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Incorporation of causality 
structures to complex network 
analysis of time‑varying behaviour 
of multivariate time series
Leo Carlos‑Sandberg* & Christopher D. Clack

This paper presents a new methodology for characterising the evolving behaviour of the time‑
varying causality between multivariate time series, from the perspective of change in the structure 
of the causality pattern. We propose that such evolutionary behaviour should be tracked by means 
of a complex network whose nodes are causality patterns and edges are transitions between those 
patterns of causality. In our new methodology each edge has a weight that includes the frequency 
of the given transition and two metrics relating to the gross and net structural change in causality 
pattern, which we call α and β . To characterise aspects of the behaviour within this network, five 
approaches are presented and motivated. To act as a demonstration of this methodology an 
application of sample data from the international oil market is presented. This example illustrates how 
our new methodology is able to extract information about evolving causality behaviour. For example, 
it reveals non‑random time‑varying behaviour that favours transitions resulting in predominantly 
similar causality patterns, and it discovers clustering of similar causality patterns and some 
transitional behaviour between these clusters. The example illustrates how our new methodology 
supports the inference that the evolution of causality in the system is related to the addition or 
removal of a few causality links, primarily keeping a similar causality pattern, and that the evolution is 
not related to some other measure such as the overall number of causality links.

Increasingly research is becoming interested in understanding the behaviour of interactions occurring within 
complex systems. Within finance and economics a popular complex system of interest is the international oil 
market, having been shown to be connected to market stability and stock  returns1–8, and with oil prices from 
different regions influencing each  other1,9–16. To investigate these complex systems static networks have been 
constructed, with each node representing a variable in the system (component/subsystem in the time series 
data) and each edge an interaction between variables (such as causality, correlation, etc.)17–23. For clarity, in this 
paper networks of this type with causality interactions will be referred to as “causality patterns”13. These networks 
allow for description of the system based on their features, such as the number of links present. It is well known 
that in many systems this static description of the causality pattern is misleading, with the interactions being 
time-varying1,10,13. This has lead to a branch of work focusing on the dynamic behaviour of these time-varying 
interactions. The most intuitive form of this analysis can be seen as the comparison of properties of causality 
patterns constructed from different segments of time, often with only a few segments choosen and being seper-
ated by a large time  gap24–26. As this field has grown, new techniques have been proposed that are suited to the 
discovery of evolutionary behaviour. In many cases this work builds on concepts constructed for univariate data. 
In particular many investigations of univariate time series data, which is a mature field, have been concerned with 
the representation of this evolution as a complex  network27–30. A simplification of these complex networks can 
be described as nodes representing a state at a specific time (e.g. the value at time t of the time series) and edges 
representing temporally sequential states (i.e. link the node created by the current state to the one created by the 
state at the next time step). This construction means that the complex network will likely have fewer nodes than 
there are values in the time series (since multiple states will be the same) and hence properties of the network 
will allow for description of this evolution (e.g. clustering of certain states, particular orderings of transition, 
etc.: some common methods are given later in this paper). Recent work in the field of time-varying multivariate 
systems has expanded upon this approach to construct complex networks for the investigation of the evolution 
of these multivariate  systems18,31–35. In this paper we propose a novel methodology based upon the network 
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construction demonstrated by Jiang et al.13. Their network construction maps the causality patterns to nodes 
and the temporal ordering to weighted directed edges, such that the edge between two causality patterns encodes 
the number of times the first pattern transitioned to the second. This construction allows for the properties of 
the complex network to be used to describe the behaviour of the evolution of the causality pattern of the system.

These complex network approaches to discovering behaviour have been employed by a number of 
 researchers9,12,13,15,36–40, demonstrating their usage in the field. However, there still exists opportunity for expan-
sion within these  techniques13,33. This paper presents a new methodology for the discovery of behaviour dictating 
the time-varying changes in the causality pattern of a system. This paper presents a new methodology for the 
discovery of behaviour dictating the time-varying changes in the causality pattern of a system, using techniques 
that themselves are not novel and are well known; the originality of the research is not in the novelty of the 
techniques but in the way the techniques are combined and applied to a field where they have not previously 
been used. Specifically our focus is on both the change between consecutive causality patterns and the order in 
which these patterns occur. This gives a richer description of the evolutionary behaviour. This is done through 
the proposal of a methodology for constructing complex networks that incorporates relevant information of the 
transitions in causality patterns. We also propose five properties/metrics of this network to demonstrate specific 
behaviours of interest. As a demonstrator for the methodology, the presented methods are applied to sample data 
from the international oil market to demonstrate their usage and to discover new descriptions of the behaviour 
of the interactions within this market.

Granger causality
The analysis discussed above requires a measure of interaction between variables (time series) composing the 
system. This topic has seen large interest over the years and hence a vast array of methods, and variations to 
those methods, exist to determining these  interactions41–47. Due to the variety of methods there are a number of 
different forms that this measure can take, however these commonly take the style of a value between 0 and 1, 
that may or may not be directed (non-directed measures can be seen as “correlation” and directed measures can 
be seen as “causality”), representing the strength of relation between two variables.

Previous studies applying complex networks to the evolution of the system’s interactions have primarily 
employed one of three interaction measures;  correlation48, transfer  entropy46, and Granger  causality45. Due to our 
interest in the specifics of the interaction dynamics, a measure with directionality is desired, hence correlation 
is not appropriate. When comparing transfer entropy and Granger causality, it has been shown that in certain 
linear systems they are  equivalent49. One downside of transfer entropy against Granger causality is that it has 
been shown to require more  data50. This makes transfer entropy less attractive for use with our analysis that uses 
a sequence of overlapping small windows.

Further to this it should be noted that the methods presented in this paper can be seen as generally agnostic 
to the method used to determine the interactions, so long as these results are directed and ranged between 0 
and 1 (with 0 being no interaction). Granger causality is a convenient basis to demonstrate new methodologies 
due to its simplicity and familiarity in many fields (for example economics and  neuroscience13,45,51,52). Due to 
the popularity of Granger causality many extensions have been  proposed53–56, however to allow this work to be 
as comprehensible as possible to a range of audiences we choose to employ the classic formulation, as is used by 
Jiang et al. in their similar work, and which is sufficient for the task required of it.

The Granger causality  test45 can be described as follows: for two variables vx and vy , where vx causes vy (written 
as vx → vy ) an unrestricted regression model is created:

where εt denotes the residual error for time t, i1..p and j1..q denote the lag intervals, and A and B are free variables 
that are chosen via least squares  regression57. This model is then compared via a hypothesis test to the restricted 
model:

This restricted model takes the position of the null hypothesis in the test. Therefore for a causal link to be 
detected the null hypothesis must be rejected.

We use the F test, a popular choice for Granger  analysis13,58,59.

where RSSr and RSSu are the residual sum of squares for the restricted and unrestricted model respectively, and 
S denotes the sample  size13. In this paper we use a significance level of 5%.

Following the work of Jiang et al.13 the network of causality links in a multivariate system can be captured in 
a causality pattern. This can be seen as an n-by-n matrix, with each element representing the causal link from i to 
j. The system’s evolution can therefore be captured by creating a series of causality patterns via a sliding window 
of fixed-length (the start of each window is one time step after the start of the previous).

(1)vy,t =

p
∑

i=1

Aivy,t−i +

q
∑

j=1

Bjvx,t−j + εt

(2)vy,t =

p
∑

i=1

Aivy,t−i + εt

(3)F − test =
(RSSr − RSSu)/q

RSSu/(S − p− q− 1)
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Complex networks
The analysis of non-linear behaviours, and structures, of time varying causality interactions within multivariate 
systems can be challenging due to the complex nature of this information. An approach to make the data more 
amenable to analysis is to encode the evolutionary information into a network  representation60, as discussed in 
the “Introduction”.

The transfer of a time-varying multivariate system to a complex network to analyse its evolution has been 
employed in a number of  studies13,36,40,61,62. Although the exact methodology for this transfer varies, the general 
approach can be seen as similar. In this paper we will be following the approach presented by Jiang et al.13 which 
employs Granger causality. This method can be described as constructing a complex network where the nodes 
represent causality patterns and the edges represent the frequency of transition between these patterns. Below we 
present a formal description of this general approach, to provide an unambiguous foundation for the discussion 
that follows. To the authors knowledge a formal specification of this nature has not been presented elsewhere.

We define:

• A set V, which is the set of all labelled time-series variables vx where x ranges from 1 to n inclusive. Using 
the notation [[a, b]] to indicate the set of all integers from a to b inclusive, we write: 

• An individual Granger causality metric cx,y which gives 1 if time-series variable vx Granger-causes vy and 0 
otherwise. Using the previously-introduced Granger causation arrow, we write this as: 

• A time-labelled individual Granger causality metric cx,y,t from time-series variable vx to vy at time t (where t is 
the time label of the sliding window, as previously described). Using N0 to indicate the set of natural numbers 
including 0, we define cx,y,t to be the 2-tuple (cx,y , t) such that the predicate t ∈ N0 holds. We write this as: 

• A multivariate causality pattern C, which is the set of all individual causality metrics cx,y where x and y both 
range from 1 to n inclusive. We write this as: 

• A time-labelled multivariate causality pattern Ct , which is the set of all time-labelled individual causality 
metrics cx,y,t where x and y both range from 1 to n inclusive and t is the end time of the sliding window, as 
previously described. Thus: 

Each time the sliding window moves forward in time a new causality pattern is observed. If observations 
start at time 0 and end at time T, we define a set O to be the set of all observed time-labelled causality patterns 
Ct where time t ranges from 0 to T inclusive. Thus:

We next define a network N of nodes and edges by N = (N ,E) where nodes in N are representative causality 
patterns (defined below) and edges in E are weighted directed connections between representative causality pat-
terns (nodes). If two or more observed causality patterns Ct1 , Ct2 , . . .Ctk ∈ O have the same pattern of causality 
(albeit measured at different times) then they are represented by a single node in N . Thus, we first define the 
equivalence sets of the observed time-labelled causality patterns (each equivalence set contains all observed Ck 
that share the same underlying pattern of causality) and then define the associated labelled representative node 
Rl to be the associated underlying causality pattern. This also requires a function to extract the underlying pat-
tern of causality from any such Ck . Therefore we define.

• A function patt() , which gives the set of all time-independent individual Granger causality metrics that cor-
respond to all of the time-labelled individual Granger causality metrics in a causality pattern Ct . Thus: 

• A labelled equivalence set Rset
l  with label l (a natural number) is a set of all 2-tuples comprising a causality 

pattern Ck and label l, for all Ck in the set O of observed causality patterns, such that all members of a given 
Rset
l  will have the same pattern of causality returned by the function patt (i.e a Rset

l  will exist for each unique 
found causality pattern and will contain all instances of that pattern observed in O). Thus (using “and” to 
connect multiple quantifiers, and “ ∧ ” for the logical conjunction of predicates): 

V = {vx} ∀x ∈ [[1, n]]

cx,y =

{

1, if vx → vy
0, otherwise

cx,y,t = (cx,y , t) | t ∈ N0

C = {cx,y} ∀x, y ∈ [[1, n]]

Ct = {cx,y,t} ∀x, y ∈ [[1, n]]

O = {Ct} ∀t ∈ [[0,T]]

patt(Ct) = {cx,y} ∀(cx,y,t) ∈ Ct

Rset
l = {(Ck , l)} ∀Ck ∈ O and ∀(Cp, l), (Cq, l) ∈ Rset

l | l ∈ N ∧ patt(Cp) = patt(Cq)
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• A labelled representative node Rl (node in the network) with label l (a natural number) is a 2-tuple compris-
ing (1) the underlying causality pattern of any Ct in the equivalence set with the label l, and (2) the label 
l. The label provides a one-to-one mapping between each Rl and its associated Rset

l  (so knowing Rl implies 
knowledge of Rset

l  ): 

• The set N is a set of labelled representative nodes such that for each observed causality pattern Ct there exists 
at least one representative node in N that contains the underlying pattern of causality of Ct . Thus, we write: 

• The set E is a set of weighted edges, each being a 3-tuple of the start node ( Rl1 ), the end node ( Rl2 ) and the 
weight. Initially the weight is the number of transitions from Rl1 to Rl2 taking place over one time step; this 
is commonly referred to as the frequency “f”. We start by defining the function freq() (where freq() ∈ N0 ) 
to calculate the desired result—it does this by summing all transitions that exist from a causality pattern Ct 
in Rset

l1
 to a causality pattern at the next time step Ct+1 in Rset

l2
 (i.e. the number of times one causality pattern 

transitions into another), Using the notation |{}| to give the cardinality of a set, we write: 

 We now define the set E as follows (with the additional constraint that an edge does not exist in E if the 
calculated frequency is zero): 

Following this definition the evolution of the causality between time series variables, V, can be expressed as 
the complex network N . In this paper we are exclusively interested in expanding upon this approach to data 
representation in order to mine information relating to the evolution of the system, and the description of this 
evolution.

New viewpoint to causality evolution
As discussed in the previous section, the general approach in construction of a complex network to represent 
the evolution of causality patterns only encodes information relating to frequency and temporal ordering. This 
approach produces a network that is easily handled by existing network approaches, and therefore generalised 
network analysis is often  employed60,63. This approach to analysis can yield important results about the system 
and can be seen as a significant tool in the analysis of time varying causality patterns. However, these existing 
standard network approaches focus on frequency-weighted edges, and this does not allow for further explora-
tion of the changes occurring between the causality patterns in the start and end nodes of each edge. This is a 
problem because it removes the potential to uncover complex behaviours taking place related to the change in 
structure of the underlying causality patterns, which may hide important information about the evolution of 
those causality patterns.

There do exist complex network mapping methods that take some account of the underlying structure of 
the system’s interactions. Of note is the work of Yu et al. who introduce a Multivariate Time Series-Dynamic 
Association Network (MTS-DAN) using a Directed Limited Penetrable Visibility graph (DLPVG)  approach61. 
The incorporation of the underlying pattern structure in this method is achieved by using Principle Component 
Analysis (PCA) to produce a one-dimensional representation of each causality pattern, and then based on this 
representation to add new links between nodes. This approach constructs a complex network that is unweighted, 
directed forward in time (but not necessary temporally sequential), and contains links not associated directly 
with transitions. This construction therefore contains some implicit information of the causality patterns in its 
linkage choice. Though this network construction may be of interest in certain areas of analysis, by definition it 
does not contain much of the information encoded in Jiang et al.’s  construction13, namely a guaranteed temporal 
ordering (if two causality patterns are sequential they will be linked) and a frequency weighting of sequential 
transitions (how many times one causality pattern has transitioned to a specified other).

We wish to counter these issues and present a novel methodology that is amenable to analysis and incor-
porates information on the change in causality pattern during evolution. Our proposed methodology takes a 
similar initial approach to that of Jiang et al.’s13 (discussed earlier), but includes a greater amount of information 
content through the addition of new edge weights that are specifically constructed to encode select informa-
tion on the transition. We propose an extension to the complex network model presented by Jiang et al.13 (and 
discussed earlier), in regard to transitions over one time step, by adding new weights to the edges. These weights 
correspond to information regarding the start and end nodes, to encode information on the evolution of the 
causality pattern over the corresponding transition, i.e. how the causality pattern changed over one time step. 
The manipulation and comparison of the full causality patterns in the start and end nodes of an edge can be 
unwieldy where there are large numbers of times-series variables. We therefore propose to use two simple values 
to encode the structural change in causality pattern, as described below (where either or both aspects may occur 
over a single time step).

As a preliminary step, we define a metric that encodes an important informational aspect of a causality pat-
tern. This is the arithmetic sum of all of the individual causality metrics in the causality pattern of a single node. 

Rl = (patt(Ct), l) | (Ct , l) ∈ Rset
l ∧ l ∈ N

N = {Rl} ∀Ct ∈ O and ∃Rk ∈ N | Rk = (patt(Ct), k)

freq(Rl1 ,Rl2) = |{((Ct , l1) ∈ Rset
l1
, (Ct+1, l2) ∈ Rset

l2
)}| ∀t ∈ [[0,T]] and f ∈ N0

E = {(Rl1 ,Rl2 , f )} ∀l1, l2 ∈ [[1, |N |]] | f = freq(Rl1 ,Rl2) ∧ f > 0
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We call this the “total causality” of a node, and it is calculated by the auxiliary function total() , also used is the 
auxiliary function fst() , which returns the first item of a 2-tuple:

When a causality pattern changes, the overall strength of causation (the “total causality”) may or may not 
change. We therefore propose two new metrics to encode these two characteristics of a change in causality 
pattern. 

1. Total difference in causality ( α ): this captures the changes in individual causality metrics, regardless of the 
“total causality”, and we define it as the sum of the differences between corresponding individual causality 
metrics (each difference is squared and rooted, to make it a positive number independent of direction). This 
is calculated with the function alpha() as follows (where alpha() ∈ Z ): 

2. Net change in causality ( β ): this captures the overall change in “total causality”, regardless of any change in 
which causality links do and do not occur and we define it as the difference of the “total causality” metrics 
for the start and end nodes. This is calculated with the function beta() (where beta() ∈ Z ): 

Tri‑weighted network representation. Following the introduction of our two metrics we propose a 
new network called Underlying Structural Information Consideration Network (USIC-Network) that makes 
use of these metrics. This network construction takes each unique representative causality pattern as a node and 
takes edges between them to exist if the two causality patterns appear sequentially in the evolution. Each edge is 
weighted with three quantities; the frequency of transition (f), the Total Difference in Causality ( α ), and the Net 
Change in Causality ( β ). The layout of this transformation is shown in Fig. 1.

By expanding on the earlier formal definition of a complex network representation, the USIC-Network can 
be defined such that the set E of weighted edges is modified to have a weight that is a 3-tuple containing f, α and 
β (defined above). For convenience we define a labelled edge ei,j as follows:

We now rewrite the definition of E as:

We further define three auxiliary functions get-f(), get-α(), and get-β () that return the three components of 
an edge weight:

With this new definition of E and using the previous definition of N we define USIC-Network = (N ,E) for 
the set of time series variables V.

Analysis techniques for causal evolution
The previously mentioned studies employing complex networks for the evolution of multivariate systems by Jiang 
et al., Yu et al., Qi et al., Dong et al., and Yu et al.13,36,40,61,62 also subsequently analyse their constructed networks. 
This analysis takes a number of forms but primarily it determines properties and metrics of the network that can 
then be used to describe the evolution of the original system. This analysis can be characterised as the follow-
ing types: determination of the degree of the nodes, the distribution of this degree, and the comparison of this 
to standard network models, such as a scale free  network13,36,40,61; the distribution of edge weights (frequency), 
comparison to power law distribution, and total level of self-loops within the network (i.e. when a causality 
pattern does not change over a time step)13,36. Common network methods are used, such as the closeness of the 
 network40, and the betweenness of  nodes36,40,61,62. Clustering is also often employed for more in-depth analysis of 
the behaviour of the system, for example modularity-based  methods13,64. These approaches do not explicitly allow 
for description of the evolution in terms of the changes in the structure of the causality pattern. Our proposed 
USIC-Network encodes this information allowing it to become more accessible, and hence more amenable to 
analysis. Numerous approaches, including many classic examples, can be applied to our USIC-Network to make 
use of this data, however in this section we choose to propose five properties/metrics of our USIC-Network that 

total(Rl) =
∑

a,b

(ca,b ∈ fst(Rl))

alpha(Rl1 ,Rl2) =
∑

a,b

√

((ca,b ∈ fst(Rl2))− (ca,b ∈ fst(Rl1)))
2

beta(Rl1 ,Rl2) = total(Rl2)− total(Rl1)

ei,j = (Ri ,Rj , (f ,α,β)) | i, j ∈ N ∧ f > 0

where f = freq(Ri ,Rj)

and α = alpha(Ri ,Rj)

and β = beta(Ri ,Rj)

E = {el1,l2 } ∀l1, l2 ∈ [[1, |N |]]

get-f((Rl1 ,Rl2 , (f ,α,β))) = f

get-α((Rl1 ,Rl2 , (f ,α,β))) = α

get-β((Rl1 ,Rl2 , (f ,α,β))) = β
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can be used to discover informative descriptions of the evolution of the original system, to allow for a richer 
overall understanding of the system. These are meant for any system that can be expressed via the USIC-Network 

Figure 1.  Outline of the methodology of the USIC-Network model for a sub system of the international oil 
market comprising the returns of the spot price variables Daqng, Minas, Dubai, and Brent. Causality patterns 
and complex network displayed are for representation purposes only.
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model, however for context we motivate each approach with an example use case, demonstrating behaviour it 
is amenable to uncover.

Chance of system state recurrence for stability. Interactions between financial instruments are often 
used when considering financial risk, and this is particularly true when portfolio construction is concerned. 
Within a portfolio, assets that are correlated can be seen as increasing risk, as this limits diversification and 
makes the portfolio less resistant to shocks: conversely assets that are negatively correlated are some times used 
to mitigate risk by the increase in one counteracting the decrease in the other. Similarly the causality structure 
within a portfolio (where known) can be carefully selected to reduce overall risk, leading to the effectiveness of 
the portfolio being heavily connected with this causality structure. Due to this it is important for portfolio man-
agers that this causality structure does not change as it could force them to have to reconstruct their portfolio, 
and this motivates a desire for a metric for how likely a system is to maintain its current causality structure. In 
the context of our network this problem can be seen as a metric relating to the likelihood of a transition from a 
causality pattern to have no Total Difference in Causality, i.e. α = 0 . This process is often referred to as a self-loop 
or self transition, where the causality pattern does not change over a time step (loops that taken multiple time 
steps to return to their original position are not classically considered self-loops and are not of interest here).

The concept of self-loops occurs in many branches of research, for example: (1) in modularity techniques, 
for the purpose of separating the internal links of a community from those connecting the community to 
 others65–67; (2) in Markov chains, where each state will have a probability of transitioning to itself, and is often 
a pre-defined  value68; and (3) in complex networks, where the overall percentage of self-loops for a network is 
analysed, and specific self-loop edges with a high frequncy are  discussed36. For the above case we are interested 
in a self-loop measure that can be discussed in terms of individual nodes, where each node has a probability 
of self-loop associated with it. Due to the variety of self-loop usage in the literature we give a definition of this 
metric for our USIC-Network below.

This problem can be seen as similar to that of determining the degree of a node, though unlike the degree 
that is often for a directed network separated out into a in and out degree we desire to separate this further into 
a self-loop degree. Here we present a definition of the chance of a self loop, using the following functions that 
are applicable to any given representative node in network N.

• The function kloop() gives the number of times a representative causality pattern Rl transitions over one time 
step to the same representative causality pattern: 

• The function kout() gives the number of times a representative causality pattern Rl transitions over one time 
step to any next representative causality pattern in N (including itself): 

• The probability of a self-loop occurring for a representative causality pattern Rl is given by �loop
Rl

 , defined by: 

Prediction of net system causality change. Causal interconnectivity within the financial markets has 
been shown to lead to a number of undesirable behaviours for market health when it becomes too high. This 
includes market behaviours such as crashes, bubbles, and other instabilities in price, leading to fallout that is 
both difficult and costly for regulators and governments to  resolve69. It is therefore beneficial for market regula-
tors to have a forecast for how the degree of causal interactions within the market are likely to change, to allow 
them to enact policy to limit adverse market behaviour before those changes occur. To give an indication of 
the change (either an increase, decrease, or no change) expected in the total causality at the next time step, it is 
desirable to have a one-dimensional value representing the multi-dimensional data (edges) that describes the 
previous changes from the relevant node.

This problem regards the out links from the node, and their associated β weightings. For a classic network 
where weightings represent frequency of occurrences this problem can be seen as analogous to the out degree 
of the node, where the sum of the weights of all out links is calculated. Here we present a metric that gives an 
indication of whether causality pattern (node) is likely to increase, decrease, or maintain the same total causality, 
based on its history. To do this we define the following functions that are applicable to any given representative 
node in network N.

• An aggregation of the previous transitions of a specific representative causality pattern Rl can be found by 
summing the frequency of the out edges from that node, kout(Rl) (defined previously).

• To give knowledge of the direction of these transitions a new function kweighted() can be employed, that 
weights each edge as it is added to the sum by the sign of its β weight (giving information relating to whether 
the transition increase, decreases, or does not change the total causality). This summation hence will give a 
value representing the average directional change in causality, which can be taken as a prediction of future 
directional changes in causality. First we define an auxiliary function sign() as follows: 

kloop(Rl) = get-f(el,l)

kout(Rl) =
∑

Rx∈N

get-f(el,x)

�
loop
Rl

=
kloop(Rl)

kout(Rl)
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 And now we define kweighted() as follows: 

• The value of kweighted() can be heavily skewed by the number of edges, and the frequency of those edges, mak-
ing comparison of this value between different nodes difficult. To account for this a normalised measure of 
this value is proposed, �directed

Rl
 . This is normalised by dividing kweighted() by the total number of out transitions 

given by kout() , and hence gives a value between −1 and 1. 

Noise perturbation from true causality pattern. In feature selection one potential aim is to determine 
from a set of variables those variables that Granger-cause a target variable. These variables can then be used to 
train a machine learning model for the purpose of forecasting the target variable. It is important for the correct 
subset of variables to be selected, with too large a subset increasing the cost and time of training, and too small 
a subset offering inferior forecasting  results70. For feature selection it hence may be considered important to find 
the maximum number of potentially casual variables for a single underlying causality structure, while still mini-
mising the total number of selected features, to reduce the number of retraining periods and present the best set 
of information for machine learning model to be trained on. However, many real systems, such as the financial 
markets, contain messy data and are susceptible to noise within their causality calculations. For example, the 
presence of noise can cause deviations in causality patterns and may cause a system with a singular underlying 
causality structure to be represented through analysis by a number of causality patterns. Therefore it can be con-
sidered beneficial to determine all potential causality patterns that may represent an underlying causal structure, 
allowing features to be selected from these patterns as a group, rather than just a single pattern.

Using our network representation this problem can be seen as clustering nodes based on their Total Difference 
in Causality ( α ), with the objective of clustering together nodes with a small Total Difference in Causality. This 
problem can be seen as similar to those dealt with by density-based clustering methods, as this problem relates to 
a “small distance” measure and not a “large frequency” measure as used in alternative clustering  approaches71–73. 
An initial starting point for density-based clustering is the single-linkage model, a hierarchical method that oper-
ates by grouping nodes within a given “distance” of each other and then increasing this distance till all nodes are 
 clustered71,74. A notable expansion to this model was introduced by Wishart to eliminate a “chaining” effect that 
could lead to the linkage of widely spaced nodes via a chain of more closely connected nodes. This expansion 
introduced the idea of a minimum number of nodes within a set “distance” from each node in the network, a node 
that does not meet this minimum is then removed from a  cluster75. The single-linkage model and the Wishart 
expansion act as first step for the desired clustering, however in our use case not all nodes need be clustered 
and due to links not existing between all nodes the colorblue usage of minimum degree does not apply. These 
differences in scope therefore warrant further expansion of this model for this problem.

To define this clustering property, based on some notion of measurement-based noise or variation in the 
network, within a USIC-Network the following steps are taken.

• We introduce a parameter Parnoisemax α , which defines a maximum amount of deviation that can be expected 
between separate measures of the same causality pattern in a system (e.g. for a physical system a user may 
know that their measurement tools have an associated error and hence this metric embodies how that error 
translates to the measurement of a causality pattern). In the USIC-Network this measure takes the form of 
an α value, being the maximum expected α value between two causality patterns that could be considered 
the same within deviation. The exact choice of this parameter is complex and heavily system dependent, so 
we leave this as a user defined value (we consider more formal definitions of its exact value to be out of the 
scope of this paper).

• To incorporate the notion of noise that Parnoisemax α provides into the complex network, an initial USIC-Network, 
N = (N ,E) , is updated by removing both edges with an α greater than Parnoisemax α and any nodes that are now 
unconnected. This defines a new network, N′

= (N
′
,E

′
) , as follows: 

• The network N′ now only contains transitions that are within this defined noise/deviation range. For this 
network we hypothesise that causality patterns (nodes) that relate to each other and are just products of noise/
error will exhibit some clustering behaviour. To discover this clustering we employ a popular method known 
as modularity, selecting the Clauset–Newman–Moore greedy modularity maximization  algorithm76–78. For 
this the edge weightings and self-loops are not considered, and a set of non-overlapping clusters are produced. 
Although this algorithm may not be appropriate for cases where noise clusters overlap, we assume that for 
most real world systems noise clusters will be adequately spaced, partly due to the binary values (quantisa-

(4)sign(x) =

{

−1, if x < 0

0, if x = 0

1, if x > 0

kweighted(Rl) =
∑

Rx∈N

(get-f(el,x)× sign(get-β(el,x))

�directed
Rl

=
kweighted(Rl)

kout(Rl)

E
′

= {el1,l2}∀el1,l2 ∈ E | get-α(el1,l2) ≤ Parnoisemax α

N
′

= {Rl1 }∀Rl1 ∈ N and ∃Rl2 ∈ N | el1,l2 ∈ E
′

∨ el2,l1 ∈ E
′



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18880  | https://doi.org/10.1038/s41598-021-97741-2

www.nature.com/scientificreports/

tion) of causality, and hence overlapping clusters will not be a consideration in practice. It should also be 
noted that if Parnoisemax α is set such that all links are included, e.g. no consideration of α is taken, this approach 
reduces to the clustering approach employed by Jiang et al.13. We label each cluster produced by this approach 
as �noise

i  , where these sets, and the set �noise comprising all these clusters, can be expressed as: 

Regimes of total causality level. The concept of regimes within the evolution of a system is a popular 
topic in many  fields69,79,80. The type of grouping defining a regime can take a number of forms, in the context of 
our USIC-Network a potential construction for a regime is a grouping of system states (causality patterns) that 
have the same total causality (i.e. the level of interaction within the system is the same throughout the regime). A 
real world situation where this type of regime may be of interest is the behaviour between market makers during 
a flash crash. A particular example of this is the 2010 flash crash that has been connected to hot potato trading 
between market  makers81: during a period of hot potato trading the amount of interaction between the market 
makers is likely to  increase82. Therefore the regime of the total causality between market makers is likely to be 
different during periods of calm compared with periods of market instability such as hot potato trading, and 
detecting these changes in regime may be an indicator of coming  instability69,79,80.

We are particularly interested in causal regimes whose internal edges have no net change in total causality. 
To this end we define a regime as a set of nodes in our USIC-Network whose internal edges all have β = 0 . This 
means that the total causality for each node in a regime is constant, but the causality structure may not be.

For this clustering, an approach inspired by single linkage can be used, where the minimum “distance” is set 
as β = 0 and does not increase  iteratively71,74. To tackle the potential problem of chaining as previously described, 
we introduce a parameter Parregime

minfreq to represent the lowest allowed frequency level for a link. This allows for the 
removal of “pathways of low travel” between high travelled clustered regions. Though this can be set to some 
calculated value, such as the average frequency of edges, hence removing all edges below that, we choose to leave 
this as user selected as we feel that an appropriate value will be system-dependent. The process to find these 
causal regimes can be described as follows.

• From an initial USIC-Network N = (N ,E) , a new network can be derived where all edges with a β value not 
equal to zero and a frequency value less than Parregime

minfreq are removed. We call this network N′′
= (N

′′
,E

′′
) 

and define it as follows: 

• The network N′′ is constructed in such a way that if the desired causal regimes exist they will be components 
(groups of connected nodes that are not connected to the rest of the network). Therefore to find these causal 
regimes one extracts these components, labelling each component as a separate set �regime

i  . These sets, and 
the set of all these regimes can be expressed as: 

Pathways of net causality change. A broad type of structural feature that naturally arises when discuss-
ing complex networks is a “pathway”, a series of sequential nodes connected by edges, that defines some route 
through the network. Specific instances of pathways can be defined in numerous ways, for example in the context 
of our USIC-Network these definitions could be based on the f, α , or β weightings. Pathways based on f or α natu-
rally lead to the implementation of either minimum f constrains (i.e. highly travelled pathways) or a maximum 
threshold value for α (i.e. closely “spaced” pathways) However, pathways based on β can take more interesting 
formulations and to our knowledge have not been previously explored.

In the context of this paper β is an interesting base for pathway construction for the previously discussed 
regimes (defined with edges of β = 0 ), with a system moving from one regime to another having to change 
its total causality and hence have a β  = 0 between a node in one regime and a node in the other regime. The 
transition from one regime to another may occur over one time step or over many time steps. In the latter case 
this results in a multi-step pathway existing between the two regimes. These pathways defining a change in total 
causality are a general structural feature of complex causality networks, whose start and end nodes need not be 
members of a regime.

Here we define a type of pathway based on the β weighting of the network. This pathway is a structure that 
moves the causality pattern from one level of total causality to another, with no self-loops that might be decep-
tive during analysis. For this initial discussion of these types of pathways we select to maintain the sign of the 
β weighting throughout the pathway (i.e. a pathway will either be composed only of edges weighted as β > 0 
or only of edges weighted as β < 0 ). This decision is well motivated for pathways between regimes, as defined 
above, since as soon as a β = 0 edge is found we may have reached a new regime.

In defining these pathways we consider the two following constraints.

�noise = {(X, i)}∀X ⊆ N
′

�noise
i = X | (X, i) ∈ �noise

E
′′

= {el1,l2 }∀el1,l2 ∈ E | get-f(el1,l2) ≥ Par
regime
minfreq ∧ get-β(el1,l2) = 0

N
′′

= {Rl1 }∀Rl1 ∈ N and ∃Rl2 ∈ N | el1,l2 ∈ E
′′

∨ el2,l1 ∈ E
′′

�regime = {(X, i)}∀X ⊆ N
′′

�
regime
i = X | (X, i) ∈ �regime
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• As explained above, our initial interest is in pathways with a β constraint: constructed of either only edges 
containing β > 0 or only edges containing β < 0.

• For our USIC-Network (and most complex network representations) an edge is “representative” of one or 
many transitions at different times between observed causality patterns. As a result, these pathways are sta-
tistical in nature and don’t necessarily represent a timed sequence of transitions: it is not necessarily true that 
two edges in a pathway occur in the same temporal order as their representative transitions were observed. 
We therefore typically consider only “common” pathways by utilising a further constraint, which is to con-
sider only edges with a frequency f that exceeds some threshold. The threshold will be system-dependent 
and experiment-dependent and we therefore express it as the user-defined parameter Parpathminfreq.

Based on these constrains we present a formal definition of the pathways described above for our USIC-Net-
work N = (N ,E) . We elect to split our formal definition of these pathways into two components, the pathways 
themselves them selves, and the first and last edges in each pathway. We label the set of all first edges (the head 
edges) as H and the set of all last edges (the tail edges) as T (where these are both subsets of E).

Employing these head and tail sets we define each pathway as a 2-tuple of a set X (the pathway) and a label 
i such that X is a subset of E, and there exists exactly one first edge ea,b in H and exactly one last edge ec,d in T 
(where neither edges are self-loops, so b  = a and d  = c ) such that for all edges em,n in X three conditions must 
hold. 

1. the edge em,n must either be the first edge ea,b or there must exist a unique edge ep,q in X such that ep,q directly 
precedes em,n (i.e. m = q),

2. the edge em,n must either be the last edge ec,d or there must exist a unique edge ep,q in X such that ep,q directly 
succeeds em,n (i.e. n = p ), and

3. all edges ep,q must have the same β sign, sign(get-β(ep,q)) (where this sign will be defined via the head and 
tail edges).

Using the notation ∃! to denote uniqueness quantification (i.e. ∃!x means “there exists exactly one x”), we 
define the set of all such labelled pathways ŴH ,T in a given set of edges E with initial (head) edge in H and final 
(tail) edge in T as follows (with N = (N ,E) assumed from here onwards):

We can select a single pathway in ŴH ,T by referencing its label as follows:

Since we are interested in both β > 0 pathways and β < 0 pathways, we define four sets of edges: head 
edges and tail edges for β > 0 pathways and head edges and tail edges for β < 0 pathways. We are particularly 
interested in maximal pathways in a system: for example, a head node of a maximal β > 0 pathway will have no 
in-edges with β > 0 and a tail node of a maximal β > 0 pathway will have no out-edges with β > 0 , and these 
constraints can be incorporated into the definitions of the sets of candidate head edges and tail edges for β > 0 
pathways. Similarly, we are interested in maximal β < 0 pathways whose head nodes have no in-edges with 
β < 0 and whose tail nodes have no out-edges with β < 0 . For all these sets the frequency constraint discussed 
earlier also still applies.

We label the sets of head and tail edges for pathways of β > 0 as H+ and T+ respectively, and for pathways 
of β < 0 as H− and T− respectively. For example, H+ is defined to be the set of all edges ei,j such that ei,j is in 
E, the edge has β > 0 , and any edge ek,i whose end node is the same as the start node of ei,j has a β �> 0 . We 
therefore write:

Therefore two sets of pathways can be written: ŴH+,T+ is the set of maximal β > 0 pathways, and ŴH−,T− is 
the set of maximal β < 0 pathways. Individual pathways would for example be written as ŴH+,T+

i  and ŴH−,T−
i .

For the specific problem of the algorithmic detection of pathways a simple but effective approach is to start 
with a node in H and look along connected out edges to find a new node, and then repeat this process on the 
new node until no new nodes can be found (where each out edge must meet the requirements specified above). 
In the case where a node connects directly to multiple other nodes a pathway would be constructed for each 

ŴH ,T = {(X, i)}∀X ⊆ E | H ⊆ X ∧ T ⊆ X ∧ i ∈ N

∧ (∃!ea,b �=a ∈ H and ∃!ec,d �=c ∈ T | ∀em,n ∈ X ((m = a) ∨ (∃!ep,q ∈ X|m = q))

∧ ((n = d) ∨ (∃!ep,q ∈ X|n = p))

∧ (sign(get-β(em,n)) = sign(get-β(ea,b)))

∧ (get-f (em,n) ≥ Par
path
minfreq))

Ŵ
H ,T
i = X | (X, i) ∈ ŴH ,T

H+ = {ei,j} | ei,j ∈ E ∧ get-f (ei,j) ≥ Par
path
minfreq ∧ get-β(ei,j) > 0 ∧ ∀ek,i ∈ E get-β(ek,i) �> 0

T+ = {ei,j} | ei,j ∈ E ∧ get-f (ei,j) ≥ Par
path
minfreq ∧ get-β(ei,j) > 0 ∧ ∀ek,i ∈ E get-β(ek,i) �> 0

H− = {ei,j} | ei,j ∈ E ∧ get-f (ei,j) ≥ Par
path
minfreq ∧ get-β(ei,j) < 0 ∧ ∀ek,i ∈ E get-β(ek,i) �< 0

H− = {ei,j} | ei,j ∈ E ∧ get-f (ei,j) ≥ Par
path
minfreq ∧ get-β(ei,j) < 0 ∧ ∀ek,i ∈ E get-β(ek,i) �< 0



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18880  | https://doi.org/10.1038/s41598-021-97741-2

www.nature.com/scientificreports/

possible choice (it should be noted that this may give rise to pathways with overlapping regions). To discover 
the set of all pathways this process would be applied to all possible start nodes.

Demonstration
We wish to demonstrate our proposed methods and their application via the the exploration of a real world 
system, as well as expanding upon the current understanding of that system. Previous research into evolving cau-
sality patterns has selected the international oil markets as a convient sample data set for demonstrating analysis 
techniques, due to its known  interactions13,14,83,84. For our test data we select four authoritative spot prices Brent, 
Daqing, Minas, and Dubai, this data set has been previously shown to exhibit interaction dynamics by Jia et al.14.

For our analysis we will use the daily price returns for the four series of spot prices, calculated as 
rt = ln(Pt)− ln(Pt−1) , with Pt denoting the daily closing price This data covers a period from December 27th, 
2001 to October 31st,  201113,14. We use the Bayesian Information Criterion (BIC) to automatically selected the 
lag terms for our causality  analysis85, and the Augmented Dickey-Fuller (ADF) test for stationarity, with results 
shown in Table 1. We transform this data set into an evolving series of causality patterns via Granger analy-
sis, selecting a window size of 30 as discussed earlier. Using this series we then construct our USIC-Network. 
We then apply our analysis to this network, using parameters Parnoisemaxα = 2 , Parregime

minfreq = 1 , Parpathminfreq = 2 , and 
Par

path
minlen = 4 (this configuration was selected through experimentation), with results for each node in the net-

work shown in Fig. 2. From our results in Fig. 2 looking at our individual analysis methods we can draw the 
following conclusions.

• On the whole nodes tend to favour having a chance of self-looping ( mean(�
loop
i ) = 0.32 ), however a few 

nodes have a very high chance of self-looping. This implies that there exists a few highly stable causality pat-
terns within the evolution.

• The causal direction of nodes during transition is on average close to zero but favours negative transitions 
( mean(�directed

i ) = −0.27 ), showing that on the whole transitions tend to decrease the total causality of the 
network.

• The majority of the network belongs to one of eight noise clusters ( �noise ) with sizes of: 17, 14, 13, 12, 10, 10, 7, 
and 6. These clusters are defined such that no causality pattern within them may differ more then 12.5% . This 
demonstrates that the causality pattern of the international oil market transitions throughout time between 
groupings of very similar patterns. Implying that the specific causality patterns are non-random, and can be 
seen as deviations within these clusters.

• The network shows virtually no regime clustering ( �regime ), implying that causality patterns do not maintain 
their overall causality during transitions in non-self-loop cases. This suggests that the evolution of the system 
is effected by individual causal links and not the overall causality of the system.

• There only exists a few pathways of Net Change in Causality ŴH ,T that are longer than a few nodes within 
the network, implying that changes in net causality primarily take place over a short number of nodes. This 
indicates a lack of significance in Net Change in Causality in the systems evolution.

To further investigate the behaviour of noise clusters within the network (from the context of the methodol-
ogy), we plot the cluster the system is in at each time step during its evolution, results displayed in Fig. 3. From 
these results one can see that cluster 6 is very dominant within the evolution, with the system spending the 
majority of its time within this cluster. It can also be seen that on the whole when the system leaves this cluster it 
tends to stay in whichever other cluster it transitions to for a extended number of time steps. This demonstrates 
that the systems evolution is heavily dominated by these clusters, with causality patterns staying similar for 
extended time steps.

We also investigate the change in the self-loop metric during the evolution, smoothing our results with a 
rolling average of 50 time steps, shown in Fig. 4. The rolling window shows an approximate cyclic pattern to 
the evolution of this metric, where the system goes through periods of increasing self-loop chance before going 
through periods of decreasing self-loop chance. This implies that the system state may be moving between regions 
of stability, with unstable regions in-between.

These results taken together demonstrate that this evolution is highly dependent on the individual links and 
structure of the causality patterns and not on the overall causality. Furthermore the system favours transitions 
to causality patterns with a similar structure, illustrated by the evolution being able to be decomposed into a 
number of noise clusters. Nodes nodes with a high chance of self-looping may be considered more stable aspects 
of these noise clusters, with nodes with a low chance of self-looping being taken as noise/transition nodes around 
and between these clusters.

Conclusion
The work presented here aims to expand the field of research, presenting a new methodology for information 
extraction from evolving causality networks. Exploring the evolution characteristics of time-varying causality 
relationships holds the potential for a deeper understanding of the dynamics of many complex multivariate 
systems. In this paper we encode the evolution of the interaction dynamics within a multivariate system into 
a series of causality patterns. We then expand on the work of authors, such as Jiang et al., by transferring these 
patterns to a multi-weighted directed network, the USIC-Network, capable of containing three key metrics of 
the evolution: frequency of transition, Total Difference in Causality, and Net Change in Causality. The addition 
of the latter two metrics allows for information regarding the change in the underlying causality structure to be 
encoded into the network. This in turn supports further analysis methods to be performed on this network. We 
present five novel approaches for the analysis of the evolution of interactions within a multivariate system: these 
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Figure 2.  Results of analysis methods for each node on a network of Oil spot prices. �loop
i  and �directed

i  display 
the associated value for each node. �noise and �regime display the cluster labels of the node if applicable. ŴH ,T 
displays pathway labels of the node if applicable, these are for both ŴH+,T+ and ŴH−,T− pathways. Note that the 
cluster and pathway labels starts at 0.

Table 1.  Results of stationary tests using a Augmented Dickey-Fuller (ADF) test. A p-value < 0.01 indicates 
the rejection of the null hypothesis for the test at a 1% level.

ADF-statistic (3 sf) p-value

Daqing −11.7 0.001

Minas −20.3 0.001

Dubai −51.8 0.001

Brent −9.79 0.001
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methods are based on our presented network model and take advantage of the information of the underlying 
causality pattern. Prior to our USIC-Network model presented in this paper, this causality information was not 
available in a manner suitable for network analysis techniques.

To demonstrate these proposed approaches we apply them to sample data from the international oil market, 
due to its popularity in research and its known underlying interaction dynamics. For this data we were able to 
construct a behavioural description not readily discoverable with current approaches to analysis employed in the 
research of complex network representations of time-varying interaction dynamics. The primary aspects of this 
description can be divided into four linked findings: (1) the transitions over a single time step primarily result 
in a small change in the overall causality of the system. (2) The change in the causality pattern from a transition 
over a single time step changes the amount of causality in the system and not the structure of the causality (i.e. the 
causality pattern remains mostly similar). (3) The evolution contains clustering, specifically eight clusters wherein 
the causality pattern of every member node is very similar (differing by no more than two causality links). (4) 
The evolution goes through cycles of “high” and “low” stability (likelihood of self-loop), implying the existence 
of and movement between favoured causality patterns. These results as a whole can be taken to infer that the 
system favours a few causality (patterns plus some deviation around these) that it moves between through the 
addition or subtraction of a couple causality links. Therefore the structure/layout of the causality of the market 
is important, with the overall amount of causality in the system playing a less important role for the evolution.

The main purpose of this research is to expand upon the existing methodologies on multivariate systems, 
breaking away from limitations of studies depending on a static understanding of causality. This is a complex 
field, and in this paper we offer new techniques and analysis methods to assist those undertaking this research.

Figure 3.  Noise cluster occupancy for the current node against time, for the whole system evolution: a black 
line indicates the current node is in the indicated noise cluster at the indicated time step.
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