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obotic-assisted surgery is now well established in 
clinical practice and has become the gold-standard 
clinical treatment option for several clinical 
indications. The field of robotic-assisted surgery is 
expected to grow substantially in the next decade, 

with a range of new robotic devices emerging to address 
unmet clinical needs across different specialties. A vibrant 
surgical robotics research community is pivotal for 
conceptualizing such new systems as well as for developing 
and training the engineers and scientists to translate them 
into practice. The da Vinci Research Kit (dVRK), an 
academic and industry collaborative effort to repurpose 
decommissioned da Vinci surgical systems [Intuitive Surgical 
Inc. (ISI), California, USA] as a research platform for surgical 
robotics research, has been a key initiative for addressing a 
barrier to entry for new research groups in surgical robotics. 
In this article, we present an extensive review of the 

publications that have been facilitated by the dVRK over the 
past decade. We classify research efforts into different 
categories and outline some of the major challenges and 
needs for the robotics community to maintain and build 
upon this initiative.

Introduction
Robotics is at the heart of modern health-care engineering. 
Robotic-assisted surgery, in particular, has been one of the 
most significant technological additions to surgical capabilities 
over the past two decades [1]. With the introduction of laparo-
scopic or minimally invasive surgery (MIS) as an alternative to 
traditional open surgery, the decoupling of the surgeon’s direct 
access to the internal anatomy generates the need to improve 
ergonomics and creates a favorable arrangement for robotic 
telemanipulator support. In MIS, the visceral anatomy is 
accessed through small, trocar-made ports using specialized 
elongated instruments and a camera (i.e., laparoscope) to 
observe the surgical site. Robotic-assisted MIS (RMIS) uses 
the same principle, but the tools and the scope are actuated by 
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motors and control systems, providing enhanced instrument 
dexterity and precision as well as immersive visualization at 
the surgical console. The most successful and widely used 
RMIS platform, the da Vinci surgical system, is shown in Fig-
ure 1(a). To date, more than 5,000 da Vinci surgical systems 
have been deployed worldwide, performing more than 7 mil-
lion surgical procedures across different anatomical regions 
[2]. Urology, gynecology, and general surgery represent the 
main application areas where the da Vinci surgical system has 
been used, although many other specializations have also 
developed robotic approaches, for example, in thoracic and 
transoral surgery [3] [Figure 1(b)].

The impact on both clinical science and engineering 
research of the da Vinci surgical system has also been signifi-
cant, with more than 25,000 peer-reviewed articles reported, 
as illustrated in Figure 1(b). Many clinical studies and case 
reports belong to this body of literature and focus on investi-
gating the efficacy of RMIS or its development for new 
approaches or specialties. In addition to clinical research, the 
da Vinci surgical system has also facilitated many engineering 
publications and stimulated innovation in surgical robotics 
technology. In the early years since the clinical introduction of 
the robot, such engineering research was predominantly 
focused on the development of algorithms that utilized data 
from the system, either video or kinematic information, or 
external sensors adjunct to the main robotic platform. How-
ever, relatively few institutions had da Vinci surgical systems 
available for research use, the majority of platforms were dedi-
cated to clinical utilization, and kinematic information was 
accessible through an application programming interface, 
which required a research collaboration agreement with ISI. 
This inevitably restricted the number of academic or industry 
researchers able to contribute to the advancement of the field.

To address the challenges in booting surgical robotics 
research, the dVRK research platform was developed through 
a collaboration between academic institutions, Johns Hopkins 
University and Worcester Polytechnic Institute, and ISI in 
2012 [4]. Seminal papers [5], [6] where the platform was pre-
sented for the first time, outline the dVRK and its mission. 
The idea behind the dVRK initiative is to provide the core 
hardware, i.e., a first-generation da Vinci surgical system, to a 
network of researchers worldwide by repurposing retired 
clinical systems. This hardware is provided in combination 
with dedicated electronics to create a system that offers 
researchers access to any level of the control system of the 
robot as well as the data streams within it. The dVRK compo-
nents are the master console (the interface at the surgeon 
side), the robotic arms used to handle the tools and the scope 
at the patient side, and the controller boxes containing the 
electronics (Figure 2). To date, the dVRK, together with the 
purely research-focused RAVEN robot [7], are the only exam-
ples of open research platforms in surgical robotics that have 
been used across multiple research groups. The introduction 
of the dVRK allowed research centers to share a common 
hardware platform without restricted access to the underlying 
back- and forward control system. This has led to a significant 

boost to the development of research in surgical robotics dur-
ing the last decade and generated new opportunities for col-
laboration and to connect a surgical robot to other 
technologies. Figure 1(d) shows the increasing number of 
publications citing and using the dVRK.

With this article, we aim to provide a comprehensive over-
view of the research carried out to date using the dVRK. We 
hope to help readers quickly understand the current activities 
of the community and the possibilities enabled by the open 
access architecture. It is our view that the impact of the system 
should be a precedent for similar initiatives between indus-
try–academic consortia.

Search Protocol
The dVRK community is currently composed of 40 research 
centers from more than 10 different countries. The initiative, 
which began in 2012, is led by the United States. Subsequent 
research sites have been added in Europe and Asia, and the 
full timeline and list of research centers can be found at [4] 
and [8]. Today, the dVRK consortium includes mostly univer-
sities and academic centers within hospitals, and some com-
panies (i.e., Surgnova [9], and of course, ISI, which supports 
and underpins the entire initiative with its technology [8]).

Our review focuses on only scientific publications rather 
than the research that resulted in patents. To identify and cat-
alog all the available publications involving the dVRK, we fol-
lowed a protocol querying three main databases: the dVRK 
Wiki page [4], Google Scholar [10], and https://www.dimen 
sions.ai/ [11]. The Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) flow diagram associ-
ated with our search and its detailed explanation can be found 
in “Database Search and Filtering.” Only those papers pub-
lished in international conferences or journals have been 
selected, excluding all the publications related to workshops 
or symposiums. Two-hundred and fifty-three publications 
were obtained as the final number.

In Figure 3, the dVRK community members (for which at 
least one publication was found) are presented. They are listed 
on a timeline indicating the year they received the dVRK sys-
tem, following the same order of [4]. In the case of publica-
tions involving multiple centers, the publication was assigned 
to the principal investigator’s affiliation. In the case of collabo-
rations among dVRK community members and institutes 
external to the community, the publication was assigned to 
the dVRK community member.

Paper Classification—Research Fields and  
Data Types
For analyzing the body of publications, six research fields 
were used for clustering: automation; training, skill assess-
ment, and gesture recognition; hardware implementation and 
integration; system simulation and modeling; imaging and 
vision; and reviews. These broadly categorize the published 
work, although notably, it is impossible to have solid category 
boundaries, and some papers may involve multiple fields or 
be at the interface between fields. In the histogram shown in 
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Figure 3, each colored box corresponds to a publication of the 
related research field. A second clustering criterion used to 
classify publications relies on five different data types, as dis-
played in Figure 4(b). The classes were defined based on the 
data used and/or collected to underpin the papers. The five 
different data types are: raw images (RI), i.e., the left and right 
frames coming from the da Vinci stereo endoscope or any 
other cameras; kinematic data (KD) and dynamic data (DD), 
i.e., all the information associated with the kinematics and 
dynamics of the console side of the dVRK—master tool 
manipulators (MTMs) as well as the instrument side—
patient-side manipulators and endoscopic camera manipula-
tor; system data (SD), i.e., the data associated with the robot’s 
teleoperation states, as signals coming from foot pedals, the 
head sensor for operator presence detection, and so on; and 
external data (ED), a category that groups all the data associ-
ated with the additional sensors that were connected and inte-
grated with the dVRK platform in experimental test rigs, such 
as eye trackers, different imaging devices, and sensors. 
Because of the importance of data and their utilization, espe-
cially with artificial intelligence (AI), this second categoriza-
tion adds an important perspective to the work underpinned 
through the dVRK.

Table 1 reports the proposed classification highlighting 
both clustering categorizations. Each of the fields is orga-
nized into three sections: an initial overview of the related 
research field and a brief explanation about how current 
research might impact future clinical practice; then, the 
clustering of the publications according to their applica-
tions; and finally, a summary of promising advances in the 
specific area and the research outcomes related to each 
field. A summary of this section is schematically illustrated 
in Figure 5.

Automation
There is a spectrum of opportunity for automating aspects 
of RMIS [263]: some of them may be already-existing fea-
tures, such as tremor reduction; others are more forward 
looking, such as the automation of an entire surgical task, 
where a clinician must rely on the robot for the execution of 
the action itself. Automation in surgical robotics does not 
exist in clinical practice today but if realized could lead to 
systems that could help improve surgical workflow or opti-
mize the performance of certain tasks. It also represents an 
opportunity to develop more advanced safety standardiza-
tion or quality and best-practice control for specific proce-
dures or parts of procedures. Automation in RMIS 
inherently requires a combination of multiple areas of 
robotics research: robot design and control, and the imag-
ing/sensing and real-time signal processing currently linked 
to AI and machine learning. This research field includes 68 
publications, representing one of the most popular research 
areas for dVRK efforts. 

There are different approaches that can be used to auto-
mate surgical tasks; for example, involving a human in a pre-
planning stage, utilizing control theory to follow a human 
during the operation, and using unsupervised reinforcement 
learning or supervised machine learning to learn behaviors or 
motions from human-provided examples and later executing 
them autonomously. We decided to group efforts in RMIS 
automation based on the application of the proposed control 
strategy into the following control categories: general, instru-
ment, and camera. 

General Control
Several efforts have focused on developing new, high-level 
control architectures for automation in RMIS without 

Patient Side Patient Side

Master Console

Master Console

Controller Boxes Controller Boxes

(a) (b)

1 2

Figure 2. [(a) inset 1] The dVRK is available as the collection and integration of spare parts from the first-generation da Vinci surgical 
system or as [(b) inset 2] the fully retired, first-generation da Vinci surgical system. (Sources: Johns Hopkins University and Worcester 
Polytechnic Institute; used with permission.) All of the dVRK platforms feature the same main components: the patient side, i.e., 
the robotic arms for handling the surgical tools; the master console, i.e., the interface at the surgeon side; and the controller boxes, 
containing the electronics that guarantee accessibility and control of the system. [(a) inset 1] The former version does not include the 
endoscopic camera and its robotic manipulator at the patient side. 
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Database Search and Filtering
First, we manually visited the research centers’ websites, as 
listed on the dVRK Wiki [4] (see Figure S1). Whenever the 
link was active, papers were collected from the laboratory’s 
website; if inactive, the name of the principal investigator 
was used to locate the laboratory’s website and the relative, 
available list of publications. This first refined research 
generated a cluster of 101 publications.

We then extended this collection using the results from 
Google Scholar [10] with the query “da Vinci Research Kit.” 
The research time interval was set between 2012 (the origin 
of the dVRK community [4]) and 2021, producing 523 results. 
The results were further processed and refined by removing 
outliers where the dVRK was not actually mentioned in the 
“Methods” section of the work (that means it was just cited 

but not used in the experimental work) as well as filtering out 
master theses, duplicates, and the works where the full text 
of the paper in English was not available online. This research 
finally generated 247 papers.

The last paper-harvesting search was performed on https://
www.dimensions.ai/ [11], looking for the same “da Vinci 
Research Kit” string, and generating 394 results. The same 
paper-filtering process, as carried out for the results from Google 
Scholar, was performed, resulting in 234 publications. By this 
stage, these three screened data sets of papers (i.e., from the 
dVRK Wiki, Google Scholar, and https://www.dimensions.ai/) 
have been cross checked to ensure no duplications in the final 
collection of dVRK-related papers. Two-hundred and fifty-three 
publications were obtained as the final number.

Figure S1. The PRISMA flow diagram associated with the paper search and selection of this systematic review.
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1) Website Links

2) PI Profile Web Page

Google Scholar:
“da Vinci Research Kit”
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 “Method”
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specializing on task-oriented applications [133], [150], [247]. 
Various applications have been explored, from focusing their 
attention on human–robot interaction approaches [60], [149], 

to general motion compensation for working in regions 
undergoing physiological motion [68] or control considering 
uncertainties [204].

Number of Publications

Research
Fields Automation

Training, Skill Assessment,
and Gesture Recognition

Hardware
Implementation and

Integration

System Simulation
and Modeling

Imaging and Vision Reviews

Figure 3. This histogram shows the publications associated with dVRK community members. All of the research centers are listed in 
temporal order based on their year of joining. They feature the name, acronym, and country. The left side of the graph represents the 
number of publications for each research center. Each square represents a single publication. The color code is used to classify the 
topic of the paper corresponding to each square according to its research field whose legend is reported at the bottom.

Patient Side Master Console Controller Boxes

Processed Images and Data

Frame Grabber

Additional 
Sensing Technologies

External Processing Unit

Raw Images Kinematics Data Dynamics Data System State External Data

Stereo Images (Left
and Right) From the

Endoscopic Camera of
the da Vinci Robot

Data Associated With
the Kinematics of the

MTMs, PSMs, and
ECM

Data Associated With
the Dynamics of the
MTMs, PSMs, and

ECM

Data Associated
With the Robot
Teleoperation

(e.g., Footpedals,
Head Sensor)

Data Associated With
the Additional Sensors

Included in the
Experimental Setup

(a)

(b)

Figure 4. (a) A sketch of the dVRK components: the patient side, with the three patient-side manipulators (PSMs) and endoscopic 
camera manipulator (ECM); the master console, including the foot pedal tray, two master tool manipulators (MTMs), and two high-
resolution stereo viewers; controller boxes; and vision elements (camera control units and a light source). (b) A description of the 
data types. These types of data can be read (the arrows entering the “External Process Unit”) and written (the arrows exiting the 
“External Process Unit”) using the dVRK.
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Table 1. A classification of dVRK publications. On the horizontal axis, the five research macro areas are listed. Each area is          then subdivided into five subgroups according to the type of the data used in the publication. The sixth column is dedicated 
to publications reviewing dVRK-related technologies. 
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and Gesture Recognition

Hardware Implementation  
and Integration System Simulation and Modeling Imaging and Vision Reviews
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[181]

[180], [181] [180], [181] [180], [181] [182]–[192] [184]–[187], 
[192]

[192] [266]

SZ
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S [193], [194] [193], [194]

C
W

R
U [195]–[197] [195]–[197] [195]–[197] [198] [198] [198] [199]–[202] [199], [202] [202]

U
N
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I [203] [203], [204] [203],  

[204]
[203], 
[204]

[205]–
[210], 
[214]

[205], [206] 
[208]–[214]

[205],  
[209]–[214]
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B
G

U
N [218], 

[219], 
[223]

[218]–[223] [222] [222] [223] [224] [224] [224]

U
C

SD [225], [226] [225], [226] [227]–
[229]
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LI

M
I [230] [230] [230] [231], 
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[231]–[237] [231], 

[234], 
[236]
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[237]

[238], [239] [238], [239] [238], [239] [240]

C
U

H
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[241], [247] [248], 

[249], 
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[248], [249], 
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U
L [257] [257] [257] [258]
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Table 1. A classification of dVRK publications. On the horizontal axis, the five research macro areas are listed. Each area is          then subdivided into five subgroups according to the type of the data used in the publication. The sixth column is dedicated 
to publications reviewing dVRK-related technologies. 

Automation
Training, Skill Assessment,  
and Gesture Recognition

Hardware Implementation  
and Integration System Simulation and Modeling Imaging and Vision Reviews

RI KD DD SD ED RI KD DD SD ED RI KD DD SD ED RI KD DD SD ED RI KD DD SD ED
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[5], [6], [12],  
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[25]–[41]

[22]–[24], [26]–[30], 
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Instrument Control
This category groups all of the contributions that have been 
made toward the automation of specific surgical subtasks. Six 
common surgical tasks appear to be widely investigated for 
automation. For the suturing task, including the works related 

to knot tying and needle insertion, we reported the following: 
[16], [70], [85], [88], [89], [161], [178], [195]–[197], [203], [243], 
and [246]. The pick, transfer, and place task was mainly charac-
terized by experiments relying on pegs and rings from the fun-
damentals of the laparoscopic surgery training paradigm [54], 
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Figure 5. (From top to bottom) Each research field addressed is broken down into a general-concept overview, subdivision of 
approaches or methodologies, and key potential outcomes or trends. HRI: human–robot interaction.
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[69], [91], [96], [102], [151]–[153], [163], [264] or new surgical 
tools [177]. A lot of the remaining works focused on tissue 
interaction. This application category includes papers working 
on cutting and debridement [61], [87], [90], [92], [95], [97] as 
well as the retraction and dissection of tissues [101], [131], 
[132], [155], [257], [265] or blood suction [226]. Also included 
is tissue palpation for locating tumors or vessels and more gen-
eral tissue manipulation, as in [13]–[15], [17], [82], [83], [86], 
[98], [99], [154], [164], [225], and [241], with experiments 
sometimes using just common fabric as a phantom for tissue 
[94], [100].

Camera Control
Additional literature included studies that investigated how to 
control the endoscopic camera or assist the surgeon in control-
ling it. To minimize the time lost in repositioning the camera 
and optimize the surgical workflow, a longstanding research 
effort has focused on the autonomous navigation of the endo-
scope [18], [93], [127], [230], [242]. Despite regulatory approv-
al for autonomous robotic endoscope manipulation systems, 
clinical adoption has not been widespread, which suggests that 
further effort may be needed in the human–machine interfac-
es that can support the surgeon in using this technology.

Most of the algorithms belonging to this research field 
tend to rely on data-driven path planning as well as control, 
especially vision- and model-based approaches, and shared 
control between humans and robots. More recently, the 
papers tend to adopt learning-based approaches, often 
depending on the use of demonstrations from experienced 
surgeons [90]–[92], [96], [99], [161], [225].

Training, Skill Assessment, and Gesture Recognition
This research field encompasses all the publications that focus 
on gesture learning and recognition, utilizing different data 
sources to infer surgical processes, for a total of 33 publica-
tions. Surgical robots, like all traditional surgical instrumenta-
tion, require extensive, dedicated user training to obtain the 
psychomotor skills to operate them precisely and safely. 
Robotics, with its additional encoder information compared 
to normal instrumentation (specifically in an open platform, 
such as the dVRK), open attractive opportunities to study 
motor learning: robotic manipulators provide easy access to 
the data associated with the operator’s hand motions. This 
information (mainly kinematics and dynamics) can be used 
to study gestures, assess technical skill, and improve learning 
by training augmentation. Depending on the way each publi-
cation aimed to optimize surgical training, they were further 
clustered in the following groups.

Training Platforms and Protocols
Several studies proposed the development of training plat-
forms in either a dry lab setting [20] or in simulation [21]. 
The research also focused on the development of training 
protocols, where the data from expert surgeons were used for 
mentoring [71], [119], [146] or the training curriculum was 
automatically adapted to the trainee [233], [235], [237], [261].

Training Augmentation
Haptic guidance and virtual fixtures (i.e., the application of 
forces to the trainee’s manipulators to guide and teach the 
correct movement) have been of particular interest for 
augmenting the available information during training and 
in turn support more effective learning [221], [222], [234]. 
A recent systematic comparison of training augmentation 
in multiple sensorial domains was carried out using the 
dVRK [236].

Skill Assessment
As a fundamental component of training, skill assessment has 
received attention, especially in automation through data 
analysis. Some studies focused on proficiency analysis [19], 
[147], [156], [223], [231], [259], [260] as well as addressed the 
mental and physical workload of the user [135], [262] or the 
influence of training on haptic perception [62].

Workflow Analysis
Surgical gesture analysis [63], [145], [220] and fine gesture 
segmentation [103], [104], [113], [145], [165], [179] have also 
been widely investigated, with a particular interest in combin-
ing image/video analysis and kinematics.

As described in the “Automation” section, the majority of 
efforts in optimizing surgical training focus on the use of 
kinematics and video data to develop algorithms to automati-
cally assess or understand surgical skills and propose aug-
mentations to training protocols accordingly. The general 
paradigm being investigated appears to center around per-
sonalizing training experiences to the trainee and tailoring 
protocols and feedback. Further efforts are needed to fully 
understand how such systems will impact current clinical 
training for robotic surgery, especially with more advances in 
AI and objective mentoring support systems [267].

Hardware Implementation and Integration
Hardware implementation and integration is quite a heteroge-
nous category. It includes the works that have contributed to 
the development of the dVRK system and further modifica-
tions of the software and hardware as well as new instruments 
that make the surgery more affordable and capable of inter-
face with other surgical equipment. Hence, the highest num-
ber of publications (99) belong to this group. We subdivide 
the section according to which components were modified 
and the goals of these modifications.

dVRK Platform Implementation and Integration
This category includes papers published during the develop-
ment of the dVRK. Both the hardware and software compo-
nents are described in [5], [6], [12], [22], [25], [33], [34], and 
[37]–[40]. Recently, a few integrations were published in 
[253], where a new control strategy for gravity compensation 
of the MTMs was proposed to compensate for nonlinear dis-
turbance forces. This gravity compensation strategy was then 
integrated into the software architecture of the dVRK and 
publicly released.
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Haptics and Pseudohaptics
Several research groups investigated how to overcome the 
lack of haptic feedback in the current da Vinci system. 
Numerous hardware and software developments [65]–[67], 
[79], [80], [106], [107], [114], [124], [193] worked on 
implementing haptics or force-sensing integration with the 
dVRK. The researchers also explored how such systems can 
link to automation [118], [212], [213], [224], [228]. The use 
of virtual fixtures, previously mentioned in the “Training, 
Skill Assessment, and Gesture Recognition” section as an 
intraoperative guidance tool, were investigated in [26]–
[28], [77], [84], [167], [168], [205], [208], and [209] by pro-
viding constraints on the instruments’ workspace. The use 
of force information within augmented reality to provide 
the surgeons with visual feedback about forces (the so-
called pseudohaptics) was also explored [29], [30], [32], 
[105], [227], [254].

New Surgical Tools
In this category, publications include works focusing on the 
design and integration of new tools compatible with the 
dVRK: new surgical instruments [108]–[112], [115], [116], 
[123], [129], [130], [160], [194], [206], [207], [214], [249], 
[250], [252], and new sensing systems [73], [74], [180], [198], 
[248]. New flexible endoscopes and vision devices have also 
recently been proposed in [244] and [245].

New Control Interfaces
Some articles reported the development of novel control 
interfaces of the endoscopic camera by using head-mounted 
displays [127], [148] as well as integrating the console viewer 
[126] or the manipulators [128] with additional sensing tech-
nologies to simultaneously control the surgical tools and the 
camera. Additional studies tried to improve’ the ergonomics 
and the portability of the master console [166], [169], [170].

Surgical Workflow Optimization
The final category of publications relates to technologies that 
can enhance the surgeon’s awareness [31], [211] and percep-
tion from a visual point of view; for example, using eye-gaze 
trackers [76], [78] to personalize a surgeon’s experience or 
combining different imaging techniques, such as ultrasounds 
[72], [181], to provide more intraoperative visual information 
but also from tactile sensing [120]–[122], [160], [251]. A sig-
nificant research effort also targeted improving the teleopera-
tion capabilities of the dVRK, taking into account time delay 
[23], possible master-slave misalignment [64], constrained 
workspace [35], shared control [41], or incorporating virtual 
environment guidance [55].

Other
Additional works investigated the use of the dVRK as a 
means of exploring clinical indications beyond its current 
intent or for nonsurgical applications. For example, retinal 
surgery [24], heart surgery [75], and portable simulators [210] 
were addressed. Several studies included using the master 

controllers to drive vehicles in simulations [136] or cutting 
the satellite insulation [36].

In summary, this research field highlights how research 
teams are taking advantage of an open platform like the 
dVRK to easily integrate and test novel technologies. Modi-
fied end effectors, such as flexible instrumentation and devic-
es like new imaging probes or tools interacting with tissue 
using ultrasound, can benefit from the dVRK by using it as a 
platform that allows for rapid testing in user studies. The 
main advantage of the dVRK controllers is the potential to 
break the master-slave link and the capability to use and con-
trol each one of the components independently, thus enabling 
experimentation with new applications.

System Simulation and Modeling
This smaller field of seven publications contains studies that 
focused on the integration of the dVRK into surgical simula-
tion environments. We note however that the small size of 
this grouping is partly due to our approach of dividing the 
fields and that many papers using simulation have been classi-
fied in previous categories.

Realistic Interaction With Objects
A few works focused on the integration of the dVRK into 
simulation environments to obtain realistic robot interactions 
with rigid and soft objects [42], [58], [215]. This is due to the 
fact that simulation is achieving an increasingly important 
role for both surgeon education and for developing algo-
rithms that enable robots to autonomously execute tasks. 

Parameterization
The identification of the kinematic and dynamic properties of 
the robotic arms were addressed in [43] and [216] for external 
forces estimation, in [57] to know the kinematics of each link 
instead of the serial chain, and in [59], where an entire open 
source package was released with the capability of modeling 
all the tendon couplings, springs, and counterweights.

The use of simulation also identified in the previous sec-
tions highlights that simulation environments are likely to be 
fundamental for the development of new robotic platforms, 
both in terms of technical developments and in user studies 
without complex laboratory needs. High-fidelity simulators 
are also key to effective clinical training programs and the 
development of robotic surgery skills. Despite the availability 
of advanced simulation environments as commercial systems 
used in clinical training, research simulation platforms are 
currently not as well developed and do not feature advanced 
realism of instrument tissue interaction. This would be a 
prime area for further development to complement the dVRK 
and enable additional research stimulus, which could link to 
some of the exciting developments in unsupervised, self-
supervised, and reinforcement learning.

Imaging and Vision
This research field includes 32 publications related to the pro-
cessing of the images acquired by the dVRK endoscopic 
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camera. Vision and image processing are essential building 
blocks of computer-assisted interventions, and surgical robot-
ics that feature intelligent decision support or link to surgical 
data science [268], [269]. This is a very active category of 
research due to recent advances in AI and the utilization of 
rich data sources like video, which forms the main signal 
from the surgical site used for clinical decision making and 
postoperatively contain a unique record of events during the 
procedure. 

Camera and Hand-Eye Calibration
This first category includes publications investigating 
approaches registering the coordinate systems of the endo-
scope and the robotic surgical tools (i.e., hand-eye calibration) 
[45], [159], [173], [174], [184], [185], [202], [255] as well as 
possibly determining the camera-intrinsic parameters using 
dVRK information about the instruments [44]. Calibration is 
important for building systems that can combine information 
from the robot kinematics and the surgical field of view.

Instrument and Tissue Detection and Segmentation
A wide range of papers have reported algorithms aimed at 
detecting, segmenting, and tracking important elements in 
the surgical scene, such as surgical instruments [172], [182], 
[183], [186], [188], [189], [191], [192], [199], [219], [256], 
tissues [258], suturing needles [201], and threads [200]. 
Detecting and tracking image structures or instruments is 
important for various applications, for example, avoiding 
instrument interaction with certain tissues or automating 
surgical subtasks.

Spatial Mapping and Understanding
In [47], image segmentation was used to control a four-
degrees-of-freedom laparoscopic instrument. In [190], images 
were used to learn how to estimate the depth of the work-
space. In [171], images were processed to automatically 
remove smoke from the surgeon’s field of view.

Novel Imaging Capabilities
dVRK research has tried to keep up with advancements in 
different imaging techniques, like ultrasound (miniaturized 
probes) or photoacoustic imaging [46], [50]. Some of these 
efforts were dedicated to implementing image guidance [49], 
especially to enhance patient safety during operations [48], 
[187], [238], [239].

New imaging modalities or systems used to interpret 
imaging information during procedures are likely to be 
important new additions to future robotic surgery systems. 
The dVRK has provided a platform to develop and validate 
such technologies through its stereo endoscope. With the rap-
idly evolving capabilities in supervised AI and deep learning 
architectures, the dVRK has also become a platform capable 
of generating data for AI model training and validation. 
Building on this and generating open data sets that combine 
image/video data synchronized with kinematics and other 
sensor signals is likely to be important for the development of 

cognitive robotic features or AI systems that can link to the 
robotic hardware.

Reviews
Several major review publications cite the dVRK and study 
the literature in RMIS-related topics. Comprehensive reviews 
on the state of the art of RMIS and future research directions 
were presented in [52], [53], [125], [138], [140], [141], and 
[240]. Works like [137] and [139] reviewed the general 
aspects of autonomy in robotic surgery, while [81] and [217] 
focused on the human aspects in control and robotic interac-
tion. In [176], the legal implications of using AI for automa-
tion in surgical practice are discussed, while virtual and 
augmented reality in robotic surgery are reviewed in [51]. A 
recent review of gesture analysis in surgical robotics summa-
rized the state of the art in this field [266].

Discussion
This review article summarized the research facilitated 
throughout the first decade of the dVRK by providing a com-
prehensive collection of the papers that have been published 
thus far in a wide range of research topics. Overall, 253 papers 
have been classified into five different categories based on 
their application paradigms. In each category, the publication 
was then grouped, based also on the type of data it relied on, 
and Figure 6 depicts the percentage use of a given type of data 
for each research field.

Starting from the automation research category, nearly all 
of the papers we reviewed rely on the use of endoscopic imag-
es and/or KD from the encoders as the primary data sources. 
A similar trend can be observed in the imaging and vision 
classes, even if research items based on KD are slightly fewer. 
For training and skill assessment and gesture recognition, 
most of the papers rely on KD, using any other type of data in 
fewer than 50% of the cases or exploiting external-sensor ED. 
When it comes to hardware implementation and integration, 
nearly all of the types of data cross the 50% threshold, pre-
serving a good balance, except for the KD. For system simula-
tion and integration, it is possible to notice how KD and DD 
are used in the vast majority of publications, leaving the other 
data types to fewer than 25%. In general, the correlation 
between the type of data and each application area shows the 
increasing importance of images in RMIS, because in nearly 
all of the categories, raw image (RI) crosses 50%. The exten-
sive use of KD and DD also highlights the significance of hav-
ing a research platform, such as the dVRK, which facilitates 
the ability to exploit the robot as a haptic interface and to 
make use of the systems’ data-generation capabilities. Fur-
thermore, the open access design of the dVRK incentivizes 
and enables researchers to integrate it with different types of 
hardware and software, as demonstrated by the extensive 
usage of external data in nearly all of the classes we covered.

These considerations on data usage and research fields in 
the work facilitated by the dVRK can be an interesting stimu-
lus for reflecting on the optimization or acceleration of surgi-
cal robotic research. Despite the nonexhaustive nature of this 
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review and analysis, we believe that the information collected 
provides a useful basis of the research directions explored by 
and enabled through the dVRK. It offers adopters of the 
dVRK a comprehensive overview of the research outputs and 
a synopsis of activity of the different consortium stakeholders 
across the globe.

This article highlighted the importance of data accessibili-
ty. A future improvement for the dVRK platform would be 
enabling researchers to collect and store data with minimum 
effort so that it can be reused for different applications. For 
example, all of the experiments carried out in papers around 
the category of surgeon training and skill assessment could be 
recorded in centralized data storage and used as a demonstra-
tion to train algorithms for task automation. This links to 
areas of active development with research institutions under 
research agreements with ISI where data can be recorded 
from the clinical setting (using custom recording tools such as 
the dVLogger by ISI, as in [270]). Another interesting addi-
tion to the dVRK considering the recent developments in the 
automation area, would be to integrate a fully enabled simula-
tion environment, giving researchers the possibility to test 
algorithms that require a vast number of learning iterations or 
to look at user studies with a large number of known scenes 
or environment parameters.

In summary, the trend toward more effective data utiliza-
tion in surgical robotic research is related to the possibility of 
making research platforms more compliant and open to the 
integration of different systems to facilitate data collection, 
storage, sharing, and use. The work facilitated by the dVRK 
highlights this current area of development. However, the 
dVRK also does much more, including examples of signifi-
cant effort and development facilitated by the platform in new 
hardware, integration with imaging or other nonrobotic capa-
bilities, and human factors studies. It is the authors’ opinion 
that the platform has been a huge catalyst for research acceler-
ation in RMIS and hopefully for the transition of research 
efforts into clinically meaningful solutions.
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