1	Position paper of the ESC Working Group on Cellular Biology
2	of the Heart:
3	
4	Circadian rhythms in ischaemic heart disease. Key aspects
5	for preclinical and translational research
6	-
7	
8	
9	Lecour S ¹ , Du Pré BC ² , Bøtker HE ³ , Brundel BJJM ⁴ , Daiber A ⁵ , Davidson
10	SM ⁶ , Ferdinandy P ^{7,8} , Girao H ⁹ , Gollmann-Tepeköylü C, ¹⁰ Gyöngyösi
11	M ¹¹ , Hausenloy DJ ¹² , Madonna R ¹³ , Marber M ¹⁴ , Perrino C ¹⁵ , Pesce
12	M ¹⁶ , Schulz R ¹⁷ , Sluijter JPG ¹⁸ , Steffens S ¹⁹ , Van Linthout S ²⁰ , Young
13	ME ²¹ , Van Laake LW ²² .
14	
15	¹ Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of
16	Cape Town, South Africa
17	² Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
18	³ Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
19	⁴ Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular
20	Sciences, Amsterdam, the Netherlands
21	⁵ Department of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes
22	Gutenberg University, Mainz, Germany and German Center for Cardiovascular Research
23 24	(DZHK), Partner Site Rhine-Main, Mainz, Germany ⁶ The Hatter Cardiovascular Institute, University College London, United Kingdom;
24 25	⁷ Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest,
26	Hungary
27	⁸ Pharmahungary Group, Szeged, Hungary;
28	⁹ Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of
29	Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), Clinical Academic
30	Centre of Coimbra (CACC), Coimbra, Portugal;
31	¹⁰ Department of Cardiac Surgery, Medical University of Innsbruck, Austria
32	¹¹ Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090
33	Vienna, Austria
34	¹² Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore
35	Medical School, Singapore; National Heart Research Institute Singapore, National Heart
36	Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore;

- 1 The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular
- 2 Research Center, College of Medical and Health Sciences, Asia University, Taiwan
- ³ ¹³Institute of Cardiology, University of Pisa, Pisa, Italy and University of Texas Medical School
- 4 in Houston, Department of Internal Medicine, Houston, US;
- ⁵ ¹⁴King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, London, UK
- 6 ¹⁵Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- 7 ¹⁶Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan,
- 8 Italy
- 9 ¹⁷Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
- 10 ¹⁸Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine
- 11 Center, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University,
- 12 Utrecht, the Netherlands
- ¹⁹Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich and German
- 14 Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany
- ²⁰Berlin Institute of Health Center for Regenerative Therapies & Berlin-Brandenburg Center
- 16 for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin,
- 17 Germany and German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin,
- 18 Germany
- ²¹Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at
 Birmingham, USA.
- 21 ²²Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center
- 22 Utrecht, the Netherlands
- 23
- 24 25

26 Corresponding Author

- 27 Sean M Davidson, PhD
- 28 <u>s.davidson@ucl.ac.uk</u>
- 29 Phone: +44 203 447 9894
- 30 Fax: +44 202 447 9505
- 31 The Hatter Cardiovascular Institute
- 32 67 Chenies Mews
- 33 LondonWC1E 6HX
- 34 United Kingdom
- 35
- 36 Word count (excluding abstract, figures and references): 6,999
- 37 **Figures**: 3 colour
- 38

1	Position paper of the ESC Working Group on Cellular Biology
2	of the Heart:
3	
4	Circadian rhythms in ischaemic heart disease. Key aspects
5	for preclinical and translational research
6	
7	Abstract
8	
9	Circadian rhythms are internal regulatory processes controlled by molecular clocks present in
10	essentially every mammalian organ that temporally regulate major physiological functions. In
11	the cardiovascular system, the circadian clock governs heart rate, blood pressure, cardiac
12	metabolism, contractility and coagulation. Recent experimental and clinical studies highlight
13	the possible importance of circadian rhythms in the pathophysiology, outcome, or treatment
14	success of cardiovascular disease, including ischaemic heart disease. Disturbances in circadian
15	rhythms are associated with increased cardiovascular risk and worsen outcome. Therefore, it
16	is important to consider circadian rhythms as a key research parameter to better understand
17	cardiac physiology/pathology, and to improve the chances of translation and efficacy of
18	cardiac therapies, including those for ischaemic heart disease. The aim of this Position Paper
19	by the European Society of Cardiology Working Group Cellular Biology of the Heart is to
20	highlight key aspects of circadian rhythms to consider for improvement of preclinical and
21	translational studies related to ischaemic heart disease and cardioprotection. Applying these
22	considerations to future studies may increase the potential for better translation of new
23	treatments into successful clinical outcomes.
24 25	
25 26	
26 27	
27 28	Konstantes
28	Keywords:
29 30	Ischaemic heart disease, circadian rhythm, cardioprotection, translational research
50	

1 Introduction

2

Circadian rhythms are endogenous (intrinsic) biorhythms that repeat approximately every 24
hours. They allow the body to continuously anticipate day-to-night environmental variations
consequent to the earth's rotation. Circadian rhythms are present in all organisms. In humans,
they play a central role in physiology and disease.

7

8 Many cardiovascular functions, such as blood pressure^{1,2}, cardiac contractility, heart rate³, and 9 vascular resistance show 24-hour, diurnal variations. These rhythms are the product of 10 external (environmental, behavioural) factors and intrinsic (endogenous) circadian rhythms. 11 Circadian rhythms are driven by circadian clocks. Humans possess two clock types: 1) a central 12 biological clock in the suprachiasmatic nucleus (SCN) of the hypothalamus, that controls 13 circadian rhythms via the autonomic nervous system and humoral mediators (e.g. cortisol, 14 melatonin) and 2) peripheral clocks that locally enforce temporal governance in cells such as 15 the cardiomyocytes⁴, vascular endothelial cells⁵, smooth muscle cells⁶, and cardiac progenitor-16 like cells⁷. Both central and peripheral clocks are self-sustainable but can be altered and 17 entrained by environmental factors (called Zeitgebers) such as light, physical activity, and food 18 intake.

19

20 The circadian clock is a molecular mechanism that consists of clock proteins such as CLOCK, BMAL1, PER1/2/3 and CRY1/2⁸. In brief, CLOCK and BMAL form a heterodimer and induce 21 22 transcription of PER and CRY proteins. The latter proteins subsequently form a complex and 23 inhibit the transcription of CLOCK and BMAL1, thereby generating a negative feedback loop. 24 This feedback loop is complemented by several other feedback loops, most notably REV-25 ERB α/β , a member of nuclear receptor family (and thus a pharmacological target of the circadian clock), and further regulated at different levels, including the post-translational and 26 27 epigenetic level. The circadian clock regulates transcription of approximately 10-15% of all 28 genes and proteins in the heart⁹. Oscillation of these genes and proteins causes 24-hour 29 fluctuation in processes like cardiac cellular growth, cell adhesion, metabolism, apoptosis, fibrosis, electrophysiology¹⁰, and contractile function. 30

31

1 An increasing number of studies support the idea that circadian rhythms affect almost all 2 functions of the cardiovascular system and play central roles in cardiovascular disease and 3 recovery. As a result, 24-hour rhythms have evolved from a niche topic to one that is 4 important in almost all pre-clinical and clinical research. It is a factor that, like age or sex¹¹, 5 may significantly impact the translation potential of cardiovascular research. In the current 6 position paper of the European Society of Cardiology Working Group Cellular Biology of the 7 Heart, we aim to provide key aspects on how circadian rhythms can be taken into account to 8 improve clinical and preclinical studies in cardiovascular disease, with a focus on ischaemic 9 heart disease.

10

11 1. Circadian rhythms and physiological regulation of the cardiovascular system

12 The cardiovascular system consists of various physiological parameters that exhibit 24-hour 13 (diurnal / time-of-day / day-night) variation. Many of these parameters are orchestrated by 14 the circadian clock (see figure 1) and named circadian rhythms, although these terms are often 15 mixed. Blood pressure is one of the factors longest known to fluctuate throughout the day. It 16 is lowest around 3AM, rises just before awakening and peaks mid-morning, after which it 17 decreases again toward the night². Blood pressure is regulated on a central level via 18 sympathetic, parasympathetic as well as hormonal influences such as the renin-angiotensin 19 system and the endothelin system¹². On a local level, circadian clocks in cardiomyocytes and 20 vascular cells regulate heart rate, muscular contractile function, and endothelial function^{13,14}. 21 The 24-hour fluctuation in blood pressure is likely the result of all these factors combined, 22 although the role of the circadian clock is complex. Several animal models have been 23 instrumental to explore the role of each factor, for example by genetically disrupting the genes 24 coding for core clock proteins including CLOCK¹⁵, BMAL¹⁶, and PER¹⁷ on whole body and organ 25 / tissue levels. These models demonstrate that genetic whole body disruption of the molecular circadian clock leads to blunted diurnal variation of blood pressure¹⁸. Cell-specific disruption 26 27 of the circadian clock through Bmal1 disruption in endothelial cells and vascular smooth muscle cells shows similar results¹⁹, but disruption of the circadian clock in cardiomyocytes 28 does not blunt blood pressure rhythmicity²⁰. Studies in humans suggest that the normal rise 29 30 in blood pressure in the early morning is primarily driven by waking at this time, whereas the secondary evening rise in blood pressure is driven by endogenous circadian clocks²¹. 31

Heart rate¹ and many electrophysiological parameters such as PR-²², QRS-²³, and QTc-interval 1 in the ECG²⁴, as well as heart rate variability²⁵ vary throughout the day in healthy humans. 2 3 Variation in electrophysiological parameters is regulated by both the (central) autonomic 4 nervous system and peripheral circadian clocks. Peripheral circadian clocks regulate the 5 expression and function of sodium-²⁶, potassium-¹⁰, and calcium-channels²⁷. As a result, isolated cultured cardiomyocytes show 24-hour variation in spontaneous beating²⁸ and in 6 7 animal models where the molecular circadian clock is disrupted in cardiomyocytes specifically, 8 24-hour variation in heart rate is diminished¹⁵.

9

Cardiac contractility also varies throughout the day. Daily variation is caused by circadian rhythms in the previously described electrophysiology as well as cardiac metabolism and cell signaling^{4,16}. These rhythms are regulated by molecular circadian clocks within the heart, since variation in contractility persists outside the body in explanted hearts¹⁵. In humans, variation in cardiac contractility can be observed in 24-hour variation of cardiac echocardiographic parameters describing cardiac relaxation / diastolic function²⁹.

16

17 Coagulation is another well-studied example that has 24-hour variation in function. Evidence 18 for circadian rhythm in platelet function and aggregation in healthy adult males was already obtained in 1987³⁰. Platelet aggregation activity is highest in the morning and, similar to blood 19 20 pressure, is regulated by both central and peripheral clocks. Central clocks regulate 21 catecholamine levels, platelet count (via thrombopoietin) and haemoconcentration that peak upon arousal^{31,32}. On a peripheral level, circadian clocks in platelets control platelet activation 22 23 independent of these central clocks: although platelets lack a nucleus and therefore the 24 canonical transcriptional-translational feedback loop, an alternative non-transcriptional clock has been demonstrated in anucleate cells³³. In addition, circadian clocks in endothelial cells 25 regulate expression of pro-thrombotic factors such as plasminogen activator inhibitor-1³⁴. All 26 27 combined, this leads to increased coagulability in the morning, beneficial in ages when 28 humans were most likely to injure themselves in the morning, but nowadays more infamous for increased morning incidences of thrombotic events such as cerebrovascular accidents³⁵ 29 30 and acute myocardial infarction (AMI)³⁶.

31

1 Traditionally, 24-hour variation in cardiovascular parameters has been attributed to the 2 autonomic nervous system. Increasing evidence, however, shows that the role of this 3 neuronal influence may be limited. Studies in animal circadian clock knock-out models for 4 example, demonstrate that disruption of the molecular circadian clock completely abolishes 5 24-hour variation in physiological parameters, whereas blockade of the autonomic nervous system only diminished rhythmicity^{37,38}. In humans, this is further supported by heart 6 7 transplantation studies, where 24-hour rhythmicity in heart rate and other parameters continues after autonomic denervation³⁹. Instead of the main driving force of 24-hour 8 9 variation, the autonomic nervous system is more likely one of the links between the central 10 and peripheral circadian clocks. A similar situation might be true for hormones such as 11 melatonin, cortisol, adrenalin, and insulin⁴⁰.

12

13 **2.** Circadian rhythms and ischaemic heart disease

14 Circadian rhythms play a major role in cardiovascular disease at the level of incidence, 15 pathophysiology, and outcome^{41–43}. Reviews have been written about this topic in specific 16 cardiovascular diseases such as stroke⁴⁴ and arrhythmias^{38,45}. Here, we focus on ischaemic 17 heart disease in both its chronic and acute manifestations.

18

For decades, 24-hour rhythms have been studied in the context of disease onset. Acute ischaemic heart disease (AMI) occurs more frequently in the early morning^{46–49}. This may be explained by a combination of factors, including the previously described morning increase in hemodynamic stress (surge in heart rate and blood pressure), platelet aggregability, circadian leukocyte oscillations, and recruitment of inflammatory leukocytes from blood to plaque during this time of day^{30,50–53}.

25

In 2010, Durgan et al. published a break-through study investigating circadian rhythms in tolerance of the heart to ischaemic insults. When myocardial ischaemia is induced at the sleep to wake transition (subjective morning) in an animal model, infarct size, fibrosis and adverse remodelling were significantly worse compared to ischaemia at the wake-to-sleep transition (subjective evening)⁴¹. This illustrates that circadian rhythms are not only important in the

incidence and development of ischaemic heart disease, but also play a major role in outcome
 of disease^{41,42}.

3

4 Several clinical studies observed differences in plasma levels of creatine kinase after AMI that 5 were similarly dependent on time-of-ischaemia onset^{54–56}. Some clinical data further suggest that morning onset of AMI is associated with increased risk of recurrent acute coronary 6 7 syndromes and coronary atherosclerosis progression⁵⁷. However, other investigations failed 8 to confirm an association between time-of-day at symptom onset and infarct size or long-term 9 mortality in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention⁵⁸. The variable outcome between clinical studies 10 has been discussed extensively^{59,60}. One of the limitations in humans is certainly the relatively 11 12 high variability in patient characteristics (ethnic background, medication use, comorbidities 13 (such as diabetes), chronotype, culprit artery, time of ischaemia) as well as other study 14 parameters (statistical methodology, study size, and outcome measure), which might render 15 it difficult to validate an association between time of day of ischaemia onset and outcome.

16

17 To better assess direct causal relationships between circadian rhythmicity and infarct size, mouse models of AMI have been instrumental⁶¹. Animal and *in vitro* models also help 18 19 understand the processes involved in diurnal variation of AMI outcome. In support of a 20 possible role for circadian clocks in ischaemic damage, genetic disruption of clock genes leads 21 to an altered infarct size in mice. Disruption of positive components of the molecular 22 clockwork such as Bmal and Clock caused an increased infarct size, whereas disruption of the negative component *Per2* and *Rev-Erba* reduced infarct size^{41,42,62}. This further supported the 23 24 study of Durgan et al., which used a cardiomyocyte-specific Clock mutant mouse model to demonstrate that the diurnal variation in AMI outcome is orchestrated by the cardiomyocyte 25 clock, possibly via a diurnal rhythm in ischaemia tolerance^{28,41}. Clock disruption in other cell 26 27 types, such as the immune system and fibroblasts, may also contribute to the diurnal variation 28 of AMI. Studies in wound healing for example, demonstrate that 24-hour variation in wound 29 healing is caused by a rhythm in fibroblast activity, a process also important in post-AMI cardiovascular remodelling⁶³. 30

31

1 Animal models also showed other important relations between outcome of ischaemic heart 2 disease and circadian rhythms, for example the effect of circadian disruption. In an 3 experimental mouse model of permanent left coronary ligation, disruption of light/dark cycles promotes an unfavourable healing response after AMI⁶⁴. More specifically, infarcted mice 4 5 were subjected to 10h light/10h dark cycles over 5 days, resulting in cardiac dysfunction and 6 poorer AMI tolerance. Circadian disruption had significantly greater adverse remodelling with 7 increased left ventricular internal systolic and diastolic dimensions, accompanied by 8 decreased fractional shortening and ejection fraction. Other studies investigated time-of-day 9 differences after myocardial infarction in depth, and found that in mice, AMI in the awake 10 period triggers genes associated with metabolic pathways, whereas an AMI in the inactive period leads to upregulation of genes associated with inflammation⁶⁵. This time-of day effect 11 12 of AMI on cardiac remodelling is regulated by the circadian clock⁶⁵. Vice versa, there is 13 evidence that AMI may lead to circadian disruption, for example in the beta-adrenergic receptor expression, thereby contributing to adverse cardiac remodelling^{66,67}. 14

15

16 The first studies investigating time-of-day and ischaemic heart disease focussed on melatonin, 17 an hormone produced by the pineal gland, under the influence of light, and one of the input signals of the circadian clock⁶⁸. Both animal and patient studies suggest that endogenous 18 19 melatonin levels correlate with lower ischemia-reperfusion injury ^{69–72}. Vice versa, AMI may 20 lead to decreased melatonin levels.^{73,74} The relationship between melatonin and 21 cardioprotection in ischaemic heart disease is complex and involves multiple processes 22 including the regulation of the molecular circadian clock or direct effects of melatonin as a 23 regulator of multiple prosurvival signaling cascades within the heart, an antioxidant and an anti-inflammatory molecule^{75–77}. 24

25

In humans, disturbance of circadian rhythms is also associated with ischaemic heart disease⁷⁸. Circadian rhythm disturbance (e.g. by sleep deprivation or shift work) induces a misalignment between physical activity and intrinsic clocks, with adverse effects on cardiovascular parameters, healing responses, and remodelling. Insufficient sleep, for example, affects the blood transcriptome and disrupts its circadian regulation⁷⁹. The identified genes, pathways

and biological processes affected by insufficient sleep include circadian clock genes as well as
 inflammatory, immune, and stress response pathways.

3

4 The immune system appears to be a major contributor to the variation in AMI outcome. 5 Humans have diurnal fluctuations in immune cell numbers^{41,80}. In particular, the innate 6 immune system including the inflammasome, the first immune response following an AMI and involved in recruitment and activation of pro-inflammatory monocytes, is circadian 7 regulated^{81,82}. Production and retention of neutrophils in the bone marrow is time-of-day 8 dependent^{83,84}. Moreover, circulating neutrophils at the beginning of the active phase have 9 10 higher capacity to migrate into the myocardium due to upregulated CXCR2 (C-X-C Motif Chemokine Receptor 2) expression⁸⁰. Other immune cells such as classical monocytes are 11 12 regulated by the circadian clock and involved in AMI outcome^{85,86}. Disruption of the molecular clock in these monocytes worsens inflammation^{81,85}. Recently, a study showed that the 13 14 inflammatory role of the gut microbiome in AMI and heart failure is influenced by the circadian clock⁸⁷. 15

16

17 The molecular circadian clock is not only important in AMI, but also plays a major role in 18 chronic ischaemic heart disease. Disruption of the molecular clock can dampen blood pressure 19 rhythmicity, reduce the production of vasoactive hormones and cause endothelial 20 dysfunction⁸⁸, thereby increasing the development of atherosclerosis⁸⁹. For example, the 21 aortae of clock-mutant mice exhibit impaired cholesterol metabolism and enhanced atherosclerosis⁹⁰. Interestingly, the mechanism appears to be cell intrinsic as significant 22 23 atherosclerosis develops when the aortae from clock mutant mice are transplanted into wild type mice⁸⁸. Pharmacological targeting of clock components decreased atherosclerosis in 24 25 mouse models, likely secondary to effects on inflammation⁵³.

26

Finally, to illustrate some relevant links beyond our focus on ischaemic heart disease , global
 and cardiomyocyte-specific clock-mutant mice develop dilated cardiomyopathy^{16,91}.
 Moreover, cardiomyocyte-specific downregulation of BMAL1 results in reduced heart rate,
 prolonged RR and QRS intervals, and increased episodes of arrhythmia. The phenotype is
 linked with reduced circadian expression of the sodium and potassium channels, which may

contribute to the sudden cardiac death observed in cardiomyocyte-specific *Bmal* knockout
 mice^{26,92}.

3

4 **3.** Circadian rhythms and interacting factors

5 Multiple factors are associated with circadian rhythms and cardiovascular disease. This 6 relation is often bi-directional: disruption of circadian rhythms is associated with an 7 increased severity of many cardiovascular risk factors and, vice versa, the presence of most 8 cardiovascular risk factors is associated with a disturbance in circadian rhythms. The 9 circadian rhythms may be disturbed on various levels. Often, clock input signals 10 (Zeitgebers) are misaligned with intrinsic molecular clocks. This occurs, for example, with 11 travel to a different time-zone (jetlag) or in case of shift-work. Intrinsic factors may also 12 disrupt the molecular clock directly.

13 In table 1, we summarize the relationship between circadian rhythms and various 14 traditional and environmental interacting factors known to affect cardiovascular risk, from 15 age, sex to environmental factors including light, temperature and noise. It is important to 16 note that an association between an alteration of circadian rhythms and different stimuli 17 is often observed in both preclinical and clinical settings but a causal relationship is yet to 18 be proved with most factors.

19 **Table 1**

Interaction	ng factors	Relationship between interacting factor and circadian rhythm	Relevant references
Physiological	Sex	Sex-specific differences in the mechanisms that	11,93–96
factors		establish circadian rhythms. In healthy adults,	
		circadian misalignment is associated with sex-	
		specific changes in energy homeostasis	
		independent of behavioural/environmental factors.	
		In female rodents, oestrous cycle stage has tissue-	
		dependent effects on the expression of clock genes.	
	Aging	Aging has been associated with changes in the	97,98
		period and amplitude of circadian rhythms in	

		rodents. Advanced age associated with a	
		modulation to the light-dark cycle and a loss of	
		responsiveness to the phase shifting. In both	
		humans and rodents, melatonin levels decline with	
		aging.	
	Pregnancy/	The central circadian clock undergoes marked	99–102
	lactation	adaptations with the onset and progression of	
		pregnancy. Circadian rhythms modulate metabolic	
		and hormonal adaptations necessary to initiate and	
		sustain lactation, and several components of breast	
		milk show circadian variations. Lactation is	
		associated with improved nocturnal sleep in breast-	
		fed infants.	
Co-	Hypertension	Molecular clocks regulate the circadian regulation	18,103–105
morbidities		of blood pressure). Spontaneously hypertensive rats	
		display alterations in the circadian genes expression	
		in several organs including the heart and the aorta.	
		In humans, antihypertensive treatment given at	
		bedtime reduces cardiovascular risk	
		Epidemiological studies suggest a correlation	
		between endogenous melatonin levels and incident	
		hypertension.	
	Metabolic	Genetic alterations of the molecular clock have	106–108
	diseases	pronounced effects on both peripheral and central	
		metabolic regulatory signals. Disruption of the	
		circadian rhythm is associated with increased risk	
		in metabolic diseases. Alterations in energy balance	
		are associated with disruptions of the circadian	
		clock function, of the blood pressure circadian	
		rhythm and changes of clock genes expression in	
		the vasculature.	
Psychological	Depression	Major depressive disorders are frequently	109,110
factors		associated with a disruption of the expression of the	

		clock genes. In rodents, models of circadian	
		disruption are characterized by depressive-prone	
		features.	
	Mental stress	A variety of mental stressors are associated with	111–113
		alteration of peripheral clocks in animals. It is	
		suggested that mental stress causes the	
		dysregulation of circadian rhythm by inducing	
		oxidative stress which disrupts circadian clock	
		proteins.	
Behavioural	Physical	Physical performance is partly dependent on	114–119
factors	activity	circadian clock proteins and, vice versa, physical	
		inactivity or exercise can influence the circadian	
		system in mammals. Exercise, if performed at the	
		appropriate time of day, shifts the internal circadian	
		rhythm phase and thus improves circadian	
		alignment. Late chronotypes ('evening people'),	
		who experience circadian misalignment may	
		benefit from phase advances induced by morning	
		exercise, whereas evening exercise may exacerbate	
		circadian misalignment in the early chronotypes.	
		Thus, the personalized prescription of exercise	
		times based on the chronotype could alleviate	
		circadian misalignment in young adults.	
	Food intake	Food intake is a Zeitgeber for the circadian clock.	120–122
		The timing of food intake influences the effect of	
		nutrients on the cardiovascular system. Time-	
		restricted feeding prevents metabolic disease and	
		cardiac ageing in animal models, and is currently	
		investigated in clinical trials.	
	Alcohol	Circadian clock disruption may favour alcohol	123–126
	consumption	addiction and chronic alcohol consumption in	
		rodents disrupts molecular clocks. Alcohol	
L	1	1	

		upregulates the expression of <i>Clock</i> and <i>Per2</i>	
		circadian clock genes.	
	Smoking	Cigarette smoking alters gene expression of the	127,128
		central (brain) and peripheral (lung) clock genes.	
Environmental	Temperature	Temperature oscillations as small as 1°C alter	129–132
factors		expression of circadian genes and thereby affects	
		circadian amplitude and phase. The circadian	
		period length (tau) on the other hand remains	
		approximately constant through the homeostatic	
		mechanism of temperature compensation.	
	Noise	Auditory function is regulated by biological clocks,	133–140
		and, vice versa, sound stimuli can influence	
		circadian rhythms. As an example, sleep	
		deprivation induced by aircraft noise will increase	
		vascular and cerebral oxidative stress, an effect	
		associated with the modulation of circadian clock	
		genes in murine aorta, heart and kidney.	
	Light/ season	Light is the most powerful environmental signal for	127
		phase-shifting circadian rhythms. The time and	
		amount of solar irradiation vary dynamically with	
		the season, especially with increasing distance from	
		the equator. Chronotype is influenced by seasonal	
		change, most likely due to light differences. Inter-	
		individual differences in photoperiod	
		responsiveness indicate that some people are more	
		affected than others, possibly due to variation in	
		molecular clock and/or previous light history.	
	Sleep	Shift work and sleep disorders (short duration	141–149
	disorders	and/or poor quality sleep) chronically disrupt the	
		circadian clock system. In shift workers, circadian	
		blood pressure rhythm changes from a "dipper"	
		pattern to a "non-dipper" pattern during night shifts	

		and reverses back to a dipper pattern within a few	
		days after the end of the shiftwork.	
	Air pollution/	Chemical pollutants can have a significant impact ^{139,150–154}	
	toxins	on circadian rhythms, altering sleep/wake pattern	
		and increasing the risk for cardiovascular disease by	
		altering rhythmic cardiovascular functions.	
		Air pollution alters redox regulation of the circadian	
		molecular clock. Heavy metals or pesticides induce	
		oxidative stress which mediates redox	
		modifications of circadian clock proteins.	

1

2 4. Current pitfalls in clinical and preclinical studies

3 Circadian rhythms are currently only considered in a minority of clinical and preclinical studies.

4 This omission leads to several potential pitfalls (figure 2) and the most common ones are 5 discussed below:

6

7 4.1 Clinical studies

8 A. Collection of clinical (time-of-day) parameters

9 In many studies, no data about circadian parameters are collected or reported, resulting to 10 the risk of both type I and type II errors. To illustrate this, take a hypothetical trial in which the 11 ability of a new drug to reduce infarct size long-term, is compared to placebo. In the accidental 12 case that most patients (or experimental animals) in the drug arm of the study experience an 13 AMI in the afternoon (smaller infarct), whereas the placebo subjects more often have their 14 AMI in the morning (larger infarcts), one could falsely conclude that the new drug decreases 15 infarct size (Type I error). Alternatively, when subjects in the drug arm of the study more often 16 suffer from AMI in the morning compared to placebo subjects, a beneficial effect of the drug 17 will remain unnoticed (Type II error).

18

19 Furthermore, as a disrupted circadian rhythm (as explained in chapter 3) is related to disease

20 incidence, outcome, and effect of an intervention, this pre-existing "comorbidity" may act as

a confounder in clinical studies that thus far goes unnoticed: unlike other comorbidities and
 demographic factors, it is hardly ever analysed or corrected for in the data analysis.

3

Finally, an intervention may directly disrupt (or restore) the circadian rhythm of subjects, which may affect the outcome of a clinical study or cause unexplained variation if preferentially incident in a subgroup of patients or controls. Unless questionnaires or measurements are taken to establish intactness of the circadian clock, this type of confounding factor will not be registered.

9

Thus, recording of parameters related to both collecting time and circadian rhythm, before
and during the study will improve the accuracy of the study results and may reduce type I and
II errors.

13

14 <u>B. Sampling</u>

15 Circulating factors in clinical laboratory measurements such as troponin¹⁵⁵ and soluble ST2¹⁵⁶, 16 as well as functional (e.g. coagulation-related³⁴) tests display physiological diurnal variation. 17 In almost all nucleated cells and tissues, circadian clocks are active and will rhythmically 18 regulate approximately 10-15% of the transcriptome and proteome. Therefore, blood and 19 tissue sampling at random times may cause undue variation, whereas structurally different 20 sampling times between groups may cause bias and false negative or false positive results.

21

22 <u>C. Physiological parameters</u>

Blood pressure is a well-known example of a physiological parameter that can only be compared when measured around the same time of day. In addition, its diurnal/nocturnal pattern appears more clinically relevant than a single measurement. Performance at exercise tests, vascular reactivity, and ECG parameters such as QTc time²⁴ are other examples of measurements that are affected by diurnal variation, yet often performed at random times.

28

29 Consciously choosing and reporting a specific time-of day to do a measurement may be 30 beneficial. Measuring a cardiovascular parameter always at a specific time limits the variation

- 1 of the measurement. This reduces the number of subjects needed to find significant outcomes
- 2 (increased statistical power) and increases chances of replication by other research groups.
- 3

4 <u>D. Drug therapy</u>

5 Clinical studies that investigate circadian aspects of intervention, previously showed that both 6 the efficacy and side effects of therapy may depend on the timing of treatment 7 administration.¹⁵⁷ In some cases, a treatment that is not effective or has unacceptable side 8 effect at a certain time of the day, may display a better risk-benefit ratio at a different time. 9 When circadian parameters are not collected, optimal timing of therapy will not be 10 determined, and a good treatment tested at the wrong time of the day may not make it into 11 the clinic setting. This variation may be caused by pharmacokinetics and pharmacodynamics 12 that are oscillating over 24 hours, and/or by target responsiveness – for example if the target 13 receptor is variably available due to regulation by the circadian clock. Furthermore, drugs may 14 disturb or enhance the circadian system as an off-target effect; melatonin and corticosteroids 15 are classic examples, but newer drugs may also interfere with clock function.

16

17 Beta blockers abolish the circadian patterns of ischaemic events, therefore the use of 18 extended-release beta blockers in the evening might reduce vulnerability for cardiac events in 19 the morning¹⁵⁸. In parallel, long-acting anti-hypertensive drugs (e.g. ACE-inhibitors) might 20 decrease the blood-pressure peak in the morning¹⁵⁹. In a prospective, randomized trial low-21 dose aspirin showed a time-dependent effect on the blood pressure of untreated 22 hypertensive patients. While before-bedtime aspirin intake reduced the blood-pressure, the intake of aspirin in the morning even slightly elevated blood-pressure levels¹⁶⁰. The MAPEC 23 24 study investigated prospectively the effect of administration time of anti-hypertensive 25 medication and randomized over 2000 patients into morning dosing all BP medications or 26 dosing ≥1 BP medications at bedtime. After a mean follow-up of 5.6 years, the patients in the 27 evening dosing group showed lower mean asleep blood pressures, a lower prevalence of non-28 dipping pattern and improved ambulatory BP. In addition, bedtime intake reduced major and total cardiovascular events including deaths¹⁶¹. Recently, a follow-up study showed similar 29 results in prospective study of more than 19000 patients¹⁰⁵. Both studies elegantly show the 30 31 potential impact of chronotherapy on patient outcome. Meticulous planning of the timing of

pharmacotherapeutical administrations is necessary to achieve reliable and reproducible
 outcome data.

3

4 <u>E. Invasive therapeutic interventions</u>

5 Cardiac surgery

6 During cardiopulmonary bypass, cardioplegia and subsequent reperfusion inevitably result in 7 ischaemia/reperfusion injury. A small (n=88) prospective randomized single-centre study 8 found perioperative myocardial injury in surgical aortic valve replacement to depend on the 9 time of the day⁴². Patients operated in the afternoon showed decreased perioperative 10 troponin T release and reduction of major cardiac events, which was associated with 11 transcriptional regulation of *REV-ERB* α .

12

These data could not be confirmed in a large retrospective analysis of the Society of Thoracic Surgeons (STS) Adult Cardiac Surgery Database (n=14078 patients) including 11 surgical centres in the US¹⁶². However, further randomized data including larger numbers of patients are necessary to substantiate the impact of surgical timing on outcome and thus whether timing of surgery should be taken into account in the design and analysis of clinical studies.

18

19 Catheter intervention

20 Results of percutaneous coronary intervention (PCI) have variably been related to time-ofday. An observational study from a Swiss registry of 2860 patients with STEMI found that 21 22 effectiveness of thrombus aspiration was dependent on time of symptom onset with greatest myocardial salvage for patients with symptom onset between 6 a.m. and 6 p.m.¹⁶³. In another 23 24 registry-based study a circadian STEMI pattern with a peak during morning hours without 25 impact on the clinical outcome was found in 8608 patients ¹⁶⁴. A retrospective analysis of 1021 26 patients showed a decreased rate of periprocedural (Type 4A) AMI in patients undergoing 27 elective PCI between 7 a.m. and noon, whereas treatment in the afternoon increased the risk for type 4A AMI¹⁶⁵. Clearly, there is an urgent need for prospective data regarding the time of 28 29 the day during PCI procedures in patients with ischaemic heart disease to substantiate the 30 role of circadian mechanisms in PCI-related outcomes. In addition, time of symptom onset and timing of intervention should be taken into account in future PCI studies to exclude a bias of
circadian mechanisms.

3

4 *Heart transplantation*

5 Ischaemia during organ harvesting and reperfusion after termination of cross-clamping is the 6 prime example for ischaemia/reperfusion injury. Prolonged ischaemia time is associated with 7 rejection and impaired long-term outcome¹⁶⁶. A retrospective cohort study including 16573 8 patients undergoing heart transplantation found no significant association between daytime or night-time surgery and survival up to 1 year after organ transplant¹⁶⁷, but no specification 9 10 was made between time points within 12 hour blocks. A similar study in lung transplant 11 patients on the other hand, did find time-of-day effect on outcome. Transplants performed 12 between 4 am and 8 am, had a relatively high risk of primary graft dysfunction¹⁶⁸. Again, it 13 would be desirable to include time of surgery as a parameter in prospective outcome analysis 14 to clarify possible circadian effects.

15

16 Hospital operational rhythms and shift work

17 Hospitals provide care 24 hours a day. Observational studies show that almost all care, 18 including diagnostics, treatments and referrals take place according to a fixed daily pattern 19 ¹⁶⁹. These patterns are generally not motivated by medical necessity but by practical 20 considerations, such as availability of staff, changing of shifts, or simply habits. In addition, 21 hospital care is delivered by staff who are also under the influence of circadian rhythms. Night 22 shifts disrupt day-night rhythms, leading to reduced alertness and a greater risk of making 23 mistakes. Observational studies show a worse outcome of operations performed at night (although bias is hard to rule out properly in these studies)¹⁷⁰. 24

25

26 4.2 Preclinical studies

It is clear that, like humans, animals in laboratory conditions show time-dependent behaviour in for example food intake and physical activity. Indeed, physiological and molecular 24-hour variation is demonstrable in these animals and therefore relevant in the setup of experiments⁶⁵. Just as time of incidence in humans may affect the outcome of observational and interventional studies, the time of an induced event can affect the outcome in preclinical

- 1 animal models. A clear example is the timing of coronary artery ligation to induce AMI in rodents, given the ample evidence that timing affects infarct size in this model^{41,59,171}. 2
- 3

4 Besides this timing of "incidence", sampling, physiological parameters, drug therapy and 5 invasive interventions entail the same pitfalls in preclinical animal models as in clinical or 6 epidemiological studies, described in section 4a. In addition, several relevant considerations 7 are specific to preclinical experimentation.

8

9 A. Choice of animal model

10 In laboratory animal studies in vivo, the alternans of light and dark periods congruent with 11 outside day and night is used as standard day-night conditions, named photoperiod. In diurnal 12 species (pigs, dogs, sheep, monkeys and humans), the acrophase (physiological peak phase) 13 of body temperature and locomotor activity occurs during daytime. The acrophase of 14 nocturnal animals (mice, rats, hamsters) occurs at night. When noise is present or experiments 15 are performed in nocturnal animals during human working hours, this leads to several 16 problems. First, animals are disturbed in the inactive period, causing stress, non-physiological 17 light exposure leading to hormonal (e.g. melatonin) disruptions and thereby non-physiological 18 results of the experiments performed. Secondly, if the procedure is performed in the inactive 19 period, results do not translate well to a clinical situation when a human receives a treatment 20 during working hours. A recent study investigating cerebral ischaemia, suggests that the 21 difference between nocturnal animals and diurnal humans contributes to the translational failure of novel, promising neuroprotective strategies¹⁷². In addition to being representative 22 23 with respect to size, pigs have similar dietary habits (omnivorous) and diurnal behaviours as 24 humans. Zebrafish and Drosophila, often used in transgenic and repair studies, are diurnal 25 animals as well.

Age and sex are other factors to consider when choosing the best animal model for an 26 27 experiment, since both may affect the circadian clock as described in section 3. Overall, 28 circadian amplitude may be expected to be lower in older than in younger animals, while the 29 differences between sexes in experimental animals require further investigation as data in 30 female animals are scarce¹⁷³.

1 Further, the translational power of a preclinical study may be reduced if the animal model 2 does not reflect the degree of circadian disruption in the patient category that it aims to 3 represent. Atherosclerotic comorbidities affect central and peripheral circadian rhythms, a factor rarely considered in animal experiments^{64,174}. A therapy may work well in a young 4 5 healthy animal with normal clock function, but not in an older patient with disturbed clock 6 function due to external factors or age itself. Interventions unique to the preclinical situation 7 may disrupt the circadian rhythm in animals specifically. General anaesthesia, for example, which is known to deregulate the circadian clock¹⁷⁵, is usually performed for echocardiography 8 9 in animals but not humans. Ear-based instrumentation of pigs led to increased stress of the 10 animals with consequent diminished circadian rhythm of temperature oscillations lasting up to 3 days¹⁷⁶. Thus, as with other comorbidities such as diabetes or obesity, circadian clock 11 12 function in this way may act as a contributor to the translational gap.

13 <u>B. Housing</u>

Light and darkness will obviously affect the circadian rhythm in experimental animals. Light /darkness (L:D) schedules of 12:12 L:D schedules and 14:10 schedules are standard, and occasionally seasonal variation is taken into account in the laboratory setting. Different L:D schedules between labs may account for variation in results. Importantly, lack of acclimatization after a transfer, but also unintended light disruption at night, are likely to cause profound disruption of the circadian rhythm and may thus affect study results without the researchers being aware¹⁷⁷.

21 Circadian disruption can also be performed intentionally to mimic a clinical situation. Patients 22 with AMI are treated in coronary care units or intensive care units (ICUs), with interrupted 23 endogenous circadian rhythms and sleep periods due to noise of monitors and lights. Alibhai 24 et al. demonstrated that rats with AMI subjected to disrupted diurnal rhythm had disturbed 25 metabolism, innate immune response, and altered scar formations and overall worse prognosis⁶⁴. Similar to rodents, continuous sedation, mechanical ventilation and medical 26 27 maintenance of the circulation of pigs, simulating human intensive care unit conditions led to lost or desynchronized internal biological circadian rhythm¹⁷⁸. 28

22

1 Furthermore, any stress-inducing housing circumstance (e.g. limited nesting opportunities,

2 lack of socialization) will increase cortisol levels^{179,180}, which in turn may cause disruption of

3 the circadian clock since diurnal oscillations of cortisol are associated with varying numbers of

4 circulating immune cells relevant in cardiac repair¹⁸¹.

5 <u>C. Feeding</u>

Feeding-fasting patterns are not only a direct inducer of cardiovascular changes but also a
known Zeitgeber for the circadian clock¹⁸². Furthermore, hormones such as insulin, glucagon,
cortisol and the microbiome regulate metabolism via circadian clocks.

9 Feeding-fasting pattern in animal experiments have been shown to influence results. Mice 10 that have ad libitum access to standard diet, eat mostly during their active period 11 ('darkness')¹⁸³. Changes in diet composition, for example to a high fat diet in ad libitum 12 condition, lead to more food being consumed in the inactive phase ('light')¹⁸⁴. When the animals are forced to eat a high fat diet (with the same amount of calories) in metabolic 13 14 changes that are different and generally less severe than their ad libitum counterparts¹⁸⁵. Effects of time-restricted feeding are not only present in high fat diet conditions, but also in 15 high fructose or normal diets and are important¹⁸⁶: Time-restricted feeding vs ad libitum 16 17 feeding of a normal diet, leads to 40% difference in endurance after correction for body weight¹⁸⁶. 18

Choices in diet composition and timing influence circadian rhythms and the outcome of animal
 experiments. Although most studies standardize their feeding protocol, these influences are
 often large but overlooked.

Of note, many of the points discussed for pre-clinical studies, apply to clinical studies and vice versa. Similar to pre-clinical studies, light/darkness effects may confound clinical studies. A group of ischaemic heart disease patients treated in winter for example, (when daylight hours are short) may yield different results when treated in summer (when daylight hours are longer). As a second example, meal timing influences various cardiometabolic parameters and the circadian clock^{187,188}. When these confounders remain unnoticed, this may influence outcome and interpretation of clinical studies.

1 4.3 *Ex vivo* and *in vitro* studies

The dependency of cell responses on the circadian clock is cell autonomous and can be considerable in cardiovascular cell types including cardiomyocytes, fibroblasts, and vascular cells. For example, beating frequency²⁸, difference in the amplitude of calcium surges⁴, response to stimuli involved in contractility, and metabolism appear to be modulated in a circadian-related fashion even *ex vivo* and *in vitro*^{4,15,26,42,189}. It follows that *ex vivo* and *in vitro* experiments are subject to confounding caused by circadian factors.

8

9 <u>A. Primary cells</u>

When cardiovascular cells are kept in primary cultures, they maintain a synchronized circadian gene expression pattern and physiological activity for a several days. Therefore, the time of isolation is an important parameter that is rarely noted.

13

14 <u>B. Long term cultures</u>

15 Upon prolonged culture, circadian rhythms may be desynchronized but can be restored or 16 experimentally modified with 'Zeitgebers', which in the in vitro situation are exogenously 17 administered stimuli (e.g. serum starvation followed by re-addition) that can re-synchronize 18 the circadian clock in culture (but may have other undesired effects on the *in vitro* situation). 19 Importantly, even standard procedures such as splitting cells or refreshing culture medium 20 may act as synchronizers. On the other hand, experimental interventions may in fact disrupt 21 the pre-existing circadian rhythm in vitro. Circadian rhythms can also develop during 22 differentiation and maturation in prolonged culture, as has been shown for human pluripotent stem cell-derived cardiomyocytes¹⁹⁰. 23

24

25 Whether or not the circadian clock is active and therefore relevant to a specific *in vitro* system 26 is commonly unknown and needs attention. Since about 10-15% of the entire gene expression 27 program in e.g. cardiomyocytes is under control of core clock genes and thus susceptible to 28 time-dependent changes, this may profoundly affect the results up to the level of cellular 29 function - including response to drugs and resistance to mimicked ischaemia-reperfusion²⁸, 30 again causing type I or type II errors. Thus, careful standardization of timing in relation to 31 culture procedures (for example, related to the time after splitting and medium change) and

- interventions is essential. Assessment of a treatment effect at multiple circadian times is rarely
 performed, but it would increase the chance that such an effect is found.
- 3

4 5. Considerations on inclusion of circadian rhythm aspects in clinical and preclinical

5 studies related to ischaemic heart disease

6 Circadian rhythms play an important role in cardiovascular disease including ischaemic heart
7 disease¹⁹¹. Based on the considerations presented in this paper, the ESC WG on Cellular
8 Biology of the Heart and invited experts provide the following suggestions on circadian
9 rhythms in preclinical and translational research, and potentially also in clinical studies¹⁹².

10 Before the start of the study, it is key to conduct a literature search investigating what is 11 already known about circadian rhythms in the specific topic as presented in figure 3. Several clinical-focussed reviews can be a starting point^{193,194}. Good summaries of current knowledge 12 from preclinical studies are also available¹⁹⁵ but here, evidence is rapidly accumulating so a 13 14 new search before each study design is strongly advised. When studying a specific gene or protein, transcriptome^{9,196} and proteome¹⁹⁷ studies that analysed the heart specifically may 15 16 be of help. It is important to realize that rhythmicity may be present in all aspects of research. Many cardiac outcome measurements including troponin¹⁵⁵, blood pressure, and 17 repolarization duration²⁴ for example, are known to vary throughout the day and may 18 19 influence results. If no previous data is present, a pilot experiment can be helpful to determine if rhythms are present and significant. 20

21 When literature or pilot experiments suggests circadian rhythms may be present in one or 22 more of the research factors, there are several options to incorporate this in a study. If the 23 researcher is interested in a potential circadian effect, measurements will have to be done at 24 several time-points throughout the day and statistics including sample-size will have to be 25 adjusted accordingly. If the researcher on the other hand, wishes to exclude circadian rhythms 26 as a potential confounder, a different option is to do all measurements at the same time-point 27 or equally distributed throughout the day. An additional advantage is that standardization of 28 time-points will reduce variation and therefore allow for a reduction of sample size in some 29 cases.

1 In preclinical research, the choice of the species/strain, sex, and gender will need to be 2 carefully weighed to mimic the clinical setting. The time of feeding, the housing conditions 3 (i.e. temperature, light exposure, noise), intervention (whether it is the type of the surgery, of 4 the experimental procedure, or the drug delivery), and the time of sample collections will 5 need to be chosen carefully and recorded to avoid bias of circadian rhythms into the analysis 6 of the outcomes (see figure 3), as well as to maximize potential (therapeutic) effects for later 7 translation.

8 Similarly, clinical studies may need to consider possible variations of the circadian rhythm due 9 to age, sex, ethnicity of the population, the presence of classic cardiovascular risk factors and 10 other risk factors such as the light exposure, sleeping conditions, noise, dietary conditions, 11 and time of the meals. Whenever possible, all these conditions should be clearly reported into 12 the publication. In addition, time of the surgical or clinical intervention, time of the drug 13 delivery, or sample /data collection can be recorded if the investigator wishes to ensure that 14 the variability of the outcomes is or is not consecutive to the circadian rhythm's influence (see 15 figure 3).

16 Recently, many convincing pre-clinical concepts in cardioprotection and ischaemic heart disease, including the use of cyclosporin¹⁹⁸, remote ischaemic preconditioning¹⁹⁹, and a study 17 investigating circadian rhythms in cardiac surgery¹⁶², failed to show clinical benefit in trials. 18 19 Multiple factors may contribute to this translation failure, and these include lack of 20 standardized research protocols, randomized study designs, blinding of investigators and the 21 use of inadequate animal models (discussed previously^{200,201}). Incorporation of circadian 22 rhythms in pre-clinical and translational research may also contribute to reduce the gap 23 between bench and bedside and thus improve translation of preclinical concepts to the clinic.

24 **6.** Conclusion

It must be acknowledged that clinical data showing circadian variation in cardiovascular outcome in myocardial injury are still sparse and there is a lack of randomized clinical trial demonstrating the circadian rhythm impact on a myocardial ischaemia/reperfusion injury endpoint. Nevertheless, as shown mostly in preclinical studies, circadian rhythms may play an important role in the incidence, development, outcome, and treatment of ischaemic heart disease. So far, however, many studies have not adequately incorporated circadian rhythms into

the design, methodology, and analysis of preclinical and clinical data, potentially leading to suboptimal research results. We believe that including circadian rhythms in the design and the analysis of research may benefit translation of cardioprotective studies related to ischaemic heart disease and may expand to other cardiac and non-cardiac diseases. Similar to age and gender, circadian rhythms may be an important physiological parameter that, when incorporated, may improve reliability of research, thereby helping to better understand and cure ischaemic heart disease.

1 References

- Degaute JP, Borne P Van De, Linkowski P, Cauter E Van. Quantitative analysis of the
 24-hour blood pressure and heart rate patterns in young men. *Hypertension* 1991;**18**:199–210.
- Millar-Craig MW, Bishop CN, Raftery EB. Circadian variation of blood-pressure. *Lancet* 1978;1:597–797.
- Scheer FAJL, Doornen LJP Van, Buijs RM. Light and diurnal cycle affect autonomic
 cardiac balance in human; possible role for the biological clock. *Auton Neurosci Basic Clin* 2004;**110**:44–48.
- Beesley S, Noguchi T, Welsh DK. Cardiomyocyte circadian oscillations are cellautonomous, amplified by β-Adrenergic signaling, and synchronized in cardiac ventricle tissue. *PLoS One* 2016;**11**:e0159618.
- Takeda N, Maemura K, Horie S, Oishi K, Imai Y, Harada T, Saito T, Shiga T, Amiya E,
 Manabe I, Ishida N, Nagai R. Thrombomodulin is a clock-controlled gene in vascular
 endothelial cells. *J Biol Chem* 2007;**282**:32561–32567.
- Lin C, Tang X, Zhu Z, Liao X, Zhao R, Fu W, Chen B, Jiang J, Qian R, Guo D. The rhythmic
 expression of clock genes attenuated in human plaque-derived vascular smooth
 muscle cells. *Lipids Health Dis* 2014;**13**:14.
- Pré BC Du, Demkes EJ, Feyen DAM, Dierickx P, Crnko S, Kok BJM, Sluijter JPG,
 Doevendans PA, Vos MA, Veen TAB Van, Laake LW Van. SCA1+ Cells from the Heart
 Possess a Molecular Circadian Clock and Display Circadian Oscillations in Cellular
 Functions. Stem Cell Reports 2017;9:762–769.
- Leibetseder V, Humpeler S, Svoboda M, Schmid D, Thalhammer T, Zuckermann A,
 Marktl W, Ekmekcioglu C. Clock genes display rhythmic expression in human hearts.
 Chronobiol Int 2009;**26**:621–636.
- Martino T, Arab S, Straume M, Belsham DD, Tata N, Cai F, Liu P, Trivieri M, Ralph M,
 Sole MJ. Day/night rhythms in gene expression of the normal murine heart. *J Mol Med* 2004;82:256–264.
- Yamashita T, Sekiguchi A, Iwasaki Y ki, Sagara K, Iinuma H, Hatano S, Fu LT, Watanabe
 H. Circadian variation of cardiac K+ channel gene expression. *Circulation*2003;**107**:1917–1922.
- Perrino C, Ferdinandy P, Bøtker HE, Brundel BJJM, Collins P, Davidson SM, Ruijter HM
 den, Engel FB, Gerdts E, Girao H, Gyöngyösi M, Hausenloy DJ, Lecour S, Madonna R,
 Marber M, Murphy E, Pesce M, Regitz-Zagrosek V, Sluijter JPG, Steffens S, GollmannTepeköylü C, Laake LW Van, Linthout S Van, Schulz R, Ytrehus K. Improving
 translational research in sex-specific effects of comorbidities and risk factors in
 ischaemic heart disease and cardioprotection: position paper and recommendations
 of the ESC Working Group on Cellular Biology of the Heart. *Cardiovasc Res*
- 39 2021;**117**:367–385.
- 40 12. Douma LG, Barral D, Gumz ML. Interplay of the circadian clock and endothelin system.
 41 *Physiology* 2020;**36**:35–43.
- 42 13. Maruo T, Nakatani S, Kanzaki H, Kakuchi H, Yamagishi M, Kitakaze M, Ohe T, Miyatake
 43 K. Circadian variation of endothelial function in idiopathic dilated cardiomyopathy. *Am*44 *J Cardiol* 2006;**97**:699–702.
- 45 14. Young ME, Razeghi P, Cedars AM, Guthrie PH, Taegtmeyer H. Intrinsic diurnal
 46 variations in cardiac metabolism and contractile function. *Circ Res* 2001;**89**:1199–
 47 1208.

- Bray MS, Shaw CA, Moore MWS, Garcia RAP, Zanquetta MM, Durgan DJ, Jeong WJ,
 Tsai JY, Bugger H, Zhang D, Rohrwasser A, Rennison JH, Dyck JRB, Litwin SE, Hardin PE,
 Chow CW, Chandler MP, Abel ED, Young ME. Disruption of the circadian clock within
 the cardiomyocyte influences myocardial contractile function, metabolism, and gene
 expression. *Am J Physiol Hear Circ Physiol* 2008;**294**:H1036-1047.
- 6 16. Young ME, Brewer RA, Peliciari-Garcia RA, Collins HE, He L, Birky TL, Peden BW,
 7 Thompson EG, Ammons BJ, Bray MS, Chatham JC, Wende AR, Yang Q, Chow CW,
 8 Martino TA, Gamble KL. Cardiomyocyte-specific BMAL1 plays critical roles in
 9 metabolism, signaling, and maintenance of contractile function of the heart. *J Biol*10 *Rhythms* 2014;**29**:257–276.
- Qin T, Sun YY, Bai WW, Wang B, Xing YF, Liu Y, Yang RX, Zhao YX, Li JM. Period2
 deficiency blunts hypoxia-induced mobilization and function of endothelial progenitor
 cells. *PLoS One* 2014;**9**:e108806.
- 14 18. Douma LG, Gumz ML. Circadian clock-mediated regulation of blood pressure. *Free* 15 *Radic Biol Med* 2018;**119**:108–114.
- Sei H, Oishi K, Chikahisa S, Kitaoka K, Takeda E, Ishida N. Diurnal amplitudes of arterial
 pressure and heart rate are dampened in Clock mutant mice and adrenalectomized
 mice. *Endocrinology* 2008;**149**:3576–3580.
- Xie Z, Su W, Liu S, Zhao G, Esser K, Schroder EA, Lefta M, Stauss HM, Guo Z, Gong MC.
 Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation. J
 Clin Invest 2015;125:324–336.
- Shea SA, Hilton MF, Hu K, Scheer FAJL. Existence of an endogenous circadian blood
 pressure rhythm in humans that peaks in the evening. *Circ Res* 2011;**108**:980–984.
- 24 22. Dilaveris PE, Färbom P, Batchvarov V, Ghuran A, Malik M. Circadian behavior of P 25 wave duration, P-wave area, and PR interval in healthy subjects. *Ann Noninvasive* 26 *Electrocardiol* 2001;**6**:92–97.
- 23. Nakagawa M, Iwao T, Ishida S, Yonemochi H, Fujino T, Saikawa T, Ito M. Circadian
 rhythm of the signal averaged electrocardiogram and its relation to heart rate
 variability in healthy subjects. *Heart* 1998;**79**:493–496.
- Pre BC du, Laake LW van, Meine M, Heijden JF van der, Doevendans PA, Vos MA, Veen
 TAB van. Analysis of 24-h rhythm in ventricular repolarization identifies QT diurnality
 as a novel clinical parameter associated with previous ventricular arrhythmias in heart
 failure patients. *Front Physiol* 2017;8:590.
- Boudreau P, Dumont G, Kin NMKNY, Walker CD, Boivin DB. Correlation of heart rate
 variability and circadian markers in humans. *Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS* 2011;**2011**:681–682.
- Schroder EA, Burgess DE, Zhang X, Lefta M, Smith JL, Patwardhan A, Bartos DC, Elayi
 CS, Esser KA, Delisle BP. The cardiomyocyte molecular clock regulates the circadian
 expression of Kcnh2 and contributes to ventricular repolarization. *Hear Rhythm*2015;**12**:1306–1314.
- Chen Y, Zhu D, Yuan J, Han Z, Wang Y, Qian Z, Hou X, Wu T, Zou J. CLOCK-BMAL1
 regulate the cardiac L-type calcium channel subunit CACNA1C through PI3K-Akt
 signaling pathway. *Can J Physiol Pharmacol* 2016;**94**:1023–1032.
- 44 28. Pré BC du, Dierickx P, Crnko S, Doevendans PA, Vos MA, Geijsen N, Neutel D, Veen
- TAB van, Laake LW van. Neonatal rat cardiomyocytes as an in vitro model for circadian
 rhythms in the heart. *J Mol Cell Cardiol* 2017;**112**:58–63.
- 47 29. Karabag T, Aydin M, Dogan SM, Sayin MR, Cetiner MA. The influence of circadian

 2011;28:612–618. 30. Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, Willich SN, Gleason RE, Williams GH, Muller JE. Concurrent Morning Increase in Platelet Aggregability and the Risk of Myocardial Infarction and Sudden Cardiac Death. <i>N Engl J Med</i> 1987;316:1514–1518. 31. Andrews NP, Gralnick HR, Merryman P, Vail M, Quyyumi AA. Mechanisms underlying the morning increase in platelet aggregation: A flow cytometry study. <i>J Am Coll</i> <i>Cardiol</i> 1997;28:1789–1795. 32. Pritchett D, Reddy AB. Circadian clocks in the hematologic system. <i>J Biol Rhythms</i> 2015;30:374–388. 33. O-Neill JS, Reddy AB. Circadian clocks in human red blood cells. <i>Nature</i> 2011;469:498– 503. 34. Scheer FAJL, Shea SA. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. <i>Blood</i> 2014;123:590–593. 35. Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. <i>Stroke</i> 1998;29:992–996. 36. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. 37. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 Williams GH, Muller JE. Concurrent Morning Increase in Platelet Aggregability and the Risk of Myocardial Infarction and Sudden Cardiac Death. <i>N Engl J Med</i> 1987;316:1514–1518. Andrews NP, Gralnick HR, Merryman P, Vail M, Quyyumi AA. Mechanisms underlying the morning increase in platelet aggregation: A flow cytometry study. <i>J Am Coll</i> <i>Cardiol</i> 1997;28:1789–1795. Pritchett D, Reddy AB. Circadian clocks in the hematologic system. <i>J Biol Rhythms</i> 2015;30:374–388. O-Neill JS, Reddy AB. Circadian clocks in human red blood cells. <i>Nature</i> 2011;469:498– 503. Scheer FAJL, Shea SA. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. <i>Blood</i> 2014;123:590–593. Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. <i>Stroke</i> 1998;29:992–996. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 Risk of Myocardial Infarction and Sudden Cardiac Death. <i>N Engl J Med</i> 1987;316:1514–1518. Andrews NP, Gralnick HR, Merryman P, Vail M, Quyyumi AA. Mechanisms underlying the morning increase in platelet aggregation: A flow cytometry study. <i>J Am Coll</i> <i>Cardiol</i> 1997;28:1789–1795. Pritchett D, Reddy AB. Circadian clocks in the hematologic system. <i>J Biol Rhythms</i> 2015;30:374–388. O-Neill JS, Reddy AB. Circadian clocks in human red blood cells. <i>Nature</i> 2011;469:498– 503. Scheer FAJL, Shea SA. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. <i>Blood</i> 2014;123:590–593. Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. <i>Stroke</i> 1998;29:992–996. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 1987;316:1514–1518. Andrews NP, Gralnick HR, Merryman P, Vail M, Quyyumi AA. Mechanisms underlying the morning increase in platelet aggregation: A flow cytometry study. <i>J Am Coll</i> <i>Cardiol</i> 1997;28:1789–1795. Pritchett D, Reddy AB. Circadian clocks in the hematologic system. <i>J Biol Rhythms</i> 2015;30:374–388. O-Neill JS, Reddy AB. Circadian clocks in human red blood cells. <i>Nature</i> 2011;469:498– 503. Scheer FAJL, Shea SA. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. <i>Blood</i> 2014;123:590–593. Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. <i>Stroke</i> 1998;29:992–996. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 Andrews NP, Gralnick HR, Merryman P, Vail M, Quyyumi AA. Mechanisms underlying the morning increase in platelet aggregation: A flow cytometry study. <i>J Am Coll</i> <i>Cardiol</i> 1997;28:1789–1795. Pritchett D, Reddy AB. Circadian clocks in the hematologic system. <i>J Biol Rhythms</i> 2015;30:374–388. O-Neill JS, Reddy AB. Circadian clocks in human red blood cells. <i>Nature</i> 2011;469:498– 503. Scheer FAJL, Shea SA. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. <i>Blood</i> 2014;123:590–593. Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. <i>Stroke</i> 1998;29:992–996. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 the morning increase in platelet aggregation: A flow cytometry study. J Am Coll Cardiol 1997;28:1789–1795. 32. Pritchett D, Reddy AB. Circadian clocks in the hematologic system. J Biol Rhythms 2015;30:374–388. 33. O-Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature 2011;469:498– 503. 34. Scheer FAJL, Shea SA. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. Blood 2014;123:590–593. 35. Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. Stroke 1998;29:992–996. 36. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. Am J Cardiol 1997;79:1512–1516. 37. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. J Hypertens 1997;15:401–410.
 <i>Cardiol</i> 1997;28:1789–1795. 32. Pritchett D, Reddy AB. Circadian clocks in the hematologic system. <i>J Biol Rhythms</i> 2015;30:374–388. 33. O-Neill JS, Reddy AB. Circadian clocks in human red blood cells. <i>Nature</i> 2011;469:498–503. 34. Scheer FAJL, Shea SA. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. <i>Blood</i> 2014;123:590–593. 35. Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. <i>Stroke</i> 1998;29:992–996. 36. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. 37. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 Pritchett D, Reddy AB. Circadian clocks in the hematologic system. <i>J Biol Rhythms</i> 2015;30:374–388. O-Neill JS, Reddy AB. Circadian clocks in human red blood cells. <i>Nature</i> 2011;469:498– 503. Scheer FAJL, Shea SA. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. <i>Blood</i> 2014;123:590–593. Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. <i>Stroke</i> 1998;29:992–996. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 2015;30:374–388. 33. O-Neill JS, Reddy AB. Circadian clocks in human red blood cells. <i>Nature</i> 2011;469:498– 503. 34. Scheer FAJL, Shea SA. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. <i>Blood</i> 2014;123:590–593. 35. Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. <i>Stroke</i> 1998;29:992–996. 36. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. 37. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 O-Neill JS, Reddy AB. Circadian clocks in human red blood cells. <i>Nature</i> 2011;469:498–503. Scheer FAJL, Shea SA. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. <i>Blood</i> 2014;123:590–593. Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. <i>Stroke</i> 1998;29:992–996. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 503. 34. Scheer FAJL, Shea SA. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. <i>Blood</i> 2014;123:590–593. 35. Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. <i>Stroke</i> 1998;29:992–996. 36. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. 37. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 Scheer FAJL, Shea SA. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. <i>Blood</i> 2014;123:590–593. Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. <i>Stroke</i> 1998;29:992–996. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. <i>Blood</i> 2014;123:590–593. 35. Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. <i>Stroke</i> 1998;29:992–996. 36. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. 37. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 sleep/wake cycle. <i>Blood</i> 2014;123:590–593. 35. Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. <i>Stroke</i> 1998;29:992–996. 36. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. 37. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 Elliott WJ. Circadian variation in the timing of stroke onset: A meta-analysis. <i>Stroke</i> 1998;29:992–996. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 18 1998;29:992–996. 36. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. 37. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 morning excess of acute myocardial infarction and sudden cardiac death. <i>Am J Cardiol</i> 1997;79:1512–1516. 37. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 21 1997;79:1512–1516. 22 37. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and 23 circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in 24 spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
 37. Oosting J, Struijker-Boudier HAJ, Janssen BJA. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. J Hypertens 1997;15:401–410.
 circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats. <i>J Hypertens</i> 1997;15:401–410.
24 spontaneously hypertensive rats. J Hypertens 1997;15:401–410.
25 38. Black N, D'Souza A, Wang Y, Piggins H, Dobrzynski H, Morris G, Boyett MR. Circadian
26 rhythm of cardiac electrophysiology, arrhythmogenesis, and the underlying
27 mechanisms. <i>Hear Rhythm</i> 2019; 16 :298–307.
28 39. Idema RN, Meiracker AH Van den, Balk AHMM, Bos E, Schalekamp MADH, Veld AJM In
29 't. Abnormal diurnal variation of blood pressure, cardiac output, and vascular
 resistance in cardiac transplant recipients. <i>Circulation</i> 1994;90:2797–2803. Gamble KL, Berry R, Frank SJ, Young ME. Circadian clock control of endocrine factors.
 Gamble KL, Berry R, Frank SJ, Young ME. Circadian clock control of endocrine factors. <i>Nat Rev Endocrinol</i> 2014;10:466–475.
 32 Nat Nev Endocrinol 2014, 10,400–473. 33 41. Durgan DJ, Pulinilkunnil T, Villegas-Montoya C, Garvey ME, Frangogiannis NG, Michael
34 LH, Chow CW, Dyck JRB, Young ME. Short communication: Ischemia/reperfusion
35 tolerance is time-of-day- dependent: Mediation by the cardiomyocyte circadian clock.
36 <i>Circ Res</i> 2010; 106 :546–550.
42. Montaigne D, Marechal X, Modine T, Coisne A, Mouton S, Fayad G, Ninni S, Klein C,
38 Ortmans S, Seunes C, Potelle C, Berthier A, Gheeraert C, Piveteau C, Deprez R,
39 Eeckhoute J, Duez H, Lacroix D, Deprez B, Jegou B, Koussa M, Edme JL, Lefebvre P,
40 Staels B. Daytime variation of perioperative myocardial injury in cardiac surgery and
41 its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort
42 study and a randomised study. <i>Lancet</i> 2018; 391 :59–69.
43 43. Götte J, Zittermann A, Deutsch MA, Schramm R, Bleiziffer S, Hata M, Gummert JF.
44 Daytime Variation in Aortic Valve Surgery and Clinical Outcome: A Propensity Score–
45 Matched Analysis. Ann Thorac Surg 2020; 110 :558–566.
,

1 ischemic and hemorrhagic events. Chronobiol Int 2005;22:417-453. 2 45. Bernardi J, Aromolaran KA, Zhu H, Aromolaran AS. Circadian Mechanisms: Cardiac Ion 3 Channel Remodeling and Arrhythmias. Front Physiol 2021;11:611860. 4 46. Muller JE, Stone PH, Turi ZG, Rutherford JD, Czeisler CA, Parker C, Poole WK, 5 Passamani E, Roberts R, Robertson T, Sobel BE, Willerson JT, Braunwald E. Circadian 6 Variation in the Frequency of Onset of Acute Myocardial Infarction. N Engl J Med 7 1985;**313**:1315–1322. 8 Muller JE, Ludmer PL, Willich SN, Tofler GH, Aylmer G, Klangos I, Stone PH. Circadian 47. 9 variation in the frequency of sudden cardiac death. *Circulation* 1987;75:131–138. 10 48. Goldberg RJ, Brady P, Muller JE, Chen Z, Groot M de, Zonneveld P, Dalen JE. Time of 11 onset of symptoms of acute myocardial infarction. Am J Cardiol 1990;66:140-144. 12 49. Willich SN, Goldberg RJ, Maclure M, Perriello L, Muller JE. Increased onset of sudden 13 cardiac death in the first three hours after awakening. Am J Cardiol 1992;70:65-68. 14 50. Chen L, Yang G. Recent advances in circadian rhythms in cardiovascular system. Front 15 Pharmacol 2015;6:71. 16 51. Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system. Nat 17 *Rev Immunol* 2013;**13**:190–198. 18 52. Steffens S, Winter C, Schloss MJ, Hidalgo A, Weber C, Soehnlein O. Circadian Control 19 of Inflammatory Processes in Atherosclerosis and Its Complications. Arterioscler 20 Thromb Vasc Biol 2017;37:1022–1028. 21 53. Winter C, Silvestre-Roig C, Ortega-Gomez A, Lemnitzer P, Poelman H, Schumski A, 22 Winter J, Drechsler M, Jong R de, Immler R, Sperandio M, Hristov M, Zeller T, Nicolaes 23 GAF, Weber C, Viola JR, Hidalgo A, Scheiermann C, Soehnlein O. Chrono-24 pharmacological Targeting of the CCL2-CCR2 Axis Ameliorates Atherosclerosis. Cell 25 *Metab* 2018;**28**:175–182. 26 54. Suárez-Barrientos A, López-Romero P, Vivas D, Castro-Ferreira F, Núñez-Gil I, Franco E, 27 Ruiz-Mateos B, García-Rubira JC, Fernández-Ortiz A, Macaya C, Ibanez B. Circadian 28 variations of infarct size in acute myocardial infarction. Heart 2011;97:970–976. 29 55. Fournier S, Eeckhout E, Mangiacapra F, Trana C, Lauriers N, Beggah AT, Monney P, 30 Cook S, Bardy D, Vogt P, Muller O. Circadian variations of ischemic burden among 31 patients with myocardial infarction undergoing primary percutaneous coronary 32 intervention. Am Heart J 2012;163:208–2013. 33 56. Reiter R, Swingen C, Moore L, Henry TD, Traverse JH. Circadian dependence of infarct 34 size and left ventricular function after ST elevation myocardial infarction. Circ Res 35 2012;**110**:105–110. 36 57. Nakashima H, Mashimo Y, Kurobe M, Muto S, Furudono S, Maemura K. Impact of 37 morning onset on the incidence of recurrent acute coronary syndrome and 38 progression of coronary atherosclerosis in acute myocardial infarction. Circ J 39 2017;**81**:361–367. 40 58. Sager HB, Husser O, Steffens S, Laugwitz KL, Schunkert H, Kastrati A, Ndrepepa G, 41 Kessler T. Time-of-day at symptom onset was not associated with infarct size and 42 long-term prognosis in patients with ST-segment elevation myocardial infarction. J 43 *Transl Med* 2019;**17**:180. 44 59. Pré B Du, Veen T Van, Crnko S, Vos M, Deddens J, Doevendans P, Laake L Van. 45 Variation within variation: Comparison of 24-h rhythm in rodent infarct size between 46 ischemia reperfusion and permanent ligation. Int J Mol Sci 2017;18:E1670. 47 60. Traverse JH. Of mice and men: The quest to determine a circadian basis for

1 myocardial protection in ischemia/reperfusion injury. Circ Res 2013;112:e115-117. 2 61. Lefer DJ. Is there a better time of day to have a heart attack? Circ Res 2010;106:430-3 431. 4 62. Virag JAI, Dries JL, Easton PR, Friesland AM, DeAntonio JH, Chintalgattu V, Cozzi E, 5 Lehmann BD, Ding JM, Lust RM. Attenuation of myocardial injury in mice with 6 functional deletion of the circadian rhythm gene mPer2. Am J Physiol - Hear Circ 7 Physiol 2010;298:H1088-1095. 8 63. Hoyle NP, Seinkmane E, Putker M, Feeney KA, Krogager TP, Chesham JE, Bray LK, 9 Thomas JM, Dunn K, Blaikley J, O'Neill JS. Circadian actin dynamics drive rhythmic 10 fibroblast mobilization during wound healing. Sci Transl Med 2017;9:eaal2774. 11 64. Alibhai FJ, Tsimakouridze E V., Chinnappareddy N, Wright DC, Billia F, O'Sullivan ML, 12 Pyle WG, Sole MJ, Martino TA. Short-term disruption of diurnal rhythms after murine 13 myocardial infarction adversely affects long-term myocardial structure and function. 14 *Circ Res* 2014;**114**:1713–1722. 15 65. Bennardo M, Alibhai F, Tsimakouridze E, Chinnappareddy N, Podobed P, Reitz C, Pyle 16 WG, Simpson J, Martino TA. Day-night dependence of gene expression and 17 inflammatory responses in the remodeling murine heart post-myocardial infarction. 18 Am J Physiol - Regul Integr Comp Physiol 2016;311:R1243-1254. 19 66. Zhou L, Zhang P, Cheng Z, Hao W, Wang R, Fang Q, Cao JM. Altered circadian rhythm 20 of cardiac β3-adrenoceptor activity following myocardial infarction in the rat. Basic 21 Res Cardiol 2011;106:37-50. 22 67. Kung TA, Egbejimi O, Cui J, Ha NP, Durgan DJ, Essop MF, Bray MS, Shaw CA, Hardin PE, 23 Stanley WC, Young ME. Rapid attenuation of circadian clock gene oscillations in the 24 rat heart following ischemia-reperfusion. J Mol Cell Cardiol 2007;43:744-753. 25 Vaughan GM, Bell R, la Pena A de. Nocturnal plasma melatonin in humans: Episodic 68. 26 pattern and influence of light. *Neurosci Lett* 1979;14:81-84. 27 69. Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against 28 ischaemia/reperfusion injury: What's new? A review. J Pineal Res 2018;65:e12490. 29 70. Dominguez-Rodriguez A, Abreu-Gonzalez P, Arroyo-Ucar E, Reiter RJ. Decreased level 30 of melatonin in serum predicts left ventricular remodelling after acute myocardial 31 infarction. J Pineal Res 2012;53:319–323. 32 71. Sokullu O, Sanioğlu S, Kurç E, Sargin M, Deniz H, Tartan Z, Aka SA, Bilgen F. Does the 33 circadian rhythm of melatonin affect ischemia-reperfusion injury after coronary artery 34 bypass grafting? *Heart Surg Forum* 2009;12:E95-99. 35 72. Opie LH, Lecour S. Melatonin has multiorgan effects. Eur Hear J - Cardiovasc 36 *Pharmacother* 2016;**2**:258–265. 37 73. Brugger P, Marktl W, Herold M. Impaired nocturnal secretion of melatonin in coronary 38 heart disease. Lancet 1995;345:1408. 39 74. Domínguez-Rodríguez A, Abreu-González P, García MJ, Sanchez J, Marrero F, Armas-40 Trujillo D De. Decreased nocturnal melatonin levels during acute myocardial 41 infarction. J Pineal Res 2002;33:248-252. 42 75. Pfeffer M, Korf HW, Wicht H. Synchronizing effects of melatonin on diurnal and 43 circadian rhythms. Gen Comp Endocrinol 2018;258:215-221. 44 76. Chen WR, Liu H Bin, Chen YD, Sha Y, Ma Q, Zhu PJ, Mu Y. Melatonin attenuates 45 myocardial ischemia/reperfusion injury by inhibiting autophagy via an AMPK/mTOR 46 Signaling Pathway. *Cell Physiol Biochem* 2018;47:2067–2076. 47 77. Imenshahidi M, Karimi G, Hosseinzadeh H. Effects of melatonin on cardiovascular risk

1 factors and metabolic syndrome: a comprehensive review. Naunyn Schmiedebergs 2 Arch Pharmacol 2020;393:521-536. 3 78. Vetter C, Devore EE, Wegrzyn LR, Massa J, Speizer FE, Kawachi I, Rosner B, Stampfer 4 MJ, Schernhammer ES. Association between rotating night shiftwork and risk of 5 coronary heart disease among women. JAMA - J Am Med Assoc 2016;315:1726–1734. 6 79. Möller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A, Kabiljo R, Lo JCY, Santhi N, 7 Schantz M Von, Smith CP, Dijk DJ. Effects of insufficient sleep on circadian rhythmicity 8 and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A 9 2013;**110**:E1132-1141. 10 Schloss MJ, Horckmans M, Nitz K, Duchene J, Drechsler M, Bidzhekov K, Scheiermann 80. 11 C, Weber C, Soehnlein O, Steffens S. The time-of-day of myocardial infarction onset 12 affects healing through oscillations in cardiac neutrophil recruitment. EMBO Mol Med 13 2016;8:937-948. 14 81. Pourcet B, Zecchin M, Ferri L, Beauchamp J, Sitaula S, Billon C, Delhaye S, Vanhoutte J, 15 Mayeuf-Louchart A, Thorel Q, Haas JT, Eeckhoute J, Dombrowicz D, Duhem C, 16 Boulinguiez A, Lancel S, Sebti Y, Burris TP, Staels B, Duez HM. Nuclear Receptor 17 Subfamily 1 Group D Member 1 Regulates Circadian Activity of NLRP3 Inflammasome 18 to Reduce the Severity of Fulminant Hepatitis in Mice. Gastroenterology 19 2018;154:1449-1464.e20. 20 82. Reitz CJ, Alibhai FJ, Khatua TN, Rasouli M, Bridle BW, Burris TP, Martino TA. SR9009 21 administered for one day after myocardial ischemia-reperfusion prevents heart failure 22 in mice by targeting the cardiac inflammasome. *Commun Biol* 2019;**2**:353. 23 83. Soehnlein O, Zernecke A, Eriksson EE, Rothfuchs AG, Pham CT, Herwald H, Bidzhekov 24 K, Rottenberg ME, Weber C, Lindbom L. Neutrophil secretion products pave the way 25 for inflammatory monocytes. Blood 2008;112:1461-1471. 26 84. Gibbs J, Ince L, Matthews L, Mei J, Bell T, Yang N, Saer B, Begley N, Poolman T, 27 Pariollaud M, Farrow S, Demayo F, Hussell T, Worthen GS, Ray D, Loudon A. An 28 epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. 29 *Nat Med* 2014;**20**:919–926. 30 85. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. Circadian gene Bmal1 31 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science 32 2013;**341**:1483–1488. 33 86. Schloss MJ, Hilby M, Nitz K, Guillamat Prats R, Ferraro B, Leoni G, Soehnlein O, Kessler 34 T, He W, Luckow B, Horckmans M, Weber C, Duchene J, Steffens S. Ly6Chigh 35 Monocytes Oscillate in the Heart during Homeostasis and after Myocardial Infarction -36 Brief Report. Arterioscler Thromb Vasc Biol 2017;37:1640–1645. 37 87. Mistry P, Reitz CJ, Khatua TN, Rasouli M, Oliphant K, Young ME, Allen-Vercoe E, 38 Martino TA. Circadian influence on the microbiome improves heart failure outcomes. 39 J Mol Cell Cardiol 2020;149:54-72. 40 88. Cheng B, Anea CB, Yao L, Chen F, Patel V, Merloiu A, Pati P, Caldwell RW, Fulton DJ, 41 Rudic RD. Tissue-intrinsic dysfunction of circadian clock confers transplant 42 arteriosclerosis. Proc Natl Acad Sci U S A 2011;108:17147–17152. 43 89. McAlpine CS, Swirski FK. Circadian influence on metabolism and inflammation in 44 atherosclerosis. Circ Res 2016;119:131-141. 45 90. Pan X, Jiang XC, Hussain MM. Impaired cholesterol metabolism and enhanced 46 atherosclerosis in clock Mutant Mice. Circulation 2013;128:1758–1769. 47 91. Lefta M, Campbell KS, Feng HZ, Jin JP, Esser KA. Development of dilated

1		cardiomyopathy in Bmal1-deficient mice. Am J Physiol - Hear Circ Physiol
2		2012; 303 :H475-485.
3	92.	Schroder EA, Lefta M, Zhang X, Bartos D, Feng HZ, Zhao Y, Patwardhan A, Jin JP, Esser
4		KA, Delisle BP. The cardiomyocyte molecular clock, regulation of Scn5a, and
5		arrhythmia susceptibility. Am J Physiol - Cell Physiol 2013; 304 :C954-965.
6	93.	Qian J, Morris CJ, Caputo R, Wang W, Garaulet M, Scheer FAJL. Sex differences in the
7		circadian misalignment effects on energy regulation. Proc Natl Acad Sci U S A
8		2019; 116 :23806–23812.
9	94.	Murphy ZC, Pezuk P, Menaker M, Sellix MT. Effects of Ovarian Hormones on Internal
10		Circadian Organization in Rats1. Biol Reprod 2013;89:35.
11	95.	Nakamura TJ, Sellix MT, Kudo T, Nakao N, Yoshimura T, Ebihara S, Colwell CS, Block
12		GD. Influence of the estrous cycle on clock gene expression in reproductive tissues:
13		Effects of fluctuating ovarian steroid hormone levels. <i>Steroids</i> 2010; 75 :203–212.
14	96.	Anderson ST, FitzGerald GA. Sexual dimorphism in body clocks. <i>Science</i>
15	07	2020; 369 :1164–1165.
16 17	97.	Turek FW, Penev P, Zhang Y, Reeth O van, Zee P. Effects of age on the circadian system. <i>Neurosci Biobehav Rev</i> 1995; 19 :53–58.
17	98.	Karasek M. Melatonin, human aging, and age-related diseases. <i>Exp Gerontol</i>
19	50.	2004; 39 :1723–1729.
20	99.	Wharfe MD, Mark PJ, Wyrwoll CS, Smith JT, Yap C, Clarke MW, Waddell BJ. Pregnancy-
21		induced adaptations of the central circadian clock and maternal glucocorticoids. J
22		Endocrinol 2016; 228 :135–147.
23	100.	Casey TM, Plaut K. Lactation biology symposium: Circadian clocks as mediators of the
24		homeorhetic response to lactation. <i>J Anim Sci</i> 2012; 90 :744–754.
25	101.	Cubero J, Valero V, Sánchez J, Rivero M, Parvez H, Rodríquez AB, Barriga Ibars C. The
26		circadian rhythm of tryptophan in breast milk affects the rhythms of 6-
27		sulfatoxymelatonin and sleep in newborn. <i>Neuroendocrinol Lett</i> 2005; 26 :757–761.
28	102.	Engler AC, Hadash A, Shehadeh N, Pillar G. Breastfeeding may improve nocturnal
29		sleep and reduce infantile colic: Potential role of breast milk melatonin. <i>Eur J Pediatr</i>
30	402	2012; 171 :729–732.
31	103.	Naito Y, Tsujino T, Kawasaki D, Okumura T, Morimoto S, Masai M, Sakoda T, Fujioka Y,
32 33		Ohyanagi M, Iwasaki T. Circadian gene expression of clock genes and plasminogen activator inhibitor-1 in heart and aorta of spontaneously hypertensive and Wistar-
33 34		Kyoto rats. J Hypertens 2003; 21 :1107–1115.
35	104.	Forman JP, Curhan GC, Schernhammer ES. Urinary melatonin and risk of incident
36	101.	hypertension among young women. J Hypertens 2010; 28 :446–451.
37	105.	Hermida RC, Crespo JJ, Domínguez-Sardiña M, Otero A, Moyá A, Ríos MT, Sineiro E,
38		Castiñeira MC, Callejas PA, Pousa L, Salgado JL, Durán C, Sánchez JJ, Fernández JR,
39		Mojón A, Ayala DE. Bedtime hypertension treatment improves cardiovascular risk
40		reduction: The Hygia Chronotherapy Trial. <i>Eur Heart J</i> 2020; 41 :4565–4576.
41	106.	Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass
42		J. High-Fat Diet Disrupts Behavioral and Molecular Circadian Rhythms in Mice. Cell
43		<i>Metab</i> 2007; 6 :414–421.
44	107.	Su W, Guo Z, Randall DC, Cassis L, Brown DR, Gong MC. Hypertension and disrupted
45		blood pressure circadian rhythm in Type 2 diabetic db/db mice. Am J Physiol - Hear
46		<i>Circ Physiol</i> 2008; 295 :H1634-1641.
47	108.	Harmsen JF, Polanen N van, Weeghel M van, Wefers J, Hoeks J, Vaz FM, Pras-Raves

1		ML, Kampen AHC van, Schaart G, Moorsel D van, Hansen J, Hesselink MKC,
2		Houtkooper RH, Schrauwen P. Circadian misalignment disturbs the skeletal muscle
3		lipidome in healthy young men. FASEB J 2021; 35 :e21611.
4	109.	Walker WH, Walton JC, DeVries AC, Nelson RJ. Circadian rhythm disruption and
5	105.	mental health. <i>Transl Psychiatry</i> 2020; 10 :28.
6	110.	Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, Evans SJ, Choudary
7	110.	P V., Cartagena P, Barchas JD, Schatzberg AF, Jones EG, Myers RM, Watson SJ, Akil H,
8		Bunney WE. Circadian patterns of gene expression in the human brain and disruption
9		in major depressive disorder. <i>Proc Natl Acad Sci U S A</i> 2013; 110 :9950–9955.
10	111.	Xia N, Li H. Loneliness, Social Isolation, and Cardiovascular Health. Antioxidants Redox
11		Signal 2018; 28 :837–851.
12	112.	Helfrich-Förster C. Interactions between psychosocial stress and the circadian
13		endogenous clock. <i>PsyCh J</i> 2017; 6 :277–289.
14	113.	Tahara Y, Shiraishi T, Kikuchi Y, Haraguchi A, Kuriki D, Sasaki H, Motohashi H, Sakai T,
15		Shibata S. Entrainment of the mouse circadian clock by sub-acute physical and
16		psychological stress. Sci Rep 2015;5:11417.
17	114.	Youngstedt SD, Kline CE, Elliott JA, Zielinski MR, Devlin TM, Moore TA. Circadian
18		phase-shifting effects of bright light, exercise, and bright light + exercise. J Circadian
19		Rhythms 2016; 14 :2.
20	115.	Miyazaki T, Hashimoto S, Masubuchi S, Honma S, Honma KI. Phase-advance shifts of
21		human circadian pacemaker are accelerated by daytime physical exercise. Am J
22		Physiol - Regul Integr Comp Physiol 2001; 281 :R197-205.
23	116.	Barger LK, Wright KP, Hughes RJ, Czeisler CA. Daily exercise facilitates phase delays of
24		circadian melatonin rhythm in very dim light. Am J Physiol - Regul Integr Comp Physiol
25		2004; 286 :R1077-1084.
26	117.	Hut RA, Mrosovsky N, Daan S. Nonphotic entrainment in a diurnal mammal, the
27		European ground squirrel (Spermophilus citellus). <i>J Biol Rhythms</i> 1999; 14 :409–419.
28	118.	Mrosovsky N, Salmon PA, Ralph MR, Menaker M. Nonphotic Phase Shifting in Hamster
29		Clock Mutants. J Biol Rhythms 1992;7:41–49.
30	119.	Thomas JM, Kern PA, Bush HM, McQuerry KJ, Black WS, Clasey JL, Pendergast JS.
31		Circadian rhythm phase shifts caused by timed exercise vary with chronotype. <i>JCI</i>
32		Insight 2020;5:pii134270.
33	120.	Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A,
34		Joens M, Fitzpatrick JAJ, Ellisman MH, Panda S. Time-restricted feeding without
35		reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. <i>Cell</i>
36	424	<i>Metab</i> 2012; 15 :848–860.
37	121.	Gill S, Le HD, Melkani GC, Panda S. Time-restricted feeding attenuates age-related
38	122	cardiac decline in Drosophila. <i>Science</i> 2015; 347 :1265–1269.
39 40	122.	
40	122	timing for aging and longevity. <i>Nat Commun</i> 2021; 12 :2862.
41 42	123.	Damaggio AS, Gorman MR. The circadian timing system in ethanol consumption and
42 43	124.	dependence. <i>Behav Neurosci</i> 2014; 128 :371–386. Guo R, Simasko SM, Jansen HT. Chronic Alcohol Consumption in Rats Leads to
43 44	124.	Desynchrony in Diurnal Rhythms and Molecular Clocks. Alcohol Clin Exp Res
44 45		2016; 40 :291–300.
43 46	125.	Bailey SM. Emerging role of circadian clock disruption in alcohol-induced liver disease.
40 47	тζЭ.	Am J Physiol - Gastrointest Liver Physiol 2018; 315 :G364–G373.
i' /		

1 126. Swanson G, Forsyth CB, Tang Y, Shaikh M, Zhang L, Turek FW, Keshavarzian A. Role of 2 Intestinal Circadian Genes in Alcohol-Induced Gut Leakiness. Alcohol Clin Exp Res 3 2011;35:1305-1314. 4 127. Shawa N, Rae DE, Roden LC. Impact of seasons on an individual's chronotype: Current 5 perspectives. Nat Sci Sleep 2018;10:345–354. 6 128. Hwang JW, Sundar IK, Yao H, Sellix MT, Rahman I. Circadian clock function is disrupted 7 by environmental tobacco/cigarette smoke, leading to lung inflammation and injury 8 via a SIRT1-BMAL1 pathway. FASEB J 2014;28:176–194. 9 129. Ruoff P, Rensing L. Temperature effects on circadian clocks. J Therm Biol 2004;29:445-10 446. 11 130. Kidd PB, Young MW, Siggia ED. Temperature compensation and temperature 12 sensation in the circadian clock. Proc Natl Acad Sci U S A 2015;112:E6284-6292. 13 131. Winfree AT. Acute temperature sensitivity of the circadian rhythm in Drosophila. J 14 Insect Physiol 1972;18:181–185. 15 Boothroyd CE, Wijnen H, Naef F, Saez L, Young MW. Integration of light and 132. 16 temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet 17 2007;**3**:e54. 18 Menaker M, Eskin A. Entrainment of circadian rhythms by sound in passer 133. 19 domesticus. Science 1966;154:1579-1581. 20 134. Basinou V, Park J sub, Cederroth CR, Canlon B. Circadian regulation of auditory 21 function. Hear Res 2017;347:47-55. 22 135. Simoni A, Wolfgang W, Topping MP, Kavlie RG, Stanewsky R, Albert JT. A 23 mechanosensory pathway to the drosophila circadian clock. Science 2014;343:525-24 528. 25 136. Münzel T, Daiber A. Environmental Stressors and Their Impact on Health and Disease 26 with Focus on Oxidative Stress. Antioxidants Redox Signal 2018;28:735–740. 27 137. Münzel T, Schmidt FP, Steven S, Herzog J, Daiber A, Sørensen M. Environmental Noise 28 and the Cardiovascular System. J Am Coll Cardiol 2018;71:688–697. 29 Kröller-Schön S, Daiber A, Steven S, Oelze M, Frenis K, Kalinovic S, Heimann A, Schmidt 138. 30 FP, Pinto A, Kvandova M, Vujacic-Mirski K, Filippou K, Dudek M, Bosmann M, Klein M, 31 Bopp T, Hahad O, Wild PS, Frauenknecht K, Methner A, Schmidt ER, Rapp S, Mollnau 32 H, Münzel T. Crucial role for Nox2 and sleep deprivation in aircraft noise-induced 33 vascular and cerebral oxidative stress, inflammation, and gene regulation. Eur Heart J 34 2018;**39**:3528-3539. 35 139. Li H, Kilgallen AB, Münzel T, Wolf E, Lecour S, Schulz R, Daiber A, Laake LW Van. 36 Influence of mental stress and environmental toxins on circadian clocks: Implications 37 for redox regulation of the heart and cardioprotection. Br J Pharmacol 38 2020;**177**:5393–5412. 39 Münzel T, Sørensen M, Daiber A. Transportation noise pollution and cardiovascular 140. 40 disease. Nat Rev Cardiol 2021;2021 Mar 31. doi: 10.1038/s41569-021-00532-5. Onli. 41 141. Roenneberg T, Allebrandt K V., Merrow M, Vetter C. Social jetlag and obesity. Curr Biol 42 2012;22:939-943. 43 142. Baron KG, Reid KJ, Wolfe LF, Attarian H, Zee PC. Phase Relationship between DLMO 44 and Sleep Onset and the Risk of Metabolic Disease among Normal Weight and 45 Overweight/Obese Adults. J Biol Rhythms 2018;33:76–83. 46 143. Green CB, Takahashi JS, Bass J. The Meter of Metabolism. *Cell* 2008;**134**:728–742. 47 144. Szosland D. Shift work and metabolic syndrome, diabetes mellitus and ischaemic heart 1

2

3

4

5

6

7

8

11

21

31

41

disease. Int J Occup Med Environ Health 2010;23:287-291. 145. Kitamura T, Onishi K, Dohi K, Okinaka T, Ito M, Isaka N, Nakano T. Circadian rhythm of blood pressure is transformed from a dipper to a non-dipper pattern in shift workers with hypertension. J Hum Hypertens 2002;16:193–197. 146. Wong PM, Hasler BP, Kamarck TW, Muldoon MF, Manuck SB. Social Jetlag, chronotype, and cardiometabolic risk. J Clin Endocrinol Metab 2015;100:4612–4620. Rutters F, Lemmens SG, Adam TC, Bremmer MA, Elders PJ, Nijpels G, Dekker JM. Is 147. social jetlag associated with an adverse endocrine, behavioral, and cardiovascular risk 9 profile? J Biol Rhythms 2014;29:377-383. 10 148. Koopman ADM, Rauh SP, 'T Riet E Van, Groeneveld L, Heijden AA Van Der, Elders PJ, Dekker JM, Nijpels G, Beulens JW, Rutters F. The Association between Social Jetlag, 12 the Metabolic Syndrome, and Type 2 Diabetes Mellitus in the General Population: The 13 New Hoorn Study. J Biol Rhythms 2017;32:359-368. 14 149. Parsons MJ, Moffitt TE, Gregory AM, Goldman-Mellor S, Nolan PM, Poulton R, Caspi A. 15 Social jetlag, obesity and metabolic disorder: Investigation in a cohort study. Int J Obes 16 2015;39:842-848. 17 150. Haberzettl P. Circadian toxicity of environmental pollution. Inhalation of polluted air 18 to give a precedent. Curr Opin Physiol 2018;5:16-24. 19 151. Sundar IK, Yao H, Sellix MT, Rahman I. Circadian molecular clock in lung 20 pathophysiology. Am J Physiol - Lung Cell Mol Physiol 2015;119:121–128. 152. Xu Y, Wang W, Zhou J, Chen M, Huang X, Zhu Y, Xie X, Li W, Zhang Y, Kan H, Ying Z. 22 Metabolomics analysis of a mouse model for chronic exposure to ambient PM2.5. 23 Environ Pollut 2019;247:953–963. 24 Cosselman KE, Navas-Acien A, Kaufman JD. Environmental factors in cardiovascular 153. 25 disease. Nat Rev Cardiol 2015;12:627–642. 26 Lim FL, Currie RA, Orphanides G, Moggs JG. Emerging evidence for the 154. 27 interrelationship of xenobiotic exposure and circadian rhythms: A review. Xenobiotica 28 2006;**36**:1140–1151. 29 Klinkenberg LJJ, Dijk JW Van, Tan FES, Loon LJC Van, Dieijen-Visser MP Van, Meex SJR. 155. 30 Circulating cardiac troponin T exhibits a diurnal rhythm. J Am Coll Cardiol 2014;**63**:1788–1795. 32 156. Crnko S, Printezi MI, Jansen TPJ, Leiteris L, Meer MG van der, Schutte H, Faassen M 33 van, Pré BC du, Jonge N de, Asselbergs FW, Gaillard CAJM, Kemperman H, 34 Doevendans PA, Sluijter JPG, Laake LW van. Prognostic biomarker soluble ST2 exhibits 35 diurnal variation in chronic heart failure patients. ESC Hear Fail 2020;7:1224–1233. 36 157. Ortiz-Tudela E, Mteyrek A, Ballesta A, Innominato PF, Levi F. Cancer 37 chronotherapeutics: Experimental, theoretical, and clinical aspects. Handb Exp 38 Pharmacol 2013;217:261-288. 39 158. Sica D, Frishman WH, Manowitz N. Pharmacokinetics of propranolol after single and 40 multiple dosing with sustained release propranolol or propranolol CR (Innopran XL), a new chronotherapeutic formulation. Hear Dis 2003;5:176-181. 42 159. Kuroda T, Kario K, Hoshide S, Hashimoto T, Nomura Y, Saito Y, Mito H, Shimada K.

- 43 Effects of bedtime vs. morning administration of the long-acting lipophilic 44 angiotensin-coverting enzyme inhibitor trandolapril on morning blood pressure in 45 hypertensive patients. Hypertens Res 2004;27:15-20.
- 46 Hermida RC, Ayala DE, Calvo C, López JE. Aspirin administered at bedtime, but not on 160. 47 awakening, has an effect on ambulatory blood pressure in hypertensive patients. J Am

1		Coll Cardiol 2005; 46 :975–983.
2	161.	Hermida RC, Ayala DE, Mojón A, Fernández JR. Influence of circadian time of
3		hypertension treatment on cardiovascular risk: Results of the MAPEC study.
4		Chronobiol Int 2010; 27 :1629–1651.
5	162.	Nemeth S, Schnell S, Argenziano M, Ning Y, Kurlansky P. Daytime variation does not
6		impact outcome of cardiac surgery: Results from a diverse, multi-institutional cardiac
7		surgery network. J Thorac Cardiovasc Surg 2019; S0022-5223:40864–40867.
8	163.	Fournier S, Muller O, Benedetto U, Roffi M, Pilgrim T, Eberli FR, Rickli H, Radovanovic
9		D, Erne P, Cook S, Noble S, Fesselet R, Zuffi A, Degrauwe S, Masci PG, Windecker S,
10		Eeckhout E, Iglesias JF. Circadian dependence of manual thrombus aspiration benefit
11		in patients with ST-segment elevation myocardial infarction undergoing primary
12		percutaneous coronary intervention. <i>Clin Res Cardiol</i> 2018; 107 :338–346.
13	164.	Rodríguez-Arias JJ, Ortega-Paz L, Brugaletta S, Freixa X, Masotti M, Regueiro A, Ariza
14		A, Carrillo X, Lidon RM, Garcia J, Cardenas M, Rojas SG, Muñoz JF, Zielonka M, Tizon-
15		Marcos H, Sabaté M. Comparison of clinical outcomes in STEMI patients treated with
16		primary PCI according to day-time of medical attention and its relationship with
17		circadian pattern. Int J Cardiol 2020;305:35-41.
18	165.	Fournier S, Puricel S, Morawiec B, Eeckhout E, Mangiacapra F, Trana C, Tapponnier M,
19		Iglesias JF, Michiels V, Stauffer JC, Beggah A, Monney P, Gobet S, Vogt P, Cook S,
20		Muller O. Relationship between time of day and periprocedural myocardial infarction
21		after elective angioplasty. Chronobiol Int 2014; 31 :206–213.
22	166.	Russo MJ, Chen JM, Sorabella RA, Martens TP, Garrido M, Davies RR, George I,
23		Cheema FH, Mosca RS, Mital S, Ascheim DD, Argenziano M, Stewart AS, Oz MC, Naka
24		Y. The effect of ischemic time on survival after heart transplantation varies by donor
25		age: An analysis of the United Network for Organ Sharing database. J Thorac
26		Cardiovasc Surg 2007; 133 :554–559.
27	167.	George TJ, Arnaoutakis GJ, Merlo CA, Kemp CD, Baumgartner WA, Conte J V., Shah AS.
28		Association of operative time of day with outcomes after thoracic organ transplant.
29		JAMA - J Am Med Assoc 2011; 305 :2193–2199.
30	168.	Cunningham PS, Maidstone R, Durrington HJ, Venkateswaran R V., Cypel M, Keshavjee
31		S, Gibbs JE, Loudon AS, Chow CW, Ray DW, Blaikley JF. Incidence of primary graft
32		dysfunction after lung transplantation is altered by timing of allograft implantation.
33		<i>Thorax</i> 2019; 74 :413–416.
34	169.	Ruben MD, Francey LJ, Guo Y, Wu G, Cooper EB, Shah AS, Hogenesch JB, Smith DF. A
35		large-scale study reveals 24-h operational rhythms in hospital treatment. Proc Natl
36		Acad Sci U S A 2019; 116 :20953–20958.
37	170.	Kelz RR, Tran TT, Hosokawa P, Henderson W, Paulson EC, Spitz F, Hamilton BH, Hall BL.
38		Time-of-Day Effects on Surgical Outcomes in the Private Sector: A Retrospective
39		Cohort Study. J Am Coll Surg 2009; 209 :434-445.e2.
40	171.	Eckle T, Hartmann K, Bonney S, Reithel S, Mittelbronn M, Walker LA, Lowes BD, Han J,
41		Borchers CH, Buttrick PM, Kominsky DJ, Colgan SP, Eltzschig HK. Adora2b-elicited Per2
42		stabilization promotes a HIF-dependent metabolic switch crucial for myocardial
43	470	adaptation to ischemia. <i>Nat Med</i> 2012; 18 :774–782.
44	172.	Esposito E, Li W, T. Mandeville E, Park JH, Şencan I, Guo S, Shi J, Lan J, Lee J, Hayakawa
45		K, Sakadžić S, Ji X, Lo EH. Potential circadian effects on translational failure for
46	4 7 2	neuroprotection. <i>Nature</i> 2020; 582 :395–398.
47	173.	Crnko S, Ernens I, Laake LW Van. New dimensions in circadian clock function: The role

1 of biological sex. Cardiovasc Res 2018;114:203-204. 2 174. Takeda N, Maemura K. Circadian clock and cardiovascular disease. J Cardiol 3 2011;**57**:249–256. 4 175. Poulsen RC, Warman GR, Sleigh J, Ludin NM, Cheeseman JF. How does general 5 anaesthesia affect the circadian clock? *Sleep Med Rev* 2018;**37**:35–44. 6 176. Hanneman SK, McKay K, Costas G, Rosenstrauch D. Circadian temperature rhythm of 7 laboratory swine. Comp Med 2005;55:249-255. 8 Sheffield LG, Welsch CW. Cholera-toxin-enhanced growth of human breast cancer cell 177. 9 lines in vitro and in vivo: Interaction with estrogen. Int J Cancer 1985;36:479-483. 10 178. Leyden KN, Hanneman SK, Padhye NS, Smolensky MH, Kang DH, Chow DSL. The Utility 11 of the Swine Model to Assess Biological Rhythms and Their Characteristics during 12 Different Stages of Residence in a Simulated Intensive Care Unit: A Pilot Study. 13 Chronobiol Int 2015;32:980-993. 14 179. Weerd H Van De, Ison S. Providing effective environmental enrichment to pigs: How 15 far have we come? Animals 2019;9:E254. 16 Jong IC De, Prelle IT, Burgwal JA Van De, Lambooij E, Korte SM, Blokhuis HJ, Koolhaas 180. 17 JM. Effects of environmental enrichment on behavioral responses to novelty, learning, 18 and memory, and the circadian rhythm in cortisol in growing pigs. Physiol Behav 19 2000;68:571-578. 20 181. Engert LC, Weiler U, Pfaffinger B, Stefanski V, Schmucker SS. Diurnal rhythms in 21 peripheral blood immune cell numbers of domestic pigs. Dev Comp Immunol 22 2018;**79**:11-20. 23 Yuan H, Zhao J, Guo J, Wu R, He L, Cui Y, Feng M, Zhang T, Hou M, Guo Q, Zhang L, Jia 182. 24 L, Huang C, Ye L, Peng S. Comparison of freely-moving telemetry Chinese Miniature 25 Experiment Pigs (CMEPs) to beagle dogs in cardiovascular safety pharmacology 26 studies. J Pharmacol Toxicol Methods 2014;70:19–28. 27 Manoogian ENC, Panda S. Circadian rhythms, time-restricted feeding, and healthy 183. 28 aging. Ageing Res Rev 2017;39:59-67. 29 Pendergast JS, Branecky KL, Yang W, Ellacott KLJ, Niswender KD, Yamazaki S. High-fat 184. 30 diet acutely affects circadian organisation and eating behavior. Eur J Neurosci 31 2013;**37**:1350–1356. 32 185. Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O. Timed high-fat diet resets 33 circadian metabolism and prevents obesity. FASEB J 2012;26:3493–3502. 34 Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and 186. 35 therapeutic intervention against diverse nutritional challenges. Cell Metab 36 2014;**20**:991–1005. 37 187. Zhang D, Colson JC, Jin C, Becker BK, Rhoads MK, Pati P, Neder TH, King MA, Valcin JA, 38 Tao B, Kasztan M, Paul JR, Bailey SM, Pollock JS, Gamble KL, Pollock DM. Timing of 39 Food Intake Drives the Circadian Rhythm of Blood Pressure. Function 2020;2:zqaa034. 40 188. Molzof HE, Wirth MD, Burch JB, Shivappa N, Hebert JR, Johnson RL, Gamble KL. The 41 impact of meal timing on cardiometabolic syndrome indicators in shift workers. 42 Chronobiol Int 2017;34:337-348. 43 189. McGinnis GR, Tang Y, Brewer RA, Brahma MK, Stanley HL, Shanmugam G, Rajasekaran 44 NS, Rowe GC, Frank SJ, Wende AR, Abel ED, Taegtmeyer H, Litovsky S, Darley-Usmar 45 V, Zhang J, Chatham JC, Young ME. Genetic disruption of the cardiomyocyte circadian 46 clock differentially influences insulin-mediated processes in the heart. J Mol Cell 47 *Cardiol* 2017;**110**:80–95.

1 190. Dierickx P, Vermunt MW, Muraro MJ, Creyghton MP, Doevendans PA, Oudenaarden A 2 van, Geijsen N, Laake LW Van. Circadian networks in human embryonic stem cell-3 derived cardiomyocytes. EMBO Rep 2017;18:1199–1212. 4 191. Montaigne D, Staels B. Time to check the clock in cardiovascular research and 5 medicine. Circ Res 2018;123:648-650. 6 192. Allada R, Bass J. Circadian Mechanisms in Medicine. N Engl J Med 2021;384:550–561. 7 193. Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. 8 J Clin Invest 2018;**128**:2157–2167. 9 194. Crnko S, Pré BC Du, Sluijter JPG, Laake LW Van. Circadian rhythms and the molecular 10 clock in cardiovascular biology and disease. Nat Rev Cardiol 2019;16:437-447. 11 195. Martino TA, Young ME. Influence of the cardiomyocyte circadian clock on cardiac 12 physiology and pathophysiology. J Biol Rhythms 2015;30:183–205. 13 196. Young ME, Razeghi P, Taegtmeyer H. Clock genes in the heart: Characterization and 14 attenuation with hypertrophy. Circ Res 2001;88:1142–1150. 15 Podobed P, Glen Pyle W, Ackloo S, Alibhai FJ, Tsimakouridze E V., Ratcliffe WF, Mackay 197. 16 A, Simpson J, Wright DC, Kirby GM, Young ME, Martino TA. The day/night proteome in 17 the murine heart. Am J Physiol - Regul Integr Comp Physiol 2014;307:R121-137. 18 Cung T-T, Morel O, Cayla G, Rioufol G, Garcia-Dorado D, Angoulvant D, Bonnefoy-198. 19 Cudraz E, Guérin P, Elbaz M, Delarche N, Coste P, Vanzetto G, Metge M, Aupetit J-F, 20 Jouve B, Motreff P, Tron C, Labeque J-N, Steg PG, Cottin Y, Range G, Clerc J, Claeys MJ, 21 Coussement P, Prunier F, Moulin F, Roth O, Belle L, Dubois P, Barragan P, et al. 22 Cyclosporine before PCI in Patients with Acute Myocardial Infarction. N Engl J Med 23 2015;**373**:1021–1031. 24 Hausenloy DJ, Kharbanda RK, Møller UK, Ramlall M, Aarøe J, Butler R, Bulluck H, 199. 25 Clayton T, Dana A, Dodd M, Engstrom T, Evans R, Lassen JF, Christensen EF, Garcia-26 Ruiz JM, Gorog DA, Hjort J, Houghton RF, Ibanez B, Knight R, Lippert FK, Lønborg JT, 27 Maeng M, Milasinovic D, More R, Nicholas JM, Jensen LO, Perkins A, Radovanovic N, 28 Rakhit RD, et al. Effect of remote ischaemic conditioning on clinical outcomes in 29 patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind 30 randomised controlled trial. Lancet 2019;394:1415–1424. 31 200. Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal 32 S, Devaux Y, Lisa F Di, Sante M Di, Efentakis P, Femminò S, García-Dorado D, Giricz Z, 33 Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro 34 P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, 35 Yellon DM, Ferdinandy P, Heusch G. Practical guidelines for rigor and reproducibility in 36 preclinical and clinical studies on cardioprotection. Basic Res Cardiol 2018;113:39. 37 201. Heusch G. Critical Issues for the Translation of Cardioprotection. Circ Res 38 2017;**120**:1477–1486. 39 40 41 42

43 Funding:

- 44 AD was supported by vascular biology research grants from the Boehringer Ingelheim
- 45 Foundation for the collaborative research group "Novel and neglected cardiovascular risk

factors: molecular mechanisms and therapeutics". HEB was supported by the Novo Nordisk 1 2 Foundation (NNF14OC0013337 and NNF15OC0016674), Strategiske Forskningsråd (11-3 108354), TrygFonden (109624). HG was supported by European Regional Development Fund 4 (ERDF) through the Operational Program for Competitiveness Factors (COMPETE) [under the 5 projects PAC "NETDIAMOND" POCI-01-0145-FEDER-016385; HealthyAging2020 CENTRO-01-6 0145-FEDER-000012-N2323; POCI-01-0145-FEDER-007440, CENTRO-01-0145-FEDER-032179, 7 CENTRO-01-0145-FEDER-032414, POCI-01-0145-FEDER-022122, FCTUID/NEU/04539/2013, 8 UID/NEU/04539/2019, UIDB/04539/2020 and UIDP/04539/2020]. DH is supported by the 9 British Heart Foundation (CS/14/3/31002), the National Institute for Health Research 10 University College London Hospitals Biomedical Research Centre, Duke-National University 11 Singapore Medical School, Singapore Ministry of Health's National Medical Research Council 12 under its Clinician Scientist-Senior Investigator scheme (NMRC/CSA-SI/0011/2017) and 13 Collaborative Centre Grant scheme (NMRC/CGAug16C006), and the Singapore Ministry of 14 Education Academic Research Fund Tier 2 (MOE2016-T2-2-021). This article is based upon 15 work from COST Action EU-CARDIOPROTECTION CA16225 supported by COST (European 16 Cooperation in Science and Technology) and DST South Africa. RM received funds from 17 Ministero dell'Istruzione, Università e Ricerca Scientifica (549901_2020_Madonna:Ateneo) 18 and Incyte s.r.l. MM was supported by UK Department of Health through the National 19 Institute for Health Research Biomedical Research Centre award to Guy's & St Thomas' 20 National Health Service Foundation Trust. MP is supported by institutional funding from 21 Italian Ministry of Health (Ricerca Corrente) and Regione Lombardia. PF was supported by 22 the National Research, Development and Innovation Office of Hungary (Research Excellence 23 Program – TKP, National Heart Program NVKP 16-1-2016-0017) and by the Higher Education 24 Institutional Excellence Program of the Ministry of Human Capacities in Hungary, within the 25 framework of the Therapeutic Development thematic program of the Semmelweis 26 University. SMD was supported by the National Institute of Health Research (NIHR) 27 Biomedical Research Council [BRC233/CM/SD/101320] and the British Heart Foundation 28 [PG/19/51/34493]. JPGS was supported by European Union H2020 program to the project 29 TECHNOBEAT (grant number 66724) and EVICARE (grant number 725229), and ZonMw 30 program No. 116006102. SL was supported by the National Research Foundation, Winetech 31 and CANSA grants. BJJMB was supported by CVON-STW2016-14728 AFFIP, Medical Delta 32 and DHF-DZHK grant DnAFix (2020B003). SS was supported by the Deutsche 33 Forschungsgemeinschaft (DFG CRC 1123) and the German Centre for Cardiovascular 34 Research (DZHK). L.L. was supported by the Netherlands Heart Foundation, Dekker Senior 35 Clinical Scientist 2019, grant agreement No 2019T056. R.S. was supported by Deutsche 36 Forschungsgemeinschaft (DFG, German Research Foundation) [Project number 268555672 – 37 SFB 1213, Project B05]

38

39 **Disclosure:**

- 40 PF is the founder and CEO of Pharmahungary Group, a group of R&D companies. L.L. Outside
- 41 the current work: Consultancy fees to UMCU from Abbott, Medtronic, Vifor, Novartis.

Table Legend

Table 1: Relationship between physiological, co-morbidities, psychological, behavioural, environmental factors and circadian rhythms

Figure Legends

Figure 1: The role of circadian rhythms in cardiovascular physiology. A) The circadian clock sustains a 24-h rhythm that regulates the cardiovascular system, including electrophysiological parameters, blood pressure, cardiac contractility, coagulation, vascular function, and the cardiovascular involvement of the immune system. B) The circadian clock is a molecular mechanism consisting of positive and negative feedback loops C) The circadian clock causes time-of-day variation of clock components as well as physiological parameters

Figure 2: Aspects of preclinical and clinical cardioprotective research influenced by circadian rhythms.

Figure 3: Practical flow chart to include circadian rhythm aspects in the design of preclinical, translational and potentially clinical cardioprotective studies.

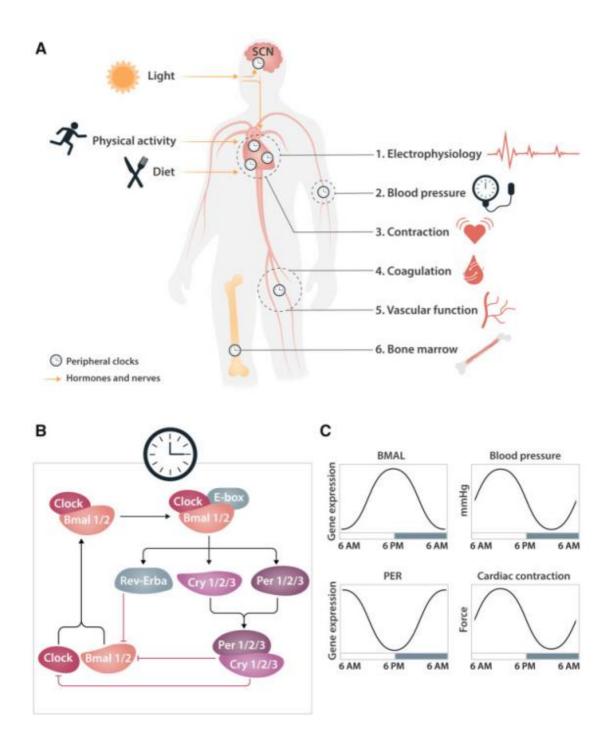
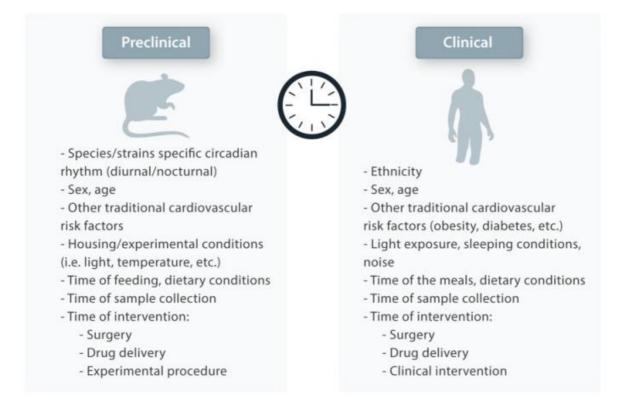
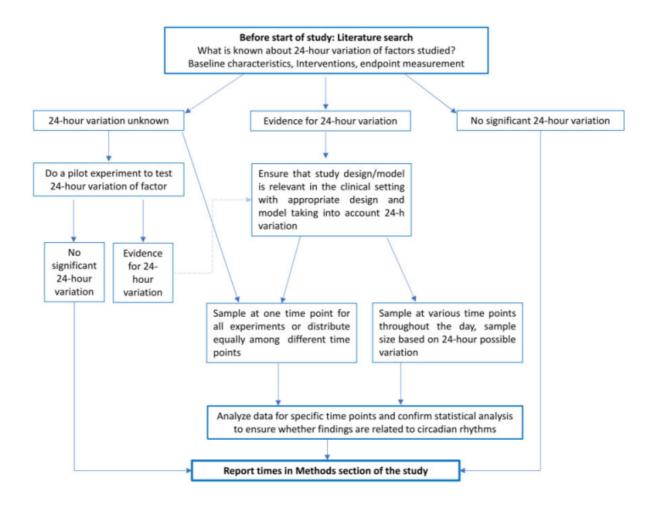




Figure 1

Key points related to circadian rhythm that may interfere with the outcomes of research studies on cardioprotective strategies

Figure 2

