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Abstract

It is assumed that there are a static set of “language regions” in the brain. Yet, language comprehension engages regions
well beyond these, and patients regularly produce familiar “formulaic” expressions when language regions are severely
damaged. These suggest that the neurobiology of language is not fixed but varies with experiences, like the extent of word
sequence learning. We hypothesized that perceiving overlearned sentences is supported by speech production and not
putative language regions. Participants underwent 2 sessions of behavioral testing and functional magnetic resonance
imaging (fMRI). During the intervening 15 days, they repeated 2 sentences 30 times each, twice a day. In both fMRI sessions,
they “passively” listened to those sentences, novel sentences, and produced sentences. Behaviorally, evidence for
overlearning included a 2.1-s decrease in reaction times to predict the final word in overlearned sentences. This
corresponded to the recruitment of sensorimotor regions involved in sentence production, inactivation of temporal and
inferior frontal regions involved in novel sentence listening, and a 45% change in global network organization. Thus, there
was a profound whole-brain reorganization following sentence overlearning, out of “language” and into sensorimotor
regions. The latter are generally preserved in aphasia and Alzheimer’s disease, perhaps explaining residual abilities with
formulaic expressions in both.

Key words: brain, language learning, motor system, network organization, speech

It is widely assumed that the brain regions supporting speech
production, perception, and language comprehension are largely
spatially fixed. Historical models consider “Broca’s area” the
locus of speech production and “Wernicke’s area” the locus of
comprehension (Tremblay and Dick 2016). Popular contempo-
rary models still include these regions and a small number of
others (anatomically correspond to aspects of the bilateral supe-
rior and middle temporal gyri, inferior parietal lobule, inferior
frontal gyrus, and premotor regions) (Hickok and Poeppel 2007).
Illustrating the fixity assumption, these are regularly described
as “language regions” or “the language network,” with the latter

phrase appearing in more than 6000 articles on Google Scholar
(assessed June 2021).

Yet, there is a long history of evidence suggesting that lan-
guage is more distributed throughout the brain than is belied
by these models (Skipper 2015). This is illustrated by test–retest
reliability studies that use language stimuli or that explicitly per-
tain to the reliability of regions involved in language processing.
These show that stable individual participant activity patterns
and networks are more variable and distributed than the set of
aforementioned language regions (Burton et al. 2001). Though
there are a number of reasons for this, a significant amount of
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the variance can be accounted for by individual differences in
task strategies and cognitive style, like the tendency to visualize
words (Miller et al. 2009, 2012).

A more specific example derives from the neurobiology of
lexical processing. Words activate sensory and motor regions
associated with their meaning, including language regions and
far beyond. The written word “telephone” activates auditory
cortex more than words that do not have auditory connotations
(Kiefer et al. 2008), “red” activates the visual color region V4 (Mar-
tin et al. 1995), “kick” activates dorsal motor regions involved
in moving the legs (Hauk et al. 2004), and “garlic” activates
olfactory cortex (González et al. 2006). These activity patterns
occur early, within 50–150 ms of word onset, while they are
still being read or heard (Shtyrov et al. 2014). This implies that
the increased involvement of sensory and motor regions is not
simply a postperceptual process, somehow separable from true
language regions.

These empirical examples suggest that the neurobiology of
language is more distributed in the brain than popular con-
temporary models suggest. This difference might be explained
by the reliance on measures of central tendency. That is, most
experiments upon which these models are (presumably) based,
average over individuals’ unique though reliable differences
in language-related activity patterns. This results in language
regions, even if the peaks of any given participant’s clusters
are not in those regions (Burton et al. 2001). Similarly, most
studies average over the differently distributed activity patterns
associated with individual words from many unrelated semantic
categories, leaving only language regions.

Individual differences and word processing are only 2 sources
of spatial variability. Another potential source, related to both
examples, is how well one has learned sequences of words.
Neuroimaging studies using multiword or sentence stimuli typ-
ically average over word sequences that are more or less for-
mulaic. “Formulaic expressions” are defined as being “prefab-
ricated”, stored, and retrieved from memory as a whole and
noncompositional (Wray and Perkins 2000). They are ubiquitous,
comprising a third or more of everyday language (Conklin and
Schmitt 2012), important for first and second language acquisi-
tion (Christiansen and Arnon 2017), and are processed faster and
with fewer errors in both children and adults compared with
novel words (Bannard and Matthews 2008; Arnon and Snider
2010).

The ability to produce formulaic speech is often preserved in
aphasia, even with severe language impairment and damage to
most or all of the language network (as in global aphasia) (Van
Lancker Sidtis and Sidtis 2018). Where in the brain are formulaic
expressions stored and processed when language regions are
destroyed? Several not mutually exclusive possibilities exist. The
first is a prominent theory that they are represented and pro-
cessed by the right hemisphere and subcortical regions (Sidtis
et al. 2018; Van Lancker Sidtis and Sidtis 2018). A more specific
proposal is suggested by behavioral and corresponding cortical
preservation in aphasia and Alzheimer’s disease. Lesion loca-
tions strongly associated with language do not typically include
sensorimotor regions in or immediately around the central sul-
cus in either hemisphere, that is, primary motor and somatosen-
sory regions (Dronkers et al. 2004; Baldo et al. 2013; Wilson and
Schneck 2021). This is particularly true of comprehension but
even mutism and nonfluent aphasia is more strongly associated
with the left posterior inferior frontal gyrus than the central
sulcus (Gorno-Tempini et al. 2006; Gunawardena et al. 2010;
Montembeault et al. 2018; Wilson and Schneck 2021).

People with Alzheimer’s disease also produce more formulaic
language than controls (Bridges and Van Lancker Sidtis 2013;
Van Lancker Sidtis et al. 2015; Zimmerer et al. 2016) and the
amount predicts disease progression (Zimmerer et al. 2016). As
in aphasia, this phenotype corresponds to the relative degra-
dation of temporal cortices and sparing of regions around the
central sulcus (Thompson et al. 2003). In contrast, individuals
with Parkinson’s disease produce less formulaic language (Van
Lancker Sidtis et al. 2015) with a corresponding breakdown
of cortical/subcortical sensorimotor networks (Sharman et al.
2013).

This work suggests that preserved formulaic language pro-
duction in aphasia and Alzheimer’s disease is more reliant
on sensorimotor regions and less on typical language regions,
perhaps more in the right hemisphere. By extension, this implies
that, as learning increases and words become more formulaic,
production becomes more reliant on these same sensorimotor
regions in healthy individuals. We take inspiration from this
work in production and suggest that, by further extension, these
same regions might also be involved in perceiving formulaic
speech (Skipper et al. 2017). This is supported by neuroimaging
studies of music and speech learning. These collectively show
that perception after learning and consolidation involves more
engagement of the production systems used during learning
(Zatorre 2013). For example, in both monkeys and humans,
learning to play sounds on a keyboard is subsequently associ-
ated with specific activation of sensorimotor regions involved
in making finger and hand movements when listening to those
sounds (Zatorre et al. 2007; Archakov et al. 2020).

What mechanistic account makes sense of “hearing” more
with sensorimotor cortices and less with language regions? All
listeners are faced with the problem of achieving perceptual
constancy during speech perception. This is because there is
variance in acoustic patterns both across and within talkers
and no, as of yet, discoverable mapping between these patterns
and speech categories (i.e., phonemes, syllables, etc.). We and
others have argued that this difficulty might be solved if, during
perception, the brain makes use of the contextual information
that accompanies speech and the capacity of motor systems
to predict the sensory consequences of movements (an ability
important for motor learning and adapting in real time, known
as “efference copy”) (Skipper et al. 2006, 2017; Skipper 2015).

For example, hearing “She was tired of her life and felt
ready for a . . . ” preactivates “change.” This is sequenced
by sensorimotor regions involved in speech production as
if it were to be spoken. Through efference copy, the motor
pattern for producing “ch” activates acoustic patterns for
“ch” in auditory cortices. If there is an overlap with incoming
acoustic information, interpretation is confirmed, and further
processing of change is unnecessary, conserving metabolic
resources (relative to a less predictive context). Indeed, there
is a large reduction in activity in the entire superior temporal
plane in many predictive contexts during speech perception
and language comprehension (Skipper 2014). By this account,
the more overleared and formulaic a sequence of words,
the earlier the whole sequence becomes predictable. In the
example, change might be predictable at “ready” before
overlearning but at “tired”after. Correspondingly, perception will
be more supported by sensorimotor regions and much less by
language regions.

Based on these speculations, we hypothesized that, as sen-
tences become formulaic through production-based overlearn-
ing, there will be a reorganization of the brain regions supporting
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the perception of those sentences. Behaviorally, we operational-
ized overlearning as a decrease in reaction times to predict the
final word of 2 sentences, to process the individual words in
those sentences and the ability to accurately remember the sen-
tences following 2 weeks of home production-based listening
and repetition.

Neurobiologically, reorganization was predicted to cor-
respond to a large increase in activity or new activations
of sensorimotor regions. Here and throughout, we define
“sensorimotor regions” as pre and primary motor and primary
and secondary somatosensory cortices in and adjacent to
the central sulcus. These and other regions were expected to
support the production of novel sentences. Concomitantly, we
predicted a large decrease or inactivity in language regions
while listening to overlearned sentences. Language regions
were defined as activation when listening to novel sentences
not previously heard or overlearned. Finally, we expected these
changes to correspond to a global network reorganization of the
brain.

Importantly, we used a natural or so called “passive” design
in which participants listened without making meta-linguistic
judgments or corresponding button or vocal responses. This is
because we hypothesized that sensorimotor regions involved
in production support perception after overlearning. If we had
included motor responses, there would be no verifiable way to
argue that resulting sensorimotor activity was not due to those
movements. Figure 1 provides an overview of the study design
used to test these predictions.

Materials and Methods
Participants

There were 12 participants (6 females; 21–25 years old; M = 23.17;
standard deviation [SD] = 1.41). All were native speakers, with
British English being the only language spoken at home
before the age of 5. They could speak other languages
though all but one self-reported being “monolingual” in that
they did not speak any other language fluently. Participants
were right-handed as determined by the Edinburgh Handed-
ness Inventory (Oldfield 1971). All had unimpaired hearing
and (corrected) vision. None had any contraindication for
magnetic resonance imaging (MRI), history of psychiatric
or neurological disorder, or language-related learning dis-
abilities. All participants gave informed consent, and the
study was approved by the University College London Ethics
Committee.

Procedure

The experiment lasted 17 days, including 2 testing days, each
with 3 different behavioral tasks (completed multiple times)
and functional magnetic resonance imaging (fMRI) to assess
overlearning of 2 sentences (Fig. 1). On the first day, participants
performed a sentence completion and lexical decision task on
a desktop computer in a noise-attenuated testing room, using
headphones. Both tasks included the words from the 2 sen-
tences that the participants would overlearn over the subse-
quent 15 days.

Following these tasks, participants were escorted to the scan-
ning suite. There they chose comfortable earbud sizes for noise-
attenuating headphones. After being instructed, they were put
in the head-coil with pillows under and on the sides of their

head and (if desired) under the knees for comfort and to reduce
movement during scanning. Once in place, participants chose an
optimal stimulus volume by determining a level that was loud
but comfortable. Once scanning began, participants’ first fMRI
task was to “passively” listen to the 2 “overlearned” sentences
multiple times and previously unheard or “novel” sentences.
Participants’ last fMRI task was to listen to and repeat some of
the novel sentences that they had earlier heard in the scanner.
Finally, we acquired high-resolution anatomical scans. After
scanning, participants were returned to the testing room where
they did the sentence completion and lexical decision tasks a
second time and a sentence recall task to assess learning over
the first day.

Over the next 15 days, participants trained at home by lis-
tening to and repeating the 2 overlearned sentences they heard
during fMRI. They did this twice a day, sending us recordings of
their productions when they were done. Participants returned
on the final (17th) day and performed the sentence comple-
tion, lexical decision and sentence recall behavioral tasks, fMRI
passive listening and speech production tasks, and anatomical
scans as on day 1, in the same order. When these were complete,
participants were given £7.5 per hour for behavioral testing and
£10 per hour for scanning to compensate for their time and
sent home.

Stimuli

Participants were divided into 3 groups. Each group of 4
participants overlearned 2 different sentences. Three pairs of
sentences were used to help assure that results are general-
izable. Specifically, a male talker recorded the 498 sentences
from the supplemental materials of Block and Baldwin (2010).
Sentences were edited in Praat (http://www.fon.hum.uva.nl/
praat/) to be 2.5 s, with the final word lasting 500 ms, with the
latter being approximately the average length of a spoken word
(Tucker et al. 2019). This was done to assure that the timing was
the same for all sentences so that differences in fMRI activation
patterns could not be attributed to subtle differences in the
length of stimuli (see next “Sentence Completion” section for
a further rationale). Four raters judged whether the sentences
were appropriate for British English listeners (e.g., they do not
discuss American football or “pants”) and sounded natural (i.e.,
they were not sped up or slowed down). The latter was done
using a Likert scale from 1 (not natural) to 10 (very natural).
Inappropriate sentences, those with a naturalness rating less
than 6 and sentences with proper nouns were discarded. From
the remaining sentences, 3 sets of 2 sentences were created
that were matched on number of words, cloze probability (i.e.,
the probability of the final word completing the preceding
words), complexity, and average word frequency as determined
by Subtlex-UK (Van Heuven et al. 2014) (Table 1). From the
remaining sentences, 60 high cloze probability sentences
were selected to be used in behavioral tasks and during
scanning.

Behavioral Tasks

Three behavioral tasks were used to assess overlearning of the
2 sentences assigned to each participant. Sentence completion
and lexical decision tasks were completed both before and after
the 2 fMRI sessions. The sentence recall task was done only after
each imaging session.
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Figure 1. Study overview. We conducted fMRI over 2 sessions. In both sessions, participants passively listened to 2 sentences repeated 60 times each and 60 novel
sentences. In a final run, participants produced the 60 novel sentences. The sessions were separated by 15 days. During this time period, participants trained at home
by producing the 2 repeated sentences from fMRI 30 times each, twice a day. To assess learning, participants performed sentence completion, lexical decision, and

sentence recall tasks before and after training.

Sentence Completion

Participants listened to 2 sentences that were to be overlearned
(sessions 1 and 2) or had been overlearned (sessions 3 and 4) and
30 novel sentences. In each case, the final word in the sentence
was removed. Participants were asked to press a button as soon

as they believed they knew the final word. The sentence stopped
playing when the button was pressed and participants then
typed in the final word as quickly as possible. Reaction times for
the task were measured from the start of sentence playback until
participants finished entering the predicted final word. Because
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Table 1 Overlearned sentence information

Set Sentence Words Cloze probability Complexity Average frequency

1 Instead of dressing, I prefer vinegar
and oil.

8 0.76 1.2 7716.87

At the pub, he ordered another mug
of beer.

9 0.87 1.2 8645.02

2 She was tired of her life and felt ready
for a change.

12 0.83 1.3 7134.33

The jury found him innocent and set
him free.

9 0.85 1.3 7996.94

3 They went to the video store to rent a
movie.

10 0.54 1.4 13093.97

She followed the recipe correctly to
cook the meal.

9 0.56 1.4 13651.17

All sentences were 2.5 s long and the final word was 500 ms.

all of the sentence frames were the same length, a fixed and
objective measure of reaction time changes could be determined
(i.e., from 0 to 2000 ms). On a per participant basis, reaction times
greater than 4 SDs from the mean reaction were not included in
the analysis.

Lexical Decision
Participants had to judge the lexical status (word or not word) of
overlearned words, words similar to overlearned words, words
dissimilar to overlearned words, and nonwords. Thirty over-
learned words were extracted from the overlearned sentences
used in the study. Eighteen similar words were selected by
searching through the remaining novel sentences and finding
words that had a Levenshtein distance of 2 or less from the
overlearned words extracted from the overlearned sentences.
Levenshtein distance is the minimum number of single charac-
ter alterations required to change one word into another (Lev-
enshtein 1966). Sixteen dissimilar words were also identified.
These had a Levenshtein distance of 6 or more and also had a
frequency that differed by ±10% from the overlearned words.
Sixty-four unintelligible but speech-like nonwords were created
from the selected (i.e., overlearned, similar, dissimilar) words
using a local time reversal script in Praat with 150-ms steps
(Saberi and Perrott 1999).

Each participant heard only 21 words (9 overlearned words
taken from the 2 sentences they repeated, 6 similar words, and
6 dissimilar words) and 21 nonwords (reversed versions of the
overlearned, similar, and dissimilar words they heard). After
hearing each word they indicated if they heard a word or a non-
word with a button press as quickly and accurately as possible.
Reaction times were measured from the start of playback to the
moment a response was indicated. On a per participant basis,
reaction times greater than 4 SDs from the mean reaction were
not included in the analysis. We then examined how reaction
times changed between the 2 scanning sessions.

Sentence Recall
After scanning sessions, participants were asked to type in up to
10 sentences that they remembered hearing in the scanner. The
sentences they recalled (e.g., “He was a lousy cook and ordered
out”) were matched (based on semantics and word use) to the
sentences that were actually played in the scanner (e.g., “He eats
out because he is a lousy cook”). The cosine similarity was then
found between the 2 sentences to provide a measure of recall

accuracy. The cosine similarity is the cosine of the angle between
2 normalized vectors. In this case, the 2 sentences were trans-
formed into vectors of word counts and the cosine similarity
was found for these word count vectors. Cosine similarity takes
a value between zero and one, where a value of zero means that
the sentences share no words and a value of one means that the
sentences are identical in terms of words used.

Sentence Overlearning
Commencing the day after the first fMRI session, participants
overlearned 2 sentences through repetition at home, twice a day.
Each day, participants listened to a prerecorded set of their 2 sen-
tences, each repeated 30 times in a random order, lasting 5 min
and 32 s. There was a 3-s gap between sentences during which
the participant repeated the sentence out loud. The participants
did this task again at least 6 h later using another randomized
prerecorded file of the same 2 sentences. All 30 prerecorded
files had a different randomization. To verify home learning
took place, participants recorded themselves listening to and
repeating their sentences using Audacity (http://www.audaci
tyteam.org) and immediately shared the recording to a cloud
storage folder. In total, participants listened and repeated their
2 sentences 1800 times for 2 h and 46 min. This was verified by
checking recordings.

fMRI

Task
A slow random event-related design was used to compare how
the response to overlearned sentences changed from fMRI ses-
sion 1 to 2. In each scanning session, audio stimuli were pre-
sented during 6 listening runs and a speech production run. Each
listening run lasted 6 min and 53 s. Across these, participants
heard 2 sentences repeated 60 times each and 60 novel sen-
tences that were each only heard once, all in a randomized order.
Stimuli were presented in a jittered manner such that, following
each 2.5-s sentence, there was a minimum of 10 s of silence and
a mean of 10.675 s (SD = 0.93) and a maximum of 15 s of silence.
The speech production run always followed the 6 listening runs
and lasted 8 min and 10 s. In this run, participants listened to
30 of the novel sentences they had just heard and were asked
to repeat each sentence as soon as it finished. After each 2.5-s
sentence and allowing for another 2.5-s period to produce the
sentence, there was, again, a minimum of 10 s of silence with a
mean of 10.69 s (SD = 1.34) and a maximum of 15.625 s of silence.
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All listening and production runs included 10 s of silence at the
start to allow magnetization to reach a steady state. Sessions
1 and 2 were the same, with the exception that in session 2
they produced the other 30 sentences not produced in session
1. Participant engagement was monitored with a camera over
1 eye.

Functional and anatomical images were acquired on
a 1.5 T Siemens MAGNETOM Avanto with a 32 channel
head coil (Siemens Healthcare, Erlangen, Germany). We used
multiband echo-planar imaging (EPI) (Feinberg et al. 2010;
Feinberg and Setsompop 2013) (time repetition [TR] = 700 ms,
time echo [TE] = 54.8 ms, flip angle of 75◦, 28 slices, resolu-
tion = 3 × 3 × 4 mm), with ×4 multiband factor and no in-plane
acceleration. Slices were manually obliqued to include the entire
brain. The 6 listening EPI runs were each 590 volumes/TRs and
the speech production run had 700 volumes/TRs. Two 6-min
T1-weighted high-resolution MPRAGE anatomical MRI scans
followed the functional scans (TR = 2.73 s, TE = 3.57 ms, 176
sagittal slices, resolution = 1.0 mm3). Imaging parameters were
the same for both fMRI sessions (thus resulting in 12 listening,
2 production runs, and 4 anatomical scans).

Preprocessing
Unless otherwise noted, the AFNI software suite was used for
preprocessing and analyses (http://afni.nimh.nih.gov/afni) (Cox
1996). Individual AFNI programs are indicated parenthetically in
subsequent descriptions.

The 4 anatomical/structural MRI scans were corrected for
image intensity nonuniformity (“3dUniformize”) and deskulled
using “ROBEX” (Iglesias et al. 2011). Within each session, the
second anatomical image was aligned to the first and they were
averaged. Then the resulting sessions 1 and 2 anatomical images
were aligned and averaged. This was done using a procedure to
reduce bias by moving both anatomical images, so that both are
interpolated some amount rather than 1 session receiving all the
interpolation (https://sscc.nimh.nih.gov/sscc/dglen/alignmenta
cross2sessions).

The resulting anatomical image was nonlinearly aligned
(using “auto_warp.py”) to the MNI N27 template brain, an
average of 27 anatomical scans from a single participant
(“Colin”) (Holmes et al. 1998). The anatomical scan was inflated
and registered with Freesurfer software using “recon-all” and
default parameters (version 6.0, http://www.freesurfer.net)
(Fischl 2012). This included automatic parcellations of the
anatomical image. These were used to create white matter and
ventricle (i.e., cerebral spinal fluid containing) regions of interest
that were used as noise regressors. Automatic parcellation
was also used to generate 167 regions of interest for network
analyses (i.e., using the “Destrieux Atlas”) (Destrieux et al.
2010).

The first 10 TRs (7 s) were removed from the fMRI time
series before they were corrected for slice-timing differences
(“3dTshift”) and despiked (“3dDespike”). Next, volume regis-
tration was done by aligning each timepoint to the mean of
run 4 (“3dvolreg”). The functional data were then aligned to
the anatomical images (“align_epi_anat.py”). This used the less
biased procedure described for anatomical alignment, moving
functional data from both sessions so that no one session
received all the interpolation. Finally, the volume-registered and
anatomically aligned functional data were (nonlinearly) aligned
to the MNI template brain (“3dNwarpApply”).

Next, we created 2 sets of time series. The first, to be
used in the deconvolution analysis described below, involved
only normalizing each run to have a sum of squares of one
(“3dTproject”). The second set of time series were normalized
and detrended using Legendre polynomials whose degree
varied with run lengths (following the AFNI recommended
formula of [number of timepoints ∗ TR]/150). These were then
submitted to spatial independent component analysis (ICA) to
detect and remove artifacts. This was done because we did
not collect physiological data, used a multiband sequence, and
had a speech production task, all considered to be sources
of noise amenable to correction by ICA (Griffanti et al. 2017).
Specifically, we concatenated the normalized and detrended
listening and production time series from both sessions
separately (“3dTcat”). We did ICA on the resulting listening
time series with 300 dimensions and on the production time
series with 100 dimensions using “melodic” (version 3.14) from
FSL (Smith et al. 2013). Next, we labeled and removed artifacts
from the time series, following recommendations from an
existing guide for manual classification (Griffanti et al. 2017).
One of 2 trained authors went through all components and
associated timecourses, labelling the components as “good,”
“maybe,” or “artifact.” Our strategy was to preserve signal by
not removing components classified as “maybe.” Using this
approach, 78.75% of the listening and 77.16% of the resulting
production components were labeled as artifacts, comparable
to prior work with ranges between 70% and 90% (Griffanti et al.
2017; Aliko et al. 2020).

Finally, we made a third time series using the concatenated
listening runs for the regional homogeneity analysis described
below. Specifically, the time series were normalized to have a
sum of squares of one and detrended (“3dTproject”) with the fol-
lowing regressors: 1) Legendre polynomials whose degree varied
with run lengths (following the previously described formula);
2) 6 demeaned motion regressors from the volume registration
(roll, pitch, yaw, and changes in the inferior/superior, left/right,
and anterior/posterior directions); 3) a demeaned white matter
activity regressor from the averaged time series in white matter
regions; 4) a demeaned cerebrospinal fluid regressor from the
averaged time series activity in ventricular regions; and 5) the
ICA artifact component timecources.

Individual Deconvolutions
After preprocessing, 2 individual participant deconvolutions
were conducted to get an estimation of the system impulse
response function for the 1) overlearned and novel sentences
from the listening runs and the 2) produced novel sentences
from production run from both fMRI sessions (“3dDeconvolve”)
(Glover 1999). In the first deconvolution, regressors of interest
included 1 each for overlearned sentence 1 in session 1,
overlearned sentence 2 in session 1, novel sentences in session
1, overlearned sentence 1 in session 2, overlearned sentence 2
in session 2, and novel sentences in session 2. For each of these,
the hemodynamic response was estimated using a cubic spline
basis function that covered an 18-s period after each stimulus
onset, using 20 tent functions to generate the impulse response
function for every voxel. In a second deconvolution, regressors
of interest included speech production of novel sentences in
session 1 and speech production of novel sentences in session
2. Again, the cubic spline basis function was used with the
difference that the period covered was 20 s (to account for the
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extra time involved in producing the sentences), using 21 tent
functions.

In both deconvolutions, regressors of noninterest included
an automatically estimated number of polynomials (again fol-
lowing the [number of timepoints ∗ TR]/150 formula), 6 motions
regressors from the volume registration step (roll, pitch, yaw,
and changes in the inferior/superior, left/right, and anterior/pos-
terior directions), 2 regressors from the average time series in
the white matter and ventricles, and all timecourses from ICA
components labeled as artifacts.

Novel LMM
Following individual participant deconvolutions, the resulting
impulse response functions were spatially smoothed to achieve
a level of smoothness of 6-mm full-width half maximum,
regardless of the smoothness it had on input (“3dBlurToFWHM”)
(Friedman et al. 2006). These were then used in 4 linear
mixed-effects models (LMMs; “3dLME”) (Chen et al. 2013).

First, we did a novel sentence listening LMM. Factors were
session (1 and 2) and timepoint (0–25). This allowed us to test
the prediction that learning was specific to overlearned sen-
tences. Though we did not expect differences in activity for
the novel sentences across sessions, participants might have
learned something about the talker’s voice as the same talker
made all sentences used in the study. Time was included as a
factor to compare to the overlearning LMM (see next paragraph)
though, again, we did not expect that there would be differences
in the shapes of the hemodynamic response between sessions
1 and 2. There were 26 timepoints because our TR was 700 ms
and there are, therefore, 26 TRs covering the 18-s period from
the deconvolution. Finally, collapsing over session and time,
the novel LMM served to identify language regions that were
expected to encompass the bilateral inferior frontal gyrus and
superior temporal plane.

Overlearning LMM
Second, we conducted an overlearning sentence listening LMM
with sentence (overlearned sentence 1 and 2), session (1 and 2),
and timepoint (0–25) as factors. This allowed us to understand
the effect of learning on overlearned sentence listening between
sessions 1 and 2. Time is included as a factor because we expect
differences in the shapes of the hemodynamic response across
sessions though we did not make a priori predictions about
the direction of those differences in individual brain regions.
We also visualized the timepoints from the results to better
understand if responses for overlearned sentences are a simple
redistribution of activity (i.e., a relative modulation of activity
from sessions 1 to 2) or a reorganization of brain responses (i.e.,
activity in regions in session 1 or 2 that was not previously
present).

Overlearning−Novel LMM
Third, a follow-up analysis was conducted by subtracting the
novel from the overlearned impulse response functions at each
timepoint in each participant. We then ran a LMM with the
same factors as the overlearning sentence listening LMM (i.e.,
session∗sentence∗timepoint). This allowed us to formally test
whether overlearned sentences produced significantly more
activity than novel sentences in sensorimotor regions and less
activity than novel sentences in language regions. We present
the results of each session separately so that the direction of
effect can be interpreted.

Production LMM
Finally, we did a novel speech production LMM with session (1
and 2) and timepoint (0–28) as factors. This analysis was used to
demonstrate regions involved in producing the novel sentences
that participants heard during both sessions.

Multiple Comparisons Corrections
To correct for multiple comparisons in all LMMs, we used a
multi-threshold approach rather than choosing an arbitrary P
value at the individual voxel level as is customary. In particular,
we used a cluster simulation method to estimate the probability
of noise-only clusters using the spatial autocorrelation function
from the residuals in each LMM (“3dFWHMx” and “3dClustSim”).
This resulted in the cluster sizes to achieve a corrected alpha
value of 0.01 at 9 different P values (i.e., 0.05, 0.02, 0.01, 0.005,
0.002, 0.001, 0.0005, 0.0002, and 0.0001). We thresholded each
map at the corresponding z-value for each of these 9 P values
and associated cluster size. We then combined the resulting
maps, leaving each voxel with its original z-value.

Regional Homogeneity
The described deconvolution approach uses a linear model to
derive an estimate of the hemodynamic response from multiple
stimulus presentations. We reasoned that a strong case for
the hypothesis could be made if a similar set of results were
obtained using a more model-free approach across the whole
time series. To do this, we used regional homogeneity that
calculates the Kendall’s coefficient of a concordance for each
voxel within a neighborhood of voxels (“3dReHo”). We chose
this particular approach because it is also a measure of local
interactions, synchronization, and connectivity (Jiang and Zuo
2016). Corresponding to our hypothesis, we expected an increase
in local connectivity in sensorimotor regions and a decrease
in superior temporal plane and inferior frontal regions after
overlearning.

To do this analysis, we first constructed 3 time series that
theoretically reflect only timepoints for processing overlearned
sentences from session 1, overlearned sentences from session
2, or novel sentences from both sessions. Specifically, we mod-
eled expected hemodynamic responses by convolving stimulus
onsets with a canonical hemodynamic response function (using
“WAV”, a.k.a the “Cox special” from “waver”). We then cut up the
third time series described in “Preprocessing” above by taking
the relevant timepoints under the canonical response starting
from the timepoint that the response starts to rise (a delay of
2.1 s or 3 TRs) and ending when the response returns to baseline
(“3dTcat”). We removed any timepoints that overlapped in any
of the time series. Because this was a slow event-related design
with jitter, this amounted to only 7.02% of the data that was
about equally distributed across the 3 sentence time series.

We then did the regional homogeneity analysis for each of
the 3 resulting time series using a radius of 2.3, which equals 57
voxels (we also tested 2.0 or 33 voxels and 2.9 or 93 voxels and it
makes little difference to the results). The resulting maps were
then blurred to achieve a level of smoothness of 6-mm full-width
half maximum (“3dBlurToFWHM”). After this, we conducted 3
group paired t-tests to compare 1) the overlearned sentences
from session 1 to those from session 2; 2) the novel sentences
from sessions 1 and 2 to the overlearned sentences from session
1; and 3) the novel sentences from sessions 1 and 2 to the
overlearned sentences from session 2 (“3dttest++”).
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We saved the results as z-scores and used the residuals
from the t-tests to do the same multi-thresholding procedure
described for the LMM analyses to correct for multiple com-
parisons. We note that “3dttest++” has a built-in and more
sophisticated equitable thresholding procedure (called equitable
thresholding and clustering (ETAC)) (Cox 2019). However, at the
time of analysis, there was no obvious way to use this approach
with, for example, the LMM results. As such, we opted to use our
described approach for consistency across analysis. That said,
we looked at the results using the ETAC approach for comparison
and they look similar to our multi-thresholding approach.

Network
To do network analyses, we first concatenated the 2 overlearned
sentence impulse response functions from the deconvolution
for the 2 sessions separately. We blurred these as in previous
analyses to a level of smoothness of 6-mm full-width half maxi-
mum (“3dBlurToFWHM”). Using the Freesurfer “Destrieux Atlas”
parcellation, 167 regions of interest were extracted from these
time series for each participant. Pairwise Pearson’s correlations
were used to build 2 unweighted, undirected adjacency matrices
for each participant, 1 each for sessions 1 and 2 overlearned
sentences. Absolute thresholding of r = 0.1 was applied to cor-
relation values, in order to build adjacency matrices for group
comparisons (Garrison et al. 2015).

To test whether global network reorganization took place
after overlearning, the distance measures “edit distance” and
“Deltacon” were calculated. Edit distance computes additions
or deletions of connections between 2 graphs (Wills and Meyer
2020). The edit distance matrix was defined as:

δ
(
G, G′) = ∥∥ A − A′∥∥

Where A and A’ are the adjacency matrices for graphs G
(session 1) and G’ (session 2), respectively, and δ is the pairwise
edit distance (Wills and Meyer 2020). Since session 1 and 2
shared node identity, this pairwise application was applicable.
Change in connectivity was calculated as the ratio between
the total number of lost and gained connections in the edit
distance matrix and the total number of connections in both
sessions 1 and 2 adjacency matrices for a single participant. A 1-
sample t-test across participants was performed on the change
in connectivity values to determine if they differed from the null,
that is, no change in connectivity.

In order to describe and visualize connections involved in
edit distance differences from sessions 1 to 2, a 2-way chi-
square test was performed on each region of interest pair across
participants. Lost connections were defined as those whose con-
nectivity in session 2 was lower, whereas observed connectivity
in session 1 was higher than expected. Gained connections were
defined as the converse. We set a threshold at P < 0.01 to afford
some protection for multiple comparisons.

Though the edit distance matrix is simple to compute, it
suffers from limitations. It only determines specific connection
changes, but it does not interpret the change in the context of
the rest of the network and its neighbors. Moreover, it does not
differentiate between network densities: If a connection is lost
in a very sparse network the result would be a large disruption,
but if a connection is lost in a highly dense network the outcome
on the global scale will be minimal (Koutra et al. 2013). For these
reasons we also calculated Deltacon, a more robust similarity
measure that determines the level of isomorphism between 2

networks with node correspondence, using Matusita’s distance
(Koutra et al. 2013). We compared the results using a 1-sample t-
test across participants on the deltacon dissimilarity value (i.e.,
1-Deltacon).

To further examine possible changes between sessions 1 and
2, we explored a number of other global network measures.
These included density, diffusion, efficiency, and flow using the
Brain Connectivity Toolbox in MATLAB (Rubinov and Sporns
2010). Density measures how “connected” a network is, diffusion
how quickly information can get from point A to B, efficacy
the average inverse shortest path length (Ek et al. 2015), and
flow how centralized a network is for transfer of information
(Rubinov and Sporns 2010). We used a 2-sample t-tests for these
global measures, comparing sessions 1 and 2. Finally, we com-
puted 2 measures of local connectivity, centrality, and com-
munity partitioning. Centrality (degree, eigenvector, closeness,
and betweenness) measures the importance of a node in a
network, whereas community detection partitions the network
into distinct subcomponents or modules (Rubinov and Sporns
2010).

Results
Behavioral Tasks

We hypothesized that participants would show behavioral
markers of overlearning for the sentences repeated at home.
We assessed this with 3 behavioral tasks (Fig. 2).

Sentence Completion
Figure 2A shows sentence completion times (in which partic-
ipants completed the final word of a sentence) across testing
sessions for both overlearned and novel sentences. There was an
interaction between completion time measured at each session
and whether the sentence was overlearned or not (F3,33 = 22.28,
P < 0.001). For overlearned sentences, a decrease in sentence
completion times was observed following training (session 2
versus session 3; t11 = 3.90, P < 0.01, Cohen’s d = 1.12). A similar
decrease was not observed for novel sentences (t11= −1.04,
P = 0.32, Cohen’s d = 0.29). By the end of the study, participants
completed the final word in the overlearned sentences 2.10 s
faster than they did at the start of the experiment (mean
reaction time (RT) in session 1 = 4.94 s vs. mean RT in session
4 = 2.84 s). Instead, the time it took to complete the final word in
novel sentences improved by 1.01 s (mean RT in session 1 = 4.25 s
vs. mean RT in session 4 = 3.24 s).

Lexical Decision
Figure 2B shows changes in lexical decision times following
overlearning (testing sessions 1 and 2 vs. sessions 3 and 4),
for words drawn from overlearned sentences (red bar), words
similar to overlearned words (blue bar), words dissimilar
to overlearned words (gray bar), and nonwords (black bar).
Changes in lexical decision time between the 4 word types
were not significantly different (F3,33 = 2.32, P = 0.094). However,
words drawn from overlearned sentences were identified
faster following overlearning than they were before training
(t11 = −2.59, P = 0.025, Cohen’s d = −0.75). The mean change in RT
for words drawn from overlearned sentences was −49.13 ms.
A comparable result was not observed in the cases of similar
(t11 = −1.49, P = 0.16, Cohen’s d = −0.43) and dissimilar words
(t11 = −.49, P = 0.63, Cohen’s d = −0.14). The mean change in RT
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Overlearning Skipper et al. 9

Figure 2. Behavioral measures of overlearning. (A) For each testing session (1–4), sentence completion is the length of time (in ms) that it took participants to type in
the final word of overlearned (red line) and novel sentences (blue line). Completion times decreased following overlearning. (B) Lexical decisions (word/not word) were
made for words drawn from the overlearned sentences (red bar), similar words (blue bar), dissimilar words (gray bar), and reversed words (black bar). Change in lexical
decision time reflects decision times (in ms) measured in sessions 1 and 2 (preoverlearning) versus decision times measured in sessions 3 and 4 (postoverlearning).

(C) Participants recalled sentences they heard during scanning. The accuracy of sentence recall was measured as the cosine similarity between recalled and heard
sentences. Participants were more likely to recall sentences they had overlearned (red bar) versus novel sentences (blue bar).

for words drawn from similar and dissimilar sentences were
−33.88 and −8.25 ms, respectively.

Sentence Recall
Figure 2C gives a measure of sentence recall (i.e., memory)
for overlearned sentences versus novel sentences following
overlearning. Participants recalled overlearned sentences with
significantly greater accuracy than novel sentences (t11 = 8.00,
P < 0.001, Cohen’s d = 2.37). The cosine similarity between the
overlearned sentences and what was recalled averaged 0.96,
whereas the cosine similarity between the novel sentences and
what was recalled averaged 0.74. Indeed, half of the participants
recalled the overlearned sentences verbatim. By comparison,
none of the participants recalled the novel sentences verbatim
even though they had just heard them during scanning.
Nonetheless, novel sentence recall was high enough to suggest
that participants paid attention during scanning.

fMRI

Novel LMM
To test whether learning would be specific to overlearned
sentences, we conducted a novel sentence listening LMM
with session (1 and 2) and timepoint (0–25) as factors. There
were no discernible effects of session and no session by time
interaction at a cluster size correction for multiple comparisons
of alpha (α) < 0.01 (used here and for all subsequent analyses
unless otherwise stated). Nonetheless, to assure that there
was no effect, we used general linear tests (GLTs) to directly
contrast novel sentences for sessions 1 and 2 at all timepoints
in a manner used in subsequent analyses (Fig. 3). Over all 26
timepoints, there were few differences from sessions 1 to 2
(Fig. S1). This included 7 clusters with over 20 voxels, with
decreases in activity in the cerebellum (x/y/z = 31/−84/−41; 890
voxels), thalamus (x/y/z = −5/−15/7; 42 voxels), and lingual gyrus
(x/y/z = −29/−48/−2; 25 voxels) and increases in the left dorsal
postcentral gyrus (x/y/z = −41/−39/67; 657 voxels), superior

frontal gyrus (x/y/z = −1/32/36; 161 voxels), right superior parietal
lobule (x/y/z = 19/−57/70; 99 voxels), and right middle anterior
cingulate gyrus (x/y/z = 4/18/25; 20 voxels). We calculated the
GLTs for novel sentences for sessions 1 and 2 independently
and used these for analysis of the impulse response function
(described in the next section; Fig. 4). We also calculated the
GLTs for novel sentences, collapsing over sessions 1 and 2 and
all 26 timepoints, using this as a guide to language regions (Figs 3
and 5).

Overlearning LMM
To test the hypothesis that sentence listening after overlearn-
ing involves more sensorimotor and less activity in language
regions, an LMM was done with session (1 and 2), sentence (over-
leaning sentences 1 and 2), and timepoint (0–25) as factors. There
were main effects of session and time that encompassed most
of the brain at a corrected threshold. In contrast, the main effect
of sentence at P < 0.01 corrected resulted in 4 clusters in the
primary visual cortex (x/y/z = −11/−102/4; 615 voxels), middle
occipital cortex around motion area MT+ (x/y/z = −47/−72/7; 123
voxels), superior parietal cortex (x/y/z = 28/−51/61; 121 voxels),
and middle frontal gyrus (x/y/z = 43/33/34; 117 voxels). Given this
small amount of activity and that these regions are centered
around visual cortices, we collapsed over sentences 1 and 2 for
all subsequent analyses.

Compared with baseline and independent of time, GLTs for
sentences in sessions 1 and 2 both involve processing in the
superior temporal plane. However there was an increase in
processing in sensorimotor cortices and a large reduction in
the spread of activity in the superior temporal plane in session
2 (Fig. S2A,B). A direct contrast reveals that most of the brain
differs at a corrected threshold confirming a bilateral increase
in sensorimotor regions and a decrease in the superior temporal
plane (Fig. S2C). Subcortically, the hippocampus, caudate, and
dorsal cerebellum increase, whereas the thalamus, putamen,
and ventral cerebellum decrease from sessions 1 to 2. These
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Figure 3. Direct contrast of overlearned sentence listening from sessions 1 to 2 across time. GLTs between sessions 1 and 2 overlearned sentences were done at each

of 26 timepoints in the estimated impulse response functions following an LMM. For ease of visualization, these contrasts are collapsed into 4 time bins between the
indicated seconds. The orange line separating the left (LH) and right (RH) hemisphere surfaces roughly represents the relative position in a “canonical” hemodynamic
response function. Listening to sentences after overlearning results in an increase in activity in sensorimotor regions centered around the central sulcus (among other

regions, reds) and a reduction of activity in the superior temporal plane (blues). Increased sensorimotor activity overlaps with producing novel sentences as determined
by a separate LMM (white outline). Note that the sensorimotor regions are first engaged after overlearning in the delay period before the canonical response rises.
Decreased superior temporal plane activity overlaps with listening to novel sentences as determined by another LMM (dark gray, presented on only the far left column
though it represents all 26 timepoints). Each timepoint was cluster size corrected for multiple comparisons at alpha (α) < 0.01. The color bar represents z-scores. See

also Table 2.

results are present even at a voxel-wise corrected threshold of
P < 1 × 10−10.

There was an interaction between session and time for
overlearned sentences that involved many of these same
regions, suggesting that the timing of activity also changes
(Fig. 3; Table 2). The previously described results can be seen,
with an increase in sensorimotor and a decrease in superior
temporal plane regions in session 2. Processing began earlier
in sensorimotor regions in session 2 (Fig. 3, first column). This
includes activity in primary motor and somatosensory cortex
in the central sulcus (x/y/z = −44/−24/55; 376 voxels) and the
supplementary motor area (x/y/z = 4/21/49; 40 voxels) and no
subcortical structures. Differences in subcortical activity began
in the second time bin and are as described above. Using the
separately conducted novel sentence listening and production
LMMs as a guide, activity for overlearned sentences increases in

sensorimotor regions involved in producing speech (Fig. 3, white
outline) and decreases in regions active during novel sentence
listening (Fig. 3, dark gray).

We further explored overlearning LMM results by visualizing
session 1 and 2 timecourses for overlearned sentences. This
allows us to better understand if responses for overlearned
sentences are a simple redistribution or a reorganization of
brain responses. Specifically, we thresholded the GLT contrast-
ing overlearned sentences between sessions 1 and 2 (Fig. S2C)
at a high z-value of 10 and a minimum cluster size of 20 voxels,
resulting in 40 clusters. We used this arbitrarily high threshold in
order to produce a small number of isolated clusters for display
purposes. Nonetheless, so that responses could be discernible
in a Figure, we further limited these to 15 clusters, 5 each from 3
sets of regions that correspond to hypothesis, namely the supe-
rior temporal plane, frontal/parietal regions, and subcortical
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Table 2 Number of voxels (3 mm3) in brain regions from the contrast of overlearned sentence listening from sessions 1 to 2 across time as
displayed in Figure 3

Session 1 Session 2

Region 0–3.5 3.5–7 7–10.5 10.5–17.5+ 0–3.5 3.5–7 7–10.5 10.5–17.5+

LH amygdala 0 0 0 0 0 0 0 0
LH angular gyrus 6 17 27 12 0 11 74 0
LH anterior cingulate gyrus and
sulcus

0 0 0 1 0 108 149 114

LH anterior occipital sulcus and
preoccipital notch

0 6 3 0 0 0 0 0

LH anterior segment of the
circular sulcus of the insula

0 0 0 0 0 0 14 26

LH anterior transverse collateral
sulcus

0 9 10 16 0 0 0 0

LH calcarine sulcus 33 40 33 18 0 0 4 4
LH caudate 0 24 20 19 0 1 51 32
LH central sulcus 0 0 0 0 79 183 167 165
LH cerebellum 0 819 953 995 0 6 52 68
LH cuneus 69 109 116 50 0 0 7 10
LH frontomarginal gyrus and
sulcus

0 0 0 0 0 0 0 0

LH fusiform gyrus 0 31 33 27 0 0 1 0
LH hippocampus 0 5 0 0 0 0 13 8
LH horizontal ramus of the
anterior lateral fissure

0 3 0 0 0 0 0 0

LH inferior frontal sulcus 0 0 0 14 0 19 41 43
LH inferior occipital gyrus and
sulcus

0 48 88 65 0 0 0 0

LH inferior precentral sulcus 0 0 0 0 0 53 95 79
LH inferior segment of the
circular sulcus of the insula

0 20 6 4 0 0 0 0

LH inferior temporal gyrus 0 65 68 49 0 22 49 44
LH inferior temporal sulcus 0 16 14 12 0 0 10 10
LH intraparietal sulcus and
transverse parietal sulci

0 3 6 26 0 14 63 3

LH lateral occipito-temporal
sulcus

0 9 26 17 0 0 5 1

LH lateral orbital sulcus 0 0 0 0 0 4 6 0
LH lingual gyrus 0 36 36 59 0 10 17 36
LH long insular gyrus and
central sulcus of the insula

0 8 10 6 0 0 1 1

LH marginal branch of the
cingulate sulcus

0 0 0 0 0 2 1 6

LH medial occipito-temporal and
lingual sulci

0 24 33 34 0 0 2 0

LH medial orbital sulcus 0 0 0 0 0 19 29 18
LH middle frontal gyrus 0 0 0 76 0 17 92 53
LH middle frontal sulcus 0 0 0 48 0 0 0 0
LH middle occipital and lunatus
sulci

0 7 24 5 0 0 0 0

LH middle occipital gyrus 0 67 137 42 0 0 0 0
LH middle temporal gyrus 0 152 162 113 0 0 0 0
LH middle–anterior cingulate
gyrus and sulcus

0 0 9 0 0 5 15 10

LH middle–posterior cingulate
gyrus and sulcus

0 0 0 0 0 4 1 7

LH nucleus accumbens 0 0 0 1 0 4 12 17
LH occipital pole 0 16 32 29 0 25 56 60
LH orbital gyrus 0 14 3 3 0 47 88 56
LH orbital sulci 0 0 0 0 0 34 46 39
LH pallidum 0 0 0 27 0 0 0 0

Continued
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Table 2 Continued

Session 1 Session 2

Region 0–3.5 3.5–7 7–10.5 10.5–17.5+ 0–3.5 3.5–7 7–10.5 10.5–17.5+

LH paracental gyrus and sulcus 0 0 0 0 34 88 53 27
LH parahippocampal gyrus 0 11 20 11 0 0 21 4
LH parieto-occipital sulcus 13 26 41 6 0 0 0 0
LH pars opercularis 0 31 6 23 0 5 23 14
LH pars orbitalis 0 21 11 9 0 8 8 2
LH pars triangularis 0 2 2 0 0 2 5 5
LH pericallosal sulcus 0 9 8 3 0 0 3 4
LH planum polare 0 52 45 20 0 0 6 8
LH planum temporale 0 76 25 0 0 10 10 0
LH postcentral gyrus 0 0 0 0 69 172 167 162
LH postcentral sulcus 0 0 0 0 23 83 56 50
LH posterior dorsal cingulate
gyrus

0 28 15 8 0 2 0 2

LH posterior lateral fissure 0 0 0 0 0 0 0 0
LH posterior transverse
collateral sulcus

0 1 7 5 0 0 0 0

LH posterior ventral cingulate
gyrus

0 6 7 0 0 0 0 0

LH precentral gyrus 0 0 10 0 13 114 118 104
LH precuneus 13 145 88 72 32 52 19 35
LH putamen 0 79 70 71 0 0 8 6
LH short insular gyri 0 18 19 37 0 0 2 15
LH straight gyrus 0 0 0 0 0 9 13 7
LH subcallosal gyrus 0 0 1 0 0 0 12 18
LH subcentral gyrus and sulcus 0 7 5 3 0 10 16 18
LH suborbital sulcus 0 0 0 0 0 32 47 37
LH subparietal sulcus 0 71 42 46 0 0 0 0
LH sulcus intermedius primus of
Jensen

0 1 0 0 0 5 21 0

LH superior frontal gyrus 0 2 0 64 12 370 520 283
LH superior frontal sulcus 0 0 0 0 0 83 107 71
LH superior occipital and
transverse occipital sulci

6 11 33 1 0 0 0 0

LH superior parietal lobule 12 47 46 35 171 270 193 117
LH superior precentral sulcus 0 0 0 0 0 14 15 14
LH superior segment of the
circular sulcus of the insula

0 4 0 26 0 0 0 0

LH superior temporal gyrus 0 314 266 80 0 0 0 0
LH superior temporal sulcus 0 393 311 134 0 1 29 0
LH superior occipital gyrus 53 72 100 0 0 0 0 0
LH supramarginal gyrus 0 27 1 0 31 137 154 96
LH temporal pole 0 175 193 208 0 0 1 3
LH thalamus 0 2 0 79 0 0 4 5
LH transverse frontopolar gyri
and sulci

0 0 0 0 0 0 0 0

LH transverse temporal gyrus 0 5 0 0 0 0 0 0
LH transverse temporal sulcus 0 10 3 0 0 0 0 0
LH ventral diencephalon 0 3 0 8 0 0 5 4
LH vertical ramus of the anterior
lateral fissure

0 1 0 4 0 0 0 0

RH amygdala 0 0 12 1 0 1 24 4
RH angular gyrus 0 18 17 4 0 2 0 0
RH anterior cingulate gyrus and
sulcus

0 0 0 6 0 97 119 58

RH anterior occipital sulcus and
preoccipital notch

0 0 1 1 0 0 0 0

RH anterior segment of the
circular sulcus of the insula

0 0 11 0 0 5 20 20

Continued
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Table 2 Continued

Session 1 Session 2

Region 0–3.5 3.5–7 7–10.5 10.5–17.5+ 0–3.5 3.5–7 7–10.5 10.5–17.5+

RH anterior transverse collateral
sulcus

0 23 16 20 0 5 10 0

RH brainstem 0 139 157 250 0 65 52 6
RH calcarine sulcus 51 65 65 23 0 0 0 0
RH caudate 0 0 3 13 0 57 77 71
RH central sulcus 0 0 0 0 1 63 13 66
RH cerebellum 0 892 1262 1454 0 66 82 17
RH cuneus 71 108 111 43 0 0 4 5
RH frontomarginal gyrus and
sulcus

0 1 0 0 0 19 27 32

RH fusiform gyrus 0 87 105 136 0 11 1 0
RH hippocampus 0 13 27 22 0 0 43 0
RH horizontal ramus of the
anterior lateral fissure

0 15 20 0 0 0 4 2

RH inferior frontal sulcus 0 0 2 0 0 13 4 14
RH inferior occipital gyrus and
sulcus

0 37 51 58 0 7 2 20

RH inferior precentral sulcus 0 0 0 0 0 16 19 33
RH inferior segment of the
circular sulcus of the insula

0 5 18 1 0 0 1 0

RH inferior temporal gyrus 0 72 79 74 10 87 17 13
RH inferior temporal sulcus 0 49 25 5 0 7 0 0
RH intraparietal and transverse
parietal sulci

0 45 60 47 0 18 1 3

RH lateral occipito-temporal
sulcus

0 4 18 11 0 3 2 0

RH lateral orbital sulcus 0 0 0 2 0 4 11 26
RH lingual gyrus 12 60 80 61 0 3 24 15
RH long insular gyrus and
central sulcus of the insula

0 0 12 0 0 0 0 0

RH marginal branch of the
cingulate sulcus

0 7 0 0 0 0 0 0

RH medial occipito-temporal
and lingual sulci

0 52 93 51 0 0 0 0

RH medial orbital sulcus 0 0 0 0 0 25 31 36
RH middle frontal gyrus 0 26 2 29 9 80 49 183
RH middle frontal sulcus 0 4 0 47 0 0 0 0
RH middle occipital gyrus 0 57 64 4 0 0 1 0
RH middle occipital sulcus and
lunatus sulcus

0 20 27 0 0 0 0 0

RH middle temporal gyrus 0 223 204 52 1 22 10 14
RH middle–anterior cingulate
gyrus and sulcus

0 0 0 0 0 18 18 4

RH middle–posterior cingulate
gyrus and sulcus

0 3 3 0 0 24 15 23

RH nucleus accumbens 0 0 0 0 0 13 15 15
RH occipital pole 2 57 64 33 0 17 86 77
RH orbital gyrus 0 17 9 8 0 96 135 150
RH orbital sulci 0 0 0 0 0 44 52 62
RH pallidum 0 0 54 31 0 0 6 10
RH paracental gyrus and sulcus 0 1 0 0 20 94 25 10
RH parahippocampal gyrus 0 20 38 32 0 11 28 5
RH parieto-occipital sulcus 40 61 57 0 0 0 0 0
RH pars opercularis 0 0 24 0 0 11 26 35
RH pars orbitalis 0 29 20 0 0 1 1 7
RH pars triangularis 0 35 34 0 3 60 61 73
RH pericallosal sulcus 0 24 18 5 0 4 3 2
RH planum polare 0 5 5 3 0 24 27 0
RH planum temporale 0 0 0 0 0 0 0 0

Continued
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Table 2 Continued

Session 1 Session 2

Region 0–3.5 3.5–7 7–10.5 10.5–17.5+ 0–3.5 3.5–7 7–10.5 10.5–17.5+

RH postcentral gyrus 0 0 0 14 9 74 39 38
RH postcentral sulcus 0 2 7 25 0 37 14 18
RH posterior dorsal cingulate gyrus 0 27 9 0 0 1 0 2
RH posterior lateral fissure 0 0 8 0 0 0 0 0
RH posterior transverse collateral sulcus 0 3 10 6 0 0 0 0
RH posterior ventral cingulate gyrus 0 0 1 0 0 0 0 0
RH precentral gyrus 0 0 0 0 8 59 48 79
RH precuneus 18 218 148 76 17 36 3 4
RH putamen 0 0 102 59 0 13 17 17
RH short insular gyri 0 0 27 2 0 0 10 8
RH straight gyrus 0 0 0 0 0 12 3 2
RH subcallosal gyrus 0 0 0 0 0 23 15 15
RH subcentral gyrus and sulcus 0 0 1 0 0 0 0 0
RH suborbital sulcus 0 0 0 0 0 10 9 8
RH subparietal sulcus 0 66 22 13 0 0 0 0
RH sulcus intermedius primus of Jensen 0 0 0 0 0 0 0 0
RH superior frontal gyrus 0 52 33 82 34 388 357 246
RH superior frontal sulcus 0 23 8 48 0 27 3 56
RH superior occipital and transverse
occipital sulci

1 27 52 0 0 0 0 0

RH superior parietal lobule 18 69 77 106 44 107 22 20
RH superior precentral sulcus 0 0 0 0 0 32 25 47
RH superior segment of the circular
sulcus of the insula

0 0 55 0 0 0 1 0

RH superior temporal gyrus 0 178 133 2 6 3 27 5
RH superior temporal sulcus 0 287 266 30 0 0 0 0
RH superior occipital gyrus 43 50 64 14 0 0 0 0
RH supramarginal gyrus 0 0 0 0 0 11 2 2
RH temporal pole 0 105 125 166 93 98 28 1
RH thalamus 0 2 35 53 0 0 7 31
RH transverse frontopolar gyri and sulci 0 16 0 31 0 1 1 8
RH transverse temporal gyrus 0 0 0 0 0 0 0 0
RH transverse temporal sulcus 0 5 0 0 0 0 0 0
RH ventral diencephalon 0 0 3 4 0 1 4 0
RH vertical ramus of the anterior lateral
fissure

0 3 4 0 0 1 1 4

Totals 461 6605 7282 5979 719 4082 4579 3743

Regions are from the “Destrieux Atlas,” an automatic parcellation used to generate 167 regions (Destrieux et al. 2010).

structures. The remaining 25 clusters and corresponding time
courses are provided in Figure S4.

Overlearned sentence responses in frontal and parietal,
including sensorimotor regions, showed a new response in
session 2 from below baseline or lack of activity in session 1
(Fig. 4, left). In contrast, superior temporal regions showed a
reduction in, lack of or below baseline response in session 2
from a state of heightened activity in session 1 (Fig. 4, middle).
Finally, subcortical regions showed an increase in the caudate
and a decrease in the cerebellum and putamen for overlearned
sentences from sessions 1 to 2 (Fig. 4, right).

Overlearning−Novel LMM
To more directly test the hypothesis that sentence processing
after overlearning involves more activity in sensorimotor
regions and less activity in language regions compared with
typical sentence processing, we again performed LMM but after
first subtracting the coefficients for novel from overlearned
sentences. GLTs for overlearned minus novel sentences in both

sessions, independent of time, show that overlearned sentences
resulted in greater activity in sensorimotor regions. In contrast,
novel sentences produced more activity in the superior temporal
plane and inferior frontal gyrus in both sessions (Fig. S3A,B).
Subcortically, in session 1, overlearned sentences produced
more brainstem, nucleus accumbens, and dorsal cerebellar
activity, whereas novel sentences produced more hippocampal
activity. In session 2, overlearned sentences produced more
thalamus and more dorsal cerebellum activity, whereas novel
sentences produced more ventral cerebellar activity.

There were interactions between session and time for over-
learned minus novel sentences that involved much of the brain,
though we do not attempt to interpret these here (though Figs 3
and 5 together suggest the direction of these effects). To visualize
changes over time as in Figure 3, the GLTs for each time point are
presented separately for overlearned minus novel sentences in
session 1 (Fig. 5A) and session 2 (Fig. 5B). The pattern of results
clearly shows more sensorimotor activity for overlearned sen-
tences in both sessions (Fig. 5A,B, reds). The speech production
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Figure 4. Estimated impulse response functions for overlearned and novel sentence listening in different regions. The direct contrast of overlearned sentences from
sessions 1 to 2 was thresholded at z = 10 (P < 1.52 × 10−23), resulting in 40 clusters of activity. Fifteen of these, 5 each from frontal/parietal, temporal, and subcortical

regions were selected for illustrative purposes (Fig. S4 for the other 25 clusters). The impulse response function from the voxels in each of these clusters from the
overlearning LMM were averaged and plotted for each session. Also plotted are the averaged novel sentence listening LMM impulse response functions for comparison.
Note that in most cases, the changes in the impulse response functions before or after learning are from a state of below baseline or inactivity. Abbreviations: CS = central
sulcus; PoCG = postcentral gyrus; POLE = temporal pole; PreCG = precentral gyrus; PTr = pars triangularis of the inferior frontal gyrus; SMA = supplementary motor area;

STSa = anterior superior temporal sulcus; and STSp = posterior superior temporal sulcus.

LMM shows that this occurs in similar sensorimotor regions
used to produce novel sentences. Conversely, there was less
superior temporal plane and inferior frontal gyrus activity for
overlearned sentences (Fig. 5A,B, blues). These regions closely
overlapped those for novel sentences (Fig. 5, dark gray).

Regional Homogeneity
The deconvolution and subsequent LMM results are model-
based, aggregating over stimuli, though without a priori assump-
tions about the shape of the hemodynamic response. To test
whether there is support for hypotheses in a more model-free
manner and whether there is more local sensorimotor connec-
tivity after overlearning, we conducted a regional homogeneity
analysis on preprocessed time series. There was an increase
in sensorimotor cortices and a decrease in superior temporal
plane local connectivity from sessions 1 to 2 for overlearned

sentences (among other regions; Fig. 6, top). We then contrasted
overlearned and novel sentences for sessions 1 and 2 separately
(Fig. 6, bottom). In session 1, there were few regions more active
for overlearned sentences, whereas novel sentences resulted in
significantly greater regional connectivity, mostly throughout
the superior temporal plane and inferior parietal regions, bilat-
erally. In contrast, the overlearned sentences produced greater
inferior parietal and bilateral sensorimotor local connectivity
in session 2 and the local superior temporal plane connectivity
remained greater for novel sentences (Fig. 6, bottom).

Network
To further test the hypothesis that the brain reorganizes after
overlearning, we analyzed the global network variation between
session 1 and 2 for overlearned sentences using edit distance.
There was significant change in connectivity, averaging 45.4%
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Figure 5. Direct contrast of overlearned minus novel sentence listening for session 1 and 2 across time. GLTs for session 1 (top) and 2 (bottom) for the subtraction of
novel from overlearned sentences, done at each of 26 timepoints in the estimated impulse response functions. In both sessions, listening to overlearned sentences
results in significantly more activity in sensorimotor regions (reds) also involved in producing speech (white outline). Conversely, overlearned sentences result in less

activity in the superior temporal plane and inferior frontal gyrus (blues), specifically in regions that are involved in processing novel sentences (dark gray, left hand
column). Everything else is as in Figure 3.

change (SD = 5.50%; Minimum = 32.26%; Maximum = 55.37%;
t11 = 28.69, P = 1.08 × 10−11). To visualize some of these changes
in connectivity, we did chi-square (X 2) tests on the binarised
connections, using a threshold of 6.63 (P < 0.01; Fig. 7). This
resulted in 90 changes in connections, with 25 connections

gained (27.77%) and 65 connections lost (72.22%). This large
reduction in connections was across all major brain subdivi-
sions. Nonetheless, 80% of the changes included medial/midline
(42) and/or subcortical structures (34, with 4 overlapping medial–
subcortical connections). Of the 42 medial regions, 27 were
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Figure 6. Local connectivity changes after overlearning. A regional homogeneity
analysis was conducted to provide a more data-driven validation of more model-

based results (shown in Figs 3–5) and to estimate changes in local synchroniza-
tion or connectivity. In particular, we directly contrasted overlearned sentences
between sessions 1 (blues) and 2 (reds; top row). We also contrasted novel (blues)
and overlearned sentences (reds) for sessions 1 (middle row) and 2 (bottom

row). Results confirm that listening to overlearned sentences after learning
results in significantly more local connectivity in sensorimotor regions (reds)
and significantly less local connectivity in the superior temporal plane.

lost connections (64.29%). Of the 34 subcortical regions, 28
were lost connections (82.35%). New subcortical connections
involved the amygdala (×1), cerebellum (×1x), pallidum (×1x),
hippocampus (×2x), and nucleus accumbens (×2x). Lost
subcortical connectivity involved the caudate (×1x), amygdala
(×2x), cerebellum (×2x), hippocampus (×2x), pallidum (×2x),
brainstem (×4x), putamen (5x), ventral diencephalon (×6x),
and thalamus (×6x). At a more stringent threshold (P < 0.005),
the disproportionate number of lost connections remains
similar at 75.93%, containing more medial and subcortical
lost connections (85.19%; Table S1 for more information about
changes in connectivity).

To characterize global connectivity changes with a more
robust method, Deltacon similarity was computed. There was a
significant dissimilarity between sessions with an average 46.1%
change (SD = 3.90%; Minimum = 43.20%; Maximum = 52.33%;
t11 = 41.43, P = 1.97 × 10−13). To further understand network
changes, we explored a number of other global and local
measures. None of density, diffusion, efficiency, or flow were
significantly different from sessions 1 to 2 (Ps > 0.05). There
were also no differences in the number of communities or the
measures of centrality (Ps > 0.05).

Figure 7. Changes in network connectivity after overlearning. The chord plot
shows all 90 lost (blue) and gained (red) connections between sessions 1 and

2 as determined by chi-square tests on binarised connections between pairs
of 167 regions of interest (X 2 > 6.63; P < 0.01). For ease of visualization, these
were grouped into frontal (Fr), insula (In), medial, occipital (Oc), parietal (Pa),
sensorimotor (SM), subcortical (SC), and temporal (Te) regions. Results suggest

that sentence overlearning results in significantly less connectivity, particularly
in medial cortical and subcortical regions.

Discussion
Based on the relative preservation of both sensorimotor regions
and formulaic language in aphasia and Alzheimer’s disease (Van
Lancker Sidtis and Sidtis 2018) and proposed predictive mod-
els of the role of speech production related regions in speech
perception (Skipper et al. 2017), we hypothesized that sentences
would be processed by sensorimotor regions and not language
regions after learning in our paradigm (Fig. 1). Suggesting over-
learning occurred, reaction times to complete the final word of
overlearned sentences decreased by 2.1 s (Fig. 2A), identification
of other words from those sentences was faster (Fig. 2B), and the
sentences were remembered with higher accuracy in session 2
(Fig. 2C).

Overlearning corresponded to a considerable and local
increase in sensorimotor region activity around the central
sulcus, including primary motor and somatosensory cortices
in both model-based and model-free analyses (Figs 3, 5, and 6,
oranges). These regions overlapped with those involved in
producing novel sentences (Figs 3, 5, and 6, white outline). After
overlearning, speech perception begins earlier in sensorimotor
regions, before the hemodynamic response is typically expected
to rise (Figs 3 and 5, left) and before superior temporal regions
(compare Fig. 4, left and middle onsets). Consistent with
reorganization, some of these regions had a hemodynamic
response around zero before overlearning (Fig. 4, left).

Concomitantly, we found a dramatic bilateral reduction in
activity and local processing in the superior temporal plane
when comparing overlearned sentences from sessions 1 to 2
(Fig. 3, blues; Fig. 6, blues, top). When comparing to novel sen-
tences, there was a reduction in activity and local process-
ing in superior temporal plane and the inferior frontal gyrus
language regions (Fig. 5, blues and gray; Fig. 6, blues, bottom).
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Consistent with reorganization, some superior temporal plane
regions had a hemodynamic response around zero after over-
learning, suggesting they were not active on average (Fig. 4,
middle).

Global measures of network variation indicate that about
45% of the brain reorganized after overlearning, with few new
connections and a profound decrease in connections across the
whole brain (Fig. 7). The latter mainly involved medial corti-
cal and subcortical brain regions. Lost subcortical connections
involved the amygdala, basal ganglia (mostly the putamen but
also the caudate), brainstem, cerebellum, hippocampus, thala-
mus, and ventral diencephalon. These subcortical results par-
allel those in voxel-based analyses that showed less increases
and more decreases in activity (e.g., Fig. 4, right). Other local
and global network measures were not significant. With regard
to the local measures, perhaps central regions did not change,
whereas their connectivity did and community numbers may
have remained similar, whereas the communities themselves
changed dramatically. With regard to the lack of effect for the
other global measures, perhaps these are robust to local connec-
tivity variations between sessions. For example, global efficiency
is likely to remain stable in both structural and functional net-
works over time even while local efficiency significantly changes
(Dennis et al. 2013; Cao et al. 2014).

Overall, results suggest that the brain mechanisms associ-
ated with perceiving overlearned speech are qualitatively dif-
ferent from less formulaic or more compositional language.
They suggest that when speech segments become sufficiently
overlearned, they are processed by a much more circumscribed
and cortically isolated set of sensorimotor regions involved in
producing speech and little, if at all, by language regions.

Formulaic Production

It has been proposed that formulaic language production is
supported by right hemisphere and subcortical interactions (Van
Lancker Sidtis and Sidtis 2018). This conclusion was based on
research showing that formulaic expressions are more common
in left compared with right hemispheric damage (though see
Baldo et al. 2016; Zimmerer et al. 2018). It was additionally based
on results suggesting that individuals with Alzheimer’s dis-
ease produce more formulaic language than people with basal
ganglia strokes and Parkinson’s disease. This is attributed to
relative preservation of the basal ganglia in Alzheimer’s disease.
A region of interest-based neuroimaging study in healthy people
supports both arguments, showing that increased formulaic
language production is correlated with increased right inferior
frontal gyrus and decreased left caudate activity (Sidtis et al.
2018).

Like Sidtis et al. (2018), we also show a large increase in
right inferior frontal gyrus and decrease in subcortical activity
(Fig. 3, bottom). However, our results in other regions are more
bilateral and centered around sensorimotor rather than sub-
cortical regions. This might suggest that the postulated right
hemisphere locus is due to a stronger weighting of right hemi-
sphere regions after aphasia. Our results also suggest that the
presumed subcortical locus might be less about the preservation
or deterioration of the basal ganglia in Alzheimer’s and Parkin-
son’s disease and more about preserved sensorimotor regions
in the former. This is more consistent with research suggesting
that the basal ganglia is significantly impacted in Alzheimer’s
disease, even in early stages (Cho et al. 2014; Pini et al. 2016;
Tentolouris-Piperas et al. 2017). Collectively, our results suggest

that the more preserved right sensorimotor and not right lan-
guage regions or subcortical structures are the locus of formulaic
speech production in aphasia and Alzheimer’s disease.

Formulaic Comprehension

Our results are more consistent with neuroimaging studies of
formulaic language comprehension. Much of this work centers
around figurative language, like idioms and metaphors. These
are processed bilaterally in language regions, with varying con-
tribution of the left and right hemispheres as a function of famil-
iarity (Mashal et al. 2008; Hillert and Buračas 2009; Kasparian
2013; Yang 2014). Furthermore, the more familiar (Schmidt and
Seger 2009; Cardillo et al. 2012), frequent (Fiez et al. 1999; Blu-
menthal-Dramé et al. 2017), or coherent multiword expressions
are (Bhattasali et al. 2018, 2019), the less language regions tend to
be active. Some studies show that sensorimotor activity is more
strongly associated with high-frequency words, more coher-
ent word composition, and impairments of word composition
(Bemis and Pylkkänen 2011; Price et al. 2015), whereas the basal
ganglia are less active for higher frequency words (Graves et al.
2010; Blumenthal-Dramé et al. 2017). One study concluded that
“areas canonically implicated in traditional neurophysiological
models of language processing appear to play a lesser role in
basic [more coherent] composition” (p. 2802) (Bemis and Pylkkä-
nen 2011). Another concluded that multiword expressions rely
on regions other than “traditional frontal and temporal nodes of
the language network” (p. 12) (Bhattasali et al. 2018).

Sequence Learning

The strongest similarities to our results derive from motor
sequence learning research. This work shows that becoming or
being an expert motor performer involves a well-documented
set of decreases and increases in brain activity that depend on
the length of learning (Ashby et al. 2010; Lohse et al. 2014; Doyon
et al. 2018; Caligiore et al. 2019). Specifically, there are 2 learning
stages associated with relative duration: fast online learning,
described as more explicit and by repetition suppression and
slow learning, described as more implicit and by repetition
enhancement and sleep-related or offline consolidation. Fast
learning is frequently linked to more associative cortical and
subcortical regions. In contrast, slow learning is associated
with a global decrease in activity in most regions, including
prefrontal, premotor, parietal, sensorimotor, and subcortical
structures like more associative basal ganglia and cerebellar
regions. Among these widespread decreases, there is a selective
increase in some sensorimotor and subcortical regions, includ-
ing less associative aspects of the basal ganglia and cerebellum.
Generally, these changes might be described as a shift away
from cognitive systems (involving attentional, inhibition,
control, etc.) and toward more “automatic” sensorimotor brain
regions.

Our study incorporated early and late learning phases, with
an early online perceptual learning period (measured in fMRI
session 1) and a late offline production learning period with
motor memory consolidation (measured in fMRI session 2). Con-
sistent with slow learning, we show global decreases in activity
in most cortical and subcortical regions with a selective focal
increase in some sensorimotor and subcortical regions. Also
consistent with the distinction between fast and slow learning,
our results do not simply constitute a redistribution of activity
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patterns in the same language regions but, rather, a reorgani-
zation to sensorimotor regions, suggesting different processes
underlying the perception of novel and overlearned sentences
(Kelly and Garavan 2005).

Neurobiological Models

More generally, our results suggest a model by which the per-
ception of overlearned speech may not rely on language regions.
Like test–retest reliability and lexical processing studies, our
results suggest that the neurobiology of speech perception and
language comprehension is more variable and distributed than
posited by classical and contemporary models (Hickok and Poep-
pel 2007; Friederici and Gierhan 2013; Fedorenko and Thomp-
son-Schill 2014; Tremblay and Dick 2016).

If so, an open question becomes: What differentiates the
more distributed regions found in some studies from the static
regions in popular models? One hypothesis is that the whole
brain variously participates in speech perception and language
comprehension and that language regions as we know them
are mostly connectivity hubs coordinating this more distributed
system (Skipper 2015). Because of the reliance on measures
of central tendency, these distributed regions are “averaged
out” in most studies (Skipper 2015). They only become obvious
when specific categories are under examination, for example,
individual differences, action words, or, as here, formulaic
language.

If they are mostly hubs, the focus on language regions or
their “homologues” in therapeutic interventions risk overem-
phasizing the importance of less specific regions and neglect-
ing more behaviorally relevant network nodes. For example,
given the preservation of formulaic language and corresponding
sensorimotor regions in some individuals with aphasia and
Alzheimer’s disease, it makes sense to focus on those expres-
sions and regions as they might be used as a scaffold for lan-
guage recovery. Indeed, use of formulaic song and language
shows promise in therapy (Stahl and Van Lancker Sidtis 2015;
Stahl et al. 2020).

To the extent models guide therapy, this proposal requires
us to move beyond current neurobiological models with static
regions (Skipper 2015; Skipper et al. 2017; Hula et al. 2020; Upton
and Hope 2020). It begs for a more detailed neurobiological
account of overlearned expressions and other factors that result
in differently distributed language processes. It also suggests a
greater focus on item analysis and individual differences and a
reduced reliance on measures of central tendency to understand
the organization of language and the brain (Seghier and Price
2018).

Limitations

There are a number of possible methodical limitations to this
work associated with the behavioral and fMRI tasks and inter-
pretations. With respect to the behavioral methods, though all
3 tasks showed effects consistent with overlearning, the lexical
decision task was likely underpowered with only 21 items. The
sentence recall task might have used spoken responses given
this is how participants trained. Finally, our procedure might not
reflect natural overlearning and formulaic language. As in our
study, overlearning does often occur through repetition in short
sessions over a relatively small period of time (e.g., as in learning
at a university over weeks for quizzes and exams). However, the
overlearning associated with formulaic language is more likely

picked up over a lifetime of repetitions. Similarly, though many
overlearned expressions are not particularly meaningful (e.g.,
“whats up”), numerous have more specific meanings. Our repeti-
tion learning task did not unfold over years nor did it emphasize
semantic content per se. Thus, the neurobiology of more exten-
sive overlearning, with more semantically meaningful content
might differ somewhat from what was observed here.

In terms of fMRI methods limitations, a larger sample size
would have been preferable. Nonetheless, the high number of
stimulus repetitions, optimized stimulus presentation design,
high sampling rate, and within-participant design largely miti-
gate this concern (Zandbelt et al. 2008; Bennett and Miller 2010).
Next, our design likely leads to repetition suppression effects for
the overlearned but not the novel sentences because the former
are repeated (Grill-Spector et al. 2006). This does not affect
interpretation of the main body of results because these involve
direct comparisons between overlearned sentences from ses-
sions 1 to 2 where repetition effects are equivalent (Figs 3–5
upper panel and Fig. 7). However, it might temper interpretations
of follow-up analyses involving both the novel and overlearned
sentences (Figs 5 and 6 lower panel). Alternately, these results
are even more impressive given that sensorimotor regions are
more active for overlearned sentences despite repetition sup-
pression.

Another limitation is that we used a production task that was
only based on novel sentences. Though our study was about
speech perception, having an additional production task with
overlearned sentences would have allowed us to also make con-
clusions about the production of overlearned sentences, making
more contact with some of the work that inspired our study.
Though our novel sentence production task was used as a guide
only, it could be that the production of overlearned sentences
includes more dorsal sensorimotor regions, presupplementary
motor area, and prefrontal cortex and less supplementary motor
area as was observed for listening to overlearned sentences.

Finally, the passive design did not permit us to collect behav-
ioral data in the scanner to directly correlate with activity pat-
terns. We felt this was justified because our hypotheses cen-
tered around sensorimotor systems. Had we included a motor
response, there would be no way to exclude contamination of
results from associated movements from sensorimotor activa-
tion. We take solace that the behavioral effect sizes we observe
outside of the scanner were unusually large, decreasing the
likelihood of alternative explanations.

Conclusions
Results suggest that the brain regions supporting speech percep-
tion are not fixed but, rather, dramatically reorganize as a func-
tion of individual experience with speech production. Specif-
ically, repeated experience speaking the same word sequence
seems to change the memory representation of those words
to be more formulaic. This trace is subsequently used by the
brain in the process of speech perception, perhaps in a pre-
dictive manner. This involves a different set of regions than
is said to support more compositional language. Given how
frequently formulaic expressions occur, how fast they are pro-
cessed, and how important they are in learning, results call
for more research on how overlearning occurs and formulaic
speech is processed. They also suggest why formulaic expres-
sions might be preserved in aphasia and Alzheimer’s disease.
Therapy for such disorders is often informed by the belief that
language is supported by a static set of language regions or
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the language network, formalized in classical and contempo-
rary neurobiological models. Given that this is not the case, as
shown here and elsewhere, future interventions might benefit
from adopting more dynamic and distributed network models
of language and the brain (Skipper 2015).

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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