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Abstract

The response of many governments to the COVID-19 pandemic has involved measures to control
within- and between-household transmission, providing motivation to improve understanding of
the absolute and relative risks in these contexts. Here, we perform exploratory, residual-based, and
transmission-dynamic household analysis of the Office for National Statistics (ONS) COVID-19
Infection Survey (CIS) data from 26 April 2020 to 15 July 2021 in England. This provides evidence
for: (i) temporally varying rates of introduction of infection into households broadly following the
trajectory of the overall epidemic and vaccination programme; (ii) Susceptible-Infectious Transmis-
sion Probabilities (SITPs) of within-household transmission in the 15-35% range; (iii) the emergence
of the Alpha and Delta variants, with the former being around 50% more infectious than wildtype
and 35% less infectious than Delta within households; (iv) significantly (in the range 25-300%)
more risk of bringing infection into the household for workers in patient-facing roles pre-vaccine;
(v) increased risk for secondary school-age children of bringing the infection into the household
when schools are open; (vi) increased risk for primary school-age children of bringing the infection
into the household when schools were open since the emergence of new variants.

1



1 Introduction

1.1 Analysis of household infection data

Households have often played an important role in infectious disease epidemiology, with policies in
place and under consideration in the UK to reduce both within- and between-household transmission
(Scientific Advisory Group for Emergencies, 2021). This is because the close, repeated nature of contact
within the household means that within-household transmission of infectious disease is common. Also,
most of the population lives in relatively small, stable households (Office for National Statistics, 2019).
From the point of view of scientific research, the household is a natural unit for epidemiological
data collection and households are small enough to allow for explicit solution of relatively complex
transmission models. Some of the earliest work in this field was carried out by Reed and Frost, whose
model was first described in the literature by Abbey (1952) in a paper that analysed transmission in
boarding schools and other closed populations. Frost’s 1928 lecture was later published posthumously
(Frost, 1976), with a re-analysis of his original household dataset from the 1918 influenza pandemic
carried out using modern computational and modelling approaches by Fraser et al. (2011).

Subsequent important contributions were made in empirical studies of transmission in households,
for example the highly influential study of childhood diseases by Hope Simpson (1952), and epidemic
theory based on the analyses of discrete- and continuous-time Markovian epidemics presented by
Bailey (1957). A key development was the solution by Ball (1986) of the final size distribution of
a random epidemic in a household without requiring Markovian recovery from infection, which then
enabled statistical analyses of household infection data such as that by Addy et al. (1991). Still
further progress is possible due to the use of modern computational methods, particularly Monte
Carlo approaches, to augment datasets (O’Neill and Roberts, 1999; Cauchemez et al., 2004; Demiris
and O’Neill, 2005) or to avoid likelihood calculations (Neal, 2012).

Continued methodological developments and data availability have enabled increasingly sophisticated
inferences to be drawn from household studies of respiratory pathogens, dealing with for example
interactions between adults and children (van Boven et al., 2010), case ascertainment (House et al.,
2012), interactions between strains (Kombe et al., 2019), and details of family structure (Endo et al.,
2019). During the current pandemic, there have been numerous household studies (Madewell et al.,
2020), with three recently published studies being notable for combining fitting of a transmission
model with significant differentiation of risks being those of Dattner et al. (2021), Li et al. (2021) and
Reukers et al. (2021).

1.2 Context for this study

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the human population
in late 2019 and the WHO declared a pandemic in March 2020 (World Health Organization, 2020).
Early in the pandemic, it became clear that risks of transmission, mortality and morbidity from
the associated coronavirus disease (COVID-19) were highly heterogeneous with age (Davies et al.,
2020), and also that work in patient-facing roles was associated with increased risk of positivity in
the community (Pouwels et al., 2021) as would be expected given the risks of healthcare-associated
transmission (Bhattacharya et al., 2021).

During the period of the study, there have been two major ‘sweeps’ in the UK, during which a SARS-
CoV-2 variant of concern (VOC) emerged and became dominant.

The first of these was PANGO lineage B.1.1.7 (Rambaut et al., 2020b), or ‘Alpha’ under WHO
nomenclature (World Health Organization, 2021). The first samples of this variant were found in
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September 2020 (Rambaut et al., 2020b), and it was designated a VOC on 18 December 2020 (Public
Health England, 2021c). There is evidence for both increased transmissibility of this variant, and
increased mortality amongst infected cases (Davies et al., 2021; Challen et al., 2021; Grint et al.,
2021), although conditional on hospitalisation outcomes may not be worse (Frampton et al., 2021).
The second VOC to emerge was PANGO lineage B.1.617.2 (Rambaut et al., 2020a), or ‘Delta’ under
WHO nomenclature (World Health Organization, 2021), which was designated a VOC on 6 May 2021
and is now the dominant variant in the UK (Public Health England, 2021b).

Both of these variants were relatively easy to track through the S gene target in commonly-used poly-
merase chain reaction (PCR) tests, with more details on this approach provided in §2.1 below.

Throughout 2021, the UK rolled out a comprehensive vaccination programme with priority given
to healthcare workers, the clinically vulnerable, and then with prioritisation by age, from oldest to
youngest (Office for National Statistics, 2021; Public Health England, 2021a). We will not include
vaccination here at the individual level, but rather note its overall effect on infection and transmission
at different times.

Here, we apply a combination of methods, including a regression that explicitly accounts for trans-
mission, to the Office for National Statistics (ONS) COVID-19 Infection Survey (CIS) data from 26
April 2020 to 15 July 2021 (Pouwels et al., 2021). We particularly consider the absolute magnitude of
transmission within and between households, as well as the associations between these and household
size, age, infection with VOCs (inferred via S gene target) and work in patient-facing roles.

2 Methods

2.1 Description of data

ONS CIS1 has a design based on variable levels of recruitment by region and time as required by
policy, but otherwise uniformly random selection of households from address lists and previous ONS
studies on an ongoing basis. If verbal agreement to participate is obtained, a study worker visits each
household to take written informed consent, which is obtained from parents/carers for those aged
2-15 years. Participants aged 10-15 years provide written assent and those under 2 years old are not
eligible.

Participants are asked questions on issues including work and age2 as well as being tested for SARS-
CoV-2 infection via reverse transcription PCR (RT-PCR). To reduce transmission risks, participants
aged 12 years and over self-collect nose and throat swabs following study worker instructions, and
parents/carers take swabs from children aged under 12 years. At the first visit, participants are asked
for optional consent for follow-up visits every week for the next month, then monthly for 12 months
from enrolment. The first few weeks of a hypothetical household participating in this study are shown
schematically in Figure 1.

Swabs were analysed at the UK’s national Lighthouse Laboratories at Milton Keynes and Glasgow us-
ing identical methodology. RT-PCR for three SARS-CoV-2 genes (N protein, S protein and ORF1ab)
used the Thermo Fisher TaqPath RT-PCR COVID-19 Kit, and analysed using UgenTec FastFinder
3.300.5, with an assay-specific algorithm and decision mechanism that allows conversion of amplifi-
cation assay raw data from the ABI 7500 Fast into test results with minimal manual intervention.

1https://www.ndm.ox.ac.uk/covid-19/covid-19-infection-survey/protocol-and-information-sheets; ISRCTN number
ISRCTN21086382; The study received ethical approval from the South Central Berkshire B Research Ethics Committee
(20/SC/0195).

2https://www.ndm.ox.ac.uk/covid-19/covid-19-infection-survey/case-record-forms
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Samples are called positive if at least a single N-gene and/or ORF1ab are detected. Although S gene
cycle threshold (Ct) values are determined, S gene detection alone is not considered sufficient to call
a sample positive.

This analysis includes all SARS-CoV-2 RT-PCR tests of nose and throat swabs from 26 April 2020 to
15 July 2021 for English households in the ONS CIS. We restrict our analysis to households of size 6 and
under, partly for computational reasons that we will discuss below, and partly because this captures
the overwhelming majority of households, with larger households being atypical in various ways (Office
for National Statistics, 2019). Over 94% of households have all members participating, and for the
remainder we treat the household as composed of participants only. In contrast to other studies, the
households we select constitute an approximately representative sample from the population when
stratified by date and region. The restriction to England was chosen because we split the data into
four time periods, corresponding to changing situations about policies that are devolved (i.e. policies
are different in Scotland, Wales and Northern Ireland). These time periods split the data into the
following tranches, with associated time periods and notable events (described broadly).

• Tranche 1: 26 April 2020 to 31 August 2020; low prevalence; schools closed; Alpha and Delta
variants not emerged yet; no vaccine available.

• Tranche 2: 1 September 2020 to 14 November 2020; high prevalence; schools open; negligible
Alpha variant; Delta variant not emerged yet; no vaccine available.

• Tranche 3: 15 November 2020 to 31 December 2020; high prevalence; schools open; Alpha
variant becomes dominant; Delta variant not emerged yet; negligible vaccine coverage.

• Tranche 4: 1 January 2021 to 14 February 2021; high prevalence; schools closed (except for
pre-school); Alpha variant dominant; Delta variant not emerged yet; over 10 million first vaccine
doses by end of time period.

• Tranche 5: 15 February 2021 to 29 April 2021; low prevalence; schools open; Delta variant
negligible; over 35 million first and 15 million second vaccine doses by end of time period.

• Tranche 6: 30 April 2021 to 15 July 2021; high prevalence; schools open; Delta variant becomes
dominant; over 45 million first and 35 million second doses distributed by end of time period.

These properties are summarised again in Table 1. The properties of the data allocated to these
tranches are shown in Table 2. Note that, while we do not include new primary infections in households
after 15 July 2021, but do include later secondary infections in households where the primary infection
happened before 15 July 2021. This is done to reduce problems with censoring.

2.2 Mathematical representation of data

Suppose we have a set of n individuals (participants), indexed i, j, . . . ∈ [n], where we use the notation
[k] to stand for the set of integers from 1 to k inclusive. These individuals are members of m households,
and we represent the a-th household using a set of individual indices Ha. These are specified such
that each individual is in exactly one household, so formally,

Ha ⊆ [n],∀a ∈ [m] , Ha ∩Hb = ∅,∀a ∈ [m], b ∈ [m] \ {a} ,
m⋃
a=1

Ha = [n] .

The size of the a-th household is then na = |Ha|. The a-th household is visited at a set of times Ta,
and for each t ∈ Ta we let xi,t be the length-p feature vector (also called covariates) associated with
the i-th individual at time t, and yi,t be the test result so that yi,t = 1 if the swab is positive and
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yi,t = 0 if not. Note that not all i ∈ Ha will register a valid observation for features and swab results
for each t ∈ Ta.

We let a tranche be defined by a time interval T = [t1, t2), and the household Ha will appear in the
analysis associated with the tranche T if Ta∩T 6= ∅. For the analysis that we will perform, we require
a method for associating a unique positivity and feature vector with each individual for the duration
of the tranche. Under our modelling assumptions, the following definition of tranche positivity is most
natural. For each household Ha associated with tranche T ,

∀i ∈ Ha , yi =

{
1 if ∃t, yi,t = 1 & min{τ |∃j ∈ Ha, yj,τ = 1} ∈ T ,

0 otherwise.
(1)

This means that we associate every positive in the household with the tranche in which the first positive
appears in that household. Such an approach would need revision for a situation where individuals
were infected a large number of times (i.e. common reinfection) or if incidence were so high that a
significant number of households would be expected to have multiple introductions, but we do not see
these scenarios in our data. For features, the appropriate rule will depend on the feature. An example
such rule for the case where there is only one feature xi,t ∈ {0, 1},∀i, t would be

xi = max{xi,t|t ∈ Ta ∩ T} ,

i.e. we take this feature to be 1 if it is measured as 1 at any point during the tranche in question.

2.3 Exploratory analysis of density and ages

An important part of our analysis will be consideration of counts / proportions of households with a
given composition of cases displayed as histograms as in Figure 2, and density plots as in Figure 3.

The heights of the histogram bars are given by

Zk,` =
m∑
a=1

1{na=`}1{∑i∈Ha
yi=k} , k ∈ {2, 3, 4, 5, 6} , ` ∈ {0, . . . , k} ,

where 1 stands for the indicator function. Verbally, Zk,` is the count of households of size ` with k
participants testing positive.

The density plots are obtained by considering some feature (in this case, age) that takes values 0 or
1. We then form a point ra ∈ [0, 1]2 for each household Ha such that∑

i∈Ha

1{yi=1} > 0 ,
∑
i∈Ha

1{xi=1} > 0 ,
∑
i∈Ha

1{xi=0} > 0 ,

through the definition

ra =

(∑
i∈Ha

1{yi=1&xi=1}∑
i∈Ha

1{xi=1}
,

∑
i∈Ha

1{yi=1&xi=0}∑
i∈Ha

1{xi=0}

)
.

Then we can construct a kernel density estimate in the usual way by summing then normalising kernel
functions around the points, in particular the width-w square kernel function

K(r, ra) = 1{||r−ra||∞<w} .

We use age (16 years old and under versus over 16 years old) as the feature in making the density
plots in Figure 3.
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2.4 Residual analysis and gene positivity pattern

We are also interested in tabulation of features and positives in households in a manner that allows
their clustering to be assessed. In particular, this involves calculation of Pearson residuals for the
within-household pairs of features and positives. Let xi be the feature for individual i that takes
values with generic labels A,B, . . . (here mainly patterns of PCR target positivity and negativity
indicative of viral strain). We are then interested in the table of pairs of individuals in households in
the set H ⊆ [m] with certain properties,

YAB =
∑

a∈H,i∈Ha,j∈Ha\{i}

1{xi=A}1{xj=B} .

Verbally, YAB is the count in the sample of A-B pairs of distinct individuals in households from the
set of households under consideration. On its own, this does not indicate whether A and B are more
strongly associated with each other in households than would be expected from their overall prevalence
in the household population. If we let

zA =
∑

a∈H,i∈Ha

1{xi=A} ,

then under the null hypothesis of independence, π̂A = zA/|H| is the maximum likelihood estimator
for the population probability of being in state A and we can then construct an ‘expected’ table
corresponding to each household pair having independent state with elements

EAB = π̂Aπ̂B
∑
a∈H

na(na − 1) .

The Pearson residual associated with the (A,B)-th table entry is then

RAB =
YAB − EAB√

EAB
. (2)

In simpler contexts, such residuals are typically asymptotically standard normal under the null hy-
pothesis (Bishop et al., 1975). For our case, this simple result does not follow straightforwardly, but if
we consider a sampled household H, let Xi be the random variable state of the i-th household member,
and let

ZA =
∑
i∈H

1{Xi=A} ,

then the moment generating function for the random vector Z = (ZA) under the assumption of
independence will be the multinomial

MZ(t) =

(∑
A

πAetA

)|H|
.

We can then calculate moments of the distribution of pairs through differentiation of this function, for
example

E
[
ZA
(
ZB − 1{A=B}

)]
=

∂2M

∂tA∂tB

∣∣∣∣
t=0

= πAπBn(n− 1) .

And so we can see that RAB as in (2) will be 0 where there is no correlation between states at the
household level. While explicit calculation of Var(ZA(ZB − 1{A=B})) to determine its asymptotic
distribution in the case of many households is beyond the scope of the current work, we believe that
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this would be an interesting direction for future study. Nevertheless, due to the arguments presented
above we can interpret larger values of RAB as indicative of more positive correlation between states
at the household level and vice versa.

Here we will use pattern of PCR target failure as a feature and the restriction of households to those
in which there is at least one infection (to avoid domination of the tables by all-negative households),
i.e.

H =

{
a ∈ [m]

∣∣∣∣ ∑
i∈Ha

yi > 0

}
,

to produce the plots in Figure 5.

There are three main patterns of gene positivity that we are interested in: OR+N+S, which is
generally seen in common pre-Alpha variants and the Delta variant; OR+N, which is associated with
the Alpha variant; or Other, which is usually indicative of too low a viral load to be confident in
strain. Where an individual is positive on multiple visits with varying PCR gene positivity patterns,
here and throughout we consider the maximal pattern, i.e. that containing the least target failures.
So for example, an individual with an N+S positive at one visit followed by an OR+N+S positive
at the next visit and then an N positive at the next visit would be counted as an OR+N+S positive
overall.

2.5 Full probability model

While the more exploratory methods above are useful for formulating hypotheses, the main part of
our analysis will be household regression, using time, household size and individual features to predict
positivity. We start by defining a vector and matrix for each household Ha, a ∈ [m],

ya := (yi)i∈Ha , Xa := [(xi)k]i∈Ha,k∈[p] . (3)

Note that the outcomes of swab positivity are not independent of each other due to transmission within
households, but otherwise the households are selected as uniformly as possible from the population.
This means that an independent-households assumption is appropriate, in which we write the likelihood
function as

L(θ) =
∏
a∈[m]

Pya(Xa,θ) . (4)

Here, θ is a vector of model parameters, and Py is a function mapping a household feature matrix and
set of model parameters onto a probability of a given set of household positivity outcomes. We can
derive a set of equations for such probabilities from equation (4) of Addy et al. (1991) as in Kinyanjui
and House (2019), and which we present now with some explanation but not a formal derivation of
all components.

We will consider the relevant equations for a household H of size n with outcome vector y and feature
matrix X (i.e. suppressing the household index a to simplify notation). In particular, given a map
ι : {0, 1}n → {1, . . . , 2n}, we will be able to form the vector P = (Pι(y))y∈{0,1}n of probabilities of
different outcomes in the household. This will be a solution to the set of linear equations

B(θ)P = 1 , (5)

where 1 is a length-2n vector of all ones, and B = [Bι(ν),ι(ω)]ν,ω∈{0,1}n , which has

Bι(ν),ι(ω) = Bν,ω =
1∏

j∈H Φ
(∑

i∈H(1− νi)λij
)ωj Q

1−νj
j

, ν ≤ ω ∈ {0, 1}n , (6)
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and other elements equal to zero, where we write ≤ between vectors to stand for the statement that
each element on the left-hand side is less than or equal to the corresponding element on the right-
hand side. The associated condition imposes that each ν above will correspond to a sub-epidemic
of ω meaning that the equation (5) can be solved iteratively. There are then three main ingredi-
ents of the transmission model that we will enumerate below and in doing so define the terms in
Equation (6).

The first model component is the probability of avoiding infection from outside; for the i-th individual
this is

Qi = e−Λi , Λi = Λeα·xi = eα0+α·xi . (7)

In the language of infectious disease modelling, Λi is the cumulative force of infection experienced by
the i-th individual. Then exp(αk) is the relative external exposure associated with the k-th feature /
covariate, meaning that it is the multiplier in front of the baseline force of infection, which is that for
an individual whose feature vector is all zeros, 0. This baseline probability of avoiding infection from
outside is then

q = exp(−Λ) = exp(− exp(α0)) . (8)

Because this is often much closer to 1 than to 0, we will report the probability of being infected from
outside the household as a percentage, i.e. (1− q)× 100% will be given in figures and tables. We will
present this alongside the relative external exposures that are elements of the vector α, although it
would also be possible to use (8) to relate q to the baseline force of infection Λ or intercept of the linear
predictor, α0. Note that some care must be taken in interpretation of this variable when the data are
split into time periods as in this work, since to appear as a household with at least one positive in
one tranche, it is necessary to appear as a household with no positives in the previous tranches for
which the household was in the study. Values of 1 − q will typically be low enough here that this
conditional dependence is not strong, but this might not be true at higher levels of incidence for the
same design.

The second component of the model is variability in the infectiousness at the individual level, usually
interpreted as arising from the distribution of infectious periods. Suppose, in particular, that a house-
hold has just one susceptible and one infectious individual, and that the infectious individual exerts
a force of infection λ on the susceptible for a random period of time T . Let the cumulative force of
infection be

C(t) =

∫ min(T,t)

u=0
λ du . (9)

The first step in analysing this model is to apply the Sellke (1983) construction, where the susceptible
individual picks a random variable Ξ ∼ Exp(1) and infection happens once C(t) > Ξ, or no infection
happens if C(T ) < Ξ. To see why this is equivalent to infection at a rate λ, take (9) and note that

Pr(Ξ > C(t+ δt)|Ξ > C(t)) =

∫ C(t+δt)
0 exp(−ξ)dξ∫ C(t)

0 exp(−ξ)dξ
= 1− λδt+ o(δt) .

The furthest right expression in this equation is what we mean by infection at a rate.

Using FX to stand for a cumulative distribution function and fX for a probability density function of
a random variable X, we have the total probability of avoiding infection as

Pr(Ξ > C(T )) =

∫ ∞
0

FΞ(λt)fT (t)dt =

∫ ∞
0

e−λtfT (t)dt = L[fT ](λ) =: Φ(λ) , (10)
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where L stands for Laplace transformation. We can then use this result to write down the probabilities
of different outcomes in a two-person household without covariates:

Pr(y = (0, 0)) = Q2 , Pr(y = (0, 1)) = Pr(y = (1, 0)) = Q(1−Q)Φ(λ) ,

which are expressions that can also be obtained from (6). A more general argument is presented by
Ball (1986) for the full system of equations, but the expressions above should give some intuition for
why these hold.

For our modelling, we assume that each individual picks an infectious period from a unit-mean Gamma
distribution since the equations are not sensitive to the mean and this therefore provides a natural
one-parameter distribution with appropriate support. The Laplace transform of this as used in (6)
is

Φ(s) = (1 + ϑs)−1/ϑ . (11)

The parameter ϑ is the variance of the Gamma distribution, i.e. it is larger for more individual
variability.

The third component of the model is the infection rate from individual j to individual i,

λij = nηλσiτj = nηλeβ·xieγ·xj = eβ·xieγ0+η log(n)+γ·xj . (12)

In this equation: λ is the baseline rate of infection; σi = eβ·xi is the relative susceptibility of the i-th
participant, and exp(βk) is the relative susceptibility associated with the k-th feature; τj = eγ·xj is the
relative transmissibility of the j-th participant, and exp(γk) is the relative transmissibility associated
with the k-th feature / covariate. As can be seen from (12), we can interpret log(λ) as the intercept of
the linear predictor for transmissibility. The term nη is a modelling approach to the effect of household
size usually attributed to Cauchemez et al. (2004); as can be seen from (12), this is equivalent to taking
log(n) as a covariate for transmissibility. Experience with fitting these models (Kinyanjui et al., 2018)
suggests that it is a good idea to impose hard bounds on the Cauchemez parameter, i.e. insist that
η ∈ [ηmin, ηmax], meaning that here we will treat η separately from other parameters.

2.6 Model variables and fitting

We now enumerate all of the model parameters, distinguishing between the ‘natural’ representations of
parameters that sit in R and transforms of natural parameter space Rκ that are most epidemiologically
interpretable and therefore suitable for reporting. Since Λ, λ and ϑ have positive support, we can use
logarithmic and exponential functions to transform between epidemiological and natural parameters.
As noted above, we want η to have compact support, and so note that the function tan : [−π/2, π/2]→
R and its inverse can be used. We choose ηmin = −2 and ηmax = 2, meaning that our natural parameter
vector is θ = (log(Λ), log(λ), log(ϑ), tan(πη/4),α,β,γ) ∈ Rκ.

The first part of this parameter vector is the external force of infection, with natural representation
α0 = log(Λ). Here we will quote the baseline probability of infection from outside as a percentage,
which is (1− q)× 100% for q as in (8).

The second part of the parameter space relates to baseline within-household transmission with natural
representation γ0 = log(λ), log(ϑ), and tan(πη/4), where we use this transform for η to make a hard
constraint of epidemiologically meaningful values. For interpretability, we work with probabilities of
infection by household size, which from generalising (10) to a size-scaled transmission rate are

pn = 1− Φ(nηλ) . (13)
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Such quantities have been called Susceptible-Infectious Transmission Probabilities (SITP) by e.g.
Fraser et al. (2011), who estimated values close to 20% from historical data on the 1918 influenza
pandemic.

The third part are features, where we consider:

• Three age groups: 2-11 years old; 12-16 years old; and older.

• Working in a patient-facing role or not.

• Pattern of PCR gene target positivity: OR+N+S, which is associated with pre-Alpha variants
and the Delta variant; OR+N, which is associated with the Alpha variant; or other, which is
usually indicative of too low a viral load to be confident in strain.

We assume that age and working in a patient-facing role have an association with external risk, leading
to natural parameters α2-11, α12-16 and αPF; that age has an association with susceptibility, leading
to natural parameters β2-11 and β12-16; and that age and gene positivity in PCR have an association
with transmissibility, leading to natural parameters γ2-11, γ12-16, γOR+N and γoth. For any natural
parameter r, we will report the multiplicative effect exp(r).

Model fitting was performed in an approximate Bayesian framework using the Laplace approximation.
As noted above, households of size 7 and larger were excluded from the analysis partly because these
are often very different in composition from smallerhouseholds, and partly because of the numerical
cost of solving a linear system of size 22n We combine the likelihood (4) with a standard normal prior
on natural parameters, θ ∼ Nκ(0, I). Sensitivity of results to this prior was considered for different
variances and revealed essentially no impact on the highly identifiable parameters such as Λ and λ, and
that while a higher variance could slightly reduce the shrinkage of effect sizes towards zero, it could also
lead to instability in fitting, meaning that this prior achieves regularisation of the inference problem
without excessive bias. The maximum a posteriori estimate was obtained using multiple restarts of
a Quasi-Newton optimiser. The Hessian was calculated numerically for the natural parameters and
used in the Laplace approximation to the posterior on the natural parameters. The credible intervals
(CIs) are then transformed from natural to epidemiologically interpretable parameters.

2.7 Data processing and software implementation

The analysis was carried out on the ONS Secure Research Server in the Python 3 language. To illustrate
issues with data processing, note that the ‘flat’ form for the data extracted from the database after
cleaning takes a form like:

HID PID Visit Date Age Test Result Work PF Pattern

...

123 456 2020-10-02 8 Negative No NA

123 457 2020-10-02 38 Negative No NA

123 456 2020-10-10 8 Negative No NA

123 457 2020-10-10 38 Positive No OR+N+S

123 456 2020-10-17 9 Positive No OR+N+S

123 457 2020-10-17 38 Negative No NA

...

124 458 2021-02-15 53 Negative Yes NA

...

In particular, there is a hierarchical structure to the data. Households, each with a unique household
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ID in the HID column, have a number of study participants with a unique participant ID in the
PID column, and each participant being visited on a number of dates as in the Visit Date column.
Each visit will have associated participant features (e.g. as in the Age column above) and a Test

Result.

The large size of this flat file (slightly under three million rows) means that it is advantageous to use
specialist libraries, in this case pandas (The pandas development team, 2020; McKinney, 2010) together
with NumPy (Harris et al., 2020). To deal with the nested structure of the data, we used the ‘split-
apply-combine’ paradigm that this library encourages by analogy with SQL operations. In the example
above, this would involve first associating each participant with an age using pandas.groupby(’PID’)

and pandas.DataFrame.apply(numpy.min), and then producing an array of ages for each household
using pandas.groupby(’HID’) and pandas.DataFrame.apply(numpy.array). A similar approach is
possible for test results and multiple features.

Apart from data processing, the main computational cost of the analysis is the linear algebra associated
with solving (5), particularly for larger households. Due to portability, this was carried out in NumPy
on the ONS system, however we found that implementation in Numba (Lam et al., 2015) can generate
significant speed-ups, as might use of GPU hardware through use of e.g. PyTorch (Paszke et al.,
2019).

Access to ONS CIS data is possible via the Office for National Statistics’ Secure Research Service,
and Python code demonstrating the methodology applied to publicly available data is at https:

//github.com/thomasallanhouse/covid19-housefs.

3 Results and Discussion

3.1 Exploratory analysis

Figure 2 shows the distribution of positives in households; comparison with Table 2 shows that the
numbers of households with two or more positives are much greater than would be expected under
the assumption of independence. In fact, some histograms even take a bimodal ‘U’ shape.

This multi-modality is even more apparent in the kernel plots in Figure 3, which also demonstrate that
it is common to see households with only child positives, only adult positives, or both. In particular,
this suggests that both children and adults can be responsible for bringing infection into the household.
While some of the child-infection-only households could arise due to failure of ascertainment of an
adult infection in the household, this is unlikely to be true for most, meaning, the introduction of
infection to the household would have been due to a child (and vice versa for adult-infection-only
households).

3.2 Residual analysis

The pair counts and Pearson residual analysis – applied to the maximal PCR target gene positivity
pattern being OR+N+S, OR+N, other positive, or negative – are shown in Figures 4 and 5. The pair
counts show at the household level the replacement of the OR+N+S pattern as the main source of
positive pairs in households with the OR+N pattern, and then the return of the OR+N+S pattern. We
also see from the residual plots that while there is positive correlation of (OR+N+S)-(OR+N+S) and
(OR+N)-(OR+N) pairs, as well as of negative-negative pairs, there is a negative correlation associated
with (OR+N+S)-(OR+N) pairs and also between pairs involving any other positive pattern. While
this analysis is not mechanistic or causal, we expect that the main factor generating correlation /
clustering of positives in households is transmission. As such, the results are consistent with our
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understanding of the sweeps of the Alpha and Delta variants as arising due to these being more
transmissible strains than those that they replaced.

3.3 Regression analysis

The regression analysis has its outputs shown in Table 3, Figure 6, and Figure 7. We now present
these in order.

The baseline external probabilities of infection shown in the top plot of Figure 6 follow the rough
pattern that would be expected from community prevalence and Tranche duration, with the notable
exception of Tranche 6, when it is likely that vaccination significantly reduced the infection risk despite
high prevalence. In terms of the baseline probabilities of within-household transmission in the bottom
plot of Figure 6, these are largely consistent in terms of overlapping credible intervals for Tranches 2,
3 and 4, with Tranche 6 noticeably lower and with credible intervals that do not overlap with those for
Tranches 2, 3 and 4, likely due to the impact of vaccination (and despite the emergence of the Delta
variant). The low-prevalence Tranches 1 and 5 have large credible intervals, so are hard to distinguish
statistically from the other Tranches, despite having lower point estimates. It is worth noting that for
periods of low prevalence following periods of high prevalence, we expect lower viral loads on average
as noted by Hay et al. (2021), and this might impact on overall transmissibility estimates.

Turning to Figure 7, we see that ‘other’ patterns of gene positivity (besides OR+N and OR+N+S) are
consistently associated with much lower transmissibility, as would be expected given target failure is
more likely at lower viral loads(Walker et al., 2021). We also see lower transmissibility of OR+N prior
to the emergence of the Alpha variant, since S-gene target failure would have been associated with
lower viral loads at that point as well, but higher transmissibility for this pattern after the emergence
of Alpha but before the emergence of Delta. After the emergence of Delta, the OR+N pattern is
associated with lower transmissibility than OR+N+S, as would be expected.

In terms of child susceptibility and transmissibility, there is no strong evidence for an effect. While
it is plausible that non-vaccination of children would lead to increasing their relative susceptibility at
later times, this is consistent with the Tranche 6 results but not strongly evidenced by them.

For patient-facing staff, external risk of infection has been consistently high until reduced in Tranche
6, most likely due to the impact of vaccination. For children, external risk of infection is generally
raised compared to baseline when schools are open, with the exception of primary school aged children
before the emergence of Alpha. Whether this change in association is due to some causal factor not
accounted for here, or is related to the new variants spreading more efficiently amongst young children
than wildtype, requires further investigation.

3.4 Limitations and directions for future work

While we have taken many steps to ensure that the results presented here are as robust as possible,
there are key limitations to the analysis that need to be borne in mind. The main one of these is
failures in ascertainment of positives and other missingness in the longitudinal design in question.
The most likely consequence of this will be to depress susceptible-infectious transmission probability
estimates. One theoretical approach to deal with this would be imputation of the transmission tree as
suggested by Demiris and O’Neill (2005), but this is likely to be too computationally intensive to be
practical in the current context. Another would be analytical work to include failure of ascertainment
into the likelihood function as in House et al. (2012), however it is unclear how to model ascertainment
probabilistically in a tractable manner. A data-driven approach would be to try to include positives
from other sources such as Test and Trace case data or self-reported episodes of illness. There is also a
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harder to quantify potential bias of non-participation in the study, particularly if this is with respect
to some factor that is not measured.

Another important limitation is the possibility that other features, for example the geographical region
that households are in, more detailed information about viral load and symptoms, or information about
the physical structure of the household, might play an important explanatory role in the associations
observed. Finally, there are possible refinements of the work: trends in external infection over time
could be modelled as a flexible functional form (e.g. a spline as in Pouwels et al. (2021)); extra features
could be added, and features selected using formal criteria, including relaxing of the Cauchemez
assumption to allow transmission probabilities to depend in a general manner on household size, and
explicit correction to attack rates due to shrinking and growing epidemics could be made as proposed
by Ball and Shaw (Ball and Shaw, 2015; Shaw, 2016); model parameters – e.g. baseline transmission
probabilities – could be shared across tranches; the work could be extended to Wales, Scotland and
Northern Ireland; more formal analysis of causal pathways could be performed; and improvements
could be made in implementation data processing, model evaluation through improved linear algebra,
and fitting algorithm. These and other directions should be the subject of future studies.
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Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference, pages 56–61, 2010.
DOI: 10.25080/Majora-92bf1922-00a.

P. Neal. Efficient likelihood-free Bayesian computation for household epidemics. Statistics and Com-
puting, 22(6):1239–1256, 2012.

Office for National Statistics. Families and households, Edition: 15 November, 2019.
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/families/
datasets/familiesandhouseholdsfamiliesandhouseholds.

Office for National Statistics. Coronavirus (COVID-19) latest insights: Vaccines, 2021.
URL https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/

conditionsanddiseases/articles/coronaviruscovid19latestinsights/vaccines.

P. D. O’Neill and G. O. Roberts. Bayesian inference for partially observed stochastic epidemics.
Journal of the Royal Statistical Society: Series A (Statistics in Society), 162(1):121–129, 1999.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
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Figure 1: Schematic of a hypothetical but realistic data pattern for a four-person household in the
first two months after recruitment. Each negative test is shown as a blue circle containing × and each
positive test is shown as a red circle containing +. One potential route for infection coming into and
transmitting within the household is shown as through a series of red arrows. This is not directly
observed in the study design, and in fact other transmission trees (for example one in which PID2 is
infected before PID3) are consistent with the data that would be obtained from this household.
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Figure 2: Histograms of household attack rates
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Figure 3: Kernel density plots showing proportion of positives in different age classes in households.
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Figure 4: Pair counts for PCR gene positivity patterns.
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Figure 5: Residual plots for PCR gene positivity patterns.
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Figure 6: Visualisation of the fitted model. Top: Baseline probability of infection from outside.
Bottom: Per-pair baseline probabilities of secondary transmission within the household, not including
tertiary transmission effects.
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Figure 7: Visualisation of the fitted model. Relative effects on transmission, susceptibility and external
exposure compared to baseline of an adult not working in a patient-facing role with OR+N+S maximal
PCR gene positivity pattern if positive. ‘Trans.’ stands for relative transmissibility, ‘Susc.’ for relative
susceptibility, and ‘External’ for relative external exposure.
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