrence of 88 
drug-induced dysbiosis could be substantially lessened and the selection of an optimal treatment 89 
and dose would become easier. Machine learning (ML) stands to be an enabling tool for the 90 
characterisation and prediction of drug-microbiome interactions. Enumerate factors shape one’s 91 

microbiome composition including the presence of disease, age, sex, diet, genome, and lifestyle 92 

(Chaudhari et al., 2020; Keohane et al., 2020).  ML techniques can interpret extremely large 93 

datasets, considering thousands of patients and factors, and identify intrinsic drug-microbiome 94 
patterns (Elbadawi et al., 2021a). Frequently, ML can identify patterns at speeds and accuracies 95 
far exceeding human capabilities (Silver et al., 2017). With these patterns elucidated, prediction 96 
of drug-microbiome interactions can be made for new patients, based on how they compare to 97 
those examined in the original dataset. Medicine is increasingly adopting ML, and other forms of 98 
artificial intelligence, to streamline and optimise every stage of the patient pathway, from 99 
symptom recognition to treatment, discharge, and patient support (Gilvary et al., 2019; May, 100 

2021). The pharmaceutical industry is also embracing ML for the streamlined development of 101 
new drugs (Damiati, 2020; Elbadawi et al., 2021c). In coming years, it is likely that ML will be 102 

frequently harnessed for use in microbiome medicine (Figure 1) (McCoubrey, Laura E. et al., 103 
2021).    104 
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 105 

Figure 1. A: The machine learning (ML) project workflow; B: common ML techniques, 106 

separated into supervised, unsupervised, and advanced categories. K-NN: k nearest neighbour, 107 
GANs: generative adversarial networks, LSA: latent semantic analysis, SVD: singular value 108 

decomposition, PCA: principal component analysis; C: existing applications of ML in 109 
microbiome medicine include prediction of metabolic response to food (Berry et al., 2020), 110 
health status (Gupta et al., 2020), post-mortem interval based on skin microbiome (Johnson et 111 

al., 2016), antimicrobial resistance (Khaledi et al., 2020), and microbiome response to 112 
administration of prebiotics (Luo et al., 2018).  113 

 In this review, current knowledge at the drug-microbiome interface is examined, with 114 

consideration for how ML can be leveraged to explain and predict interactions. We highlight 115 
how gut microbiota modulate drug response both directly and indirectly, and explore how 116 

medicines can affect HGM composition for the better or worse. We present ML as an emerging 117 
tool, describing how it is currently used in microbiome medicine, its strengths, challenges, and 118 
implications for future practice.  119 

2. Direct Microbial Metabolism 120 

Currently, the most characterised mechanism of microbiome-mediated drug metabolism is direct 121 
enzymatic transformation of drugs within the GI tract (Basit et al., 2002; Clarke et al., 2019; 122 
Yadav et al., 2013). The density and composition of microorganisms residing within each region 123 
of the digestive system varies substantially, affected by parameters such as pH; oxygen 124 
availability; nutrient supply; motility; luminal fluid volume; and host immune activity. Multiple 125 
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niches also exist within the same GI region; for example, microbiota inhabiting the luminal fluid 126 
are distinct to those populating the epithelial mucosal surface (James et al., 2020). 127 

Microorganism density and diversity progressively increases from the proximal to distal gut: 128 
from 101-103 bacterial colony-forming units (CFU) per mL in the stomach, to 1010-1012 bacterial 129 
CFU/mL in the colon (Martinez-Guryn et al., 2019). There is less knowledge on the spatial 130 
organisation of non-bacterial elements of the HGM, which account for a minor but 131 
physiologically important proportion of GI microorganisms (Gregory et al., 2020; van Tilburg 132 

Bernardes et al., 2020). Bacteria in all regions of the GI tract produce enzymes with high 133 
functional redundancy, capable of transforming a diverse array of substrates (Tian et al., 2020; 134 
Varum et al., 2020a; Varum et al., 2020b). Such enzymes have evolved to digest dietary 135 
nutrients, aid lipid absorption, maintain microbial homeostasis, and detoxify ingested poisons 136 
(Joice et al., 2014). Interaction between drugs and microbial enzymes can result in both positive 137 

and negative changes to original drug mass, with common transformations including oxidation, 138 
reduction, deacetylation, hydrogenation, hydroxylation, and acetylation (Zimmermann et al., 139 
2019a) (Table 1). Biologics can also be affected (Wang et al., 2015; Yadav et al., 2016). It is not 140 

just orally administered drugs that are susceptible to enzymatic metabolism by gut microbiota: 141 

parenteral drugs can reach the gut through excretion in bile acids or diffusion from systemic 142 
circulation.     143 

Table 1. Examples of drugs susceptible to direct transformation by microbial enzymes produced 144 
in the gastrointestinal tract.  145 

Drug Reaction Causative agent Experimental 

model 

Effect 

Brivudine Cleaving of 

tetrahydrofuran 

ring 

Bacteroides 

thetaiotaomicron 

encoding bt4554 

gene 

Mice (sex 

unspecified) 

Increased 

conversion to 

hepatotoxic 

metabolite, 

bromovinyluracil 

(BVU) in the 

caecum, resulting 

in higher BVU 

serum levels 

(Zimmermann et 

al., 2019b).  

Dexamethasone Desmolysis 

(sidechain 

cleaving) 

Clostridium 

scindens 

Mice (both 

sexes) 

Reduced drug 

concentration in the 

caecum, and 

increased androgen 

metabolite 

concentration in the 

caecum and serum 

(Zimmermann et 

al., 2019a).  

Digoxin Lactone ring 

reduction 

Eggerthella lenta 

producing 

cardiac glycoside 

Mice (male) Formation of an 

inactive metabolite, 

dihydrodigoxin 
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reductase 

enzyme 

(Haiser et al., 

2014). Reduction in 

digoxin 

bioavailability 

(Haiser et al., 

2013). 

Diltiazem Deacetylation Bacteroides 

thetaiotaomicron 

encoding bt4096 

gene 

Ex vivo human 

microbiota 

from faeces 

(64% male) 

Differences in 

diltiazem 

metabolising 

capacity, 

correlating with 

bt4096 homolog 

abundance 

(Zimmermann et 

al., 2019a). 

Doxifluridine Deglycosylation Escherichia coli 

encoding deoA or 

upd genes 

In vitro 

incubation 

with bacterial 

strains 

Premature 

activation to 5-

fluoruracil, 

potentially 

increasing risk of 

intestinal toxicity 

(Chankhamjon et 

al., 2019). 

Hydrocortisone Deacetylation 

(by unidentified 

enzyme) and 

subsequent 

ketone reduction 

by 20β-HSDH 

Bifidobacterium 

adolescentis 

encoding the 

20β-HSDH gene 

Ex vivo human 

microbiota 

from faeces 

(sex 

unspecified) 

Formation of 20β-

dihydrocortisone 

(Javdan et al., 

2020).  

Levodopa Decarboxylation Bacterial tyrosine 

decarboxylases 

Humans (both 

sexes) 

Peripheral 

conversion of 

levodopa to 

dopamine. 

Abundance of 

intestinal tyrosine 

decarboxylase 

explains increased 

oral levodopa dose 

requirements in 

Parkinson’s disease 

patients (van 

Kessel et al., 2019).  

Mycophenolate 

mofetil 

Ester hydrolysis Unknown Ex vivo human 

microbiota 

from faeces 

Formation of 

mycophenolic acid, 

a metabolite linked 

to gastrointestinal 
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(sex 

unspecified) 

toxicity. 

Metabolism shows 

inter-individual 

variability (Javdan 

et al., 2020).  

Progesterone Likely reduction Unknown Ex vivo human 

microbiota 

from faeces 

(males)  

Progesterone is 

degraded by faecal 

microbiota within 2 

hours. Potential 

metabolites include 

5α and 5β-

pregnanolone 

(Coombes et al., 

2020).  

Sulfasalazine Cleavage of azo 

bond 

Bacterial 

azoreductases 

(widely produced 

across species) 

Ex vivo human 

microbiota 

from faeces 

(sex 

unspecified) 

Rapid metabolism 

of the prodrug 

sulfasalazine 

(within 120 

minutes) to its 

active compound, 

5-aminosalicylic 

acid (Sousa et al., 

2014). 

Tacrolimus C9 keto-

reduction 

Faecalibacterium 

prausnitzii 

Humans (both 

sexes) 

Production of 

metabolite, M1, 

with 15-fold lower 

immunosuppressant 

activity (Guo et al., 

2019). F. 

prausnitzii 

abundance 

positively 

correlates with oral 

tacrolimus dose 

requirements in 

adult kidney 

transplant patients 

(Lee et al., 2015).  
 146 

In recent years, the scale of enzymatic drug transformation in the gut has become clear. 147 
Two key studies within the field have used high throughput in vitro screening to identify 148 
instances and mechanisms of direct drug metabolism by intestinal bacteria (Javdan et al., 2020; 149 
Zimmermann et al., 2019a). In the first, Zimmerman et al. investigated 76 strains of human GI 150 
bacteria for their ability to chemically modify 271 oral drugs (Zimmermann et al., 2019a). The 151 
researchers incubated each drug with each bacterial strain for 12 hours and used liquid 152 
chromatography mass spectrometry to identify instances of drug transformation. From the 153 
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20,596 drug-bacteria interactions assessed, two-thirds (176) of the investigated drugs were found 154 
to undergo chemical modification by at least one strain of gut bacteria. This, understandably, 155 

includes many drugs with known inter-individual variabilities in pharmacological response. In 156 
the study, Zimmerman et al. investigated bacterial metabolism as a cause of inter-patient 157 
variability using the model drug dexamethasone. It was known from the in vitro screen that 158 
dexamethasone undergoes sidechain cleavage by Clostridium scindens (ATCC 35704), liberating 159 
an androgen metabolite. When dexamethasone was delivered orally to both germ-free and C. 160 

scindens mono-colonised gnotobiotic mice, the colonised mice had significantly lower levels of 161 
caecal and plasma drug concentrations, with correspondingly higher levels of androgen 162 
metabolite. This showed that the screening experiment correctly identified dexamethasone’s 163 
microbial metabolism in vivo. Further, anaerobic incubation of dexamethasone with faecal 164 
cultures from 28 human donors showed significant variation in individual drug metabolism. This 165 

highlights how strain-level differences in HGM profile can directly affect physiological drug 166 
handling. 167 

 In the second key study, Javdan et al. built on growing knowledge to ascertain greater 168 
mechanistic insight into metabolism variability (Chankhamjon et al., 2019; Javdan et al., 2020). 169 
Whereas Zimmerman et al. primarily worked with monocultures of gut bacteria, Javdan et al. 170 
used batch culturing of whole gut bacteria communities (Javdan et al., 2020). Beginning with a 171 
screen of 438 drugs in the presence of a single donor’s gut bacteria, the researchers found 57 of 172 
drugs (13%) to be chemically transformed. These drugs spanned 28 pharmacological classes, 173 

including the antiepileptic clonazepam; the anticancer prodrug capecitabine; the anti-Parkinson’s 174 
tolcapone; and the immunosuppressant mycophenolate mofetil. Chemical analysis was used to 175 

characterise the nature of the reactions and specific metabolites formed. The results could 176 
substantially aid researchers in predicting the clinical significance of bacterial drug metabolism, 177 

as metabolite identification facilitates prediction of downstream physiological effects. In a 178 
second part to their study, Javdan et al. used whole gut bacteria cultures from 20 healthy donors 179 

to assess variability in microbial metabolism of 23 drugs. They found cases of unanimous drug 180 
stability (ketoconazole, ropinirole); unanimous drug depletion (spironolactone, misoprostol); and 181 
inter-donor variability (levonorgestrel, capecitabine, hydrocortisone) (Figure 2). Spironolactone 182 

was determined to undergo thioester hydrolysis to the active 7α-thiospironolactone. Misoprostol 183 
was consistently metabolised to its active acid form, via ester hydrolysis. Capecitabine was 184 

variably deglycosylated to deglycocapecitabine, a previously unknown metabolite formed 185 
primarily by Proteobacteria. Hydrocortisone was also variability converted, forming androgenic 186 
20β-dihydrocortisone through ketone reduction, likely via oxidoreductases produced by 187 
Bifidobacteria. This latter reaction has begun to be explored for the microbiome-mediated 188 

management of androgen-dependent diseases (Doden et al., 2019).  189 

Within the clinic, notable examples of direct HGM metabolism of critical drugs include 190 
tacrolimus (Guo et al., 2019), digoxin (Haiser et al., 2014), and levodopa (van Kessel et al., 191 
2019).    192 
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 193 

Figure 2. Direct drug metabolism by microbiota can be a source of significant pharmacokinetic 194 
variability (Haiser et al., 2013; Javdan et al., 2020; Lee et al., 2015; van Kessel et al., 2019).   195 

These results have implications for how individual microbiome composition is 196 

understood to directly affect pharmacokinetics. However, it is important to recognise the 197 
limitations of in vitro and ex vivo studies when considering whether results translate to drug-198 
microbiome reactions in vivo. For example, the work by Zimmerman et al. measured drug 199 

metabolism by individual bacterial isolates (Zimmermann et al., 2019a). In the intestines, many 200 
different species of microbiota coexist symbiotically alongside each other within diverse 201 
ecological niches (Donaldson et al., 2016). Because the metabolic activities of distinct microbial 202 
species within heterogenous communities are often inter-dependent, the behaviour of individual 203 
bacterial isolates in vitro may not always reflect their behaviour in vivo. Furthermore, in vitro 204 
screening methods often do not consider that the presence of food, bile acids, and hormones 205 
within the intestinal lumen can also affect microbial dynamics (Kelly et al., 2020). Whilst the 206 
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study by Javdan et al. did consider drug metabolism within multi-species microbiome models, by 207 
using faeces, the findings of their study may still not fully map to interactions in vivo (Javdan et 208 

al., 2020). For one, drug metabolism screening was completed using liquid broth populated with 209 
faecal microbiota, a medium that does not reflect the multi-niche intestinal environment 210 
(Donaldson et al., 2016). Additionally, results are based on microbiota from 20 healthy donors. 211 
In reality, it is often patients with diseases who take medicines, and because microbiome 212 
composition can be affected by host disease, findings may differ in these individuals (Proctor et 213 

al., 2019). Limitations aside, the studies have substantially expanded awareness of microbial 214 
drug metabolism due to their high throughput methodology. The in vitro results can now be 215 
validated with human studies. This work has already been completed for severable drugs, notable 216 
examples being the critical drugs tacrolimus (Guo et al., 2019), digoxin (Haiser et al., 2014), and 217 
levodopa (van Kessel et al., 2019).    218 

 219 

3. Indirect Microbial Effects on Drugs 220 

Whilst direct enzymatic drug metabolism has been most widely explored to date, indirect 221 

microbial effects on drug response are no less significant or prominent. Physiological response to 222 
drugs can be indirectly mediated by gut microbiome effects on bile acids; epithelial permeability; 223 
intestinal drug transporters; gut motility; and hepatic metabolism (Figure 3).     224 

  225 

Figure 3. Mechanisms of indirect gut microbiome effects on drug bioavailability. Microbiome-226 
mediated alteration of bile acids, epithelial permeability, gut motility, and intestinal drug 227 
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transporters can change the absorption of intraluminal drugs into systemic circulation. 228 
Alterations in hepatic metabolism can modify the half-lives of drugs in circulation.   229 

Drug absorption from the GI tract is a sensitive process. To be absorbed into circulation, 230 
drug molecules must be dissolved in GI fluid and either diffuse or be transported across the 231 

epithelium. Any factor that affects drug dissolution or membrane permeation can thus affect the 232 
amount of drug absorbed into circulation, and therefore a patient’s response to the drug (Ong et 233 
al., 2021). The microbiome’s extensive metabolic activity has substantial impact on the intestinal 234 
environment. For one, bile acids undergo significant metabolism by colonic microbiota. The 235 
bile-microbiota relationship is symbiotic: bacteria prevent toxic accumulation of bile acids, 236 

whilst bile acids prevent bacterial overgrowth and support a stable and diverse gut microbiome 237 
(Ridlon et al., 2014). Bile acids also play an important role in the solubilisation of lipids in the 238 
GI tract, including lipophilic drugs. There is therefore the possibility that disruptions in gut 239 

microbiome composition could affect bile acid homeostasis, and thus affect the absorption of 240 
lipophilic drugs (Enright et al., 2018). In liver transplant recipients, it has been observed that 241 
ursodeoxycholic acid, a secondary bile acid, significantly and variably affects the absorption of 242 

ciclosporin, a lipophilic immunosuppressant (Caroli-Bosc et al., 2000). In another study, 243 
microbial enzyme activity was found to impact bile salts’ solubilisation capacity for nine oral 244 
drugs, including the critical antiepileptic, phenytoin (Enright et al., 2017). Research on the 245 

impact of bacterial bile acid metabolism on drug absorption is still in its infancy. Other emerging 246 
mechanisms of microbiome-mediated effects on drug absorption are via changes to epithelial 247 

permeability (Takashima et al., 2020), gut motility (Roager et al., 2016), and intestinal drug 248 
transporters (González-Sarrías et al., 2013). Additionally, HGM effects on response to 249 
checkpoint inhibitor immunotherapies (e.g., nivolumab and pembrolizumab) are currently 250 

receiving substantial scrutiny. Whilst the mechanism has not been fully elucidated, it is known 251 

that several species of gut bacteria modulate patients’ drug response through production of the 252 
metabolite inosine (Mager et al., 2020). Such effects could orchestrate patients’ chance of 253 
sufficient drug response and progression-free cancer survival (Hakozaki et al., 2020).  254 

 Hepatic drug metabolism can also be affected by the microbiome. Enzymatic degradation 255 

of drugs in the liver is a crucial element of physiological drug response. In the liver, drugs are 256 
transformed to typically inactive and excretable metabolites. If hepatic metabolism is impaired, 257 
then drug clearance can be reduced, increasing risk of toxicity. The HGM and liver directly 258 

communicate via the portal vein and bile duct; metabolites from the gut travel to the liver via 259 
venous blood, and bile acids produced in the liver pass through the gut before excretion. Gut 260 
microbiota are known to modulate hepatic gene expression. A study comparing hepatic gene 261 
expression in germ free and colonised mice found over 4000 transcripts to be differentially 262 

expressed in the livers of the two groups (Montagner et al., 2016). A number of these are 263 
involved in the detoxification of drugs, including the cytochrome P450 (CYP450) enzymes, 264 
Cyp3a11 and Cyp2b10. The CYP3A subfamily are known to metabolise approximately half of 265 

all marketed drugs (Gandhi et al., 2012). Elsewhere, a cluster of 112 genes connected to hepatic 266 
drug metabolism have been proven as being microbiome-mediated (Björkholm et al., 2009). In 267 
this study, researchers exposed germ free and colonised mice to pentobarbital, and confirmed 268 
that the presence of microbiota significantly increased time of anaesthesia.  269 
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4. Do No Harm  270 

Clearly, the HGM plays an important and emerging role in the physiological handling of drugs. 271 

Microbiome composition is a dynamic process, altered by numerous factors such as diet, 272 
lifestyle, health, age, and importantly, medication use (Asnicar et al., 2021; Chaudhari et al., 273 
2020; Jostins et al., 2012; Mulder et al., 2020). Both drugs with and without intended 274 
antimicrobial actions have been shown to significantly alter the diversity and density of the 275 
microbiome (Table 2) (Maier et al., 2018; Mulder et al., 2020). Due to the numerous and 276 

interconnected functions of the microbiome, even seemingly small changes in composition could 277 
affect host health (Liu et al., 2020). First and foremost, it is essential to do patients no harm 278 
during treatment. Therefore, it is important to recognise how drugs could negatively impact 279 
microbiome functioning.    280 

Table 2. Effects of drugs on the gut microbiome and health. GF: germ free, IV: intravenous, PO: 281 
oral administration. 282 

Drug(s) Effects Experimental model 

Atypical antipsychotics (PO) 

(including clozapine, 

olanzapine, risperidone, 

quetiapine, asenipine, 

ziprasodone, lurasidone, 

aripiprazole, paliperidone, 

and iloperidone) 

Decreased bacterial species 

diversity in females 

(potentially explaining why 

females are more prone to 

antipsychotic-induced weight 

gain). Both sexes showed 

increased abundance of 

Lachnospiraceae and 

decreased abundance of 

Akkermansia and Sutterella. 

Adult humans (both sexes) 

(Flowers et al., 2017). 

Benzylpenicillin in 

combination with gentamicin 

(IV) 

Reduced bacterial richness, 

particularly decreased 

abundance of Bifidobacteria 

for 2 years. Attenuation of 

weight and height gain in 

boys for first 6 years of life. 

Higher body mass index in 

both sexes. 

Human neonates in first 48 

hours of life (both sexes) 

(Uzan-Yulzari et al., 2021). 

Fluoxetine (PO) Decreased abundance of 

Turicibacter sanguinis, 

leading to increased serum 

triglyceride levels and 

reduced white adipose tissue 

in females (but not males) 

Mice (both sexes) (Fung et 

al., 2019). 

Metformin (PO) Treatment for 4 months 

altered abundance of 86 

bacterial strains, mostly γ-

proteobacteria (e.g., 

Escherichia coli) and 

Firmicutes. Increased 

abundance of Akkermansia 

Human adults (both sexes) 

and mice (male) (Wu et al., 

2017). 
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muciniphila. Altered bacterial 

gene expression and 

improved host glucose 

tolerance. 

Methotrexate (PO) Decreased abundance of 

Bacteroidetes and increased 

abundance of Actinobacteria. 

Expression of 6,409 bacterial 

genes altered. Reduced 

inflammatory potential of 

microbiota. 

GF female mice colonised 

with human microbiota (both 

sexes); bacterial isolates; 

humans (both sexes) (Nayak 

et al., 2021).  

Omeprazole (PO) Treatment for 4 weeks altered 

bacterial taxa associated with 

C. difficile infection 

(Enterococcaceae and 

Streptococcaceae, 

Clostridiales) and GI bacterial 

overgrowth (increased 

Micrococcaceae and 

Staphylococcaceae).  

Humans (both sexes) 

(Freedberg et al., 2015).  

Paracetamol (PO) Higher abundance of 

Streptococcaceae 

Humans (both sexes) 

(Jackson et al., 2018). 

Statins (PO) (simvastatin 

48%, 31% atorvastatin, 21% 

other statins) 

Protective against the 

Bacteroides2 (Bact2) 

enterotype, a gut microbiome 

configuration associated with 

systemic inflammation and 

obesity. This may be due to 

attenuated inflammation. 

Human adults (both sexes) 

(Vieira-Silva et al., 2020). 

 283 

Whilst frequently lifesaving, antibiotic administration has ruinous and long-lasting effects 284 

on the microbiome (Montassier et al., 2021). A study by Mulder et al. investigated the 285 
microbiome composition of 1413 individuals in relation to antibiotic exposure over 4 years 286 
(Mulder et al., 2020). They found that macrolides and lincosamides were associated with 287 
significantly lowered faecal microbiome diversity for up to 4 years after prescription. Decreased 288 

diversity was noted for at least one year after prescription of beta-lactams and quinolones. Faecal 289 

microbiome diversity is recognised as an important indicator of health. Low faecal 290 

microorganism diversity has been linked to several disease states, including reduced immune 291 
functioning (Gregory et al., 2020); metabolic syndrome (Singer-Englar et al., 2019); and various 292 
neurological impairments (Cryan et al., 2020). Whilst strain-level interactions and functions are 293 
more descriptive measurements of microbiome health than overall diversity measurements, the 294 
changes to microbial diversity clearly demonstrate the widespread impacts of antimicrobials 295 

(Park et al., 2020). In the study by Mulder et al., it was identified that antimicrobials with 296 
substantial activity against anaerobes increased the ratio of gut Firmicutes to Bacteroidetes, a 297 
signature associated with obesity (Singer-Englar et al., 2019). Recently, it was also found that 298 

antibiotic exposure during the neonatal period impairs child growth for the first 6 years of life, 299 
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due to perturbations in gut microbiota colonisation (Uzan-Yulzari et al., 2021). The anti-300 
commensal effects of antimicrobials may also impact the physiological response to other drugs 301 

(Cussotto et al., 2021). This has been clinically demonstrated with warfarin; antibiotics with 302 
substantial activity against Bacteroides fragilis were associated with higher risk of excessive 303 
anticoagulation in a study of 1185 patients (Yagi et al., 2021).  304 

Perhaps even more surprising are the effects of human-targeted drugs on the HGM 305 

(Roberti et al., 2020). A study by Maier et al., in which over 1,000 drugs were screened for in 306 
vitro activity against 40 gut bacteria strains, found that 27% of non-antibiotic drugs inhibit the 307 
growth of at least one bacteria strain (Maier et al., 2018). The drugs with anti-commensal activity 308 
spanned a diverse array of indication areas, with antipsychotics, antineoplastics, and calcium-309 
channel blockers accounting for the highest number of anti-bacteria hits. These important 310 

findings highlight how commonly prescribed drugs can exert unexpected off-target effects on gut 311 

microbiota. Work should now clarify the clinical relevance of such drug-microbiome 312 

interactions; in some areas this is already underway. For example, alterations to microbiota 313 
composition by proton pump inhibitors significantly increase intestinal permeability in mice 314 
(Takashima et al., 2020). It should also be recognised that alteration of microbiome composition 315 
may form part of a drug’s therapeutic action. For example, metformin’s microbiota effects 316 
contribute towards its treatment of type 2 diabetes mellitus (Wu et al., 2017); the 317 
immunostimulatory effects of antitumour CTLA-4 targeted antibodies are dependent on 318 
interactions with commensal B. fragilis (Vétizou et al., 2015); and diversification of microbiome 319 

composition, mediated by statins, may be protective against obesity (Vieira-Silva et al., 2020). 320 
Most recently, methotrexate has been found to alter gut microbiome composition, with 321 

subsequent shifts in microbial metabolism reducing host immune activation, supporting the 322 
drug’s action in rheumatoid arthritis (Nayak et al., 2021).   323 

5. The Power of Prediction  324 

The ability to predict drug-microbiome interactions could reshape how medicines are prescribed. 325 
Increasingly, research is illustrating how the uniqueness of one’s microbiome impacts response 326 

to medical and nutritional interventions (Wang et al., 2021). Prediction of individuals’ microbial 327 
drug metabolism or susceptibility to microbiome alteration by drugs could facilitate a new 328 

hallmark of personalised medicine. Prior to prescription, clinicians could predict how patients’ 329 
microbiota may alter physiological drug response, and assess the risk of anti-commensal effects 330 
on individual health. Currently, this goal has not been realised due to the complexity of the task. 331 
Due to the microbiome’s individual nature, thousands of factors may contribute towards drug-332 

microbiota interactions. Moreover, until recently, there has not been sufficient evidence 333 
characterising the drug-microbiome relationship to form reliable predictions. Now, the breadth of 334 

drug-microbiome research means there is capacity to gain insights for individual patient 335 
behaviour. ML is a natural tool to facilitate such predictions (McCoubrey, Laura E. et al., 2021). 336 
For one, ML is capable of handling and interpreting very large datasets (Cammarota et al., 2020). 337 
Secondly, ML techniques can be trained to continuously learn as new evidence emerges, 338 
avoiding constant reprogramming of algorithms as knowledge advances (Ariane Christie et al., 339 

2019). A good introduction to ML in biological applications has been published by Camacho et 340 
al. (Camacho et al., 2018).  341 

Within the general field of drug design and development, ML is being progressively applied to 342 
optimise traditional processes (Bannigan et al., 2021). For example, algorithms have been 343 
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demonstrated to streamline multiple aspects of pharmaceutical formulation, including the design 344 
of solid dispersions (Dong et al., 2021), prediction of tablet properties (Onuki et al., 2012), 345 

formulation of personalised medicines (Elbadawi et al., 2021b), and prediction of protein 346 
therapeutic stability (Gentiluomo et al., 2020; King et al., 2011). ML has additionally been used 347 
to better characterise the relationship between microbiome composition and health. For instance, 348 
(Gupta et al., 2020) trialled a random forest model to predict human health status based on 349 
species-level gut microbiota composition. Further, (Ma et al., 2021) successfully predicted 350 

patient’s colorectal cancer status based on microbial single nucleotide markers, using 351 
classification techniques. Similarly, the use of ML to harness microbiome big data for precision 352 
cancer medicine has been explored by (Cammarota et al., 2020).  353 

Whilst ML has been less frequently used to characterise the drug-microbiome 354 

relationship, there are several examples to date. In their study of drug metabolism by gut 355 

microbiota, Zimmerman et al. used a clustering algorithm to identify how drug structure can 356 

increase susceptibility to enzymatic transformation in the gut (Zimmermann et al., 2019a). They 357 
noted that the presence of lactone, urea, azo, and nitro functional groups increase the chance of 358 
bacterial metabolism (Figure 4A). Elsewhere, a dataset composed of 491 bacterial genomes, 359 
324,697 enzymes, and 1,609 molecules was used to predict direct microbial metabolism of drugs 360 
(Sharma et al., 2017). The researchers employed random forest ML to learn how structural 361 
fingerprints of drugs affect vulnerability to transformation by specific bacterial enzymes. The 362 
result was a model that could predict microbial enzymatic metabolism of commercial drugs with 363 

over 90% accuracy. Such a model could be combined with individuals’ microbial genomic reads 364 
to predict drug-enzyme reactions in the GI tract. The effects of drugs on the microbiome have 365 

also begun to be predicted using ML. A group have successfully developed a classification 366 
algorithm that can predict adverse drug effects on the growth of 40 gut bacterial strains 367 

(McCoubrey, L.E. et al., 2021) (Figure 4B). Another group have employed ML to identify 368 
disturbances in oral-gut microbiota interactions following oral application of thonzonium 369 

bromide in rodents (Figure 4C) (Simon-Soro et al., 2021). Elsewhere, the development of 370 
probiotic therapeutics has been optimised using ML (Westfall et al., 2021).   371 
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Figure 4. A: a ML clustering algorithm known as principal component analysis has identified 373 
certain functional groups (azo, nitro, lactone, and urea) to increase drugs’ likelihood of bacterial 374 

metabolism. The drugs shown are all significantly transformed by gut bacterial enzymes 375 
(Zimmermann et al., 2019a). B: the construction workflow of a ML pipeline generating an extra 376 
trees algorithm that can predict adverse drug effects on gut bacterial growth (McCoubrey, L.E. et 377 
al., 2021). C: (Simon-Soro et al., 2021) have used machine learning to identify disturbance in the 378 
gut microbiomes of rodents, leading to increased abundance of Sutterella, following topical oral 379 

application of thonzonium bromide. PBS: control group, NPC: empty nanoparticles, TB: free 380 
thonzonium bromide, NPC.TB: thonzonium bromide-loaded nanoparticles. All reproduced 381 
images have been used with permission from their source. 382 

Whilst ML has been demonstrated as a useful tool for the prediction of drug-microbiome 383 

interactions, there remains a lack of translation to clinical use. Here, the field of nutrition can 384 

provide inspiration. The Personalised Responses to Dietary Composition Trial (PREDICT 1) 385 

study has recently shown it possible to predict food-microbiome relationships with regression 386 
and classification ML (Asnicar et al., 2021). The team illustrated how faecal microbiota 387 
composition is a good predictor of circulating postprandial triglyceride and insulin 388 
concentrations. Gut microbiota were shown to account for greater inter-person variability in 389 
postprandial response than meal macronutrients, demonstrating the importance of microbiome 390 
variability in metabolism (Berry et al., 2020). This study is an excellent example for how drug-391 
microbiome interactions may be predicted using clinical data. The study, based on data from 392 

1,098 individuals, is now applying its methodology to the commercial market, thus widening its 393 
accessibility I. At-home kits are designed to provide personalised dietary recommendations for 394 

users; such a model could be adapted for the pharmaceutical market, whereby professionals are 395 
provided with therapeutic recommendations for individual patients based on their microbiome 396 

profile.    397 

There remain several challenges in achieving clinical translation of ML for prediction of 398 
drug-microbiome interactions. For one, researchers must prove the mechanisms underlying more 399 

interactions in clinical studies. To build robust ML models, these studies should be large-scale, 400 
or at least be additive to existing studies. The field is currently lacking large, accessible datasets 401 

focused on in vivo drug-microbiome interactions. At present, high throughput ex vivo studies 402 
(Javdan et al., 2020; Zimmermann et al., 2019a) or general observation microbiome studies 403 
(Everett et al., 2021; Huttenhower et al., 2012; Proctor et al., 2019) are the best sources of data 404 
for ML. A few databases have also been built to collect disease-microbiome or drug-microbiome 405 
interactions in a single place (Janssens et al., 2018; Sun et al., 2018). Secondly, to be clinically 406 

relevant, professionals require cost-effective, fast, and non-invasive tests that can detect 407 
biomarkers underlying microbiome-drug interactions, which are feedable into predictive ML 408 

algorithms (Pollard et al., 2020). Healthcare structures will need to adapt policies and guidelines, 409 
and ML outputs should be robustly validated and explainable, to ensure user trust (Silcox et al., 410 
2020). In addition, existing work on the drug-microbiome relationship focuses almost entirely on 411 
bacteria of the distal gut; to understand the full picture it is essential to elucidate any roles of 412 
non-bacterial elements of the microbiome across multiple sites (Borrel et al., 2020; Carrieri et al., 413 

2021; Freire et al., 2020; Liang and Bushman, 2021). Whilst there are evidently challenges 414 
facing ML uptake in this field, the outcome of improved patient care, and the growing adoption 415 
of ML in medicine as whole, make it a likely feature of the near future. Going forward, the 416 

pharmaceutical industry will have to adapt their pre-clinical development of therapeutics to 417 
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consider possible interactions with the microbiome. Early identification of drug-microbiome 418 
interactions will guide subsequent pharmacokinetic studies, toxicology profiling, and may 419 

facilitate drug repurposing for precision microbiome medicine (Ghyselinck et al., 2021; Khan et 420 
al., 2021). Here, ML can be utilised to predict likely interactions, guiding subsequent 421 
investigations using in vitro and animal models. 422 

6. Conclusions  423 

Increasingly, research is highlighting the importance of the human gut microbiome for health and 424 

response to drugs. As more and more evidence emerges, the complexity of the drug-microbiome 425 
relationship is coming to light, highlighting how many questions remain before its full clinical 426 
impact can be characterised. It is now known that over 180 drugs are susceptible to direct 427 
metabolism by intestinal bacteria, often leading to significant inter-patient variability in drug 428 

response. In addition, intestinal microbiota can indirectly alter drug response through effects on 429 
bile acids; epithelial permeability; intestinal drug transporters; gut motility; and hepatic 430 
metabolism. Furthermore, as microbiota can affect drugs, drugs can also affect microbiota. Drug 431 

effects on commensals have the potential to lead to dysbiosis-induced disease in patients (Moens 432 
et al., 2019). On the other hand, drug effects on microbiota could be essential for therapeutic 433 

action. This differentiation is something that will need to be unpicked on a drug-by-drug basis.  434 

Clearly, the drug-microbiome relationship is complex and likely unique to individuals. 435 
Due to its proficiency in handling large and complex data, ML offers a powerful way to explore 436 

and better understand the drug-microbiome relationship. An eventual goal will be using ML to 437 
predict interactions and pharmaceutical outcomes for individual patients, facilitating personalised 438 
prescriptions. To date, ML has been applied to predict in vitro drug-microbiome interactions 439 

with early success, highlighting its future potential. Going forward it is essential that more 440 

human studies characterise in vivo drug-microbiome interactions across diverse patient 441 
populations and drug classes. The current sparsity of this information goes some way to explain 442 
why there remains to be any formally validated ML tools for prediction of drug-microbiome 443 

interactions. However, as these studies inevitably emerge, given the heightening interest in 444 
microbiome medicine, it is likely that ML will be frequently harnessed to analyse and elevate 445 

findings. As this happens, healthcare providers and the pharmaceutical industry will be 446 
increasingly called upon to consider drug-microbiome interactions in their guidelines and 447 
policies, for the ultimate benefit of patients. 448 
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