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Abstract 

Background: Body composition assessment is paramount for spinal muscular atrophy 

type I (SMA I) patients, as weight and BMI have proven to be misleading for these patients. 

Despite its importance, no disease-specific field method is currently available, and the 

assessment of body composition of SMA I patients requires reference methods available 

only in specialized settings. 

Objective: To develop predictive fat mass equations for SMA I children based on simple 

measurements, and compare existing equations to the new disease-specific equations. 

Design: Demographic, clinical and anthropometric data were examined as potential 

predictors of the best candidate response variable and non-linear relations were taken into 

account by transforming continuous predictors with restricted cubic splines. Alternative 

models were fitted including all the dimensions revealed by cluster analysis of the 

predictors. The best models were then internally validated, quantifying optimism of the 

obtained performance measures. The contribution of nusinersen treatment to the 

unexplained variability of the final models was also tested. 

Results: A total of 153 SMA I patients were included in the study, as part of a longitudinal 

observational study in SMA children conducted at the International Center for the 

Assessment of Nutritional Status (ICANS), University of Milan. The sample equally 

represented both sexes (56% females) and a wide age range (from 3 months to 12 years, 

median 1.2 years). Four alternative models performed equally in predicting fat mass 

fraction (fat mass/body weight). The most convenient was selected and further presented. 



The selected model uses as predictors sex, age, calf circumference and the sum of triceps, 

suprailiac and calf skinfold thicknesses. The model showed high predictive ability 

(optimism corrected coefficient of determination, R² = 0.72) and internal validation 

indicated little optimism both in performance measures and model calibration. The 

addition of nusinersen as a predictor variable did not improve the prediction. The disease-

specific equation was more accurate than the available fat mass equations. 

Conclusions: The developed prediction model allows the assessment of body composition 

in SMA I children with simple and widely available measures and with reasonable accuracy. 
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Abbreviations: 

• BMI: body mass index; 

• DXA: dual-energy X-ray absorptiometry; 

• FFM: fat free mass; 

• FM%: fat mass percentage of whole body weight; 

• FM: fat mass; 

• FMI: fat mass index; 

• R²: coefficient of determination; 

• SMA I: spinal muscular atrophy type I. 

• SMA: spinal muscular atrophy; 

• R²adj: coefficient of determination adjusted for the number of explanatory terms; 

  



Introduction 

Spinal muscular atrophy (SMA) is a genetic motor neuron disease that leads to muscle 

weakness and wasting [1]. Skeletal and respiratory muscles are variably affected and there 

is a high prevalence of gastrointestinal disorders, including difficulties with feeding, 

swallowing, digestion and bowel movements. SMA patients are classified on the basis of 

age of onset and maximum motor milestone achievement, with SMA type I (SMA I) being 

the most severe postnatal form [2]. In SMA I, the first signs of weakness occur in the first 

six months of life, and affected children never acquire the ability to sit without support. 

With the recent availability of effective treatments, the natural history of SMA I patients is 

changing. Nusinersen has been the first approved disease-modifying drug showing 

significant improvements in motor function and event-free survival, especially when 

administered early [3]. 

Body composition of SMA patients is affected by both the pathophysiology of the disease 

and its complications. Several studies have shown that fat-free mass (FFM) and bone 

mineral content are reduced [4,5]. On the other hand, the reduced energy expenditure due 

to low basal metabolic rate, respiratory support [6], and low motility leads to accumulation 

of fat mass (FM) [7–9]. When the gastrointestinal involvement is severe, particularly 

because of dysphagia, energy intake can be compromised, and weight can be even more 

severely reduced [10]. Body composition derangements are related to SMA categories, with 

SMA I patients having more FM and less FFM than SMA type II patients [11]. 

The assessment of body composition plays several roles in SMA. Besides its use to plan 

nutritional interventions, it can be used to track disease progression [12], and has been 



shown to potentially be a biomarker of motor function [5]. Dual-energy X-ray 

absorptiometry (DXA) has been used in the majority of studies that included a body 

composition assessment in SMA [7–9,13–19], and has become the reference method in SMA 

and other neuromuscular diseases. DXA is an accurate method for the assessment of body 

composition based on the different attenuation coefficient to X-rays of FM, lean tissue mass 

and bone mass [20]. Besides its accuracy, DXA provides a unique set of features that make 

it suitable and compelling in neuromuscular diseases: it evaluates bone mass and mineral 

density; it allows segmental body composition assessment; can be performed in non-

sitters; is cheaper and quicker than whole-body magnetic resonance imaging and is less 

invasive than computed tomography. However, DXA has not been extensively validated in 

the pediatric population, and not at all in SMA patients; therefore, normative values are 

lacking for these populations. Moreover, as with all imaging techniques, severe joint 

contractures, severe scoliosis, and large artifacts due to growing rods or other orthopedic 

implants can compromise body composition estimates. Moreover, performing DXA at the 

frequency suggested by the standard of care [1] may cause concerns about cumulative 

radiation exposure, especially if other imaging procedures are required [21]. Finally, DXA 

may not be available in every clinical setting. 

Anthropometry is a cheap, widely available technique for the assessment of body 

composition. It involves the measurement of weight, stature/recumbent length, segmental 

lengths, body breadths, circumferences, and skinfold thickness [22]. Estimates of total body 

FM are based on population-specific prediction models developed using regression 

analysis [23]. Available prediction models are not suitable to assess body composition in 

special populations, such as patients with neuromuscular disease [19,24]. Moreover, no 



anthropometric models have been developed so far in SMA patients and no field methods 

are available for their assessment of body composition. 

The primary aim of this study was to develop and internally validate predictive FM 

equations for SMA I children based on demographic, clinical and anthropometric data. The 

secondary aim was to compare the resulting equations with available FM equations for the 

general population. 

Materials & Methods 

Source of data 

From April 2015 to January 2020, a longitudinal observational study in SMA children was 

conducted at the International Center for the Assessment of Nutritional Status (ICANS, 

University of Milan, Milan, Italy). At the end of the study, 165 patients with a clinical and 

genetic diagnosis of SMA I were consecutively enrolled. 

Before the body composition assessment, the patients underwent a clinical evaluation at 

their neurological center. Anthropometry and DXA were performed on the same morning 

for each patient at ICANS. 

The study protocol was approved by the Ethics Committees of the University of Milan 

(n.7/16) and Carlo Besta Neurological Institute Foundation n.37/2016) and complied with 

the Helsinki Declaration. The parents, on behalf of their children, gave their informed and 

written consent to the study. 



Participants 

Patients were recruited from 5 clinical referral centers for SMA in Italy: Developmental 

Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; SAPRE UONPIA, 

Fondazione IRCSS Cà Granda, Policlinico di Milano, Milan; Department of Neurosciences, 

Neuromuscular, and Neurodegenerative Disorders Unit, Laboratory of Molecular Medicine, 

Bambino Gesù Children’s Research Hospital, IRCCS, Rome; Italian Department of 

Neurosciences and Rehabilitation, Institute “G. Gaslini,” Genoa; and Department of 

Women’s and Children’s Health, University of Padua, Padua. 

Inclusion criteria were: 

• genetically confirmed diagnosis of SMA; 

• clinical diagnosis of SMA1[1]; 

• age 0-11,99 years; 

• clinical management according to the best supportive care based on the Consensus 

Statement for Standard of Care in SMA[1]; 

• absence of acute medical conditions in the 15 days before the assessment. 

DXA images with missing or overlapping portions of the body, or with large artifacts, were 

excluded. Excluded DXA images were identified through operator notes and by comparing 

DXA mass to scale weight (absolute differences greater than 1 kg), and visually inspected 

before exclusion. 

Patients participating in experimental pharmacological trials were also excluded. Patients 

under nusinersen treatment (the only approved pharmacological treatment at the time of 



study) were included and considered as treated patients if they had received at least 4 

loading doses. 

Outcome 

Three dependent variables were evaluated for the prediction of FM: FM measured by DXA 

(kg); FM fraction of whole body weight (FM%, expressed in percentage); FM index (FMI, 

kg/m²), defined as FM divided by the square of recumbent length. 

All possible outcomes were obtained from DXA imagining performed as part of the main 

longitudinal study, from a single center, using the same device, and under strictly 

controlled conditions. 

Dual-energy X-ray absorptiometry 

DXA was performed on the whole body with narrow fan-beam densitometer (GE Lunar 

iDXA, Boston, USA). Daily and yearly quality controls were performed. During 

measurement, all patients wore minimal clothing and kept only strictly necessary medical 

devices. Images were analysed with the manufacturer software (enCORE), artifact from 

orthopedic implants or other medical devices where manually removed. Data on bone 

mass, lean tissue mass and FM were recorded. 

FFM was defined as the sum of soft-lean mass and bone mass. Bone, soft-lean, FFM and FM 

indexes were defined as the body composition compartment divided by the square of 

recumbent length in meters. 



Predictors 

Three types of independent variables were considered: demographic, clinical and 

anthropometric. 

The demographic variables included sex (categorical, female/male) and age (in months of 

years, continuous). 

The clinical variables included treatment with nusinersen (dichotomous, false/true) and 

the number of infusions administered to the patient (count). 

The anthropometric variables included body weight (kg, continuous), recumbent length 

(cm, continuous), segmental lengths (arm, ulna, femur, tibia; cm, continuous), 

circumferences (waist, arm, thigh, calf; cm, continuous), skinfold thickness (biceps, triceps, 

subscapular, suprailiac, anterior thigh, calf; mm, continuous), and derived measures 

(calculation details below) such as body mass index (BMI; kg/m², continuous), arm fat area 

and thigh fat area (cm², continuous). 

Clinical evaluation 

During the clinical evaluation, the caring neurologist collected a medical history, and 

performed a physical and neurological examination. Data on diagnosis, pharmacological 

trials performed, and nusinersen treatment (date of first infusion and number of infusions 

performed) were recorded. 



Anthropometry 

The anthropometric methods are detailed in our previous publication which includes an 

anthropometric manual specific for neuromuscular patients [25], and inter-observer 

reliability data. 

All anthropometric measurements were collected by 3 well-trained operators. Body weight 

was collected to the nearest 0.1 kg with an electronic wheelchair scale accurate to 0.1 kg 

(Seca 664, Seca GmbH, Hamburg, Germany). Recumbent length, segmental lengths and 

circumferences were collected to the nearest 0.1 mm with an inextensible metric tape, wide 

0.5 cm, and graduated to 1 mm (Gima 27341, Gima S.p.A., Gessate, Italy). Skinfold thickness 

were measured to the nearest 0.1 mm using a skinfold caliper with a 35 mm² jaw face area, 

exerting a 10±2 g/mm² pressure between the jaws, with a range of 0-40 mm, calibrated to 

0.2 mm (Holtain Tanner/Whitehouse Skinfold Caliper, Croswell, UK). 

BMI was defined as body weight divided by the square of recumbent length in meters. Arm 

and thigh fat areas were calculated assuming a cylindrical shape for the limb and its 

constituents, as the difference of limb cross-sectional area and limb cross-sectional muscle 

area [26]. Sex-specific weight, length, and BMI-Z-scores were derived using the 2006 World 

Health Organization growth charts [27] for patient <2 years old and the 2000 Center for 

Disease Control and Prevention growth charts [28] for older patients. Classes of BMI-for-

age and stature-for-age were computed as per WHO or CDC guidelines [29]. 

FM% was calculated from body density prediction using the Brook (1971) [30] and Siri 

(1961) [31] equation, and directly using the Slaughter (1988) [32] equation. 



Sample size 

Few similar studies matching methods and age range used in this study are available in the 

pediatric population, and even fewer in neuromuscular diseases and none in SMA. So, 

prespecification of the model’s anticipated R² was not possible and we did not perform any 

formal sample size calculation. Instead, we pre-specified model complexity (i.e. allowed 

degrees of freedom) based on the available sample size, employing several data reduction 

technique to arrive to a suitable set of predictors. 

Adequacy of sample size was tested a posteriori using criteria identified by Riley (2018) 

[33]. 

Missing data 

As recommended [34], variables missing at random or completely at random were imputed 

to avoid discarding incomplete observations. A number of imputation equal to the 

percentage of incomplete cases was computed. A different bootstrap re-sample was drawn 

from complete cases for each of the multiple imputation dataset. Flexible additive models 

were fitted on the bootstrap samples and used to predict the variable missing in the 

original sample. Missing values were imputed from donor observations (complete cases) 

through predictive mean matching (ie. the actual observation whose predicted value was 

closest to the predicted missing value) [35]. 



Statistical analysis 

Continuous variables are reported as 50th (25th, 75th percentile), categorical variables are 

reported as count (fraction). Hypothesis testing between naive and nusinersen patients 

was performed using: 1. the Wilcoxon rank sum test with continuity correction for age and 

z-score of growth variables, 2. the Kruskal-Wallis rank sum test for sex categories, 3. 

proportional odds ordinal logistic regression controlling for sex and age, transformed with 

a restricted cubic spline with 3 knots, for all other variables. 

Normality and constant variance assumptions were tested for the three candidate response 

variables. Linearity between the response and continuous predictors was not assumed by 

using restricted cubic spline, with degree of non-linearity pre-specified using prior 

knowledge of the response-predictor relationship [35]. Hierarchical cluster analysis, 

collinearity test and combination of multiple variables were used as data reduction 

strategies to achieve adequate model complexity (15 observation per degree of freedom 

were considered adequate) [35]. 

Multiple linear models fitted on the imputed samples were compared on the basis of 

overall performance (coefficient of determination, R²), discrimination ability (g-index), and 

calibration plots (slope and intercept) [33,35,36]. Results from our previous inter-observer 

reliability study [25] were considered in choosing alternative models. Such results are 

reported in Appendix B. The final models were also evaluated graphically using partial 

effects plots, using both case-wise deletion of missing variables and pooling from the 

imputed datasets. 



To quantify the optimism of the final models, internal validation was performed on each 

imputed dataset using 1000 bootstrap resamples, with further pooling of results. Optimism 

was estimated for R², g index and calibration slope and intercept. The bootstrap re-samples 

were also used to estimate the distribution of regression coefficient and quantile-based 

knot locations in each imputed dataset and pooled mean and 95% confidence intervals 

(CIs) were computed. Regression coefficients were optimism-corrected in the final models 

using the pooled calibration slope from bootstrap internal validation as a uniform 

shrinkage factor, and adjusting for the pooled calibration intercept. The internal validation 

was also performed with limited backward step-down variable selection on a stacked and 

weighted dataset of all the imputation datasets, to tentatively develop a more parsimonious 

model. 

The potential contribution of nusinersen treatment to the unexplained variability of the 

outcomes was evaluated as follows. Nusinersen treatment was added to the full final 

models either as a categorical variable (naive/treated patient) or as a continuous variable 

(days from first injection). The regression coefficient of the nusinersen variable was used 

to assess the clinical importance of the addition of a nusinersen variable, while the 

predictive ability of the nusinersen variable was assessed comparing the R² of the models 

with and without the nusinersen variable. 

The final model is presented as an R function suitable for computerized implementation. 

For field use, an approximated version of the final model was computed to allow 

calculations with simple calculators. 



To compare the final models with available predictive FM equations, Bland and Altman 

plots [37] were drawn. 

The statistical procedures used in the development of the equations are described in detail 

by Harrell (2015) [35] and Steyerberg (2019) [38]. Statistical analyses were performed in 

R 4.0.2 [39], with the addition of the rms package [40] for imputation, model fitting and 

model validation. 

Results 

Participants 

Of the 165 enrolled SMA I, 12 (7.3%) didn’t meet the inclusion criteria and were excluded 

from the analysis. The 12 excluded patients displayed absolute differences between scale 

and DXA weight greater than 1 kg. Visual inspection of DXA images and operator notes 

showed overlapping body parts, missing body parts, portion of the body scanned multiple 

times or big artifacts area due to manual elimination of extensive orthopedic implants 

(mainly growing rods). A flow diagram is available in Figure B1 in Appendix B. 

The characteristics of the study population (N = 153) are summarised in Table 1. There was 

a slight prevalence of girls (56% females) and, while most patients were < 2.6 years of age 

(75th percentile), age ranged from 3.0 months to 12 years. 

As shown by our previous study [11], both weight and BMI z-scores distribution were 

biased towards lower values; in detail, they were centered around -1.4 and -2.6 z-scores 

respectively. The median recumbent length was higher than the 50th percentile, being 



approximately 0.3 z-score. Almost all patients (93%) displayed normal recumbent length, 

while only 34% had normal weight, with the remaining being underweight. When 

compared to reference values estimated by Fomon (1982) [41], all but 2 patients had 

higher FM% than healthy peers and the FM% difference between SMA I patients and 

healthy peers was 15.4% (11.0%, 21.2%). A more comprehensive comparison with Fomon 

data is included in Appendix A. 

Considering treatment, the nusinersen patients were older, and had lower weight, 

recumbent length, and BMI z-scores than the naive patients, but recumbent length and BMI 

categories were not significantly different. Controlling for age and sex, all other variables 

were not significantly different (expect recumbent length, as already noted by the 

differences in recumbent length z-score). 

Missing variables and imputation 

Not all patients in our sample completed the whole protocol: ulna length was missing in 16 

% of patients, and calf circumference and calf skinfold were both missing in 10% of 

patients. Analysis of the period in which examinations of incomplete cases was conducted 

confirmed that those measurements were missing because they were not part of the 

original data collection procedure. Missing measurements were considered missing 

completely at random (their absence was proved to be unrelated to any characteristics or 

the candidate response variables). 

Since the fraction of incomplete cases was 16%, 16 imputation datasets were computed 

using demographic, body composition and anthropometric data. Due to the high 

collinearity of missing measurements with other measurements, the R²s with which each 



missing variable could be predicted were generally high (ulna length R² = 0.87, calf 

circumference R² = 0.85, calf skinfold R² = 0.76). Moreover, the empirical cumulative 

distribution functions of missing variables drawn from complete observations and the 

imputed datasets were remarkably similar (Figure B2 in Appendix B). 

Model development 

Outcome measures were available for all 153 participants. Visually testing the normality 

and constant variance assumption of the three candidate responses (Figure B4 in Appendix 

B) excluded FM from the candidate predictors. While we considered FM% and FMI to be 

both adequate responses, but FM% was preferred to tentatively develop a model that 

would not require a stature measurement, as measuring stature pose several challenges in 

SMA I. Also, using FM% as response variable makes the model comparable with existing 

equations. 

With a total of 153 independent observations, we limited model parameters to 153/15 ≈ 

10. Variable clustering (Figure B5 in Appendix B) identified four independent dimensions: 

sex, development stage (age, recumbent length, weight, and segmental lengths), 

circumferences, skinfolds. To represent the skinfold cluster, sums of different skinfold 

combination were computed testing for the equal weight assumption [38]. To represent all 

dimension in our model, alternative models were fitted for each “development stage” 

variable, circumference and skinfold sum combination. All continuous variables were 

transformed with restricted cubic splines, but more degrees of freedom were reserved to 

the “development stage variable” (5 knots instead of 3) [35]. All tested models had a total 



of 10 degrees of freedom. Redundancy analysis was performed on the resulting models, but 

no variables proved to be redundant in the final models. 

Fitting the models using either complete cases for the specific model variables or complete 

cases for all variables highlighted selection bias of subjects. Models using incomplete cases 

appeared indeed to perform better than models using all subjects, but the ranking of 

models fitted on incomplete cases was equal to that of models fitted on imputed datasets. 

Among the many competing models, we excluded those including measurements that could 

not be reliably collected in our pilot study [25]. Four alternative models having as 

predictors one “development stage” variable (age, recumbent length, ulna length or tibia 

length), calf circumference and the sum of triceps, suprailiac and calf skinfolds, were 

deemed to be the best compromise between performance, discrimination, calibration and 

parsimony. The unadjusted association between each predictor and outcome is available in 

Figure B3 in Appendix B, and a visual comparison of selected tested models is available in 

Figure B6 in Appendix B. 

Model specification and performance 

The four alternative model coefficients are shown in Table 2, but, as the coefficients of a 

variable transformed with a restricted cubic spline are hard to interpret, partial effect plots 

are available in Figure B7 in Appendix B. The calibration plots are shown in Figure 1 and 

model performance statistics in Table 3. The models performed very similarly with 

apparent R² of ~ 0.76 and mean squared error of ~ 12.4 (rooted mean squared error ≈ 3.5). 

Optimism detected by bootstrap internal validation was limited to ~ 0.04 of the apparent 

R² and ~ -1.9 of the mean squared error (rooted mean squared error ≈ 1.4). Little optimism 



was also observed in discrimination ability, with g-index optimism of ~ 0.11. The shrinkage 

factor obtained by the bootstrapped slope of the calibration plot was ~ 0.98, very close to 

1, denoting minimal over-fitting. The adjustment for the calibration intercept was ~ 0.90. 

The limited backward step-down variable selection did not remove any factor in all the 

alternative models. 

Influence of nusinersen treatment 

The addition of nusinersen status variable as covarible to the models did not improve their 

prediction. The regression coefficients of nusinersen were in fact not clinically relevant and 

the R²adj did not change (Table 4). 

Model presentation and simplification 

As the four alternative models provided very similar performance, the age model was 

picked for presentation as age should be the most convenient and reliable variable to 

collect of the four alternative “development stage” variables. To take advantage of the full 

model with spline transformation, R code is included in Appendix B for prediction of FM 

fraction. For field use, the regression equation of an approximated version of the age model 

is presented in Box 1, already split by sex and age. The approximated model was obtained 

with a linear age spline (with knots at 6 months, 1.5 years and 5 years) and quadratic 

transformation of calf circumference and skinfold sum. The approximated model was able 

to predict almost perfectly the fitted FM% values from the full age model (R²adj = 0.995). 



Comparison with other equations 

Figure 2 shows Bland and Altman plots of the age model and other FM equations available 

for the pediatric general population. Both systematic and proportional bias can be detected 

in previously available predictive equations. 

Discussion 

We developed the first predictive equations to estimate FM% in SMA I patients. The 

equations are based on demographic and anthropometric data, but the influence of 

relevant clinical variables was also taken into account. These equations require relatively 

inexpensive equipment and a limited but fundamental training to assess their predictors 

[25]. On the other hand, they allow the assessment of body composition in virtually any 

setting and as often as required. 

As we have previously shown [11], body weight and BMI measurements are misleading in 

SMA I, with the majority of children diagnosed as “underweight” by “reference” growth 

charts while having a high FM%. This is due to the concomitant slower velocity of fat-free 

mass gain and higher velocity of fat mass gain in comparison with healthy peers. These 

results underline the importance of body composition assessment in SMA I and the need of 

widely available tools to carry out the assessment. As we have shown, currently available 

equations to estimate FM in the general population are grossly inaccurate in SMA I 

children, and disease specific equations were needed. 



The equations presented here were developed in patients aged 2 months to 12 years, with 

a FM% measured by DXA between 20% and 60%. All models showed high predictive ability 

(R² > 0.7) and an error we deem acceptable in the clinical setting (root mean square error ≈ 

3.8). We internally validated the model by quantifying the optimism of the obtained 

equations. The bootstrap internal validation indicates little optimism for the apparent 

performance of the models, with a global shrinkage factor > 0.9 and small absolute 

differences (< 0.05) in the R². While external validation is required to assess 

generalizability of our models, they currently offer the only available estimate for FM% in 

SMA I not requiring reference or gold-standard methods. 

The inclusion of nusinersen treatment in the model did not improve the prediction of FM% 

in SMA I children. While it is possible that nusinersen had an effect on body composition, it 

was fully explained by variation of the other variables included in the models. The 

differences between the two groups highlighted in Table 1 are seemingly due to the age 

difference, and in particular the lower weight z-score could be attributed to the disease 

progression, but studies designed to describe the nusinersen effects on body composition 

are required to confirm those speculative findings. 

As the four developed models had similar performance and validated equally well, the most 

convenient (the age model) was further simplified for field use, and a calculator is also 

available at https://icans.shinyapps.io/smanutrition/. 

This study has several strengths. The sample was relatively large considering the rarity of 

the disease, and included both naive and nusinersen treated SMA I patients. The 

measurements were of high quality: the DXA data came from a single center using the same 

https://icans.shinyapps.io/smanutrition/


device, and were collected under strictly controlled conditions; the anthropometric 

procedures were specifically designed for SMA children and included several different 

measurements; an inter-observer reliability study for the anthropometric procedures was 

specifically performed on SMA patients; all patients came from an ongoing longitudinal 

study on nutritional status in SMA children. The wide age range of our sample makes the 

equations applicable to a wide target population. 

On the other hand, ethnicity is a known factor affecting body composition and this study 

only included Caucasian patients. While the age range is wide, most of our patients were 

below 3 years of age; this was the unavoidable but welcomed result of improved survival of 

SMA I patients recorded in the last few years. These equations may not be valid for SMA I 

patients with a severely stunted phenotype; it is plausible that FM may be reduced in those 

patients although, to our knowledge, no body composition study targeted this phenotype. 

On the other hand, the sample of the cited reliability study is small and may not represent 

all patients included in this study [25]. We still value the results of the reliability study as it 

is the only one ever performed on SMA patients and the exclusion of unreliable 

measurements impacted very little on the predictive ability of our equations. Further steps 

will also include external validation of the developed equations which showed promising 

results from internal validation. 



Conclusion 

The equations described above allow the assessment of FM% in SMA I with relative ease 

and reasonable accuracy, and will be helpful in the nutritional management of SMA I 

children in many clinical settings. 
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Figure legends/captions 

Figure 1: Calibration plots for fat mass fraction (%) for all alternative models. The 

continuous line in each plot is the line of equality, while the dashed line is a locally 

estimated scatterplot smoothing line (LOESS). 

Figure 2: Bland and Altman plots of the developed age model and available fat mass 

equations for the pediatric general population. 


