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REVIEW
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ABSTRACT
Primary dysfunction of autophagy due to Mendelian defects affecting core components of the 
autophagy machinery or closely related proteins have recently emerged as an important cause of 
genetic disease. This novel group of human disorders may present throughout life and comprises 
severe early-onset neurodevelopmental and more common adult-onset neurodegenerative disorders. 
Early-onset (or congenital) disorders of autophagy often share a recognizable “clinical signature,” 
including variable combinations of neurological, neuromuscular and multisystem manifestations. 
Structural CNS abnormalities, cerebellar involvement, spasticity and peripheral nerve pathology are 
prominent neurological features, indicating a specific vulnerability of certain neuronal populations to 
autophagic disturbance. A typically biphasic disease course of late-onset neurodegeneration occur
ring on the background of a neurodevelopmental disorder further supports a role of autophagy in 
both neuronal development and maintenance. Additionally, an associated myopathy has been 
characterized in several conditions. The differential diagnosis comprises a wide range of other 
multisystem disorders, including mitochondrial, glycogen and lysosomal storage disorders, as well 
as ciliopathies, glycosylation and vesicular trafficking defects. The clinical overlap between the 
congenital disorders of autophagy and these conditions reflects the multiple roles of the proteins 
and/or emerging molecular connections between the pathways implicated and suggests an exciting 
area for future research. Therapy development for congenital disorders of autophagy is still in its 
infancy but may result in the identification of molecules that target autophagy more specifically than 
currently available compounds. The close connection with adult-onset neurodegenerative disorders 
highlights the relevance of research into rare early-onset neurodevelopmental conditions for much 
more common, age-related human diseases.
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Introduction

Genetic defects affecting cellular pathways with fundamental 
biological functions are often associated with extensive and 
not infrequently lethal human multisystem disorders. These 
conditions are often named after the organelle/mechanisms 
involved and/or the most striking pathological abnormality 
seen on microscopy, and include ciliopathies, congenital dis
orders of glycosylation, cellular trafficking, mitochondrial, as 
well as glycogen and lysosomal storage disorders.

Congenital disorders of autophagy have been recently 
introduced as a group of novel human multisystem disorders 
[1] due to defects in primary elements of the autophagy 
pathway and closely associated proteins. The number of con
ditions included within this novel diagnostic category is 
rapidly increasing, suggesting disorders affecting an important 
mechanism of human disease that may be individually rare 
but not uncommon as a group. The degree of multisystem 

involvement may also point at multiple or ubiquitously essen
tial roles of the proteins implicated. Besides its considerable 
clinical relevance, the concept of congenital disorders of auto
phagy may also crucially inform basic autophagy research: For 
example, the clinical signatures of individual disorders may 
highlight the common involvement of organs where the role 
of autophagy has not been fully explored yet, or, alternatively, 
suggest links with other cellular signaling pathways (for exam
ple, regulated cell death pathways [2]) and/or non-canonical 
roles of the autophagy proteins implicated that may be worth 
exploring. Moreover, although some of the individual condi
tions included within the group of congenital disorders of 
autophagy may be exceedingly rare, it is increasingly recog
nized that many of the proteins involved play an important 
role in much more common neurodegenerative disorders, 
including amyotrophic lateral sclerosis (ALS), dementia and 
Parkinson disease (PD) [3–7].
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In the following review, we will outline the key features of 
the currently recognized congenital disorders of autophagy, 
and emphasize their overlap with other multisystem disorders, 
in particular cellular trafficking, mitochondrial and lysosomal 
storage disorders. We will highlight where such overlap may 
reflect close links between the respective pathways involved, 
and/or non-canonical roles of the primary autophagy proteins 
implicated. The emerging links between early-onset neurode
velopmental and adult-onset neurodegenerative disorders will 
be highlighted as a particularly exciting area for future 
research. Considering the often prominent (neuro)develop
mental phenotypes and the predilection for certain (neuronal) 
tissues in the congenital disorders of autophagy, we will out
line what is currently known about the role of autophagy in 
embryonic, in particular neuronal, development and organ 
maintenance. Lastly, we will summarize currently available 
animal models of congenital disorders of autophagy, and 
prospects and limitations of therapy development.

The autophagy pathway and its intersection with 
other cellular pathways.

Autophagy is a process of “self-eating” utilized by the cell to 
degrade material not suitable for degradation in the protea
some, for example, larger organelles such as mitochondria.

Autophagy can be divided by type – macroautophagy, 
microautophagy and chaperone-mediated autophagy 
(CMA) – and by target. These 3 different forms of autophagy 
all result in degradation of substrates in the lysosome, but 
differ in the mode of delivery: In microautophagy, the lyso
somal membrane engulfs substrates directly [8]. In CMA, 
chaperones recognize soluble proteins bearing a specific pen
tapeptide motif for delivery to lysosomes, and then import 
them into the lysosomes via LAMP2A (lysosomal associated 
membrane protein 2A) [9]. Macroautophagy (hereafter auto
phagy) is the currently best-characterized form of autophagy, 
and, through the coordination of a host of specialized pro
teins, involves the formation of a specialized organelle, the 
autophagosome, and the degradation of its cargo by lyso
somes. The molecular mechanisms that lead to the formation 
of the autophagosome and its subsequent fusion with the 
lysosome are well characterized (and illustrated in Figure 1). 
The proteins involved are encoded by 31 currently known 
autophagy-related (ATG) genes in mammals that were mostly 
discovered through genetic screens in yeast [10–12]. The 
autophagy pathway is highly conserved throughout evolution. 
The unique organelle of autophagy, the autophagosome, is 
formed from a phagophore. There are conflicting data regard
ing the origin of this structure, but the consensus is that it is 
derived, at least partially, from the endoplasmic reticulum 
(ER) [13–16].

MTOR (mechanistic target of rapamycin kinase) is the 
negative master regulator of autophagy [17]. The Ser/Thr 
kinase MTOR forms a complex with RPTOR (regulatory 
associated protein of MTOR complex 1), MLST8 (MTOR 
associated protein, LST8 homolog), AKT1S1 (AKT1 sub
strate 1) and DEPTOR (DEP domain containing MTOR 
interacting protein), termed MTORC1 [18–22]. The 
MTORC1 complex is activated by interaction with the GTP- 

binding protein RHEB (Ras homolog, mTORC1 binding) in 
response to growth factors or high levels of amino acids 
[23–25]. Vice versa, AMP-activated protein kinase (AMPK) 
inactivates MTORC1 by phosphorylation of RPTOR or TSC2 
(TSC complex subunit 2) [26]. Hence, MTORC1 functions as 
a sensor of cellular nutrient and energy levels. The inhibitory 
effect of MTORC1 on autophagy was first demonstrated by 
the phosphorylation and consequent inactivation of the ULK1 
complex comprising the protein kinase ULK1 (unc-51 like 
autophagy activating kinase 1) and interacting proteins 
ATG13 and RB1CC1 (RB1 inducible coiled-coil 1) [27–29]. 
More recently, it was revealed that the inhibitory effect of 
MTORC1 is manifold and acts on various stages of the auto
phagy process, as it also inactivates class III phosphatidylino
sitol 3-kinase (PtdIns3K), WIPI2 (WD repeat domain, 
phosphoinositide interacting 2), UVRAG (UV radiation resis
tance associated) and RUBCNL (rubicon like autophagy 
enhancer), which function in the formation of the nucleation 
membrane, phagophore elongation and fusion of the autopha
gosome and lysosome [30–33]. Optimal functioning of the 
MTORC1 pathway is thus of utmost importance for the 
autophagy pathway and, not unexpectedly, both processes 
are therefore closely interlinked [34,35]. The MTOR pathway 
has been implicated in a myriad of diseases such as metabolic 
disorders, cancer and neurodegenerative disease, the details of 
which go beyond the scope of this review (for 
a comprehensive review on MTOR signaling in disease, 
see [36]).

Under starvation conditions, MTORC1 is inhibited and the 
active ULK1 complex triggers autophagy by activating the 
PtdIns3K complex comprising the phosphatidylinositol 3-kinase 
subunit PIK3C3 (phosphatidylinositol 3-kinase catalytic subunit 
type 3), adaptor protein PIK3R4 (phosphoinositide-3-kinase 
regulatory subunit 4), regulator BECN1/Beclin-1, assembly fac
tor NRBF2 (nuclear receptor binding factor 2) and accessory 
protein ATG14. ATG14 recruits the complex to the site of 
phagophore formation [37]. The resulting pool of phosphatidyl
inositol-3-phosphate (PtdIns3P) recruits proteins that drive for
mation of the phagophore, which recruits lipids from a donor 
membrane compartment to eventually extend into a double- 
membrane vesicle [38], highlighting the close links between 
autophagy and lipid, in particular phosphoinositide metabolism. 
Recent research has shown that ATG9 plays a crucial role in the 
lipid transfer needed for this phagophore extension. ATG9 is 
a lipid scramblase that translocates phospholipids from the 
cytoplasmic leaflet to the lumenal leaflet of the phagophore 
[39]. Multiple sites of phagophore formation and thus sources 
of membrane lipids have been suggested such as the ER, Golgi 
apparatus, endosomal vesicles and mitochondria [40,41]. It is 
also suggested that particular membrane contact sites between 
the ER and other organelles such as mitochondria are 
a necessary environment for phagophores to be able to appear 
and extend [14,41].

Recent work has shown that phosphatidylinositol- 
5-phosphate (PtdIns5P) can also drive phagophore forma
tion and may be able to recruit proteins characterized as 
PtdIns3P-binding proteins. PtdIns3P is required for auto
phagy in conditions of amino acid starvation, whereas 
PtdIns5P is required in glucose deprivation [42], indicating 
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that, despite shared and consistent core elements, there may 
be subtle differences in the molecular autophagy machinery 
employed under different stimuli. WIPI proteins [43] and 
ZFYVE1 (zinc finger FYVE-type containing 1) [38] are 
PtdIns3P-binding proteins recruited to the phagophore. 
WIPI2 recruits another complex formed of ATG12–ATG5- 
ATG16L1, which acts like an E3 ligase, mediating conjuga
tion of ubiquitin-like proteins of the ATG8 family to phos
phatidylethanolamine in the phagophore membrane [44]. 
The best-studied mammalian ATG8-family protein is 
LC3B, a key autophagy adaptor whose lipidation is facili
tated by other proteins acting as E1- and E2-like enzymes 
[45]. The E2-like enzyme ATG3 specifically targets curved 
membranes, potentially favoring LC3B lipidation at the 
highly curved rim of growing phagophores [46]. LC3B is 
with a few exceptions [47,48] a reliable marker of autopha
gic structures [49].

Beyond the proteins that drive formation of the membrane 
structures unique to autophagy, several specialized cargo 

receptors deliver substrates to the phagophore. These cargo 
receptors include SQSTM1 (sequestosome 1), NBR1 (NBR1 
autophagy cargo receptor), CALCOCO2 (calcium binding and 
coiled-coil domain 2) and OPTN (optineurin) and are critical 
for effective clearance of autophagy substrates. Mutations in 
both SQSTM1 [50,51] and OPTN [52] are associated with 
ALS, with evidence of accumulation of both proteins in tissue 
samples from many types of neurodegenerative disorders 
[53,54]. The cargo receptors bind specifically to ubiquitinated 
substrates and to LC3 in the forming autophagosome. 
Although autophagy is often considered a largely nonselective 
process, it is now clear that there are many examples of 
selective autophagy mediated by autophagy cargo recep
tors [55].

Double-membraned autophagosomes, the result of phago
phore expansion around its cargo and subsequent closure, can 
bear markers of early and late endosomes as well as lyso
somes, suggesting a maturation process facilitated by multiple 
fusion events [56–58] and intricate links between autophagy 

Figure 1. The autophagy pathway and its relation to other intracellular regulatory and trafficking pathways. (A) Schematic representation of the autophagy pathway 
and the key steps involved, ranging from phagophore formation utilizing lipid membranes from various donor compartments (such as ER, Golgi and mitochondria), 
autophagosome formation, autolysosomal fusion and cargo degradation, and, finally, autophagic lysosomal reformation (ALR). Gene mutations can disturb any (and 
often multiple) part(s) of the complex autophagic machinery; the proteins most commonly implicated in the congenital disorders of autophagy are indicated in red, 
in relation to the part of the autophagy pathway affected. Close relations to the MTOR pathway (B), the endo-lysosomal pathway (C) and (neuronal) axonal transport 
(D) emphasize that any genetic defect primarily affecting these intricately linked cellular processes may cause clinical presentations very similar to those concerning 
the primary autophagy machinery. Along similar lines, primary disturbances of other cellular processes and structures essential for the normal functioning of 
autophagy (for example, disturbances of lipid metabolism affecting the membrane sources required for phagophore formation, or of the glycosylation of autophagy 
proteins) may have similar biological and clinical consequences. Figure created with BioRender.com.
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and endosomal and lysosomal pathways. The final stage of 
autophagy is usually described as the fusion of the autopha
gosome and lysosome to create a hybrid organelle, the auto
lysosome. However, some studies suggest that 
autophagosomes may also deliver cargo into lysosomes via 
temporarily and spatially limited (“kiss and run”) interactions 
[59], possibly depending on circumstances and/or cell types. 
Whatever the precise mechanisms leading to this point, auto
phagic substrates are then degraded by lysosomal enzymes. As 
a result, lysosomal storage disorders will almost invariably 
also result in defective autophagy [60]. As with the initiation 
and maturation of autophagosomes, the final steps of auto
phagy involve specialized machinery. Fusion of autophago
somes and lysosomes is dependent on a SNARE complex 
formed by the autophagosomal SNARE STX17 (syntaxin 
17), Qbc SNARE SNAP29 (synaptosome associated protein 
29) and the lysosomal R-SNARE VAMP8 (vesicle associated 
membrane protein 8) [61]. A host of other proteins are 
implicated in tethering autophagosomes to lysosomes, includ
ing the homotypic fusion and protein sorting (HOPS) com
plex [62], TECPR1 (tectonin beta-propeller repeat 
containing 1) [63] and EPG5 (ectopic P-granules autophagy 
protein 5 homolog) [64].

Autophagosome-lysosome fusion represents the most 
obvious convergence of the specialized autophagy pathway 
and the multi-tasking endo-lysosomal system, and any dis
ruption to lysosomal function (or indeed any other element of 
the complex machinery involved) may impair this crucial 
stage of autophagy. While both pathways differ in their start
ing location and cargo, with endosomes usually forming at the 
plasma membrane to engulf extracellular substrates and auto
phagosomes developing from the ER and carrying intracellu
lar cargo, their convergence in the final step of lysosomal 
degradation of their respective cargos indicates their close 
interaction and cellular proximity. A key point of convergence 
between endosomal trafficking and autophagy is the endoso
mal sorting complexes required for transport (ESCRT). 
ESCRT proteins, among other roles, function sequentially in 
the formation of intralumenal vesicles at late endosomes to 
form multi-vesicular bodies. Recently ESCRT was demon
strated to function in autophagosome formation, specifically 
in phagophore closure [65], consistent with earlier observa
tions that knockdown of several ESCRT proteins results in 
autophagosome accumulation [66].

Another group of proteins that facilitate the interactions 
between autophagy and the endocytic system are members of 
the RAB GTPase family, through their important roles in mem
brane trafficking, in particular the coordination of transient 
interactions with the outer membrane of target vesicles and 
the recruitment of “effector” proteins [67]. RAB7 in particular 
promotes processes critical for autophagosome-lysosome fusion 
[68], and is required to provide a pool of lysosomes for fusion 
with autophagosomes by interacting with the dynein-dynactin 
adaptor RILP (Rab interacting lysosomal protein) and thus 
preventing the migration of late endosomes/lysosomes to the 
cell periphery [69]. Especially in neuronal cells, a crucial inter
action between autophagy and vesicular trafficking can be 
observed, as autophagosomes are usually formed in distal 
regions of the cells and, to allow fusion with late endosomes/ 

lysosomes, need to be transported retrogradely along the axons 
to perinuclear regions [69–72]. Indirectly, impairment of the 
dynein-dynactin complex or microtubule obstructions can thus 
lead to secondary obstruction of the autophagy pathway.

Finally, after degradation of the autolysosomal content by 
lysosomal hydrolases, all molecules are recycled and transported 
to their destined cellular locations for repurposing. In addition, 
the autophagic lysosomal reformation (ALR) process is essential 
for the regeneration of a pool of functional lysosomes [73–76], 
and characterized by initial clathrin-mediated budding of the 
autolysosomal membrane, which then elongates and, through 
an intermediate protolysosomal stage, eventually matures into 
a functional lysosome. Of note, MTOR also regulates the ALR 
process, confirming the important interplay between MTOR 
and the autophagy pathway [74,75] not only at the initiation 
stage but at various points of the process.

The implication of these multiple and complex interactions 
for biologists and clinicians working on autophagy-related 
diseases is that autophagy must be considered not in isolation, 
but as part of the complex endomembrane system that is 
interlinked with a more complex intracellular trafficking 
machinery. A primary autophagy-associated disorder can 
thus be due to defects in any part of the autophagy pathway, 
including the ATG core machinery, adaptor proteins and 
other proteins that may not only play a role in autophagy 
but also in other important cellular processes.

Congenital disorders of autophagy.

While autophagy has been implicated in a wide range of 
human diseases in a nonspecific way for many years, the 
recognition of primary Mendelian disorders with defective 
autophagy is only relatively recent. On clinical grounds, 
these disorders can be divided in often severe neurodevelop
mental and neurological disorders with onset early in life 
(often referred to as “congenital disorders of autophagy” [1]) 
(Table 1), and neurodegenerative diseases presenting late in 
adulthood, often after a long symptom-free or subclinical 
interval (Table 2). However, as discussed in more detail 
below, the above distinction is somewhat artificial, as there 
is emerging evidence for a lifetime continuum of autophagy- 
associated disorders, both on the level of the individual 
patient and specific conditions.

Congenital disorders of autophagy often have 
a recognizable “clinical signature,” characterized by 1) promi
nent neurological and neuromuscular phenotypes, 2) 
a combination of developmental and degenerative abnormal
ities evolving over time and 3) variable degrees of multiorgan 
involvement. They may affect any component associated with 
the autophagy machinery, and the degree of multisystem 
involvement in particular may also point at the multiple 
roles of the proteins implicated, not all necessarily primarily 
autophagy-related. On clinical grounds, congenital disorders 
of autophagy (Table 1) can be subdivided into those with 
prominent multisystem involvement, brain iron accumula
tion, hereditary spastic paraplegias and cerebellar ataxias, 
although there is considerable clinical overlap between those 
entities.
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The paradigmatic disorder of defective autophagy is Vici 
syndrome (Figure 2), one of the most extensive human 
multisystem disorders reported to date and characterized 
by callosal agenesis, cataracts, cleft palate, cardiomyopathy, 
combined immunodeficiency, hypopigmentation, acquired 
microcephaly and failure to thrive [77–79]. Vici syndrome 
was initially reported in 1988 by Dionisi-Vici and collea
gues in two brothers and subsequently attributed to reces
sive mutations in EPG5 [78,79]. EPG5 is ubiquitously 
expressed and has a critical role in autophagosome- 
lysosome fusion and, probably, other intracellular vesicular 
fusion events [64,80]. There may be variability of protein 
levels and, consequently, the clinical phenotype in particu
lar in association with the many splice mutations identified 
[81]. Subtle clinical manifestations, in particular an appar
ently higher incidence of cataracts, vitiligo and certain 

cancers [82–85], have been observed in heterozygous 
EPG5 mutation carriers, suggesting either pathogenic hap
loinsufficiency or a toxic gain-of-function effect over time 
in cases where a truncated EPG5 protein is not subjected to 
intracellular decay. Although other features are less consis
tently associated, virtually any organ system – including 
thyroid, lungs, liver and kidneys – may be affected in Vici 
syndrome patients, in keeping with the ubiquitous expres
sion of the EPG5 protein and its fundamental biological 
importance. Interestingly, on the level of specific organs, 
EPG5-related Vici syndrome may feature both congenital 
defects as well as disease acquired later in life (for example, 
congenital heart defects and cardiomyopathy later in life, 
structural central nervous system [CNS] thyroid agenesis 
and hypothyroidism in a normally formed thyroid), empha
sizing the crucial role of normal autophagy for both organ 

Table 1. Early-onset neurodevelopmental and neurological disorders with defects in autophagy (“Congenital disorders of autophagy”) – selection.

Condition OMIM Gene OMIM Protein Role in autophagy/abnormality

Multisystem disorders
Vici syndrome 242840 EPG5 615068 ectopic p-granules 

autophagy protein 5 
homolog

Mediates autophagosome-lysosome fusion through its role as 
a RAB7 effector [64]

Younis Varon syndrome 216340 FIG4 609390 FIG4 phosphoinositide 
5-phosphatase

Regulates synthesis and turnover of PtdIns(3,5)P2 [267]

Warburg Micro syndrome 600118 RAB3GAP1 602536 RAB3 GTPase activating 
protein catalytic subunit 1

Role in autophagosome formation [201]

Neurodegeneration with Brain 
Iron Accumulation (NBIA)

Beta propeller-associated 
neurodegeneration (BPAN)

300894 WDR45/ 
WIPI4

300526 WD repeat domain 45 Phagophore/autophagosome formation [92]

Cerebellar ataxias
SCAR20 616354 SNX14 616105 sorting nexin 14 Mediates autophagosome-lysosome fusion [107]
SCAR25 617584 ATG5 604261 autophagy related 5 Role in autophagic vesicle formation through conjugation to 

ATG12 [256]
Spastic paraplegias
SPG11 604360 SPG11 610844 SPG11 vesicle trafficking 

associated, spatacsin
Autolysosome recycling via ALR [110]

SPG15 270700 ZFYVE26 612012 zinc finger FYVE-type 
containing 26

Role in autophagosome formation and autophagosome- 
lysosome fusion; autolysosome recycling via ALR [111]

SPG49 615031 TECPR2 615000 tectonin beta-propeller 
repeat containing 2

Putative role in early autophagosome generation by scaffolding 
at ER exit sites [106]

Table 2. Adult-onset neurodegenerative disorders with defects in autophagy – selection.

Condition OMIM Gene OMIM Protein Role in autophagy/abnormality

Amyotrophic lateral 
sclerosis (ALS)

FTDALS1 105550 C9orf72 614260 C9orf72 Role in autophagosome maturation [261]
ALS2 205100 ALS2 606352 alsin Rho guanine nucleotide 

exchange factor ALS2
Localizes to autophagosomes [244] and loss leads to 

autophagosome accumulation [245]
FTDALS3 616437 SQSTM1 601530 sequestosome 1 Autophagy receptor required for aggrephagy [296]
ALS4 602433 SETX 608465 senataxin Role in autophagosome maturation [282]
ALS5 602099 SPG11 610844 SPG11 vesicle trafficking associated, 

spatacsin
Autolysosome recycling via ALR [110]

ALS11 612577 FIG4 609390 FIG4 phosphoinositide 
5-phosphatase

Regulates synthesis and turnover of PtdIns(3,5)P2 [267]

ALS12 613435 OPTN 602432 optineurin Selective autophagy receptor implicated in aggrephagy, 
mitophagy, and xenophagy [278]

FTDALS6 613954 VCP 601023 valosin containing protein Role in autophagy initiation [290] and in mitophagy [291]
FTDALS7 614696 CHMP2B 609512 charged multivesicular body protein 

2B
Part of the ESCRT-III complex [263], with a role in mitophagy- 

specific phagophore closure [65]
Parkinson disease (PD)
PARK2 600116 PRKN/ 

PARK2
602544 parkin RBR E3 ubiquitin protein 

ligase
Induces mitophagy in concert with PINK1, and within a E3 

ubiquitin ligase complex [155]
PARK6 605909 PINK1 608309 PTEN induced kinase 1 Induces mitophagy by recruitment of PRKN [155]
PARK20 615530 SYNJ1 604297 synaptojanin 1 Autolysosome recycling via ALR [110]
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development and maintenance. The degree of cardiac and 
immune involvement are the main determinants of 
prognosis.

While essentially a multisystem disorder, neurological 
aspects are most prominent in EPG5-related Vici syndrome 
and comprise both neurodevelopmental and neurodegenera
tive aspects [86]. In addition to the structural CNS abnorm
alities and the acquired microcephaly already mentioned, 
severe developmental delay, early-onset epilepsy, sensori
neural deafness and movement disorders are frequently 
observed [79]. Evidence for peripheral neuropathies with 
similarities to the neuropathy reported due to mutations in 
the EPG5-interactor RAB7 [87] has been reported in isolated 
patients. A skeletal myopathy is consistently associated with 
EPG5-related Vici syndrome and is evidenced by variable 
degrees of hypotonia and weakness, and mild creatine kinase 
elevations [88].

Following the genetic resolution of Vici syndrome in 2013, 
a number of additional early-onset neurodevelopmental and 
neurological disorders (Table 1 and S1) are now attributed to 

mutations affecting primary components of the autophagy 
machinery downstream of MTORC1, including other multi
system disorders such as Warburg Micro syndrome (WMS) 
and Younis Varon syndrome due to recessive mutations in 
RAB3GAP1 (RAB3 GTPase activating protein catalytic subu
nit 1) [89] and FIG4 (FIG4 phosphoinositide 5-phosphatase) 
[90], respectively, beta-propeller protein-associated neurode
generation (BPAN) due to X-linked dominant (de novo) 
mutations in WDR45 (WD repeat domain 45) [91,92], cere
bellar ataxia associated with autosomal-recessive mutations in 
SNX14 (sorting nexin 14) and in ATG5 [93], and three forms 
of hereditary spastic paraparesis (HSPP), SPG11 (spastic para
plegia 11), SPG15 and SPG49 caused by autosomal-recessive 
mutations in SPG11 (SPG11 vesicle trafficking associated, 
spatacsin), ZFYVE26 (zinc finger FYVE-type containing 26) 
and TECPR2 (tectonin beta-propeller repeat containing 2), 
respectively [1,94,95].

Clinically, among the multisystem disorders, Warburg 
Micro syndrome (WMS) ([96,97] for review of clinical and 
genetic heterogeneity) shares a number of features with Vici 

Figure 2. Key clinical and pathological features of EPG5-related Vici syndrome, the paradigmatic congenital disorder of autophagy. Patients of Turkish (A) and Indian 
(E) descent with hypopigmentation relative to ethnic background. Although neurological findings may be subtle at an early age (A), more severely affected patients 
may show coarse facial features suggestive of a storage disorder (E) and neurological deterioration from early infancy. Cataracts are common. Thalamic changes 
characterized by low signal on T2- (B) (asterisks) and high signal on T1-weighted brain images (F) (asterisks) may be observed in a proportion of patients and have 
also been reported in some lysosomal storage disorders. On light microscopy, (C) muscle biopsy findings are characterized by increased variability in fiber size and 
the presence of numerous internalized and central nuclei (arrows), resembling centronuclear myopathy and X-linked myotubular myopathy (scale bar: 50 μm). On the 
ultrastructural level (D), in skeletal muscle there are numerous vacuoles and evidence of ongoing exocytosis (arrow) (scale bar: 500 nm). A peripheral neuropathy 
characterized by marked reduction of myelinated fibers (arrows) on sural nerve biopsy stained with Toluidine Blue (G) has been reported in few patients (scale bar: 
50 μm). On confocal immunohistochemistry of EPG5-mutated fibroblasts treated with bafilomycin A1 (H), compared to normal fibroblasts where numerous LC3- 
positive autophagosomes are found engulfed by the LAMP1-positive vesicular structures (data not shown), relatively small LC3-positive puncta (in red) only 
sporadically colocalize with LAMP1 (in green, arrowhead shows colocalization), with many isolated LC3-positive puncta (arrows). In addition, in EPG5-mutated 
fibroblasts the LC3 signal is seen mainly at the rim of LAMP1-positive structures rather than centrally. These findings are indicative of an autophagosome-lysosome 
fusion defect (scale bar: 5 μm).
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syndrome, in particular severe mental retardation, corpus 
callosum hypoplasia, (acquired) microcephaly, congenital cat
aracts, optic atrophy and seizures, a phenotypical overlap 
likely to be explained by the recently described close molecu
lar links between EPG5 and RAB3GAP1 [98], one of the 
causative proteins implicated in this genetically heterogeneous 
condition. Interestingly, like other autophagy-related disor
ders, WMS typically shows a biphasic course, characterized 
by spastic paraparesis evolving over time following an initial 
presentation with profound hypotonia. Younis Varon syn
drome (for review [90]) is a severe neurodevelopmental dis
order with early lethality and vacuolar changes in various 
tissues, including neurons and muscles, due to autosomal- 
recessive mutations in FIG4. Variably associated features, in 
particular corpus callosum abnormalities, congenital heart 
defects, cardiomyopathy and hearing impairment, show 
some overlap with Vici syndrome. Autophagy defects have 
been demonstrated in FIG4-mutated Schwann cells [99]. As in 
other autophagy-related disorders, depending on specific gen
otype, the associated clinical spectrum is wide, ranging from 
severe early-onset neurodevelopmental disorders to forms of 
Charcot-Marie-Tooth (CMT) disease (CMT4J) [100] and ALS 
(ALS11) [101]. Corresponding to the human phenotype, Fig4 
null mice have a multisystem disorder with neurodegenerative 
features [100].

WDR45-associated BPAN (previously also known as 
“Static Encephalopathy of Childhood with 
NeuroDegeneration in Adulthood”, or SENDA) [102] belongs 
to the wider group of conditions characterized by 
Neurodegeneration with Brain Iron Accumulation (NBIA), 
predominantly affecting the basal ganglia. The condition initi
ally presents with global developmental delay, seizures and 
variable additional neurological features in childhood before 
a relentlessly progressive course characterized by dystonia, 
parkinsonism and cognitive decline develop from adolescence 
onwards [103].

Cerebellar ataxias are also common among primary auto
phagy disorders: In addition to global developmental delay, 
seizures and progressive cerebellar atrophy, children with 
SNX14-related ataxia (SCAR20) [104] often demonstrate 
additional multisystem features suggestive of a storage disor
der. ATG5-related SCAR25 is another recessively inherited 
ataxia recently attributed to mutations in a core autophagy 
component in a single family [105].

Another common manifestation are hereditary spastic 
paraplegias: SPG11- and ZFYVE26-related HSPP share signs 
of early-onset spasticity, frequently with a consistent combi
nation of features (referred to as “Kjellin syndrome”) com
prising intellectual impairment, pigmentary retinopathy, 
cerebellar dysfunction and, variably, parkinsonism. 
Autosomal-recessive spastic paraplegia 49 due to homozygos
ity for a TECPR2 founder mutation in Jewish Bukharian 
families is a complex multisystem disorder characterized by 
distinct dysmorphic features, severe central apneas, progres
sive intellectual impairment, spastic paraplegia and ataxia.

Although the genes and proteins implicated in these con
genital disorders of autophagy are likely to have multiple 
functions, a connection to the autophagy pathway has been 
clearly established, with SPG49-associated TECPR2 and 

BPAN-associated WDR45 linked to the phagophore/autopha
gosome formation stages [91,92,106], SCAR20-associated 
SNX14 and EPG5 related to autophagosome-lysosome fusion 
[107,108] and the spastic paraplegia proteins SPG11 and 
ZFYVE26 [109] implicated at multiple levels, including the 
recycling of autolysosomes [110,111]. WDR45/WIPI4 (the 
mammalian homolog of C. elegans EPG-6), the protein 
mutated in BPAN, belongs to the family of WD40 proteins 
which, through their highly stable and symmetrical beta- 
propeller superstructure, play a crucial role in facilitating the 
assembly of multiprotein complexes; with regards to autopha
gy, they specifically interact with ATG2 and ATG9 to facilitate 
autophagosome formation and elongation. EPG5, the protein 
mutated in Vici syndrome, is an example of a RAB7 effector 
directly involved in autophagy. EPG5 is recruited to lyso
somes by GTP-bound RAB7 and facilitates autophagosome- 
lysosome fusion by interacting with the SNARE complex and 
LC3 [64]. EPG5 knockdown results in the formation of 
enlarged perinuclear vesicles that are positive for markers of 
early and late endosomes, as well as autophagy markers [64]. 
SNX14, the protein mutated in SCAR20, is a member of the 
sorting nexin family with an ability to bind membrane 
phosphatidylinositol residues, a quality of likely relevance to 
autophagosome/lysosome formation where distinct organelle 
phospholipid signatures ensure specificity of fusion events 
[107]. ZFYVE26 and SPG11, the gene products of ZFYVE26 
and SPG11 implicated in two forms of hereditary spastic 
paraplegia, respectively, form a complex targeted to the lyso
some and are also probably functionally closely related. A role 
in membrane trafficking for ZFYVE26 is suggested by its 
ability to bind PtdIns3P [112]. With regards to the autophagy 
pathway and at least partly mediated through its interactions 
with the BECN1-UVRAG-RUBCN (rubicon autophagy regu
lator) complex, ZFYVE26 has been specifically implicated in 
autophagosome formation, autophagosome-lysosome fusion 
and, in concert with SPG11, the recycling of autolysosomes 
via the ALR pathway [111]. The role of defective TECPR2 
implicated in SPG49 is not fully resolved but may involve 
impairment of early autophagosome generation due to 
reduced scaffolding at ER membrane exit sites [106].

It is likely that as yet unresolved neurodevelopmental dis
orders with overlapping clinical features (in particular those 
combining multisystem involvement, cerebellar signs and 
spastic paraparesis) will be attributed to mutations affecting 
additional components of the complex autophagy machinery 
in future, bearing in mind, however, that some of these 
mutations may also be antenatally lethal.

Neurodevelopmental features

Congenital disorders of autophagy often show a combination of 
(neuro)developmental and (neuro)degenerative features evolving 
over time, supporting a role of autophagy in both embryonic 
(neuronal) development and maintenance later in life.

Autophagy genes such as EPG5 have been implicated in 
human and murine stem cell development [113], and obser
vations both in congenital disorders of autophagy but also in 
relation to other autophagy-associated genes suggest addi
tional roles further downstream in neuronal differentiation. 
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Another autophagy gene in which defects have been shown to 
impede neurodevelopment is WDFY3 (WD repeat and FYVE 
domain containing 3), a large PtdIns3P-binding and scaffold 
protein functioning in aggrephagy, the removal of aggregated 
proteins by autophagy [114], and in mitophagy, the selective 
degradation of mitochondria by autophagy [115]. Loss of 
WDFY3 has been reported as a risk factor in patients with 
autism spectrum disorder (ASD) [116] where early brain 
overgrowth is a common feature [117]. Early brain over
growth is also recapitulated in Wdfy3-mutant mice, which 
feature increased brain size due to altered neural progenitor 
proliferation [118]. Interestingly, a missense mutation in 
WDFY3 has been found to have the opposing effect and 
cause hereditary primary microcephaly [119] and reduced 
brain size in humans and a corresponding Drosophila 
model, suggesting that WDFY3 plays a general role in deter
mining correct brain size, probably through attenuation of 
WNT signaling through removal of DVL3 (disheveled seg
ment polarity protein 3) aggregates [119]. Indeed, Le Duc 
et al. showed that mutations in WDFY3, which putatively 
cause haploinsufficiency, lead to macrocephaly and nonspeci
fic mild neurodevelopmental delay, while mutations in the 
PH-domain of WDFY3 lead to microcephaly in affected 
patients [120]. Another reported function of WDFY3 support
ing a role in neuronal differentiation is its implication in the 
formation of axonal tracts in the brain and spinal cord of 
mice [121].

Accumulating evidence suggests that autophagy has a role 
in various stages of neurodevelopment: In the early stages, 
such a role has been demonstrated by knockout of Ambra1 
(autophagy and beclin 1 regulator 1) in mice, causing neural 
tube defects in these animals [122]. At the later stage of 
neurite formation, increased autophagy by cell-specific knock
out of Mtor causes suppressed proliferation in GABAergic 
progenitor cells, leading to reduced cortical interneurons in 
mice [123]. In addition, knockdown of Atg7 by siRNA causes 
abnormally elongated axons in primary rat cortical neurons, 
while autophagy induction by rapamycin has a suppressing 
effect on axon growth [124]. Mice with a loss of function 
mutation in Wdr47 (WD repeat domain 47) display increased 
autophagic flux. WDR47 is a negative regulator of autophagy 
that modulates microtubule dynamics and controls neuronal 
polarity [125]. In these mice, a decrease in proliferation of 
progenitor cells during embryonic development causes 
decreased neurogenesis, which results in absence of all 
major axonal tracts, including the anterior commissure 
(AC), the hippocampal commissure (HC), and the corpus 
callosum (CC), implying a general role of WDR47 in axonal 
outgrowth in vivo. Along similar lines, decreased autophagic 
activity due to mutations in Atg16l1 increases the size of the 
CC in mice [126]. An opposing effect for autophagy disrup
tion is observed by brain-specific knockout of Atg9a in mice, 
where defective neurite overgrowth as well as dysgenesis of 
the CC and the AC are prominent features. Unexpectedly, the 
authors reported that primary murine neurons with 
a depletion of Atg7 and Atg16l1 do not display the same 
defects [127], suggesting that the effects observed in atg9a 
knockout animals may not be primarily due to autophagy 
interruption, but disrupted non-canonical functions of 

Atg9a. A similar observation has been made in epg5 knockout 
animals, in which non-canonical dysfunction may be an 
important contributor to the observed decrease in CC size 
[128], as demonstrated by the deceleration in endocytosis and 
the delay in endocytic recycling in these animals [129]. 
Ablation of Ulk1 and Ulk2, required for parallel fiber forma
tion of granule cells, represents a similar scenario: Ablation of 
both proteins blocks neurite formation in primary murine 
granule cells in vitro [130] and, if specifically ablated in the 
CNS, causes defective axonal pathfinding and defasciculation 
in the CC, AC, corticothalamic axons and thalamocortical 
axons [131]. However, none of these defects are recapitulated 
in Atg7 and Rb1cc1 (RB1-inducible coiled-coil 1) mutants, 
suggesting a mechanism related to a disturbance of non- 
canonical roles rather than to the primary autophagy defect.

Interestingly, there is also some indication that the 
effect of autophagy on neurite and synapse formation 
and remodeling may be dependent on the specific neuro
nal subtype. Stavoe et al. [132] reported that mutations in 
six autophagy genes in C. elegans (atg-9, atg-13, epg-8, igg- 
1, atg-2 and unc-104) lead to longer nociceptors while 
HSN, RIA, DA9, RIB, and NSM neurons do not show 
a comparable phenotypic alteration. The same study 
reported that disruption of 18 different autophagy genes 
in C. elegans is not only affecting neurite formation, but 
also synapse formation, the subsequent step in neurode
velopment. Mutant animals exhibit impaired vesicle clus
tering and reduced active zone formation [132], 
comparable to earlier findings in Drosophila melanogaster 
where depletion of Atg1/unc-51 (ULK1 in mammals) leads 
to defects in active zone formation associated with 
impaired neurotransmitter release [133]. The development 
of neuromuscular junctions, the muscle innervating 
synapses, in Drosophila melanogaster is also impaired in 
Atg1, Atg2, Atg6, and Atg18 mutants, while overexpression 
of Atg1 increases the number of synaptic boutons [134]. 
A similar phenotype is observed in mouse models, in 
which motor neuron-specific ablation of Atg7 leads to 
37% larger neurons, denervation of motor endplates and 
reduced neurotransmission [135].

Lastly, autophagy is also implicated in spine pruning, the 
final step of neuronal development that eliminates excess 
dendrites. Mice with heterozygous mutations in genes encod
ing MTOR inhibitors Tsc1 (TSC complex subunit 1) and Tsc2 
(TSC complex subunit 2) in layer V pyramidal neurons exhi
bit higher numbers of spines in the cortex due to defective 
spine pruning as a consequence of low autophagic activity 
[136]. It can thus be speculated that, in the absence of critical 
autophagy factors, improper pruning of axons and synapses 
by microglia, i.e. in a non-cell-autonomous manner, causes 
the observed abnormalities in axon formation and neurite 
outgrowth mentioned above.

In conclusion, autophagy has been implicated in virtually 
all steps of neurodevelopment. However, its effects are not 
consistent and can either have a promoting or inhibiting 
effect on neuronal development and differentiation, depend
ing on the developmental process and the cell type. 
Importantly, some studies suggest that although the ablation 
of autophagy genes gives rise to neurodevelopmental defects, 
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the observed phenotypes may be caused by non-canonical 
functions of these genes rather than a direct disruption of 
autophagic pathways.

Neurological and neurodegenerative features

As outlined in more detail above, congenital disorders of 
autophagy often show a characteristic evolution of neurologi
cal features over time, with neurological symptoms such as 
spasticity, ataxia, dystonia and epilepsy often evolving on the 
background of a preexisting neurodevelopmental disorder. In 
addition, an increasing number of adult-onset neurodegen
erative disorders have recently been attributed to primary 
defects in the autophagy pathway (Table 2 and S1), support
ing a role of autophagy not only in normal neuronal devel
opment and differentiation but also in maintenance of the 
nervous system.

In general terms, the large size and the high energy 
demands of neuronal cells represent a special challenge for 
homeostasis. Neurons as highly specialized cells are main
tained mostly throughout the whole lifespan of an organism, 
and therefore rely heavily on housekeeping mechanisms that 
safeguard the integrity of organelles and proteostatic pro
cesses. More specifically, evidence for the crucial role of 
autophagy in physiological neuronal maintenance was origin
ally derived from conditional knockout of the key autophagy 
genes Atg5 and Atg7 in the mouse brain [137,138], resulting 
in axonal swellings and ultimately degeneration of cerebellar 
Purkinje cells and hippocampal pyramidal neurons. Along 
similar lines, neuron-specific knockout of Rb1cc1 leads to 
accumulation of ubiquitin-positive aggregates and degenera
tion of Purkinje cells in mice [139], whereas heterozygous 
deletion of Becn1 shows loss of synapses and dendrites of 
the hippocampus [139,140]. Since then, much attention has 
been invested in further elucidating the role of autophagy in 
neurons and glial cells, in relation to their specific function 
and their very distinct polarized morphology: Synapse devel
opment and maintenance, generation and turnover of auto
phagosomes, their subsequent transport along the 
microtubules inside the long dendritic and axonal projections 
and concurring consumption rely on precise spatial and tem
poral regulation and coordination [141], resulting in complex 
compartmentalization of neuronal autophagic mechanisms 
[142]. Other peculiar features of the nervous system adding 
further levels of complexity are the transcellular exchange of 
debris from neurons to glial cells [143], and, as a metabolically 
highly demanding tissue, its heavy reliance on mitochondrial 
integrity and function. Research concerning aging-related 
neurodegenerative conditions has therefore focused on the 
selective autophagic digestion of dysfunctional mitochondria 
(or mitophagy) as well as removal of aggregation-prone pro
teins (or aggrephagy) [141].

A peculiar feature of the congenital disorders of autophagy 
is their predilection for certain parts of the nervous system, in 
particular the cerebellum, long white matter tracts and per
ipheral neurons. Why exactly certain neuronal subtypes such 
as cerebellar Purkinje cells are predominantly affected in these 
conditions has yet to be clarified, but it is conceivable that 
their complex architecture and high metabolic activity could 

be the reason for their selective vulnerability. In addition, 
autophagy plays a crucial role in the homeostasis of axons, 
as supported by the axonal pathology observed in autophagy- 
deficient mouse models, and by the prominent involvement of 
brain white matter tracts and peripheral nerves, structures 
consisting mainly of axonal projections, in humans with con
genital disorders of autophagy. Autophagosomes in particular 
constitutively form in the distal end of axons and are trans
ported retrogradely to the cell soma for degradation [144,145], 
and any defect disturbing this essential mechanism is likely to 
result in neuronal pathology. The latter hypothesis is sup
ported by the observation that mutations affecting proteins 
primarily involved in axonal (including autophagosomal) 
transport cause similar phenotypes as primary autophagy dis
orders, probably due to secondary effects on correct autopha
gosomal positioning [146,147].

In addition to these basic considerations and in a more 
clinical context, autophagy has been associated with adult- 
onset neurodegenerative disorders in several ways (for review 
[148],), nonspecifically through its complex interactions with 
the potentially toxic protein aggregates implicated in these 
conditions, and, specifically, through primary genetic muta
tions directly or indirectly affecting components of the auto
phagy machinery (summarized in Table S1): Autophagy plays 
a role, for example, in the removal of SNCA (synuclein alpha) 
in PD [149,150], misfolded proteins in ALS [52,151], mutant 
HTT (huntingtin; mHTT) in Huntington disease (HD) 
[114,152] and intracellular MAPT/TAU tangles in Alzheimer 
disease (AD) [153,154], but at the same time these targets of 
autophagic digestions may impair normal autophagic flux and 
functioning through their inherent toxicity. While rare, pri
mary genetic causes in particular of PD also indicate a role of 
defective autophagy, for example autosomal-recessive muta
tions in PINK1 and PARK2, encoding two proteins that act in 
concert to designate damaged mitochondria for mitophagic 
digestion and thus play an important role in mitochondrial 
quality control [155]. Mutations in LRRK2 have been asso
ciated with dominant forms of PD and have been demon
strated to affect the proper functioning of CMA [156], but 
LRRK2’s precise role in autophagy currently still awaits reso
lution [157]. Of note, heterozygosity for mutations in the 
lysosomal enzyme GBA (glucosylceramidase beta), the gene 
recessively mutated in Gaucher disease (GD), is the most 
common genetic risk factor for PD and associated with auto
phagic impairment, emphasizing the intimate crosstalk 
between autophagic and lysosomal pathways [158,159].

The role of autophagy in ALS is illustrated through 
a small proportion of familial ALS cases due to pathogenic 
variants in the autophagy receptors SQSTM1 [160], OPTN 
[161], and UBQLN2 (ubiquilin 2) [162], all of which facil
itate cargo recruitment into phagophores through their 
interactions with LC3. Homozygous mutations in SQSTM1 
lead to a congenital absence of the autophagy receptor and 
cause a childhood-onset neurodegenerative condition with 
a phenotype comprising ataxia/cerebellar syndrome, parkin
sonism, and cognitive decline [163]. Different forms of ALS 
(and/or of frontotemporal dementia [FTD] with overlap
ping clinical features) have also been linked to heterozygous 
dominant mutations in VCP encoding valosin-containing 
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protein (FTDALS6) [164] (also implicated in inclusion 
myopathy with Paget disease of the bone and FTD [165]), 
CHMP2B encoding charged multivesicular body protein 2B 
(FTDALS7) [166], and GRN encoding progranulin [167]. 
Although the roles of these proteins are clearly multiple, 
VCP and CHMP2B both function in autophagy, while 
progranulin is important for both autophagosome and lyso
some function [168]. Interestingly and corresponding to 
what has been observed with SQSTM1, while heterozygous 
mutations in GRN lead to frontotemporal degeneration 
later in life, homozygous GRN mutations cause 
a neurodevelopmental disorder with features similar to 
a lysosomal storage disorder or a neuronal ceroid lipofus
cinosis (NCL11) [169].

Although not a primary component of the autophagy 
machinery and likely to be associated with multiple roles, 
C9orf72, the gene most commonly associated with ALS, has 
also been linked to autophagy [170,171]. ALS-associated hex
anucleotide repeat expansions in the C9orf72 gene are trans
lated into dipeptide repeat (DPR) proteins, which are prone to 
aggregate and ultimately lead to neurodegeneration. 
Interestingly, EPG5 has been shown to be a modifier of this 
DPR toxicity, emphasizing again the role of autophagy in 
neurodegenerative diseases [172].

It is clear from SQSTM1 and GBA that the age of onset and 
phenotype severity are related to the genetic burden, with homo
zygous mutations causing rare childhood-onset neurodegenera
tive syndromes while heterozygous mutations are associated with 
more common late-onset neurodegenerative disorders such as 
ALS and PD. Simply put, the mutation dosage may very well 
determine the phenotype due to the time it takes for aggregates 
to accumulate. This also suggests that the key to effective ther
apeutic intervention in classical late-onset neurodegenerative dis
orders may lie in earlier treatment. In addition, family studies in 
rare early-onset autophagy disorders may play a valuable role in 
the identification of additional genetic risk factors for neurode
generative disorders, or vice versa.

Neuromuscular features

EPG5-related Vici syndrome, the paradigmatic disorder of defec
tive autophagy, shows a consistently associated myopathy, on the 

histopathological level characterized by increased fiber size varia
bility, increased (central) nucleation, fiber type disproportion with 
predominance of type 1 fibers, vacuolization, increased glycogen 
storage and variable mitochondrial abnormalities, including 
respiratory chain enzyme abnormalities [79,88,173]. The EPG5- 
associated myopathy shows considerable histopathological overlap 
with primary vacuolar myopathies, centronuclear myopathy 
(CNM), X-linked myotubular myopathy (XLMTM), and glycogen 
storage disorders (GSDs), and it is not unexpected that also in these 
disorders both primary and secondary defects of autophagy have 
now been critically implicated (Table 3): Danon Disease and 
X-linked myopathy with excessive autophagy (MEAX), the most 
common vacuolar myopathies, are due to X-linked mutations in 
LAMP2 [174] and VMA21 (vacuolar ATPase assembly factor 
VMA21) [175], two genes encoding a lysosomal membrane com
ponent and a subunit of the lysosomal vacuolar-type H+-ATPase 
important for lysosomal acidification, respectively. While in both 
conditions, the primary defect thus likely originates in the lyso
some, histopathological features of marked autophagic buildup and 
variable degrees of exocytosis are identical to what has been 
observed in EPG5-related Vici syndrome. “Retrograde” abnormal
ities of autophagosome formation and autophagosome-lysosome 
fusion have also been observed in Pompe Disease [176], a GSD 
secondary to deficiency of lysosomal GAA (alpha glucosidase), 
emphasizing the close connection between lysosomal and autopha
gic abnormalities. The marked similarities between the EPG5- 
related myopathy and CNM/XLMTM are particularly intriguing, 
considering that many of the major genes implicated in these 
conditions – MTM1 (myotubularin 1), DNM2 (dynamin 2) and 
BIN1 (bridging integrator 1) – play an important role in intracel
lular membrane trafficking and have been linked with defective 
autophagy in human cells and animal models [147,177,178]. In 
addition, MTM1 plays a specific role in the regulation of PtdIns3P 
levels [179], an important substrate at the phagophore initiation 
stages (see above).

In contrast to EPG5-related Vici syndrome, a skeletal myo
pathy has not been reported in any of the other congenital 
disorders of autophagy yet. This may reflect a genuine absence 
or, more likely considering the prominent expression of genes 
such as WDR45 in skeletal muscle, an overlooked aspect due to 
the overwhelming severity of neurological and other multisys
tem features. Of note, all genes/proteins implicated in the 

Table 3. Neuromuscular disorders with defects in autophagy – selection.

Condition OMIM Gene OMIM Protein Role in autophagy/abnormality

Vacuolar myopathies
Danon disease 300257 LAMP2 309060 lysosomal associated 

membrane protein 2
“Retrograde” autophagic abnormalities secondary to impaired autolysosomal 

fusion [174]
X-linked myopathy with 

excessive autophagy 
(XMEA)

310440 VMA21 300913 vacuolar ATPase 
assembly factor 

VMA21

“Retrograde” autophagic abnormalities secondary to abnormal lysosomal 
acidification [175]

Glycogen storage 
disorders (GSD)

Glycogen storage disease 
(GSD) type 2

232300 GAA 606800 alpha glucosidase “Retrograde” abnormalities of autophagosome formation and autophagosome- 
lysosome fusion secondary to abnormal lysosomal glycogen storage [176]

Centronuclear 
myopathies

X-linked myotubular 
myopathy (XLMTM)

310400 MTM1 300415 myotubularin 1 Regulator of PtdIns3P pool; disconnection between fasting and autophagy 
initiation [178]; failure of ATG machinery to dissociate from PAS site [295]

Centronuclear myopathy 
(CNM)

160150 DNM2 602378 dynamin 2 Autophagic buildup and delayed autophagosomal maturation in DNM2 mouse 
models [147]
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congenital disorders of autophagy are also expressed in skeletal 
muscle, although for TECPR2 so far this has only been demon
strated at the gene/RNA level and not yet at the protein level.

Differential diagnosis and overlap with other early-onset 
neurological multisystem disorders

Congenital disorders of autophagy show a wide range of 
clinical and histopathological features, and other multisystem 
disorders with neurological involvement, as well as acquired 
or inherited primary neurological or neuromuscular disor
ders, ought to be considered in the differential diagnosis 
(Table 4). The overlap with other neurological multisystem 
disorders may reflect close links between the autophagy path
way and the organelles implicated in the respective multi
system disorder, or, alternatively, a genuine dual role of the 
protein implicated in the respective congenital disorder of 
autophagy. Examples for clinical similarities based on the 
close links of the autophagy pathway with other pathways 
are lysosomal storage and mitochondrial disorders, which 
often have similar clinical features, reflective of the lysosome 
as the endpoint of autophagy, and of autophagy (in its spe
cialized form of mitophagy) as an important mitochondrial 
quality control mechanism.

Although the primary defects in congenital disorders of 
autophagy do not reside directly in the lysosome, they may 
mimic some of the clinical features of lysosomal storage dis
orders (for review [180,181]), for example the coarse facial 
appearance seen in SNX14-related cerebellar ataxia and, occa
sionally, EPG5-related Vici syndrome. The latter group of 
patients may also develop thalamic changes on brain MRI 
similar to those seen in disorders of primary lysosomal origin 
[79]. In addition to the intracellular accumulation of undi
gested macromolecules in lysosomes, a hallmark feature of 
lysosomal storage disorders, secondary deficits in upstream 
autophagy pathway have been frequently documented 
[60,182]. Impaired autophagic flux and accumulation of auto
phagosomes in EPG5-related Vici syndrome closely resembles 
the histopathological findings in lysosomal storage disorders 
such as GM1 gangliosidosis, Niemann-Pick disease type C1 
(NPC1), and the neuronal ceroid lipofuscinoses (NCLs) 
[182,183]. Along similar lines, patients with bi-allelic SNX14 
mutations share both clinical and pathological features of 
lysosomal storage (such as enlarged lysosomes) and autopha
gic (such as reduced autophagic flux) disorders, suggesting 
that deficits in both autophagy and lysosomal function may 
contribute to certain features of the clinical phenotype in 
SNX14-related ataxia such as prominent cerebellar involve
ment and Purkinje cell loss [107].

In addition to lysosomal storage disorders, many clinical 
aspects of congenital disorders of autophagy also resemble 
mitochondrial disorders. Progressive impairment of the mito
chondrial form and function is the hallmark feature of mono
genic mitochondrial disorders, a heterogeneous group of 
nearly 50 diseases caused by mutations in 228 protein- 
encoding nuclear DNA genes and 13 mitochondrial DNA 
(mtDNA) genes [184,185]. The mitochondrial morphology 
and/or respiratory chain defects caused by these mutations 
primarily affect energy production, leading to 

neuropathological and neuromuscular manifestations of mito
chondrial disorders, which preferentially affect the striated 
muscles and nervous system [186,187]. Abnormal mitochon
drial ultrastructure as well as altered respiratory chain enzyme 
function with predominant skeletal myopathy diagnosed in 
patients suggest secondary mitochondrial dysfunction as an 
important mechanism in EPG5-related Vici syndrome, and 
may lead to the differential diagnosis of one of the mitochon
drial disorders [187,188]. Since mitochondrial homeostasis 
critically depends on downstream pathways that mediate 
selective removal of damaged mitochondria by autophagy 
and lysosomal degradation, secondary mitochondrial dysfunc
tion and defective mitophagy are common pathological find
ings in autophagy and lysosomal storage disorders. Evidence 
of impaired mitophagy has long been recognized in patient 
samples and disease models of a variety of different autophagy 
disorders [189]. Deficits in mitochondrial form and function 
are also critical contributors to progressive neurodegenera
tion, as observed in PINK1- and PRKN-related early-onset 
PD [190]. Defective mitophagy induced by defects in the 
PINK1-PRKN pathway, which normally involves a complex 
interplay of PINK1-dependent phosphorylation and PRKN- 
mediated ubiquitination events on the outer mitochondrial 
membrane resulting in the selective sequestration of ubiquiti
nated mitochondria within autophagosomes, leads to accu
mulation of damaged mitochondria and subsequent neuronal 
cell death [191,192]. Defective mitophagy has also been 
observed in association with mutations in OPTN encoding 
optineurin [193].

Another important group of conditions that show marked 
clinical overlap with disorders of autophagy are disorders of 
intracellular (vesicular) trafficking, probably reflective of the 
fact that some of the proteins implicated in congenital dis
orders of autophagy, such as EPG5, do have genuinely multi
ple roles in both autophagy but also other, in particular 
endosomal/endocytic trafficking pathways [194]. Indeed, it 
may be very difficult to distinguish which of the phenotypical 
expressions of a mutated protein may be due to its role in 
autophagic or other closely related vesicular trafficking pro
cesses. Based on the assumption that multisystem disorders 
linked in the same molecular pathways do share 
a recognizable “clinical” signature, a reverse search on 
Human Dysmorphology databases applying the key features 
of EPG5-related Vici syndrome reveals indeed a number of 
clinically similar conditions due to mutations affecting pro
teins that are implicated in cellular trafficking processes in 
a wider sense, but that may also give rise to secondary auto
phagy abnormalities. For example, Marinesco-Sjogren syn
drome (MSS) [195] and related disorders share cataracts, 
a skeletal muscle myopathy and, in some cases, sensorineural 
deafness with EPG5-related Vici syndrome, although other 
neurological features and the degree of multisystem involve
ment are usually less pronounced. Corresponding to the 
observed clinical overlap, impaired autophagy and nuclear 
abnormalities similar to those observed in primary autophagy 
disorders have been described in muscle tissue from SIL1- 
deprived mice, an animal model of MSS [195–197]; although 
the precise basis for this observation remains uncertain, dis
turbance of the autophagy pathway at the phagophore stage is 
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one plausible hypothesis, considering the prominent role of 
SIL1 at the ER. Another group of conditions that show con
siderable overlap with EPG5-related Vici syndrome are 
Chediak-Higashi syndrome (CHS) [198] and related primary 
immunodeficiency syndromes, with common features of 
hypopigmentation, immune defects, variable neurological 
involvement, and, in some cases, a vacuolar myopathy. 
Corresponding to the observed clinical overlap, mutations in 
LYST, the causative gene, have been shown to affect lysosome 
size and quantity but also to cause autophagic abnormalities, 
although evidence for the latter has been discussed controver
sially [199].

The hypothesis of disorders linked in connected autophagy 
and trafficking pathways sharing the same “clinical signature” 
was recently supported by the identification of an interaction 
between EPG5 and RAB3GAP1, the protein mutated in 
Warburg Micro syndrome [200], as outlined above a clinical 
phenocopy of EPG5-related Vici syndrome. Furthermore, 
WMS can also be caused by mutations in RAB3GAP2 
(RAB3 GTPase activating non-catalytic protein subunit 2), 
RAB18 and TBC1D20 (TBC1 domain family member 20). In 
addition to their primary trafficking functions, both 
RAB3GAP2 and RAB18 also play an important role in auto
phagosome formation, while TBC1D20 is needed for autopha
gosome maturation [200–203]. The clear link between the 
autophagy pathway and cellular trafficking due to mutations 
in those genes may thus explain the observed clinical simila
rities between WMS and EPG5-related Vici syndrome.

There are a number of other human multisystem disorders, 
which show considerable overlap with congenital disorders of 
autophagy, including glycogen storage disorders, congenital dis
orders of glycosylation, ciliopathies and peroxisomal disorders.

Increased glycogen is common on muscle biopsies from 
patients with EPG5-related Vici syndrome, and, in conjunc
tion with occasionally observed organomegaly, may give rise 
to the suspicion of one of the glycogen storage disorders 
[204], another group of conditions that is closely linked with 
both abnormal autophagy and lysosomal pathology [205]. The 
accumulation of autophagic debris, glycogen-containing lyso
somes as well as exocytosed vesicles observed in those muscle 
biopsies share common pathological features with the severe 
metabolic myopathy observed in one of the GSDs, Pompe 
Disease [84,206].

Clear links are also emerging between congenital disorders 
of glycosylation [207,208] and the autophagy pathway: For 
example, various key autophagy proteins such as SNAP29 and 
BECN1 require post-translational O-GlcNAc glycosylation for 
their proper functioning [208,209], suggesting that any pri
mary defect in these pathways will also have downstream 
functional consequences on autophagy. Furthermore, glyco
conjugates have also been described as inducers of autophagy 
by decreasing the activity of the MTOR pathway [105], and 
probably play an important role in autophagosome formation, 
considering their localization on the ER and leading edges of 
the phagophore. Lastly, the interaction between the two path
ways is bi-directional, as autophagy regulates the turnover of 
free glycans, which can accumulate in the cytosol [207,209]. 
Given the number of interactions between autophagy and 
glycosylation as outlined above, the strong clinical overlap 
with shared features of developmental delay, failure to thrive, 
neurological and neuromuscular abnormalities, and cardiac 
involvement [79,207], is thus not unexpected.

Ciliopathies, the summary term for a variety of diseases 
caused by impairment of the formation or function of pri
mary cilia [210–213], are another clinically similar group of 
disorders that may feature multiorgan involvement but also 
neurological and structural CNS abnormalities including 
agenesis of the corpus callosum. Recently strong bi- 
directional interactions between autophagy and cilia have 
been described, in which ciliary pathways control autophagy 
and conversely autophagy is important for regulating cilio
genesis [213,214]. Both inducers (e.g., IFT20) and suppres
sors (e.g., OFD1) of ciliogenesis can be degraded through 
autophagy, stressing its influence on the formation of cilia 
and its potential role in the cause of ciliopathies. Vice versa, 
it has been shown that autophagy is decreased in cells with 
compromised cilia, possibly via activation of the MTOR 
pathway, again indicating their close interaction [213,214].

In conclusion, the vast clinical overlap between the above- 
mentioned groups of disorders and congenital disorders of 
autophagy is not very surprising, giving the clear mechanistic 
links between the different pathways (summarized in Table 4). 
Many of the proteins causing these diseases have multiple 
roles in several cellular pathways, making it sometimes diffi
cult to pinpoint the specific cause of a disease or a particular 
symptom. Understanding autophagy and its crosstalk with 
other cell type-specific homeostatic pathways, in particular 

Table 4. Differential diagnosis of congenital disorders of autophagy.

Group of conditions Molecular basis for clinical overlap with autophagy disorders

Lysosomal storage disorders Close connections between autophagic and lysosomal pathways; 
Retrograde autophagic abnormalities in lysosomal storage disorders; 
Anterograde lysosomal abnormalities in autophagy disorders

Mitochondrial disorders Secondary mitochondrial dysfunction due to defective mitophagy
Glycogen storage disorders Retrograde autophagic abnormalities due to abnormal glycogen storage
Vesicular trafficking disorders Close connection between autophagic and endosomal/endocytic trafficking pathways; 

Involvement of mutated genes in multiple pathways
Glycosylation disorders Glycosylation important for normal functioning of certain autophagy proteins; 

Role of glycoconjugates in autophagy induction; 
Role of autophagy in turnover of free cytosolic glycans

Ciliopathies Role of ciliary pathways in controlling autophagy; 
Association between ciliary dysfunction and impaired autophagy

12 C. DENEUBOURG ET AL.



membrane and vesicle trafficking, lysosomal pathways and 
autolysosome consumption [215], will probably help to unra
vel additional aspects of autophagy specific to neurons, and 
explain their specific vulnerability to defects affecting these 
processes.

Animal models of congenital disorders of autophagy

Animal models emulating human pathologies allow insights 
into disease mechanisms on cell biological level, which are 
often hard or impossible to gather otherwise.

The best-characterized animal model for Vici syndrome is 
the epg5−/- mouse model. epg5−/- mice show a clear neurode
generative phenotype as observed in humans, however this 
only arises in adulthood, while the majority of Vici syndrome 
patients present with very early-onset neurodegeneration 
[79,128]. Another difference is the lack of neurodevelopmen
tal features in the epg5−/- mice, although they do have 
a reduced (but not absent) corpus callosum, a myopathy and 
retinitis pigmentosa [128,216]. These differences between the 
human and the murine phenotype suggest that caution is 
required when investigating complex human multisystem dis
orders in relevant animal models, which are however still 
indispensable for the development and pre-clinical testing of 
new therapies.

Although development of specific therapies for congenital 
disorders of autophagy is still at a very early stage, lessons 
may be learned from recent more advanced developments 
concerning disorders, which are not strictly part of this 
group but where defective autophagy is a prominent feature. 
For example, a number of different (including pharmacologi
cal, genetic and enzyme replacement) approaches have been 
investigated for XLMTM due to X-linked recessive mutations 
in myotubularin, a regulator of the PtdIns3P pool essential for 
phagophore formation in the early stages of autophagy 
[217,218]. Some of these approaches are currently reaching 
the stage of clinical application and may serve as models for 
therapy development in congenital disorders of autophagy.

Interestingly, there are a number of phenotypes in ani
mal models with primary defects in autophagy for which no 
corresponding human phenotype has been identified yet, 
for example those affecting the cysteine protease ATG4, 
which is required for c-terminal hydrolysis of ATG8 family 
proteins including LC3 [219]. ATG4B-deficient mice show 
slightly abnormal cerebellar morphology and mild motor 
impairment [220] while a point mutation in the ATG4D 
gene has been identified as the cause of a hereditary neu
rodegenerative disease in Lagotto Romagnolo dogs, asso
ciated with decreased autophagic flux under basal 
conditions [221,222]. Another congenital disease of auto
phagy identified in dogs is hereditary ataxia caused by 
mutations in RAB24 [223]. RAB24 functions in the clear
ance of autolysosomes in basal autophagy [224].

Identification of disease-causing mutations in animal mod
els like these could help to shed more light on human disease 
for which no causative genes have been pinpointed yet, in 
particular in the context of the wealth of genetic data cur
rently generated in the context of diagnostic next-generation 
sequencing.

Neurodevelopmental and neurodegenerative 
disorders due to defective autophagy – a lifetime 
continuum of neurological disease

As outlined in the preceding paragraphs, there is mounting 
and multiple clinical and molecular evidence for 
a continuum between congenital disorders of autophagy 
and adult-onset neurodegenerative disease: 1) while essen
tially neurodevelopmental disorders at the outset, most 
congenital disorders of autophagy follow a biphasic course, 
with a phase of accelerated deterioration following an initial 
period of apparent stability. Such a period of accelerated 
deterioration, characterized by progressive dementia, epi
lepsy and movement disorders (often of a Parkinsonian 
nature) is typical in WDR45-associated BPAN and SNX14- 
associated cerebellar ataxia, but also in EPG5-related Vici 
syndrome, as evidenced by rapidly progressive microce
phaly and an evolving movement disorder in long-term 
survivors. 2) Animal models of defective autophagy show 
CNS features mimicking adult-onset neurodegenerative dis
orders, as demonstrated in a conditional Epg5 Drosophila 
knockdown showing severe retinal neurodegeneration [84], 
by clinical and pathological features of human ALS in the 
epg5−/- mouse [129], and by similar findings in a range of 
murine models of Atg deficiency [225]. 3) Other early-onset 
neurodevelopmental disorders linked in related vesicular 
trafficking and lysosomal pathways, for example LYST- 
related CHS [226–228] but also SIL1-related MSS [229], 
also demonstrate a higher incidence of early-onset 
(Parkinsonian) movement disorder. 4) Risk variants in the 
EPG5 [172] but also SIL1 gene [230] have been identified as 
modifiers of adult-onset neurodegenerative disorders 
including dementia, PD and ALS. 5) An increasing number 
of adult-onset neurodegenerative disorders including 
dementia, PD and ALS have now been linked to compo
nents of the autophagy pathway (Table S1). Taken together, 
these observations suggest a continuum between early-onset 
neurodevelopmental and adult-onset neurodegenerative dis
orders connected in intricately linked intracellular vesicle 
trafficking pathways and underline that the thorough inves
tigation of rare genetic childhood disorders may be of 
relevance for the understanding of much more common 
age-related conditions (Figure 3).

Therapeutic perspectives

Given the key role of autophagy in many human diseases, this 
fundamentally important intracellular pathway has been under 
intense investigation for therapeutic exploitation [148]. While in 
the cancer field, most attempts have focused on blocking autopha
gy, in neurodevelopmental and neurodegenerative disorders, the 
agreed consensus is that what is desirable is the stimulation rather 
than the blockade of autophagy. Most approaches so far have 
focused on neurodegenerative disorders and on targeting the reg
ulatory signaling pathways upstream of autophagy rather than the 
autophagy process itself. Therapeutic approaches utilizing small 
molecules and focusing on upstream regulatory pathways such as 
the MTOR pathway can be grossly divided into those acting in an 
MTOR-dependent and those acting in an MTOR-independent 
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manner. Amongst the MTOR-dependent approaches, Rapamycin 
(which induces autophagy through its MTOR antagonism) has 
been shown to ameliorate the phenotype of models for AD, PD 
and HD [231–233]. An alternative, MTOR-independent approach 
is autophagy stimulation via the AMPK pathway utilizing mole
cules such as trehalose [234]. However, stimulation of autophagy 
initiation is not always helpful and there are examples where 
a detrimental effect has been observed in animal models of neuro
degeneration in which the clearance step is stalled [235,236]. It is 
also worth noting that autophagy may be protective or pathogenic 
depending on the disease stage [135]. Moreover, many neurode
generative diseases but in particular neurodevelopmental disorders 
such as EPG5-related Vici syndrome, display defects in the actual 
autophagy cycle, leading to a slower or impeded clearance. It is 
reasonable to expect that this blockage is not overcome by merely 
increasing the levels of autophagy initiation upstream, as evidenced 
by the absence of any survival benefit in a large phase III trial of the 
putative autophagy enhancer (lithium) in patients with ALS. 
A plausible alternative would be to rather increase all pathways of 
lysosomal clearance, including autophagy and lysosomal biogen
esis, controlled by the transcription factor TFEB and related mem
bers of the MiT/TFE family [237–239]. Several interventions based 
on TFEB-related gene therapy approaches have indeed been shown 
to be effective in numerous animal models of neurodegenerative 
diseases [240–243], and in GSDs such as Pompe disease. Most 
therapeutic approaches applied to date modify autophagy in 
a very general way, and small molecules that would target the 
autophagy pathway more specifically and tailored to the underlying 

molecular defect may represent a more effective approach to neu
rodevelopmental and neurodegenerative disease with defective 
autophagy in future.

As a general point concerning late-onset neurodegenerative 
disorders associated with defective autophagy but without 
a specific causative gene, it is still uncertain if autophagy as such 
is normal and is just overwhelmed over time leading to issues later 
in life, or if, alternatively, there is a primary issue present from birth 
that very slowly leads to problems after decades, as supported by 
the observation outlined above that mutation dosage appears to 
determine age of onset. Whatever the underlying scenario, it is 
likely that in late-onset neurodegenerative disorders, the process of 
defective autophagy is present for many years before becoming 
clinically evident, suggesting a prolonged window of opportunity 
for therapeutic intervention. Subtle clinical signs or symptoms may 
be present for years (if not decades) in susceptible patients, indicat
ing markers that may allow identification of patients for early 
treatment [65].

Conclusions and outlook

Neurodevelopmental disorders with defective autophagy 
represent a novel and rapidly expanding group of inborn 
errors of metabolism. While the causative defects affect pri
marily the autophagy machinery and associated proteins, 
there is considerable overlap with other inborn multisystem 
disorders, in particular lysosomal disorders and those due to 
defects in vesicular and membrane trafficking [178]. Overlap 

Figure 3. Neurodevelopmental and neurodegenerative disorders with defects in intracellular trafficking and autophagy. The accumulation of abnormal protein 
aggregates and defective organelles (in particular mitochondria) with age is counterbalanced by intracellular quality control mechanisms including mitophagy and 
aggregate removal through autophagy and/or the ubiquitin-proteasome (UPS) system. In genetic conditions impairing the effective actions of these intracellular 
pathways, the balance is shifted, resulting in neurodegenerative changes usually occurring later in life. Early-onset neurodevelopmental and adult-onset 
neurodegenerative disorders with defects in autophagy thus represent a highly interconnected spectrum of disorders associated with premature neuronal aging 
presenting throughout life.
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of clinical features and communality of molecular mechan
isms suggest a continuum of early-onset neurodevelopmental 
and adult-onset neurodegenerative disorders with defects in 
autophagy and intracellular trafficking throughout life. 
Considering that the autophagy pathway is highly amenable 
to pharmacological modification, the development of thera
pies tailored to specific underlying molecular mechanisms and 
the complex neuronal environment represents the ultimate 
goal [174].
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