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ABSTRACT

The nonlinear interaction between air and a water droplet just prior to a high-speed impingement on a surface is a phenomenon that has
been researched extensively and occurs in a number of industrial settings. The role that the surface deformation plays in an air cushioned
impact of a liquid droplet is considered here. In a two-dimensional framework, assuming small density and viscosity ratios between the air
and the liquid, a reduced system of integrodifferential equations is derived governing the liquid droplet free-surface shape, the pressure in
the thin air film, and the deformation of the surface, assuming the effects of surface tension, compressibility, and gravity to be negligible. The
deformation of the surface is first described in a rather general form, based on previous membrane-type models. The coupled system is then
investigated in two cases: a soft viscoelastic case where the surface stiffness and (viscous) damping are considered and a more general flexible
surface where all relevant parameters are retained. Numerical solutions are presented, highlighting a number of key consequences of surface
deformability on the pre-impact phase of droplet impact, such as reduction in pressure buildup, increased air entrapment, and considerable
delay to touchdown. Connections (including subtle dependence of the size of entrapped air on the droplet velocity, reduced pressure peaks,
and droplet gliding) with recent experiments and a large deformation analysis are also presented.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0064626

I. INTRODUCTION

The impact of a droplet on a deformable surface is a commonly
occurring event in a number of industrial and natural settings, such as
in anti-icing technologies,1 ink-jet printing,2 and rain-induced foliar
disease transmission.3 The use of surface engineering to control drop-
let impacts4,5 can have hugely desirable effects in all the applications
mentioned above, among others. The main forms of surface engineer-
ing revolve around the use of microstructured roughness6 or textured
surfaces,7 but the aim of this paper is to examine the influence of
another alterable surface property, deformability. There have been a
number of experimental studies on droplet impacts with flexible, or
soft deformable, substrates, considering both the pre-impact8,9 and
post-impact behaviors.10–12 There has also been some analytical work
on the post-impact behavior13–15 and the pre-impact dynamics of
droplet settling,16 whereas the novelty in our work lies in analyzing the
pre-impact behavior of a high-speed droplet impact with a deformable
surface.

When considering droplet impacts, the pre-impact air cush-
ioning is an important feature to consider. The high pressures
caused by the thin air layer as the droplet approaches a surface are
sufficient enough to significantly deform the droplet before impact.
Experimental evidence of this can be seen in Lesser and Field17

and Liow,18 as well as in Thoroddsen et al.19 using high-speed pho-
tography. All these studies were on flat rigid surfaces and showed
that the free-surface distortion prior to impact was significant
enough to entrap a small pocket of air underneath the droplet.
This experimental work was further extended by Langley et al.8 to
that of impacts with soft deformable solids, and it was found that
these impacts entrapped more air than those on rigid surfaces.
Mitra et al.9 then showed that this increased air entrapment of soft
solids, and thus extended lifetime of the air layer, facilitates bounc-
ing behaviors of droplets at low-impact velocity and can also sig-
nificantly influence the air film rupture dynamics. The role of
entrapped air under a rebounding droplet impacting on a soft
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surface was also considered in Chen et al.20,21 and attributed to
increasing the threshold velocity for a droplet to rebound on softer
solids.

A number of theoretical studies consider air cushioning in drop-
let impacts, in particular Smith et al.22 who considered a balancing
between the forces of an inviscid droplet approaching a rigid wall with
a thin, lubricating air layer in between. This rational viscous–inviscid
interaction work was further extended by Hicks and Purvis23–25 for
three-dimensional impacts, impacts with liquid layers and other drop-
lets is one paper. Also, Purvis and Smith26 considered the effect of sur-
face tension and Mandre et al.,27 Mani et al.,28 Hicks and Purvis29

considered the compressibility of the air. More recently, the problem
has been considered using axisymmetric direct numerical simulation,
in order to have stronger connections with experiments and to explore
parameter regimes and other physical effects perhaps not accessible to
the inviscid/lubrication model. Wang et al.30 performed simulations
over a large range of impact parameters, identifying different outcomes
of both the gas cushioning and post-impact phase of droplet impact.
Similarly, Jian et al.31 examined how variations in the liquid–gas vis-
cosity and density ratios affect the gas cushioning and result in signifi-
cantly different splashing behaviors. Other works include air
cushioning on an immiscible liquid film,32 heat transfer consider-
ations,33 and air mediated droplet bouncing.34 A detailed analytical
and numerical study of air entrapment on deformable solid surfaces to
complement experimental work8,9 remains untackled, however.

Liquid–elastic impacts are also the subject of a large number of
studies. For example, on an inviscid basis, Korobkin and
Khabakhpasheva35 studied the impact of a regular wave on an elastic
plate, and Khabakhpasheva and Korobkin36 considered a liquid elastic-
wedge impact. Similarly, Duchemin and Vandenberghe37 investigated
the impact of a rigid body on a floating elastic membrane. Of most rele-
vance here are droplet-elastic impacts or droplet impacts with flexible
surfaces. Pegg et al.13 investigated the post-impact interactions of a
droplet impact on an elastic plate, where it was assumed that the plate
had a relatively high rigidity so that it would vibrate, rather than just be
deformed by the impact. They used an axisymmetric Wagner-style
model of a droplet impact, which was solved using the method of nor-
mal modes. They found that the presence of substrate elasticity acted to
slow down the velocity of the advancing contact line and that the
induced oscillations of the substrate lead to the onset of splashing.
Using a similar approach, the effect of surface vibrations was examined
in more detail by Khabakhpasheva and Korobkin.38 Also using post-
impact axisymmetric Wagner theory, Negus et al.15 recently investi-
gated droplet impact on a spring-supported plate, where they found
solutions for the composite pressure and force on the plate, and pro-
vided an excellent comparison to results obtained via direct numerical
simulation. Xiong et al.14 performed numerical simulations of a droplet
impacting a flexible surface using a Lattice–Boltzmann method, investi-
gating the effect of bending stiffness on the contact time and wettability
of the droplet on the surface.

There has also been a significant focus on the experimental
research on droplet impacts with deformable elastic/flexible surfaces,
which has motivated the use of flexible elements in surface engineering
and microfluidic devices.39 Early work by Pepper et al.40 examined the
droplet impact on the elastic membranes of variable tension. They
found that by sufficiently lowering the membrane tension, splashing
could be suppressed. This work was further complemented by

Howland et al.12 who investigated the impact of ethanol drops on sili-
cone gels of different stiffnesses, where it was found that the stiffness
affects the droplet splashing threshold and could also eliminate splash-
ing all together. In both of these works on splashing, it was suggested
that very early times after, even prior to, impact were critical in the
overall outcome of the droplet impact. Weisensee et al.10 considered
the droplet impacts with elastic superhydrophobic surfaces and found
that the elasticity of the surface was an additional mechanism for
reducing the contact time of a bouncing droplet. Vasileiou et al.11

came to similar conclusions, and Vasileiou et al.41 found, by investigat-
ing the impacts with supercooled droplets, that substrate flexibility can
improve the icephobicity. Similarly, a detailed study of the dynamics
of the flexible superhydrophobic surface by a droplet impact was per-
formed by Kim et al.42 The studies discussed here are typically based
on the deformable substrate coatings or clamped-clamped membrane
designs; however, droplet impact on the cantilever designed surfaces
has also received attention.10,43,44

The focus of the present study is on an analytical and numerical
investigation into the pre-impact behavior of a droplet impacting a
deformable surface. Understanding the pre-impact behavior of the
droplet is vital in understanding the post-impact behavior. Although
in practice droplet impacts are three-dimensional, we will formulate a
simplified two-dimensional model and we will use our study to try to
gain a qualitative understanding of the effect of surface deformation
on various impact quantities, such as touchdown time, contact pres-
sure, and air entrapment, which play an important role in understand-
ing the effect on splashing, spreading and wettability of the droplet
post-impact (we note a recent very interesting study by Pegg45 on elas-
tic surfaces which has some overlap with ours). In Sec. II, we formally
define the problem and describe an asymptotic analysis which
allows us to define a reduced set of governing equations for the
droplet free-surface, the pressure in the air film and the shape of
the surface as they evolve and interact. We choose to model the
deformable surface by the compliant surface model of Carpenter
and Garrad46 which includes rigidity, tension, stiffness, inertia,
and damping and so is representative of a number of different sur-
faces. The aim of this study is to assess the influence of each of
these physical parameters. In Secs. III and IV, we then numerically
investigate the solutions, by performing a parametric study of the
parameters of the surface. Connections with the experiments are
then addressed in Sec. V. In Sec. VI, we consider the interesting
case of relatively large surface deformations, which points to
another link with experiments concerning droplet gliding, while
Sec. VII presents the conclusions.

II. MODEL FORMULATION AND GOVERNING
EQUATIONS

Suppose a two-dimensional liquid droplet of radius R approaches
a deformable surface with normal velocity V. Initially, the droplet will
be sufficiently far away from the surface that the pressure between the
droplet and the surface is constant and the droplet remains circular.
Let ðx�; y�Þ be the Cartesian coordinates and t� be time. Then the bot-
tom free-surface of the droplet will initially be

f �ðx�; t�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x�2
p

� Vt� þ R: (1)

The deformable surface will be denoted g�ðx�; t�Þ and undisturbed
will lie on y� ¼ 0. Time is measured such that in the absence of air
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cushioning, the droplet would impact the undisturbed deformable sur-
face at t� ¼ 0.

The aim is to derive a system of equations that govern the droplet
free-surface, the air film pressure between the droplet and the deform-
able surface, and the shape of the surface. In order to do this, the fluid
flow will have to be considered separately in the liquid droplet and the
air film and an equation governing the shape deformations of the sur-
face will also be considered. These three quantities will form a coupled
system. The following derivation will assume that the effects of surface
tension, compressibility, and gravity are negligible, and these assump-
tions will be discussed in detail later on in this section. The subsequent
analysis will exploit the small density ratio qg � ql , of the liquid (l) to
the gas (g) in order to obtain asymptotically valid equations describing
the droplet free-surface, the pressure in the air gap and the shape of
the surface. The small quantity used in the asymptotic analysis will be
defined as the aspect ratio of the local horizontal length scale l, over
which the pressure has a leading order effect on the droplet free-
surface, to the droplet radius R,

e ¼ l
R
: (2)

Here, l is still to be determined. Figure 1 shows a schematic of the
problem setup.

All distances are non-dimensionalized with the droplet radius R
and time is non-dimensionalized with R/V; thus, ðx�; y�Þ ¼ Rðx; yÞ
and t� ¼ Rt=V . Fluid velocity components in both fluids are non-
dimensionalized with V and pressure with qlV

2. The flow in the drop-
let and the air film is assumed to be governed by the incompressible
Navier–Stokes equations and using the above notation these are

@ul

@t
þ ul � $ul ¼ �$pl þ

1
Re
r2ul; (3a)

$ � ul ¼ 0; (3b)

for the liquid and

@ug

@t
þ ug � $ug ¼ �

ql

qg
$pl þ

�g

�l

1
Re
r2ug ; (4a)

$ � ug ¼ 0; (4b)

for the air, where $ ¼ ð@=@x; @=@yÞ; �a ¼ la=qa is the kinematic
viscosity of the liquid (a ¼ l) or gas (a ¼ g), ua ¼ ðua; vaÞ is the fluid
velocity field, and Re ¼ RV=�l is the global Reynolds number based
on the properties and initial velocity of the liquid. For the parameter
regime of interest, the Reynolds number Re is typically large, and this
will, again, be discussed at the end of this section.

The non-dimensional initial liquid free-surface profile is now
given by

f ðx; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

� t þ 1: (5)

To close our system, we must satisfy the kinematic boundary condi-
tions on the liquid–gas interface and the gas–surface interface,

@f
@t
þ ua

@f
@x
¼ va at y ¼ f ðx; tÞ; (6)

and

@g
@t
þ ua

@g
@x
¼ va at y ¼ gðx; tÞ; (7)

for a ¼ l or g. Neglecting surface tension effects gives the normal stress
balance on the liquid–gas interface as

pl ¼ pg : (8)

Due to the disparate horizontal velocity scales between the liquid and
the gas, a tangential stress balance on the liquid–gas interface is not
required, as it will be seen later that a no-slip condition is applied on
this boundary (this involves a thin shear layer present as in Smith
et al.22).

A. Liquid droplet

To determine the behavior of the liquid droplet free-surface, close
to the point of initial contact which is x ¼ y ¼ 0, we take the following
scaling:

ðx; y; t; f Þ ¼ ðeX; eY ; e2T; e2FÞ; (9)

where the scales of t and f come from the desire to study short time
behavior and from the form of Eq. (5), respectively. The Oðe2Þ time-
scale is that expected for the traversing, at a unit non-dimensional
velocity, of the thin air gap which has normal width of Oðe2Þ. The
scales (9) lead us to take asymptotic expansions of the liquid velocity
components and pressure in the following form:

ðul; vl; plÞ ¼ ðUl;Vl; e
�1PlÞ þ � � � : (10)

The vertical velocity scale is order unity due to the order unity down-
ward velocity of the droplet, and then the horizontal velocity scale fol-
lows from continuity. The large pressure scale arises from seeking a
balance between the liquid acceleration and the pressure gradient.

Now, for Re� 1, upon substitution of scales (9) and expansions
(10) into the governing equations (3a) and (3b), the leading order

FIG. 1. Schematic of the model problem of a two-dimensional droplet of radius R
approaching a deformable surface of length O(l) with velocity V, with an air film in
between. l is the horizontal length scale over which the interaction of the liquid and
air film takes place. The impact is cushioned by the air film between the droplet
and the deformable surface.
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momentum equations and continuity equation are those of unsteady
potential flow,

@Ul

@T
¼ � @Pl

@X
; (11a)

@Vl

@T
¼ � @Pl

@Y
; (11b)

@Ul

@X
þ @Vl

@Y
¼ 0: (11c)

The leading order kinematic condition (6) now reduces to

Vl !
@F
@T

; asY ! 0þ; (12)

while the far-field droplet behavior reduces to

FðX;TÞ � X2

2
� T þ OðeÞ; as jXj ! 1 orT ! �1; (13)

from (5).
From Eqs. (11a)–(11c), it can be shown that Pl satisfies Laplace’s

equation and due to the far-field boundedness (13) and condition
(12), the pressure profile on the droplet interface PðX;TÞ
¼ PlðX; 0;TÞ and free-surface profile F(X, T) are related by

@2F
@T2
¼ 1

p
ðPVÞ

ð1
�1

@P
@f
ðf;TÞ df

X � f
: (14)

Here (PV) denotes the Cauchy principle value integral.

B. Gas cushioning

In the thin gas film between the droplet and the deformable sur-
face, we assume that the vertical length scale is an order of magnitude
smaller than the horizontal length scale to capture the slenderness of
the film. Also, unlike in the droplet formulation, we now need to con-
sider the deformable surface g, which we supposed to have the same
scale as the droplet free-surface f in order for the surface deformation
to have a leading order influence. We then take the following scaling
in terms of our previously defined small parameter e:

ðx; y; t; f ; gÞ ¼ ðeX; e2Y; e2T; e2F; e2GÞ: (15)

The scales (15) lead to asymptotic expansions of the form

ðug ; vg ; pgÞ ¼ ðe�1Ug ;Vg ; e
�1PgÞ þ � � � ; (16)

where the horizontal velocity scale is expected to be large compared
with the vertical velocity scale in order to balance the continuity
equation.

When substituting scales (15) and expansions (16) into the gov-
erning equations for the gas (4), for Re� 1 the leading order equa-
tions take the form of lubrication flow,

0 ¼ @Pg
@X
þ @

2Ug

@Y2
; (17a)

0 ¼ � @Pg
@Y

; (17b)

@Ug

@X
þ @Vg

@Y
¼ 0: (17c)

The inertial and acceleration terms do not appear in the left-hand side
of Eqs. (17a) and (17b) because these terms are negligible compared to
the pressure gradient term. This assumption requires qg=ql � e. Also,
it is assumed that there is a balance in the horizontal momentum
equation between the pressure gradient and the viscous terms,22 which
leads to the definition

e ¼
lg

llRe

� �1=3

: (18)

This, combined with the requirement Re� 1 in the liquid, gives the
condition that e must satisfy in order for our model to be valid,
namely,

qg

ql
� e�

lg

ll

� �1=3

: (19)

For example, water and air give rise to the range 10�3 � e� 0:27.
The leading order kinematic conditions (6) and (7) now reduce

to

Vg ¼
@F
@T

atY ¼ FðX;TÞ (20)

and

Vg ¼
@G
@T

atY ¼ GðX;TÞ; (21)

respectively. The vertical momentum equation (17b) implies that
PgðX;Y ;TÞ ¼ PgðX; 0;TÞ, then integrating Eq. (17a) twice in Y and
applying conditions (20) and (21), with normal stress condition (8),
gives

@

@X
F � Gð Þ3 @P

@X

� �
¼ 12

@

@T
F � Gð Þ; (22)

the (Reynolds) lubrication equation that helps to link all three
unknown quantities F, G, and P.

C. The deformable surface

Finally, we require another equation linking the pressure in the
air film with the deformation of the surface. The model we will use
here was first described by Carpenter and Garrad46 to model surface
coatings as an elastic plate (or tensioned membrane) supported above
a rigid surface by an array of springs. It is derived from a nonlinear
model that includes all relevant physics which is then linearized under
the assumption of longitudinal deflections being much smaller than
transverse ones. An excellent derivation of this equation can be found
in Alexander et al.47 (we will ignore viscous traction in the air film in
our model). This model is also used in a number of other studies on
deformable surfaces.48–52 The relevant equation takes the non-
dimensional form

e1
@4g
@x4
þ e2

@2g
@x2
þ e3g þ e4

@2g
@t2
þ e5

@g
@t
¼ pðx; g; tÞ � psðx; g; tÞ;

(23)

where the non-dimensional coefficients ei are ðe1; e2; e3; e4; e5Þ
¼ ð�B�=R3V2ql;T

�
t =RV

2ql;�j�R=V2ql;�M�=Rql;�C�=VqlÞ and
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ps is the non-dimensional relative base pressure, which is taken to be
zero. We choose to use this thin-membrane type model over simpler
models as there is commonality in such membranes in nature and
practical settings, such as droplet impact on leaves,3 butterflies,53

umbrellas and raincoats, and relevance in many other applications
of droplet impact on deformable surfaces discussed elsewhere in
this paper. More simple surface deformation models can be
extracted as subsets from Eq. (24) and one such, a Kelvin–Voigt
model of viscoelasticity, is described in detail in Sec. III while the
equation is considered in full generality in Sec. IV. The recent
study by Pegg45 is likewise based on the theory of Smith et al.22

but with a surface equation generally different from ours; the pre-
sent work is more focused on soft deformable surfaces which are
found to lead to new non-intuitive results. The constants
B�; T�t ; j�; M�, and C� correspond to the flexural rigidity, the lon-
gitudinal tension, the stiffness, the mass density and the damping
constant of the surface, respectively. In order to apply Eq. (23) to
our scaled liquid droplet application described above, we must
apply scales for g, x, t, and p given in (15) and (16). This gives

~e1
@4G
@X4
þ ~e2

@2G
@X2
þ ~e3Gþ ~e4

@2G
@T2
þ ~e5

@G
@T
¼ P � Ps; (24)

where ð~e1;~e2;~e3;~e4;~e5Þ ¼ ðe�1e1; ee2; e3e3; e�1e4; ee5Þ and Ps
¼ e�1ps. Therefore, the five non-dimensional parameters which con-
trol the system are the following:

~e1 ¼ �
B�

ðq2
l lgV5R8Þ1=3

; ~e2 ¼
T�t

ðq4
l l
�1
g V7R4Þ1=3

;

~e3 ¼ �
j�

q2
l l
�1
g V3

; ~e4 ¼ �
M�

ðq2
l lgV�1R2Þ1=3

;

~e5 ¼ �
C�

ðq4
l l
�1
g V4RÞ1=3

:

(25)

The relative size and importance of each term will be discussed in each
case considered in this study. In practice, each of the structural param-
eters B�; T�t ; j�; M�, and C� can vary dramatically depending on the
situation, so therefore so can each ei in (25). As droplet impact is a
ubiquitous phenomenon, it can occur on many different surfaces of
differing elastic properties, for example, leaves,3 thin foils,54 skin,55 and
foodstuffs.56 It is also possible to use surface engineering to modify the
elastic properties of a surface to our advantage.8,10–12,41 Therefore, our
focus will be on studying different cases of Eq. (24), with a very wide
range of values of the parameters ei.

The deformable surface will be considered to be initially zero and
stationary. Boundary conditions will be discussed separately for each
case considered. The system to be solved is the nonlinear set of govern-
ing equations (14), (22), and (24), subject to the boundary condition
(13), the pressure P being initially zero and decaying at infinity, and
the relevant boundary and initial condition on G. The governing equa-
tions require a numerical treatment. The numerical scheme is slightly
different for each case considered and so will be discussed separately
for each case.

D. Fluid parameter regime and model validity

It is useful now to mention the fluid parameters used in recent
experiments. Of most relevance here, we will consider the experiments

performed by Langley et al.8 for the pre-impact behavior of ethanol
droplets impacting soft surfaces of varying stiffness. They considered a
parameter regime where the Reynolds number Re ranged from 1209
to 20 394 and the Weber number We ranged from 17 to 2825. Hence,
both are typically large and, in particular, the assumption of a quasi-
inviscid liquid droplet seems valid in this regime. Also, in the present
study surface tension has been ignored and the scaled surface tension
forces are given by

e2

qlV2l
rr2F ¼ e

We
r2F; (26)

where r is the surface tension coefficient and We ¼ qlV
2R=r is the

Weber number. As the parameter e is small and We is typically large,
this again seems a valid assumption for the vast majority of the evolu-
tion. As the droplet approaches the surface, we do still expect the free-
surface to deform to the point where high curvatures are observed, as
seen in Smith et al.22 This would result in a large value for r2F, and
thus surface tension forces may become significant at this stage.
However, for some cases in Sec. III the free-surface curvature will not
become large at any stage and so surface tension effects remain small.
The effect of the surface tension is considered in Purvis and Smith26

for droplet impacts in our parameter regime and in Vanden-Broeck
and Smith57 for a similar air-cushioning related problem for higher
Reynolds numbers than in this work. In the present study, however, as
has already been assumed, surface tension effects will be ignored. For
all parameters considered in Langley et al.8 the Froude number
Fr ¼ V=

ffiffiffiffiffi
gR
p

, where g is the gravitational acceleration, is also large;
hence, the gravitational effects are ignored.

The effects of compressibility in the air film are also ignored in
the present study. A scaling argument performed by Mandre et al.,27

where they balanced the gas pressure gradient with the droplet deceler-
ation, found that compressibility effects in the air can be ignored if the
compressibility parameter d satisfies

d ¼ p�0
ðRl�1g V7q4

l Þ
1=3
� 1; (27)

where p�0 is the surrounding ambient pressure. In the study of Langley
et al.,8 there are impacts considered both in the compressible (d < 1)
and incompressible regimes (d� 1), so we will still attempt to draw
comparisons with their work later in Sec. V. For detailed discussions
of compressible gas-cushioned droplet impacts, see Mani et al.28 and
Hicks and Purvis29 also.

Figure 2 summarizes the main model assumptions for a water
droplet impact, when p�0 ¼ 105 Pa. There is a clear and rather large
range of droplet velocities and radii where our model is valid, and this
is the gray shaded region in Fig. 2, where the cross shows where the
droplet radius is 1mm and the velocity is 1m s�1, a point well within
our regime.

III. IMPACT ON A VISCOELASTIC SOLID

The first case that will be considered is that of an air cushioned
droplet impact on a soft viscoelastic solid. The viscoelastic material
will be assumed to exhibit no rigidity, tension, or inertia, such as a
coating on a rigid surface of infinite horizontal extent. In this case, we
may remove the influence of coefficients ~e1; ~e2, and ~e4 [this can be
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envisaged as removing the influence of the elastic plate, or membrane,
from Eq. (24)] and reduce our deformable surface equation (24) to

~e3Gþ ~e5
@G
@T
¼ P; (28)

which gives the simple Kelvin–Voigt model of a solid deforming in
reaction to an applied pressure. Droplet impact and dynamics on soft
viscoelastic solids has received attention both experimentally20,21 and
analytically.58 A schematic of the problem setup is shown in Fig. 3.

If the soft viscoelastic solid is a coating sitting on an otherwise rigid
surface, the coating depth would need to be Oðe2RÞ in order for the
depth to have an influence on the dynamics. If d� is the dimensional
depth of the coating, then this can be envisaged as d� � eR, which for a
droplet of radius 1mm and velocity 1m s�1 becomes d� � 26 lm. In
the experiments of Howland et al.12 they predominately considered soft
substrates of depth 1 cm, well outside this limit; however, they did also
discuss the effect of a substrate of depth 3lm, which is within this limit.
It was found that the splashing behavior of the impacting droplet on
this very shallow soft silicone substrate was almost identical to that of a
much deeper substrate of hard acrylic. In light of this fairly uninteresting
behavior for substrates of shallow depth, we will limit our study to the
case of surfaces of apparent infinite depth with zero under-pressure
(Ps¼ 0). The smallest depth of substrate considered in Langley et al.8

was 1mm, also well outside this limit.
Given the form of Eq. (28), it follows naturally that if the pressure

is decaying at infinity, then so is the surface deformation. Therefore,
the boundary condition at infinity will be G! 0. The viscoelastic
model equation (28) is solved in conjunction with the free-surface

equation (14) and the lubrication equation (22). The numerical
method proceeds by first substituting Eq. (28) into Eqs. (14) and (22)
for P. At each time step, the lubrication equation (22) is solved via a
finite difference discretization for G, which is then used to solve the
free-surface equation (14) for F, using Fast Fourier Transform algo-
rithms. This process is repeated until successive iterates are within the
convergence criteria, after which the solution proceeds to the next
time step. Once we have a converged solution for G, the pressure P is
then readily calculated from Eq. ð28Þ. This method is akin to that used
in Hicks and Purvis.25 By eliminating the pressure from our simulta-
neous equations, the efficiency of the code is improved somewhat as
not only do we have two equations to solve as opposed to three, we are
no longer having to resolve a diverging pressure solution22 from
the lubrication equation, which can be computationally expensive.
Tests were run to ensure the solutions were independent of grid
size and time step size. A suitable spatial domain size here was
found to be X 2 ½�20; 20�, with the boundaries here being nonin-
vasive and the solutions remaining unchanged for further increases
to the spatial domain size. The simulations are very sensitive to the
chosen start time. We performed a test on the surface with param-
eters ð~e1;~e2;~e3;~e4;~e5Þ ¼ ð0; 0;�0:1; 0;�0:1Þ (the most deformable
surface considered in this study) with start times of T¼�50 and
T¼�100. It was found that the difference in the size of entrapped
air upon touchdown (defined in Sec. III B) was 2.5% for these two
start times, and so T¼�50 was chosen as the start time for all
simulations.

A. Free-surface and pressure profile evolution

Figure 4 shows the evolution of the droplet free-surface and pres-
sure profile for a flat rigid surface (G¼ 0) and for a viscoelastic surface
for a range of values of ~e3 ¼ ~e5. We chose to vary the parameters as
~e3 ¼ ~e5 because, in practice, they are dependent on each other; how-
ever, different combinations are considered later on. The top two pan-
els are the solution for a flat rigid surface which has been previously
reported a number of times.22,25 As the droplet approaches the surface,
there is an initial buildup of pressure directly beneath the droplet. The
buildup of pressure acts to decelerate the falling droplet and as the gap

FIG. 2. Range of parameter validity for a water droplet impact in air, with p�0 ¼ 105

Pa. Above the dotted line Re� 1 and the liquid droplet may be considered quasi-
inviscid, below the solid line d� 1 and compressibility effects in the air may be
ignored, above the dashed line We� e and surface tension forces may be ignored
for the vast majority of the evolution, and below the dashed-dotted line Fr � 1 and
gravitational effects may be ignored. These limits are represented by the gray
shaded region. The cross is the point where the droplet radius is 1 mm and the
droplet velocity is 1 m s�1, a set of values well within our regime and used com-
monly in this paper for dimensional calculations.

FIG. 3. Schematic representation of the scaled, non-dimensional problem setup of
droplet impact on a viscoelastic solid pre-impact (this is not a solution).
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between the droplet and the surface narrows, the pressure buildup is
large enough to decelerate the droplet free-surface to rest at the center
point. At this stage, the droplet begins to deform either side of the cen-
ter point and eventually overtake it, resulting in an approach to touch-
down in two locations. This, in turn, results in the pressure bifurcating
away from the center point into two pressure peaks. The process con-
tinues until the moment of touchdown on the surface, which results in
the entrapment of an air pocket, which may then subsequently form a
bubble.2,19

The result for the flat rigid surface in Fig. 4 is then compared to
the result for impact on a viscoelastic surface for decreasing magni-
tudes of the surface parameters ~e3 ¼ ~e5. Lowering the magnitude of
the surface parameters ~e3 and ~e5 corresponds to lowering the surface
stiffness and (viscous) damping, which results in larger surface defor-
mations. Rows two to four in Fig. 4 show the solutions for the free-
surface and the pressure profile evolution, along with the shape of the
surface as touchdown is approached, for ~e3 ¼ ~e5 ¼ �1, �0.2, and
�0.1, respectively. For a water droplet in air of radius 1mm and

FIG. 4. Solution profiles, showing the evolution of (a) the free-surface height F and (b) the pressure P for normal impact of a droplet on a flat rigid surface and deformable vis-
coelastic surfaces with ~e3 ¼ ~e5 ¼ �1, �0.2, and �0.1. The solutions are shown in integer time increments except for the final thick solid line, which is the solution just prior
to touchdown, and the dashed line, which is the deformable surface solution G just prior to touchdown. The dashed-dotted line is the solution at T¼ 0 where the droplet would
touchdown on an undisturbed surface in the absence of air cushioning.
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impact velocity 1m s�1, these parameter variations correspond to a
surface spring stiffness in the range j� � 109–1010 Pa m�1 and (vis-
cous) damping of C� � 103–104 Pa s. We note that the spring stiffness
values here are larger than the stiffnesses of the soft solids considered
in Langley et al.;8 however, the spring stiffness defined in Eq. (24) is a
stiffness per unit length and the length scales in this problem are typi-
cally very small. Smaller values of the dimensionless parameter ~e3 are
considered in Sec. III B.

A number of conclusions can be drawn from the influence of sur-
face deformability in this viscoelastic model on the pre-impact dynam-
ics of droplet impact. First of all, there is a profound delay to
touchdown. In the absence of air cushioning, the droplet would impact
on an undisturbed surface at X ¼ Y ¼ 0 at T¼ 0. The presence of air
cushioning delays this touchdown into positive time. In Fig. 4 the solu-
tion at T¼ 0 is the dashed-dotted line, while the positive time solu-
tions are the solid lines. As the droplet approaches the soft viscoelastic
surface, the buildup of pressure beneath the droplet acts now to not
only deform and decelerate the droplet free-surface but also push the
surface away from the droplet. This results in a slower closing of the
air gap between the droplet and the soft viscoelastic surface, with lower
magnitudes of surface parameters ~e3 and ~e5 resulting in a slower clos-
ing of the air gap. In consequence there is a larger delay to touchdown
as illustrated by the thick solid lines in Fig. 4, corresponding to the
solution as touchdown is approached, where the time has increased
from T¼ 5.84 for a flat rigid surface to T¼ 22.3 for the soft viscoelastic
surface with ~e3 ¼ ~e5 ¼ �0:1. The dimensional timescale is given by

t� ¼ e2R
V

T ¼
l2=3
g R1=3

q2=3
l V5=3

T: (29)

For a 1mm water droplet in air with impact velocity 1m s�1, the
touchdown delay incurred here is 11.4 ls.

The slower closing of the air gap also influences the buildup of
pressure beneath the droplet. In Fig. 4 as the parameters ~e3 and ~e5 are
decreased in magnitude, the bifurcating behavior of the pressure pro-
files is still present. However, the pressure peak amplitude as

touchdown is approached is lowered by the introduction of surface
deformability, with larger surface deformations resulting in lower
pressures.

Figure 5 highlights the link between the rate at which the air gap
closes and the maximum pressure. The lower pressures seen for more
deformable surfaces are found to be present at all time.

It is also interesting to note the shape of the pressure solution as
touchdown is approached. Figure 6 shows the air film thickness
H ¼ F � G and pressure profile solution for a range of values
~e3 ¼ ~e5. It can be seen that for surface parameters of sufficiently high
magnitude, the pressure profile solution near touchdown is virtually
identical to that of the flat surface solution,22,25 with a very sharp pres-
sure peak located at the cusp of the air film thickness H. As the magni-
tude of the surface parameters is decreased, the sharp pressure peak
near touchdown still exists up until around~e3 ¼ ~e5 ¼ �0:2 (this solu-
tion is also shown in Fig. 4) where a rounder pressure peak located
just behind the cusp of the air film thickness H is seen. As the magni-
tude of the surface parameters is decreased further to ~e3 ¼ ~e5 ¼ �0:1,
the rounder pressure peak overtakes the sharp one near touchdown.
The location of the lower, rounder pressure peak just behind the cusp
of the air film thickness, as opposed to at it, could help explain the
extended air gliding behavior for droplet impacts on to softer solids
seen in experiments by Langley et al.8 Air gliding is when a droplet
skids on a thin air film as opposed to touching down; the numerical
solutions of the air film thickness in Fig. 6(a) appear to show the onset
of such behavior.

B. Entrapped air size

A vitally important outcome of the dynamics described here is
the area of entrapped air underneath the droplet at impact. Trapped
air at impact can cause potential problems when it comes to using
droplets to spray coat materials or in cooling processes. From the
numerical results of pre-impact air–water–surface interaction in Fig. 4
it is clear that air entrapment still occurs. What is perhaps more clear
in Fig. 6 is that the presence of surface deformability in the viscoelastic

FIG. 5. The (a) minimum air film thickness and the (b) maximum pressure as a function of time T for viscoelastic surfaces with coefficients ~e3 ¼ ~e5 ranging from �1 to �0.1
in intervals of 0.1. The dashed line in figure (a) corresponds to the minimum film thickness in the absence of air cushioning.
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model leads to an increase in the area of air entrapped at impact. The
framework of our model is in two dimensions, and it is realized that
droplet impact is clearly a three dimensional phenomenon. Despite
this, we are able to use our model to make a qualitative assessment of
the size of entrapped air for variations in the surface stiffness and (vis-
cous) damping.

The X-wise symmetry of the solutions allows us to calculate the
dimensionless area of entrapped air B as

B ¼ 2
ðXd

0
HðX;TdÞdX; (30)

where Xd is the positive X station of minimum air film thickness and
Td is the touchdown time. It should be stressed that, numerically,
touchdown where H¼ 0 is never quite realized due to the parabolic
degeneracy of the lubrication equation (22). Therefore, the time of
touchdown has to be pre-determined as a point when the air film
thickness reduces to a very small positive value. Numerically, the
smaller the grid size and time step in the numerical scheme, the
smaller we can make this value. However, this has to be balanced with
the increased computational cost due to the huge amount of simula-
tions needed to be run to build a parametric picture. In the present
section, we therefore set this pre-determined value of air film thick-
ness, where the droplet is considered to have reached touchdown, as
Hmin¼ 0.1 (the solutions in Figs. 4 and 6 are plotted up until
Hmin¼ 0.2, for comparison).

Figure 7 shows how the dimensionless area of entrapped air B
depends on the surface parameters ~e3 and ~e5, for the viscoelastic sur-
face model. Clearly, for any decrease in magnitude of ~e3 or ~e5 there is
an increase in the area of entrapped air. The dimensional entrapped
air area b� can be related to the dimensional area B by applying the
vertical and horizontal length scales, which yields

b� ¼ e3R2B ¼
lgR

qlV
B; (31)

where the pre-factor B is, in the viscoelastic model, a function of the
parameters ~e3 and ~e5 and its dependency is shown in Fig. 7 for param-
eters in the range [�10, �0.1]. For parameter values of magnitude
lower than 0.1, the area of entrapped air continues to increase and for
parameters of magnitude higher than 10 the behavior of the droplet is
identical to that of a flat rigid surface.

FIG. 6. As in Fig. 5, except showing (a)
the air film thickness H ¼ F � G and (b)
the pressure near touchdown.

FIG. 7. Parametric plot of the entrapped air area B for variations in the parameters
~e3 and ~e5 in the viscoelastic model.
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Equation (31) for the dimensional entrapped air area highlights
the importance of the droplet velocity and radius on the size of
entrapped air at impact. For a flat rigid surface, where B is a given con-
stant, droplets with a larger radius will entrap more air due to having a
larger free-surface to interact with the air prior to impact and droplets
with a larger velocity will entrap less air due to the droplet having less
time to deform prior to impact. In the viscoelastic model, the numeri-
cal pre-factor B depends on ~e3 and ~e5 and formulas for these parame-
ters are given in (25). It is interesting to note that the parameter ~e3
does not depend on the droplet radius R. It is therefore of interest to
see how the size of entrapped air varies with droplet velocity and
radius for given fluid and structural parameters (the structural param-
eters of concern here are the stiffness j� and the damping C�).

Figure 8 gives a comparison produced by results for the dimen-
sional entrapped air area of a water droplet in air over wide ranges of
the droplet radius R and velocity V, for a flat rigid surface and soft vis-
coelastic surfaces. We chose to vary the droplet velocity from 0.1 to
2m s�1 and the radius from 10�4 to 10�2 m in order to keep the
parameter regime mostly contained in the valid model parameter
regime given in Fig. 2. Figure 8(a) shows the variations of the
entrapped air area b� as the droplet velocity and radius vary,

comparing a flat rigid surface to a soft viscoelastic surface with spring
stiffness j� ¼ 6 MPa m�1 and (viscous) damping C� ¼ 20 kPa s. For
all combinations of droplet velocity and droplet radius, more air is
entrapped by the soft viscoelastic surface, as is to be expected. For
small droplet impact velocities, the effect of the soft solid is minimal
and it behaves much like a rigid surface. As the droplet velocity
increases, the effect of the soft viscoelastic surface is far more pro-
found. From Eq. (31), we can see that for a flat rigid surface the area of
entrapped air decreases with increased droplet velocity, whereas for
the soft viscoelastic surface, this decrease in entrapped air area is
delayed and even halted for increased droplet velocity, for the parame-
ters under consideration here. This can be seen more clearly in
Fig. 8(c) where the entrapped air area is given as a function of droplet
velocity for a 1mm water droplet in air, for a variety of spring stiffness
j� and (viscous) damping C�. This is due to higher air film pressures,
induced by higher droplet velocities, causing larger surface deforma-
tion prior to impact. By considering the shape of the contour lines in
Fig. 8(a), variations of the droplet radius have a less profound influ-
ence on the increase in entrapped air on a soft viscoelastic solid com-
pared to a flat rigid surface. This is shown more clearly in Fig. 8(b),
where the entrapped air area is plotted as a function of droplet radius
for an impact velocity of 1m s�1. On a logarithmic scale, the increased
amount of entrapped air due to the impact on a soft viscoelastic sur-
face is almost independent of droplet radius.

IV. IMPACT ON A FLEXIBLE SURFACE

We now turn our attention to analyzing the air cushioning effect
in droplet impact on a more general flexible surface, where all terms
except for the damping term in Eq. (24) are retained. The model here
is an elastic plate, or membrane, sitting atop a bed of springs, which is
akin to many previous studies on fluid-flexible surface interac-
tions.46–52 The depth of the bed of springs is assumed to be much
larger than Oðe2RÞ, and so the influence of the rigid base on which the
springs are based can be ignored. Thus, this rather general model is a
semi-infinite flexible surface which includes all relevant physics in
two-dimensional deformation. This case is similar to Sec. III; however,
now the influence of the elastic plate is considered and so physical
parameters to account for surface rigidity, tension, and inertia are now
also included and examined. A schematic of the problem setup is given
in Fig. 9.

In practice, the magnitude of the dimensionless parameters ~ei
can vary dramatically and over a number of orders of magnitude. By
considering Fig. 2, we can see the range of droplet velocities and radii
where our model is applicable, and it is the structural parameters that
will require special attention. Explicit formulas for the parameters ~ei
are given in (25) and if we consider a water droplet of radius 1mm
and impact velocity 1m s�1, we are able to obtain an order of magni-
tude estimate of the dimensionless parameters ~ei in terms of their cor-
responding structural coefficient,

ðj~e1j; j~e2j; j~e3j; j~e4jÞ � ð107B�; 10�2T�t ; 10�11j�; 101M�Þ: (32)

Therefore, if we wish for the dimensionless surface parameters ~ei
to be of order one, plus or minus a few orders of magnitude, then
we now know what order of magnitude the dimensional structural
parameters need to be in our model. If we wish to consider
the rather large range of parameter magnitudes 10�4 < j~eij
< 104, then this implies our structural parameters are of the

FIG. 8. For the impact of a water droplet in air, (a) variations in the entrapped air
area b�(lm2) as the droplet velocity V(m s�1) and radius R(m) vary for a flat rigid
surface (solid line) and a soft viscoelastic surface with spring stiffness j� ¼ 6 MPa
m�1 and (viscous) damping C� ¼ 20 kPa s (dashed line), (b) entrapped air area
for a droplet velocity of 1 m s�1 and variations in droplet radius, and (c) entrapped
air area for a droplet of radius 1mm and variations in droplet velocity. In figures (b)
and (c), the results are presented for a variety of spring stiffness j� and (viscous)
damping C�.
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order 10�11 < B� < 10�3; 10�2 < T�t < 106; 107 < j� < 1015, and
10�5 < M� < 103. Rather unsurprisingly, we require a flexural
rigidity B� of small magnitude. The flexural rigidity can be defined
by the formula

B� ¼ Eh3

12ð1� �2Þ ; (33)

where E is the Young’s Modulus of the material, h is the elastic thick-
ness, and � is the Poisson ratio. Therefore, for the flexural rigidity B�

to be of a suitably small magnitude, we would require a combination
of a relatively low Young’s Modulus combined with thin plates.
Examples of impacts involving such a combination exist in nature,
such as impact on leaves,3 and for impact on thin foils of certain
materials.54

The surface shape equation (24) is then solved numerically, again
coupled with Eqs. (14) and (22). The boundary conditions and the
numerical treatment are slightly different from Sec. III, due to the
spatial derivatives now present in the surface equation. Because of
the spatial derivatives, boundary conditions for the surface shape G are
required now at fixed positions. We choose clamped plate boundary
conditions, which are

G ¼ @G
@X
¼ 0 atG ¼ X1;X2; (34)

where X1 and X2 are given X stations and will be stated in each case.
Typically, we take X1 and X2 as the end points of the computational
domain. The same efficient numerical scheme applied in Sec. III can-
not practically be used here because of the increased numerical com-
plexity due to sixth order derivatives occurring when substituting the
surface equation (24) into the lubrication equation (22). We therefore
adopt a more standard approach of iterating between each of Eqs.
(14), (22), and (24) and solving for P, F, and G, respectively, until con-
vergence, using the same algorithms outlined in Sec. III.

A. Free-surface and pressure profile solution

Figure 10 shows the solution profiles for the free-surface F and
the pressure P for three different values of the stiffness parameter ~e3,

with the other surface parameters fixed. In practice, zero stiffness is
not possible; hence, while all the other parameters are fixed, ~e3 ! 0�

is a limiting scenario (the same applies for the other parameters in Sec.
IVB). The dashed line in each plot of Fig. 10(a) corresponds to the
solution of the flexible surface shape G as touchdown is approached.
The results illustrate the outcomes of variations in the stiffness param-
eter ~e3; however, variations in any of the other surface parameters
yield qualitatively similar results. The solution in the flat surface case is
not shown here for brevity, see Fig. 4 for comparisons.

The aim of this section is to highlight the effect the surface flexi-
bility can have on the pre-impact phase of droplet impact, as opposed
to the effect of a soft deformable surface considered in Sec. III.
Figure 10 shows that much of the same conclusions can be drawn.
First, increased surface flexibility leads to a delay to touchdown. This
delay to touchdown acts to further decelerate the droplet free-surface
and results in a lower pressure buildup underneath the droplet. The
pressure peak amplitude is again lower near touchdown for more flexi-
ble surfaces. Figure 11 shows the minimum air film thickness and the
maximum pressure as functions of time, where it can be seen that this
lower pressure buildup is present for all time. Figure 12 compares the
solutions of the air film thickness and the pressure near touchdown,
showing clearly the reduced pressure peak and increased air entrap-
ment near touchdown for reductions in the magnitude of the stiffness
parameter ~e3.

The main difference to highlight when comparing air cushioning
behavior of droplet impact on a flexible surface to impact on a soft vis-
coelastic surface is the shape of the pressure profile upon touchdown.
Here, in Fig. 10, reductions in the magnitude of the parameter ~e3 lead
to reductions in the amplitude of the pressure peak near touchdown,
but the peak remains sharp. This is unlike the finding for the viscoelas-
tic surface, where increased deformability leads to a decrease in the
pressure peak amplitude and also a rounder, softer peak. This could
be due, in part, to the more abrupt approach to touchdown seen in
Fig. 11, for a flexible surface, compared with the gentler approach seen
in Fig. 5, for a soft viscoelastic surface. Also, the droplet free-surface
cusp remains relatively sharp in the flexible surface case as deformabil-
ity increases, while in the viscoelastic case it becomes rounded, which
is likely to play a key role in the shape of the pressure peak. However,
as the droplet free-surface becomes sharp, surface tension effects will
become significant and would need to be considered here in the flexi-
ble surface case. At leading order, the local touchdown behavior here
is identical to that described in Smith et al.22

B. Entrapped air size

Using Eq. (30), we are again able to make a qualitative assessment
of how variations in the surface properties affect the size of entrapped
air. Here, we perform a study of how individual variations in the
parameters ~e1; ~e2; ~e3, and ~e4 (with ~e5 ¼ 0) alter the area of entrapped
air at touchdown. The size of the air gap at which the calculation of
Eq. (30) is performed is 0.26 for this model, which is the smallest
achievable for all compared results and larger than that considered in
Sec. III due to the more difficult numerical task.

Figure 13 shows how individual variations in the surface parame-
ters ~e1; ~e2; ~e3, and ~e4 affect the entrapped air area at touchdown.
Logarithmic variations of each parameter lead to a similar dependency
on the entrapped air area. Each figure exhibits plateauing behavior to
the flat rigid surface value for large magnitude parameters and to the

FIG. 9. Schematic representation of the scaled, non-dimensional problem setup of
droplet impact on a flexible surface pre-impact (this is not a solution).
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value for the solution as the parameter tends to zero, except for
Fig. 13(d), where, in the current setting, variations of the magnitude of
the mass density parameter ~e4 much lower than 1 lead to an
unbounded surface velocity @G=@T at some point. From Fig. 13, it is
clear that any increase in the flexibility of the surface leads to an
increase in entrapped air.

V. CONNECTION WITH EXPERIMENTS

In Secs. III and IV, we performed a numerical study into the air
cushioning phase of droplet impact on the deformable surfaces. Here,
we now attempt to make connections to recent experiments. Due to
our work being two dimensional and approximate, using a number of
assumptions on the fluid and structural parameters, these connections
are tentative, but they seem encouraging nonetheless.

A. Entrapped air

In Langley et al.8 it was found, experimentally, that droplet impacts
onto softer, more deformable, solids would entrap more air. They per-
formed experiments using ultra-high-speed interferometry to capture
the droplet free-surface at impact, and varied the droplet velocity and
the surface stiffness. We have qualitative agreement with these findings
in our analytical results. We found in Secs. III and IV that reductions in
surface stiffness resulted in an increase in entrapped air. A more subtle
point to make from our analytical work is the non-intuitive dependency
of the size of entrapped air on the droplet velocity. On a rigid flat surface,
the size of entrapped air will decrease for higher velocities, whereas for
impact on a soft viscoelastic surface this reduction is delayed and even
halted for increased impact velocities. This is alluded to in Langley et al.8

also and, although described in terms of gas compression while our

FIG. 10. Solution profiles, showing the evolution of (a) the free-surface height F and (b) the pressure P for normal impact of a droplet onto a flexible surface with parameters
ð~e1;~e2;~e3;~e4;~e5Þ ¼ ð�1; 1;~e3;�1; 0Þ and ~e3 ¼ �1; ~e3 ¼ �0:1, and ~e3 ! 0�. The boundary of the flexible surface is at ½X1; X2� ¼ ½�10; 10�. The solutions are shown
in integer time increments except for the final thick solid line, which is the solution just prior to touchdown, and the dashed line, which is the flexible surface solution G just prior
to touchdown. The dashed-dotted line is the solution at T¼ 0 where the droplet would touchdown on an undisturbed surface in the absence of air cushioning.
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work is incompressible, they show that entrapped air can increase with
increased droplet velocity for impact on the soft solids. The increase in
entrapped air on more deformable surfaces is also likely to influence the
overall outcome of the droplet impact, with implications on rebound-
ing9,20,21 and splashing31 droplets.

B. Implications on splashing

Howland et al.12 focused their study on how soft deformable sur-
faces affect droplet splashing. They performed experiments by

impacting ethanol droplets on silicone or acrylic substrates of varying
stiffnesses, and found that the lower the stiffness, the less likely the
droplet was to splash. This was found to be most likely due to higher
stiffness substrate having sheet ejection of higher velocity, resulting in
the sheet leaving the surface and breaking up, forming a corona splash.
By contrast, for less stiff surfaces, the ejected sheet is of lower velocity
and does initially leave the substrate, but can fall back down onto the
substrate and slow down, suppressing the splash. They were unable to
investigate the sheet ejection experimentally, because of the small time

FIG. 11. The (a) minimum air film thickness and the (b) maximum pressure as a function of time T for a flat rigid surface and flexible surfaces with coefficients
ð~e1;~e2;~e3;~e4;~e5Þ ¼ ð�1; 1;~e3;�1; 0Þ, a range of values of ~e3 and boundary ½X1;X2� ¼ ½�10; 10�. In (a), the dashed line corresponds to the solution in the absence of air
cushioning.

FIG. 12. As in Fig. 11, except showing (a)
air film thickness H and (b) pressure P
near touchdown.
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and length scales associated with it. Hence, they investigated it using
numerical simulation, and found that lowering the surface stiffness
reduced the contact pressure just before the sheet is ejected. Our
results in Secs. III and IV show clearly that reducing the surface stiff-
ness leads to a reduction in the pressure peak just prior to impact. In
particular, the results in Sec. III for droplet impact on a viscoelastic
solid show a softening of the pressure peak prior to touchdown.
Although our study is solely focused on pre-impact behavior, this
reduction in pressure appears important in understanding the reduced
sheet ejection speed mentioned in Howland et al.,12 which results in
potential splash suppression.

VI. LARGE SURFACE DEFORMATION

In this section, we examine the effect of large surface deforma-
tions on the system. Here, we will consider the system in the limit
~e1 ! 0; ~e2 ! 0; ~e3 ! 0, and ~e5 ! 0, where Eq. (24) may be written
simply as ~e4@2G=@T2 ¼ P. What this allows us to do is reduce our
previous system of three equations to two, by writing H ¼ F � G, the
air film thickness. The new system is now

@2H
@T2
¼ 1

p
ðPVÞ

ð1
�1

@P
@f
ðf;TÞ df

X � f
� P

~e4
; (35a)

@

@X
H3 @P

@X

� �
¼ 12

@H
@T

: (35b)

Equations (35a) and (35b) can be further simplified by rescaling
all the variables to account for j~e4j. We are interested in the case of ~e4
being small (and negative) and the timescale being large, as for large
surface deformations we expect touchdown to be further delayed.
Hence, we take the following rescaling:

ðH; P;X;TÞ ¼ ðj~e4j�1 �H ; j~e4j2�P; j~e4j�1=2�X ; j~e4j�1�T Þ; (36)

then Eqs. (35a) and (35b) reduce to, dropping the overbar notation,

@2H
@T2
¼ P; (37a)

@

@X
H3 @P

@X

� �
¼ 12

@H
@T

; (37b)

where the relative error in ignoring the Cauchy integral is Oðj~e4j3=2Þ,
which is suitably small. We impose

H � X2

2
� T; P � 0; as jXj ! 1 or T ! �1; (38)

as the far-field conditions.

FIG. 13. Area of entrapped air B for droplet
impact on the flexible surfaces, with a
boundary of ½X1; X2� ¼ ½�10; 10� and sur-
face parameters (a) ð~e1;~e2;~e3;~e4;~e5Þ
¼ ð~e1; 1;�0:1;�1; 0Þ for variations in
~e1, (b) ð�1;~e2;�0:1;�1; 0Þ for varia-
tions in ~e2, (c) ð�1; 1;~e3;�1; 0Þ for varia-
tions in ~e3 and (d) ð�1; 1;�0:1;~e4; 0Þ for
variations in ~e4. In each figure, the dashed-
dotted line corresponds to the value for a
flat rigid surface and the dashed line corre-
sponds to the limiting value as the relevant
parameter tends to zero. In (d), the limit as
the mass density parameter ~e4 tends to
zero cannot be found, due to an unbounded
surface velocity.
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As was first remarked in Korobkin et al.59 for a different model,
the pressure-shape law (37a) can be viewed as an alternative to the
Cauchy–Hilbert law in Smith et al.,22 such as in pressure-displacement
laws in interacting boundary layers.60,61 The new coupled system (37)
allows us to make far more analytical progress than for the previous
system examined computationally in Secs. III and IV.

A. Computational solutions

The coupled system (37) was solved numerically using a scheme
identical to that outlined in Sec. III, with the new local pressure-shape
relationship (37a). As is to be expected, this scheme is far faster than
the one involving the Cauchy–Hilbert integral. An appropriate spatial
domain here was found to be ½�20; 20�.

Figure 14 shows the time-marched solutions of H and P. The
mechanisms are essentially the same as before. The droplet is released
at some suitably large negative time and begins to approach the sur-
face. The air film thickness is initially parabolic and as the air film
thickness begins to decrease, the pressure begins to rise in a single
peak and results in the air film thickness deviating from the parabolic
shape. The pressure then starts to have two peaks as the air film thick-
ness approaches zero in two different locations equidistant from the
centerline.

The solutions of H and P in Fig. 14 show clearly two traits of
droplet impact on a very deformable surface that can be intuitively
expected from the results in Secs. III and IV. Figure 14 shows solutions
up until T¼ 60. The longer time scales associated here are clear to see
and it is expected that touchdown is not reached in finite time. We can
also see that the horizontal bubble extent has significantly increased.

B. Large time behavior

The computational results given in Fig. 14 show that the time
scales involved in this system are large and suggest that perhaps touch-
down in finite time is not reached on this timescale. Hence, we seek a
solution at large positive time. Suppose that the scaled air thickness
and pressure are rising relatively fast in spatial terms, near a region

where X ¼ cTa say, with a a positive constant. The length scaling in
this region then takes the form

X ¼ cTa þ Tmn asT !1; (39)

where n is order unity, the constants a and m are unknown, and in
order for the region to be local, we require that m < a. Expansions of
H and P are then taken in the rather general form

H � TkĤðnÞ; (40a)

P � Tkþ2a�2m�2P̂ðnÞ; (40b)

where k is an unknown constant. It is to be expected that k 	 0 as H
is not growing in time, and the expansion of P is inferred from seeking
a balance in Eq. (37a). Substitution of the expansions (40) into the gov-
erning equations (37a) and (37b) leads to the system

a2c2
d2Ĥ

dn2
¼ P̂; (41a)

d
dn

Ĥ
3 dP̂
dn

 !
¼ �12ac dĤ

dn
; (41b)

to the leading order, subject to

m ¼ kþ a� 1
3

; (42)

and also 3k < 2aþ 1. The system (41) can be further reduced to an
ordinary differential equation in Ĥ alone

Ĥ
3 d3Ĥ

dn3
¼ � 12

ac
Ĥ þ k; (43)

where k is an integration constant and must be positive in order to
keep Ĥ positive. Equations of the form (43) occur commonly in a
number of applied mathematics problems26,62,63 and it is
expected that the solution Ĥ will tend to a non-zero constant
ack=12 as n! �1. Perturbations to this constant value occur,
such that

FIG. 14. Solution profiles of the (a) air film thickness H and (b) pressure P. The solutions are shown in integer time increments up until T¼ 60.
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Ĥ � ack
12
þ< c1 exp ðc2nÞ½ � as n! �1; (44)

where < denotes the real part and c1 and c2 are complex constants.
Note, if we were to take the perturbation in the form c1 exp ðc2nÞ,
where c1 and c2 are real constants, then that would lead to c2 < 0 and
thus an exponentially growing perturbation. The complex constant c2
satisfies c32 ¼ �q, where q ¼ ð12=ack3=4Þ

4, and the complex constant
c1 remains arbitrary. There are then three possible solutions for c2,
and we wish to choose the ones such that <½c2� > 0 so that we have a
decaying perturbation. There are two such solutions,
c2 ¼ q1=3 16 i

ffiffiffi
3
p� �

=2, which leads to the large negative n asymptote
taking the form

Ĥ � ack
12
þ exp

1
2
q1=3n

� ��
c1;1 cos

ffiffiffi
3
p

2
q1=3n

� �

þ c1;2 sin

ffiffiffi
3
p

2
q1=3n

� ��
as n! �1; (45)

where c1;1 and c1;2 remain arbitrary, still. For large positive n, it can be
readily shown that

Ĥ � k1nð3 ln nÞ1=3 as n!1; (46)

where k1 ¼ ð12=acÞ1=3. From Eq. (41a), we can also show that the
corresponding P̂ asymptote is

P̂ � k2n
�1ð3 ln nÞ�2=3 as n!1; (47)

where k2 ¼ a2c2k1.
Equation (43) was then solved numerically as a boundary value

problem using Newton–Raphson iterations, with the asymptotes for
Ĥ (45) and (46) imposed at suitable large negative and positive n val-
ues, respectively. The corresponding solution for P̂ is then calculated
from Eq. (41a) using central finite differences. Without loss of general-
ity, the constants a2c2; 12=ðacÞ and k can be normalized to unity by a
division of Ĥ , n, P̂ by ack=12; ðac=12Þ4=3k; ð125acÞ1=3=k in turn.
Figure 15 shows the solution of Ĥ and P̂ for c1;1 ¼ c1;2 ¼ 1.

Variations in the value, even sign, of the parameters c1;1 and c1;2 yield
identical results to that presented in Fig. 15.

The solutions given in Fig. 15 show excellent agreement locally
with the solutions of the full system (37), solved numerically and pre-
sented in Fig. 14, at large time, especially the solution found for P̂
which is qualitatively identical to the solution of P at large times (the
large time solution to the full system is shown in the inset of Fig. 15,
for comparison).

Now, let us move further rightwards into positive n by consider-
ing n ¼ d�X , where d� 1 and �X is of order unity. We can infer
expansions of Ĥ and P̂ from their large positive n asymptotes (46) and
(47),

Ĥ ¼ dðĤ 0ð3 lndÞ1=3 þ Ĥ 1ð3 lndÞ�2=3 þ � � �Þ; (48a)

P̂ ¼ d
�1ðP̂0ð3 lndÞ�2=3 þ P̂1ð3 lndÞ�5=3 þ � � �Þ: (48b)

To leading order, Eq. (43) then yields d3Ĥ 0=d�X 3 ¼ 0 and matching
requires Ĥ 0 � k1�X as �X ! 0þ. Hence

Ĥ 0 ¼ k1�X þ l1
�X 2
; (49)

where l1 is a positive constant. Now we can see that, at the leading
order for both Ĥ and P̂ ,

Ĥ � l1
�X 2
; P̂ � 0 as �X !1; (50)

which is a form resembling the far-field condition (38). In light of
(39), (40a) and (50),H emerges as

H � l1d
�2T2ð1�aÞ=3�kðX � cTaÞ2; (51)

just to the right of the local zone, which, as far as the X2 requirement
in (38) is concerned, indicates that the constants must satisfy

a ¼ 1� 3k
2
; (52a)

m ¼ k
2

; (52b)

FIG. 15. Solution of equation (a) (43) for Ĥ, and then (b) (41a) for P̂, given Ĥ , in normalized form for c1;1 ¼ c1;2 ¼ 1. The inset of both figures shows the corresponding local
solution of the full system (37) at T¼ 60 for (a) H and (b) P.
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hence, any k 	 0 works here. To the right of the above local region,
we have the balanceHTT � 0, which when matching to (38) at infinity
gives the solution

H � X2

2
� T; (53)

which in turn matches with the far-field solution.
The most acceptable looking solution to arise from this analysis

would be if k¼ 0, resulting in a¼ 1 and m¼ 0, with n ¼ X � cT and
H and P depending on n alone. This nonlinear traveling wave form is
described fully by (39)–(53), capturing the large time features of the
full system (37) successfully and confirming the absence of touchdown
on this timescale.

The analysis here is a similar one to that seen in Purvis and
Smith26 and is analogous to a finite-time breakup formulation.22,64 A
physical interpretation of this large time analysis of the large surface
deformation system could well be the increased gliding extent
observed in Langley et al.8 for droplet impacts onto soft solids. Gliding
occurs when the droplet does not make contact with the substrate at
the kink of the dimple, and instead glides on a thin air layer. In
Langley et al.,8 this is seen to occur more frequently and to a greater
extent for more deformable surfaces. This could be interpreted as what
is occurring in the numerical results for the reduced system in Fig. 14,
with the increased time scales and horizontal extent of the kink being
potential traits of droplet gliding in the absence of defects and localized
wetting.65

VII. CONCLUSIONS

A fluid–structure interaction model describing the pre-impact air
cushioning behavior of a droplet impacting a deformable surface has
been developed. It rationally couples the thin film lubrication flow of
the air to an approaching quasi-inviscid droplet approaching from
above and a membrane-type model of the deformable surface below.
Building on previous work by Smith et al.,22 the model assumes a
deformable surface deflection of the same order as the droplet free-
surface deformation, which allows us to couple the surface deflection
with the air film pressure and free-surface deflection.

The deflection of the surface depends on the parameters describ-
ing the surface properties, which are incorporated into the membrane
type deformable surface equation. These parameters correspond to the
surface rigidity, tension, spring stiffness, mass density and damping.
We considered two separate major cases of the surface equation. The
first, a viscoelastic model, only considered the surface stiffness and the
(viscous) damping. Numerical solutions to this system were presented
and a number of conclusions were drawn. It was found that by lower-
ing the magnitude of the surface parameters and increasing deform-
ability, the approach to touchdown is considerably delayed, pressure
buildup is decreased and more air is entrapped as touchdown is
approached. For sufficiently low magnitude parameters, the pressure
peak as touchdown is approached is a round one, as opposed to a
sharp peak seen before on a rigid surface. The pressure peak is also
seen to be located just behind the advancing cusp of the air film thick-
ness, resulting in an increased extent of the air film as touchdown is
approached. A numerical analysis was also conducted on the effect of
variations of droplet radius and impact velocity on the size of
entrapped air at impact, comparing a flat rigid surface to soft viscoelas-
tic surfaces. It was found that the increase in entrapped air due to a

soft viscoelastic surface was almost independent of droplet radius, on a
logarithmic scale, while it is strongly dependent on the droplet veloc-
ity. For a flat rigid surface, increased droplet velocity results in
decreased air entrapment, while for an impact on a soft solid, this
decrease in air entrapment is delayed and even halted for increased
droplet velocity. A more general, flexible surface was then considered
and broadly the same conclusions can be drawn here as for the visco-
elastic surface case. A substantial difference, however, is that for a flexi-
ble surface, the pressure peak as touchdown is approached remains
sharp, despite reductions in amplitude, for increased flexibility. It is
shown that reductions in magnitude of each parameter corresponding
to the flexural rigidity, tension, stiffness and mass density (for an
undamped flexible surface) resulted in an increased air entrapment.
Qualitative connections of these findings were made to recent experi-
mental work by Howland et al.12 and Langley et al.8

A case was then considered where we sought a solution in the
limit of large surface deformations, for which the air film thickness is
dominated by the surface deformation rather than by the free-surface
deformation. This leads to a new system of governing equations which
is similar to that of the flat rigid surface impact, albeit with a new
pressure-shape relationship. This new system, solved computationally,
showed the results highlighting the significant increase in horizontal
bubble extent and delay to touchdown. A large time analysis was
found to give excellent agreement with the full numerical results and
confirmed the apparent absence of touchdown (thus hinting at so-
called gliding) for that particular system.

The results presented in this paper have broad and important
implications. Reductions in the pressure peaks forming underneath
the droplet are important when considering impact led damage and
ensuing, post-impact dynamics. For example, rain droplet impact on
wind turbines can, over time, lead to significant erosion of the wind
turbine blades.66 Reduced pressure peaks appear to also be significant
in reducing splashing,12 which, in turn, has a number of vital implica-
tions, such as in aircraft safety,1,67 pesticide application,68 forensic sci-
ence,69 and many others. Our results should also help engineer novel
non-wetting and protective surfaces where impact pressure plays an
important role. Our results also point toward a consequence of
increased air entrapment, which is undesirable in inkjet printing appli-
cations,2 for example.

While the present study focuses solely on the pre-impact dynamics
of droplet impact on the deformable surfaces, important questions
remain about what happens next; post-impact. The problem of droplet
post-impact theory onto deformable surfaces has been tackled previ-
ously13,15 by ignoring the air cushioning phase and the entrapped air.
However, these features do influence the post-impact dynamics,26,70 and
so questions remain on how this occurs in impact on deformable surfa-
ces. One possible alternative to the air cushioning model presented here
and the classic Wagner model of impact theory would be to use direct
numerical simulation to analyze how air cushioning effects influence
post-impact dynamics. While progress has been made considering a flat
surface,31 accurately modeling a deformable surface in such a simulation
has not been achieved yet to the best of our knowledge.
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