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Abstract
Every tumor is composed of heterogeneous clones, each corresponding to a distinct subpopulation of
cells that accumulated different types of somatic mutations, ranging from single-nucleotide variants
(SNVs) to copy-number aberrations (CNAs). As the analysis of this intra-tumor heterogeneity has
important clinical applications, several computational methods have been introduced to identify clones
from DNA sequencing data. However, due to technological and methodological limitations, current
analyses are restricted to identifying tumor clones only based on either SNVs or CNAs, preventing a
comprehensive characterization of a tumor’s clonal composition. To overcome these challenges, we
formulate the identification of clones in terms of both SNVs and CNAs as a reconciliation problem
while accounting for uncertainty in the input SNV and CNA proportions. We thus characterize the
computational complexity of this problem and we introduce a mixed integer linear programming
formulation to solve it exactly. On simulated data, we show that tumor clones can be identified
reliably, especially when further taking into account the ancestral relationships that can be inferred
from the input SNVs and CNAs. On 49 tumor samples from 10 prostate cancer patients, our
reconciliation approach provides a higher resolution view of tumor evolution than previous studies.
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1 Introduction

Cancer results from an evolutionary process where somatic mutations accumulate in the
genomes of different cells. This process yields highly heterogeneous tumors composed of
different clones, each corresponding to a distinct subpopulation of cells with the same
complement of somatic mutations [27]. The resulting intra-tumor heterogeneity has been
clearly linked to critically important cancer phenotypes, including cancer prognosis and the
potential of developing resistance to cancer therapy [3,24]. Therefore, important downstream
applications rely on accurate reconstructions of a tumor’s clonal architecture, which in turn
requires the identification of the different clones, their proportions and their evolutionary
history. However, the presence of different types of somatic mutations in the same clones
renders these tasks particularly challenging. In particular, the following two types of somatic
mutations are frequent in cancer [4, 39, 40]: (1) single nucleotide variants (SNVs), which are
substitutions of individual DNA nucleotides, and (2) copy number alterations (CNAs), which
are amplifications and deletions of large genomic regions.

Most cancer sequencing studies use bulk DNA sequencing technology, where one does
not directly measure the co-occurrence of different mutations in the same clone because the
generated DNA sequencing reads originate from unknown mixtures of millions of different
cells in a bulk tumor sample. To identify distinct clones from such data, one thus needs to
deconvolve the mixed sequencing data into the different clonal components [37]. Several
computational methods have been introduced to perform this task. However, the majority of
existing methods only focus on either SNVs [6,29,31,35,36] or CNAs [11,25,26,28,42–44],
but rarely on both. Methods that attempt to identify clones in terms of both SNVs and
CNAs do not not scale to the numbers of current cancer sequencing datasets (e.g., number
of samples, mutations, clones, etc.) and often require heuristics to reduce the size of input
instances [5, 9, 19]. As a result, current cancer evolutionary analyses [16, 18] do not apply
such proposed methods but rather perform a post hoc analysis, manually assigning CNAs
to a tree inferred from SNVs. Furthermore, we note that similar issues arise with some
single-cell DNA sequencing technologies, since the different features of these technologies only
allow the reliable measurement of either SNVs or CNAs [14]. For example, targeted MDA
single-cell sequencing technologies are more suited for the idenification of SNVs whereas whole-
exome/genome DOP-PCR single-cell technologies are more suited for the identification of
CNAs, and both these technologies have been used in parallel on the same tumor sample [22].

In this study, we investigate whether tumor clonal compositions can be comprehensively
reconstructed by an alternative simpler and automated approach. Leveraging the SNV and
CNA clone proportions that can be independently and reliably inferred by existing methods,
we introduce the Parsimonious Clone Reconciliation (PCR) and Parsimonious Clone
Tree Reconciliation (PCTR) problems to infer clones in terms of both SNVs and CNAs,
their proportions and, additionally for the PCTR problem, their evolutionary relationships
(Figure 1). We prove that the proposed problems are NP-hard and we introduce PACTION
(PArsimonious Clone Tree reconciliatION), an algorithm that solves these problems using two
mixed integer linear programming formulations. Using simulations, we find that our approach
reliably handles errors in input SNV and CNA proportions and scales to practical instance
sizes. On 49 samples from prostate cancer patients [16], we find that our approach more
comprehensively reconstructs tumor clonal architectures compared to the manual approach
adopted in the previous analysis of the same data.
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Figure 1 Overview. A tumor is composed of multiple subpopulations of cells, or clones, with
distinct somatic mutations, which can be measured using DNA sequencing. (a) Due to limitations
in inference algorithms and/or sequencing technologies, we are limited to characterizing tumor
clones in terms of either single-nucleotide variants (SNVs, stars) or copy-number aberrations (CNAs,
triangles). That is, we infer clones Π1, proportions U1 and a clone tree T1 for the SNVs. Similarly,
we infer clones Π2, proportions U2 and a clone tree T2 for the CNAs. (b) PACTION solves the
Parsimonious Clone Tree Reconciliation problem of inferring clones Π ⊆ Π1 × Π2, a clone tree
T and proportions U that characterize the clones of the tumor in terms of both SNVs and CNAs.

2 Problem Statements

We introduce two reconciliation problem formulations to reconstruct tumor clonal composition
from inferred SNV and CNA clone proportions2. The first problem aims at inferring tumor
clones and related proportions with both SNVs and CNAs given the clone proportions of
SNVs and CNAs independently (Section 2.1). The second problem additionally considers
phylogenetic trees describing the evolution of tumor clones with either different SNVs or
CNAs (Section 2.2).

2.1 Parsimonious Clone Reconciliation
Suppose a tumor is composed of a set Π of n = |Π| clones, which are characterised by unique
complements of two different features (e.g., SNVs and CNAs). These clones occur in m

samples at varying proportions, defined as follows.

▶ Definition 1. An m × n matrix U = [up,ℓ] is a proportion matrix for n clones Π provided
(i) up,ℓ ≥ 0 for all samples p ∈ [m] and clones ℓ ∈ [n], and (ii)

∑n
ℓ=1 up,ℓ = 1 for all samples

p ∈ [m].

Due to limitations in inference algorithms and/or sequencing technologies, we only infer
clones and their proportions for one feature in isolation. These two features lead to two
distinct partitions of all tumor cells: a set Π1 = [n1] of clones induced by the first feature (e.g.,

2 While reconciliation is used in species phylogenetics, particularly in the context of gene-tree species-
tree reconciliation, here we will use this term to indicate the process of obtaining a comprehensive
evolutionary tree of tumor clones given input trees that each focus on a distinct genomic feature.

WABI 2021
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Figure 2 The Parsimonious Clone Reconciliation (PCR) problem. (a) Given clones Π1

and Π2 and corresponding proportions U1 and U2, we seek clones Π ⊆ Π1 × Π2 and corresponding
proportions U consistent with U1 and U2. (b) There always exists a consistent proportion matrix U ′

for the trivial solution Π′ = Π1 × Π2, which can be identified by solving a maximum flow problem.
(c) We seek the solution Π with minimum number |Π| of clones. Here, |Π| = 4, which is smaller
than ground truth (see panel (a)). The corresponding matrix U follows from solving the illustrated
maximum flow problem. However, incorporating tree constraints, as in the PCTR problem, will
lead to ground truth (Figure 1).

SNVs) and a set Π2 = [n2] of clones induced by the second feature (e.g., CNAs). We refer to
the original clones as Π-clones and the clones induced by the first and the second features
as Π1-clones and Π2-clones, respectively. The proportions of the Π1-clones and Π2-clones
are given by the m × n1 proportion matrix U1 = [u(1)

p,i ] and the m × n2 proportions matrix
U2 = [u(2)

p,j ], respectively. How are the proportions U1 for Π1-clones and the proportions U2
for Π2-clones related to the proportions U of the Π-clones?

To answer this question, recall that Π is a partition of all tumor cells induced by the
combination of both the two features, whereas Π1 and Π2 are partitions induced by each
feature in isolation (Figure 2a). As such, we have that the partition Π is a refinement of
partitions Π1 and Π2. Thus, each Π-clone ℓ corresponds to a unique Π1-clone i and a unique
Π2-clone j. In other words, we may view the set Π as a binary relation of sets Π1 and Π2 of
clones composed of pairs ℓ = (i, j) of clones, i.e., Π ⊆ Π1 × Π2. This relation is captured
by the projection functions π1 : Π → Π1 and π2 : Π → Π2 such that π1((i, j)) = i and
π2((i, j)) = j for all (i, j) ∈ Π. We relate the proportion matrix U for clones Π to the
proportion matrix U1 for clones Π1 and the proportion matrix U2 for clones Π2 as follows.

▶ Definition 2. Given projection functions π1 : Π → Π1 and π2 : Π → Π2 induced by the
set Π ⊆ Π1 × Π2 of clones, the proportion matrix U = [up,ℓ] for clones Π is consistent with
a proportion matrix U1 = [u(1)

p,i ] for clones Π1 = [n1] and proportion matrix U2 = [u(2)
p,j ]

for clones Π2 = [n2] provided (i) u
(1)
p,i =

∑
ℓ:π1(ℓ)=i up,ℓ for all samples p ∈ [m] and clones

i ∈ [n1], and (ii) u
(2)
p,j =

∑
ℓ:π2(ℓ)=j up,ℓ for all samples p ∈ [m] and clones j ∈ [n2].

The above definition formalizes the intuition that clones Π of the tumor are a refinement
of the input clones Π1 and Π2, and therefore their proportions U must be consistent with the
input proportions U1 and U2. Our goal is to recover the set Π ⊆ Π1 × Π2 of clones and their
proportions U from the proportion matrices U1 and U2 for clones Π1 and Π2, respectively.
While there always exist trivial solutions given by the full set Π′ = Π1 × Π2 of n = n1 · n2
clones (Figure 2b), we seek a solution Π with the smallest number n of clones under the
principle of parsimony (Figure 2c).

▶ Problem 3 (Parsimonious Clone Reconciliation (PCR)). Given proportions U1 for clones
Π1 = [n1] and proportions U2 for clones Π2 = [n2], find (i) the smallest set Π ⊆ Π1 × Π2 of
clones and (ii) proportions U for Π such that U is consistent with U1 and U2.
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2.2 Parsimonious Clone Tree Reconciliation

In practice, proportions U1 and U2 are not measured exactly but are affected by potential
measurement errors. As such, accurate recovery of the original clones Π and their proportions
U requires correcting U1 and U2. To accomplish this, we require additional information and
constraints. In this work, we propose to use the evolutionary relationships among the clones
Π1 and Π2 that can be inferred by existing methods in the form of clone trees [6–8,23,29,33].
Specifically, a rooted tree T is a clone tree for clones Π provided the vertex set V (T ) equals
Π. Moreover, the root vertex r(T ) of a clone tree T corresponds to the normal clone while
each edge (u, v) ∈ E(T ) represents a mutation event that altered one of the features of clone
u and led to the formation of the clone v.

Similarly to the PCR problem, we are given two clone trees, one for each feature in
isolation. In the specific example of two features (e.g., SNVs and CNAs), let clone tree T1
describe the evolution of clones Π1 (e.g., SNVs) and clone tree T2 describe the evolution
of clones Π2 (e.g., CNAs). These trees are inferred using standard algorithms in the
field [6,11,25,26,28,29,31,35,36,42–44]. Since all clones share a common evolutionary history
the original clone tree T is a refinement [31,41] of the clone trees T1 and T2, which is defined
as follows.

▶ Definition 4. Clone tree T for clones Π is a refinement of clone trees T1 for clones Π1
and clone tree T2 for clones Π2 provided

(i) for each edge (i, i′) ∈ E(T1) there exists exactly one j ∈ Π2 such that ((i, j), (i′, j)) ∈
E(T ),

(ii) for each edge (j, j′) ∈ E(T2) there exists exactly one i ∈ Π1 such that ((i, j), (i, j′)) ∈
E(T ),

(iii) for each ((i, j), (i′, j′)) ∈ E(T ), it holds that (i, i′) ∈ E(T1) and j = j′, or (j, j′) ∈ E(T2)
and i = i′.

Intuitively, the above definition states that when collapsing vertices of T corresponding to
identical Π1-clones one obtains T1, and, similarly, T2 is obtained by collapsing vertices of T

corresponding to identical Π2-clones.
Under a principle of parsimony and given clone trees T1, T2 with related proportions

U1, U2, our goal is to find a set Π ⊆ Π1 × Π2 of clones, a clone proportion matrix U , and a
T1, T2-refined clone tree T that require the smallest correction in U1 and U2. This motivates
the following problem statement.

▶ Problem 5 (Parsimonious Clone Tree Reconciliation (PCTR)). Given proportions U1 and
tree T1 for clones Π1 = [n1] and proportions U2 and tree T2 for clones Π2 = [n2], find (i) the
set Π of clones, (ii) clone tree T and (iii) proportions U for Π such that the clone tree T is
a refinement of T1 and T2 and minimizes the total error J(U, U1, U2) such that

J(U, U1, U2) =
m∑

p=1

n1∑
i=1

|u(1)
p,i −

∑
ℓ:π1(ℓ)=i

up,ℓ| +
m∑

p=1

n2∑
j=1

|u(2)
p,j −

∑
ℓ:π2(ℓ)=i

up,ℓ|.

Note that J(U, U1, U2) = 0 if and only if U is consistent with U1 and U2. The clone trees T ,
T1 and T2 do not appear in the objective function J(U, U1, U2) and only provides constraints
to the optimization problem. Due to these constraints, unlike the previous PCR problem,
PCTR does not always admit a trivial solution with J(U, U1, U2) = 0 (as we further discuss
in Section 3.2).

WABI 2021
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3 Combinatorial Characterization and Computational Complexity

We investigate the combinatorial structure and computational complexity of the two proposed
PCR and PCTR problems in the following two sections, respectively.

3.1 Parsimonious Clone Reconciliation
We characterize the combinatorial structure of feasible and optimal solutions (Π, U) for
the PCR problem. We first observe that the PCR problem always has a trivial solution.
Specifically, given a set Π1 of n1 = |Π1| clones and a set Π2 of n2 = |Π2| clones and
corresponding proportions U1 ∈ [0, 1]m×n1 and U2 ∈ [0, 1]m×n2 , a trivial feasible solution is
composed of n = n1n2 clones Π = Π1 × Π2, which may have many possible corresponding
proportions U (Figure 2b). For example, proportions U = [up,(i,j)] can be computed greedily
by considering the n clones in any arbitrary order, and assigning each clone (i, j) ∈ Π a
proportion of up,(i,j) = min(u(1)

p,i , u
(2)
p,j) followed by subsequently updating u

(1)
p,i := u

(1)
p,i −up,(i,j)

and u
(2)
p,j := u

(2)
p,j − up,(i,j) for each sample p ∈ [m]. Thus, n = n1n2 is an upper bound on the

number of clones needed. Can we similarly identify a lower bound on n?
To answer this question, let the support S(U) of an m×n proportion matrix U be defined

as the number of non-zero entries in the vector U1m where 1m is a m × 1 vector with all
entries equal to one. That is, the support S(U) of a proportion matrix U of clones Π signifies
the number of clones with non-zero proportion in at least one of the samples p ∈ [m]. Any
such clone must be part of at least one clone ℓ ∈ Π in the solution to the PCR problem to
ensure consistency of the proportion matrices. This leads to the following observation.

▶ Observation 6. Given an instance (Π1, U1, Π2, U2) of the PCR problem with solution Π
we have n ≥ max(S(U1), S(U2)) where n = |Π|.

Given any set Π ⊆ Π1 × Π2 of clones, deciding whether there exists a proportion matrix
U that is consistent with given proportion matrix U1 for clones Π1 and U2 for clones Π2, and
constructing such a matrix is equivalent to solving a maximum flow problem, which takes
polynomial time [1]. Figure 2 illustrates the construction such that there exists a consistent
proportion matrix if and only the value of the flow is 1. Note that for m > 1 samples, we
need to solve a multi-commodity rather than a single-commodity flow problem. However,
the PCR problem, where we simultaneously seek Π and U , is NP-hard and the hardness
comes from having to identify the smallest set Π of clones.

▶ Theorem 7. The PCR problem is NP-hard even for number m = 1 of samples.

This follows by reduction from the 3-PARTITION problem, a known NP-complete
problem [12,13] stated as follows.

▶ Problem 8 (3-PARTITION). Given an integer B ∈ N>0, a multiset A = {a1, · · · , a3q} of
3q positive integers such that ai ∈ (B/4, B/2) for all i ∈ [3q], and

∑3q
i=1 ai = Bq, does there

exist a partition of A into q disjoint subsets such that the sum of the integers in each subset
equals B?

Note that since each ai occurs within the open interval (B/4, B/2) and the elements in each
subset of the desired partition sum to B, it holds that each subset must be composed of
exactly three elements from the multiset A – hence the name of the problem.
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Figure 3 Reduction from 3-PARTITION. (a) Example instance of 3-PARTITION with a
multiset A of 6 elements and target sum B = 40. (b) Corresponding PCR instance (Π1, U1, Π2, U2)
and solution (Π, U). (c) Corresponding PCTR instance (T1, Π1, U1, T2, Π2, U2) and solution (T, Π, U).

We represent the solution to an instance (A, B) of the 3-PARTITION problem as a
function σ : [3q] → [q], which encodes the division of the elements of A = {a1, . . . , a3q} into
q disjoint subsets. The inverse of this function specifies the subset corresponding to each
j ∈ [q] as σ−1(j) = {i ∈ [3q] : σ(i) = j}. Note that any solution σ : [3q] → [q] of the
3-PARTITION problem satisfies the following constraint.∑

i∈σ−1(j)

ai = B, ∀j ∈ [q]. (1)

Figure 3a provides an example 3-PARTITION instance and solution.
Given a 3-PARTITION problem instance (A, B), we construct an instance of the PCR

problem with number m = 1 of samples as follows. The set Π1(A, B) of clones is given
by the set [3q]. The corresponding proportions are given by the 1 × 3q proportion matrix
U1(A, B) = [u(1)

1,i ] where u
(1)
1,i = ai/Bq for all i ∈ [3q]. Clearly, U1(A, B) = [u(1)

1,i ] is a
proportion matrix for Π1(A, B) as, by construction, we have that

∑3q
i=1 u

(1)
1,i = 1 and u

(1)
1,i ≥ 0

for all i ∈ [3q]. The second set Π2(A, B) of clones is given by [q]. The corresponding
proportions are given by the 1 × q proportion matrix U2(A, B) = [u(2)

1,j ] where u
(2)
1,j = 1/q for

all j ∈ [q]. It is easy to verify that U2(A, B) is a proportion matrix for Π2(A, B). Clearly,
this construction takes polynomial time. Figure 3b shows an example. Hardness follows from
the following lemma whose proof is omitted due to space constraints.

▶ Lemma 9. Given proportions U1(A, B) for clones Π1(A, B) = [3q] and proportions
U2(A, B) for clones Π2(A, B) = [q], there exists a set Π of clones of size n = |Π| ≤ 3q with
proportions U that are consistent with U1(A, B) and U2(A, B) if and only if there exists a
solution to the 3-PARTITION instance (A, B).

3.2 Parsimonious Clone Tree Reconciliation
We now characterize the combinatorial structure of feasible and optimal solutions (Π, U, T )
for the PCTR problem. Let T1 be the first input clone tree for the input set Π1 of n1 = |Π1|
clones. Similarly, let T2 be the second input clone tree for the input set Π2 of n2 = |Π2|
clones. Let T be a solution clone tree that is a refinement of both T1 and T2. First, we
observe that the clones that label the root vertices r(T1) and r(T2) of the two input trees
together label the root vertex r(T ) of the output tree T , i.e., r(T ) = (r(T1), r(T2)).

▶ Observation 10. If clones Π, clone tree T and proportion matrix U form a solution to the
PCTR instance (Π1, T1, U1, Π2, T2, U2), then (r(T1), r(T2)) ∈ Π and r(T ) = (r(T1), r(T2)).

WABI 2021



9:8 Parsimonious Clone Tree Reconciliation

Next, from Definition 4 it follows that in the output clone tree T it must hold that along
each edge there is either a change in corresponding Π1-clones or Π2-clones but not both.

▶ Observation 11. For each (i, j) ∈ V (T ) \ {r(T )} it holds that either ((i′, j), (i, j)) ∈ E(T )
or ((i, j′), (i, j)) ∈ E(T ) where (i′, i) ∈ E(T1) and (j′, j) ∈ E(T2).

Combining these observations, we get that the number of vertices/clones in T equals
n = n1 + n2 − 1.

▶ Observation 12. The number of clones V (T ) equals n = n1 + n2 − 1.

We note that T is a multi-state perfect phylogeny with two characters, i.e. each character
state labels at most one edge of T , whose two sets of states correspond to Π1 and Π2.
Moreover, T1 and T2 impose an ordering of two sets of states to which T must adhere –
i.e., the two characters are cladistic [10]. The problem of deciding whether there exists an
error-free solution of PCTR with J(U, U1, U2) = 0 is equivalent to a special case of the
Cladistic Multi-state Perfect Phylogeny Deconvolution problem [9]. Details and
precise definitions of these concepts are omitted due to space constraints. Although the tree
constraints alter the solution space of PCTR problem compared to the PCR problem (see
Figure 1 and Figure 2c), PCTR remains NP-hard, as we will show in the following.

▶ Theorem 13. The PCTR problem is NP-hard even for number m = 1 of samples.

For a given instance (A, B) of the 3-PARTITION problem, we construct an instance of
the PCTR problem as follows. The first set Π1(A, B) of clones equals {0} ∪ [3q] with
corresponding 1 × (3q + 1) proportion matrix U1(A, B) = [u(1)

1,i ] where u
(1)
1,i = ai/(Bq) for all

i ∈ [3q], and u
(1)
1,0 = 0. The second set Π2(A, B) of clones equals {0} ∪ [q] with corresponding

1 × (q + 1) proportion matrix U2(A, B) = [u(2)
1,j ] where u

(2)
1,j = 1/q for all j ∈ [q], and u

(2)
1,0 = 0.

The clone tree T1(A, B) is a star phylogeny rooted at Π1-clone i = 0 with outgoing edges to
each of the remaining Π1-clones. Similarly, clone tree T2(A, B) is also a star phylogeny rooted
at Π2-clone j = 0 with outgoing edges to each of the remaining Π2-clones. It is easy to verify
that U1(A, B) and U2(A, B) are proportion matrices for Π1(A, B) and Π2(A, B), respectively.
Clearly, this construction takes polynomial time. Figure 3c shows an example. The hardness
follows from the following lemma whose proof is omitted due to space constraints.

▶ Lemma 14. Given proportions U1(A, B) and clone tree T1 for clones Π1(A, B) = {0}∪ [3q]
and proportions U2(A, B) and clone tree T2 for clones Π2(A, B) = {0} ∪ [q], there exists a
set Π of clones of size n = |Π| = 4q + 1, clone tree T and proportion matrix U such that T is
a refinement of T1 and T2 and J(U, U1, U2) = 0 if and only if there exists a solution of the
3-PARTITION instance (A, B).

4 Methods

We introduce two mixed integer linear programming (MILP) formulations to solve the
PCR (Section 4.1) and the PCTR problems (Section 4.2). We implement these two
formulations within the algorithm PACTION (PArsimonious Clone Tree reconciliatION),
which uses the MILP-solver Gurobi version 9.1. PACTION is available at https://github.
com/elkebir-group/paction.

https://github.com/elkebir-group/paction
https://github.com/elkebir-group/paction
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4.1 Parsimonious Clone Reconciliation
To solve the PCR problem, we introduce an MILP formulation composed of O(n1n2m)
variables (including O(n1n2) binary variables) and O(n1n2m) constraints. We introduce
binary variables xi,j ∈ {0, 1} for each Π1-clone i ∈ [n1] and Π2-clone j ∈ [n2] that indicate
if clone (i, j) belongs to Π. As such, the corresponding proportion of clone (i, j) in sample
p ∈ [m] is denoted by the continuous variable up,i,j ∈ [0, 1]. In the following we define the
constraints on these variables by first describing the constraints for consistency and next
those for encoding the objective function.

Consistency constraints. This first set of constraints ensure that proportion matrix U is
consistent with proportion matrices U1 and U2. We begin by forcing up,i,j to 0 if (i, j) is not
a clone in the solution Π.

up,i,j ≤ xi,j ∀p ∈ [m], i ∈ [n1], j ∈ [n2].

These above constraints allow us to model consistency of the solution U with input proportions
U1 = [u(1)

p,i ] and U2 = [u(2)
p,j ] as follows.

n2∑
j=1

up,i,j = u
(1)
p,i ∀p ∈ [m], i ∈ [n1],

n1∑
i=1

up,i,j = u
(2)
p,j ∀p ∈ [m], j ∈ [n2].

Note that these two sets of constraints imply that
∑n1

i=1
∑n2

j=1 up,i,j = 1 for all p ∈ [m].

Objective function. We minimize the total number of clones in the set Π by minimizing
the following objective function.

min
n1∑

i=1

n2∑
j=1

xi,j .

4.2 Parsimonious Clone Tree Reconciliation
To solve the PCTR problem, we introduce an MILP formulation composed of O(n1n2m)
variables (including O(n1n2) binary variables) and O(n1n2m) constraints. Similarly to the
PCR MILP, we introduce binary variables xi,j ∈ {0, 1} for i ∈ [n1] and j ∈ [n2] that indicate
if clone (i, j) belongs to Π. As such, the corresponding proportion of clone (i, j) in sample
p ∈ [m] is denoted by the continuous variable up,i,j ∈ [0, 1]. We introduce constraints to
model the error J(U, U1, U2) used in the objective function, as well constraints to enforce
that U is a proportion matrix, and finally constraints to enforce that T is a refinement of T1
and T2.

Correction constraints. Unlike the PCR problem, the proportion matrix U need not be
consistent with proportion matrices U1 and U2. We introduce continuous variables c

(1)
p,i ∈ [0, 1]

for p ∈ [m], i ∈ [n1] and c
(2)
p,j ∈ [0, 1] for p ∈ [m], j ∈ [n2] to model the entry-wise absolute

differences, i.e., c
(1)
p,i = |

∑n2
j=1 up,i,j − u

(1)
p,i | and c

(2)
p,j = |

∑n2
j=1 up,i,j − u

(2)
p,j |. We do so with the

following constraints.
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c
(1)
p,i ≥

n2∑
j=1

up,i,j − u
(1)
p,i ∀p ∈ [m], i ∈ [n1],

c
(1)
p,i ≥ u

(1)
p,i −

n2∑
j=1

up,i,j ∀p ∈ [m], i ∈ [n1],

c
(2)
p,j ≥

n1∑
i=1

up,i,j − u
(2)
p,j ∀p ∈ [m], j ∈ [n2],

c
(2)
p,j ≥ u

(2)
p,j −

n1∑
i=1

up,i,j ∀p ∈ [m], j ∈ [n2].

Proportion matrix constraints. To model that our output matrix U is a proportion matrix,
we begin by ensuring that up,i,j = 0 with xi,j = 0, i.e., the proportion of clone (i, j) is zero
when it is not part of the solution Π with the following constraints.

up.i,j ≤ xi,j ∀p ∈ [m], i ∈ [n1], j ∈ [n2].

Next, we ensure that matrix U is a valid proportion matrix by enforcing that the
proportions of the clones in each sample sum to 1.

n1∑
i=1

n2∑
j=1

up,i,j = 1 ∀p ∈ [m].

Refinement constraints. We introduce constraints that ensure that the clone tree T is
a refinement of the clone trees T1 and T2. Following condition (iii) in Definition 4, we
require that for each clone (i, j) ̸= (r(T1), r(T2)) there only two possible parents, i.e., either
(i′, j) or (i, j′) where (i′, i) ∈ E(T1) and (j′, j) ∈ E(T2). We model the first case with
continuous variables z

(1)
(i,i′),j ∈ [0, 1] and the second case with continuous variables z

(2)
i,(j,j′).

More specifically, we model the products z
(1)
(i,i′),j = xi,jxi′,j and z

(2)
i,(j,j′) = xi,jxi,j′ with the

following constraints.

z
(1)
(i,i′),j ≤ xi,j ∀(i, i′) ∈ E(T1), j ∈ [n2],

z
(1)
(i,i′),j ≤ xi′,j ∀(i, i′) ∈ E(T1), j ∈ [n2],

z
(1)
(i,i′),j ≥ xi,j + xi′,j − 1 ∀(i, i′) ∈ E(T1), j ∈ [n2].

z
(2)
i,(j,j′) ≤ xi,j ∀i ∈ [n1], (j, j′) ∈ E(T2),

z
(2)
i,(j,j′) ≤ xi,j′ ∀i ∈ [n1], (j, j′) ∈ E(T2),

z
(2)
i,(j,j′) ≥ xi,j + xi,j′ − 1 ∀i ∈ [n1], (j, j′) ∈ E(T2).

We now enforce conditions (i) and (ii) in Definition 4 as follows.

n2∑
j=1

z
(1)
(i,i′),j = 1 ∀(i, i′) ∈ E(T1),

n1∑
i=1

z
(2)
i,(j,j′) = 1 ∀(j, j′) ∈ E(T2).
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Objective function. Our goal is to minimize the difference between projections of proportion
matrix U with U1 and U2. To that end, we minimize the following objective function

min
m∑

p=1

n1∑
i=1

c
(1)
p,i +

m∑
p=1

n2∑
j=1

c
(2)
p,j .

We provide the full MILP for reference in Appendix A.

5 Results

5.1 Simulations
We perform simulations to investigate the performance of PACTION when solving the PCR
and PCTR problems under different simulation regimes.

Setup. Given numbers n1, n2 of clones, number m of samples and noise parameter h ∈ [0, 1],
we use a three-step procedure to simulate a set Π of n = n1 + n2 clones whose SNV and
CNA evolution is described by a clone tree T and with clone proportions U on m samples.
From T and U , we obtain input trees T1 and T2 as well as input proportion matrices U1 and
U2 subject to additional noise h. We detail the three steps in the following.

First, we use an approach based on growing random networks [21] to simulate T : starting
from the root vertex (representing the normal clone (1, 1)) T ’s topology is built by iteratively
adding descendant vertices, choosing each parent uniformly at random. Specifically, we label
each edge with a single event from either the first set {2, . . . , n1} or second set {2, . . . , n2}
of features. Thus, the overall clones Π are obtained by labeling all vertices with a depth-
first traversal. Second, we obtain the clone trees T1 and T2 by collapsing vertices of T

corresponding to identical Π1-clones and collapsing vertices of T corresponding to identical
Π2-clones, respectively. Third, the proportions U of the Π-clones in each sample are simulated
by using a Dirichlet distribution with all concentration parameters equal to 1, similarly to
previous methods [6, 23]. Proportions U1 and U2 are thus obtained following the consistency
condition (Definition 2). Furthermore, we introduce noise in these two proportion matrices by
mixing in a second draw from the same Dirichlet distribution using the parameter h ∈ [0, 1] –
a value of h = 0 indicates the absence of noise. Details are in Appendix B.

We ran PACTION in both PCR and PCTR mode on 360 simulated instances that we
obtained by generating 10 instances for each combination of varying parameters. Matching
numbers observed in recent cancer genomics studies [16, 18, 44], we varied the numbers
n1 ∈ {3, 5, 8} and n2 ∈ {3, 5, 8} of clones, the number m ∈ {1, 2, 5} of samples and noise level
h ∈ {0, 0.05, 0.1, 0.15}. Note that both proportions U1, U2 and the simulated trees T1, T2 are
taken in input in PCTR mode, while only proportions U1, U2 are considered in PCR mode.

Results. We measure the performance of PACTION based on recall, which is the fraction of
ground truth clones that are predicted by our method, i.e., the clone recall equals |Π∩Π∗|/|Π∗|
where Π is the set of clones inferred by PACTION and Π∗ are the ground truth clones. As
expected, PACTION in PCTR mode leverages additional information from the clone trees T1
and T2 and thus resulted in higher recall compared to PCR mode (Figure 4a). Interestingly,
recall increased with increasing number m of samples, as each additional samples provides
additional constraints regarding consistency of the output clone proportions. Breaking down
the clone recall by noise level h, we found that performance decreased with increasing noise
levels in both PCR mode (Figure 4b) as well as PCTR mode (Figure 4c). However, we
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Figure 4 Simulations show that PACTION quickly and accurately reconstructs
comprehensive clonal architectures. (a) Clone recall of PACTION in the PCR and PCTR
mode for simulation instances with increasing number m of samples. Clone recall of PACTION in the
(b) PCR mode and (c) PCTR mode for different noise levels h and number m of samples. (d) Parent-
child distance between the clone tree in the ground truth and the solution of PACTION in the
PCTR mode for simulation instances with increasing number m of samples. (e) Number of solutions
to the error-free version of the PCTR problem (with additional constraint of J(U, U1, U2) = 0) by
SPRUCE [9] for increasing number n of clones. (f) Running time of PACTION in the PCR and
PCTR modes for simulation instances with increasing number m of samples. Running time of
PACTION in the (g) PCR mode and the (h) PCTR mode for simulation instances with increasing
number n of clones and number m of samples.

found that the PCTR solver better handles increasing noise levels h, with a medial clone
recall of 1 for noise level h = 0 as well as h = 0.05 when number m of samples is 5 (Figure 4c
and Figure S1).

Next, we investigated how well PACTION in PCTR mode infers ground truth clone trees
T ∗. To that end, we computed the parent-child distance [15] between the predicted clone tree
T and the clone tree T ∗ in the ground truth. Specifically, the parent-child distance equals the
ratio between the size |E(T ) △ E(T ∗)| of the symmetric difference of the edge sets by the size
|E(T )∪E(T ∗)| of the union of edge sets. We observed that the clone tree distance is inversely
correlated with the clone recall and when the clone recall is 1, the predicted clone tree matches
the ground truth perfectly (Figure 4d). Indeed, we observed that performance increases with
increasing number m of samples, e.g., for m = 5 samples the median parent-child distance is 0
for noise levels h ∈ {0, 0.05, 0.1} indicating that in the majority of these instances PACTION
perfectly inferred ground truth trees. The reason why performance drops for decreasing
number of samples is because the number of solutions increases with decreasing number of
samples (Figure 4e). We used the correspondence between the PCTR problem (subject
to the constraint that J(U, U1, U2) = 0, i.e., the proportions are error-free) and the perfect
phylogeny mixture problem solved by SPRUCE [9] to enumerate all solutions for h = 0
instances. For instances with a large number of optimal solutions, the PCTR problem and
consequently the MILP lacks additional constraints to disambiguate between solutions, thus
sometimes reporting solutions that do not match the ground truth.
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Figure 5 Overview of PACTION results on samples from 10 metastatic prostate cancer
patients [16]. (a) The corrections made by PACTION to the SNV and CNA clone proportions
in the samples from each of the 10 patients. (b) The total correction made to clone proportions
J(U, U1, U2) in samples from each patient.

Finally, we investigated the running times of PACTION in PCR and PCTR modes.
Overall, the running times in PCR mode (median of 0.79 s and mean of 385.52 s) were larger
than PCTR mode (median of 0.77 s and mean of 0.95 s), likely due to the tree constraints
providing more guidance for the MILP solver (Table S1). Interestingly, while running time
decreased with increasing number m of samples in PCR mode, the opposite is true in PCTR
mode. The reason is that in PCTR mode the MILP is often solved in the first iteration
prior to branching, where the running time of solving the linear programming relaxation
will depend on the size of the formulation, which in turn depends on m. However, in PCR
mode, the solver requires branching, and here additional constraints due to more samples
will provide stronger bounds that will lead to more pruning and reduction in overall running
time.

In summary, our simulations demonstrate that PACTION is able to quickly and accurately
reconstruct ground truth clonal architectures under varying noise levels h, especially when
the number m is large and when run in PCTR mode.

5.2 Metastatic prostate cancer
In this study, we analyze whole-genome sequencing data from 49 tumor samples from 10
metastatic prostate cancer patients [16]. In a previous analysis of this data, Gundem et
al. [16] identified SNV clones and reconstructed the SNV clone tree for each of the 10
patients. To further investigate the role of CNAs on tumor evolution, the authors annotated
the SNV clone trees with CNA events in a post hoc analysis by manually comparing and
matching frequencies of SNVs and CNAs. However, this approach does not allow us to
identify tumor clones that are only distinguished by different CNAs and have the same SNVs.
Therefore, there is no information about CNA-only driven tumor clones nor information
about the ordering of the CNA events and the SNV events on the same edge of the tree. Such
information is crucial to understand cancer progression [38] and is the subject of numerous
studies [17,20,34]. Therefore, we investigated whether we can use PACTION to provide a
more comprehensive analysis of these tumor clonal compositions by jointly considering SNVs
and CNAs.

We applied PACTION to previously inferred SNV and CNA clone proportions. First, we
used the SNV clone proportions as well as the SNV clone tree T1 inferred for each patient
by Gundem et al. [16]. Note that each edge of the SNV tree represents a cluster of SNV
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Figure 6 PACTION results for patient A12. (a) The SNV clone tree reported by Gundem et
al. [16] where the authors manually annotated edges with CNA events. (b) SNV clone tree T1 and
CNA clone tree T2 describing the evolution of the SNV clones Π1 and CNA clones Π2 in the tumor
samples of patient A12, respectively. (c) Proportions U1 of SNV clones Π1 and proportions U2 of
CNA clones Π2 in the four samples of patient A12. (d) Proportions U of tumor clones Π in the four
samples of patient A12 inferred by PACTION. (e) Reconciled clone tree T inferred by PACTION.
amp: amplification, del: deletion, LOH: loss of heterozygosity.

mutations. As such, we computed the SNV clone proportions U1 using the published cancer
cell fractions of SNVs (details in Appendix C). Second, we used the CNA clones obtained
from a previous copy-number analysis [44] of the same patients. Since this previous analysis
does not provide CNA clone trees, we enumerated all possible binary trees [2] with the CNA
clones as the leaves and independently ran PACTION in PCTR mode with each tree as
input. We then selected the CNA clone tree with the smallest correction J(U, U1, U2), which
for each patient was unique. Overall, we ultimately obtained SNV trees with n1 ∈ {5, . . . , 16}
clones and CNA trees with n2 ∈ {4, . . . , 8} clones across m ∈ {2, . . . , 10} samples (Table S2).

In all patients but A29, we found that one cannot reconcile independently-inferred SNV
and CNA clone trees without additional corrections to the clone proportions. Importantly,
this observation highlights that the clone proportions inferred by existing methods are
generally characterized by errors (Figure 5a). As previously demonstrated in our simulation
study, PACTION, however, reliably handles the presence of noise, enabling the inference of
the complete clonal composition and tumor evolution with limited corrections for all patients.
Specifically, the corrections applied by PACTION were limited to only a few samples per
patient, potentially indicating sample-specific errors in previous analysis or samples with
higher levels of noise. Importantly, we also observed that corrections were uniformly needed
for both SNV and CNA clone proportions (Figure 5). This important observation highlights
that both features are generally characterized by errors and, therefore, one cannot simply
leave one feature fixed and use it to reconcile the other feature, as done previously [16].

Notably, we found that the reconciled clone trees inferred by PACTION reveal additional
branching events that were previously missed. As an example, in patient A12, Gundem et
al. [16] inferred an SNV clone tree with five clones and annotated this tree with five clonal
CNA events, including loss-of-heterozygosity (LOH) of gene TP53 and chromosomes 8p
and 13q, as well as deletions of genes FOXP1 and FANCD2 (gray edge in Figure 6a). The
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Figure 7 PACTION results for patient A10. (a) The SNV clone tree reported by Gundem et
al. [16] where the authors manually annotated edges with CNA events. (b) SNV clone tree T1 and
CNA clone tree T2 describing the evolution of the SNV clones Π1 and CNA clones Π2 in the tumor
samples of patient A12, respectively. (c) Proportions U1 of SNV clones Π1 and proportions U2 of
CNA clones Π2 in the four samples of patient A10. (d) Proportions U of tumor clones Π in the four
samples of patient A10 inferred by PACTION. (e) Reconciled clone tree T inferred by PACTION.
amp: amplification, LOH: loss of heterozygosity.

tree also contains a single subclonal CNA event, amplification of gene FGFR1 (green edge
in Figure 6a). When using PACTION to analyze the previously-inferred SNV and CNA
clone proportions, we reconstructed a reconciled clone tree with higher resolution. In fact,
PACTION reconstructed a more refined clone tree with 12 clones while only applying modest
corrections to the input clone proportions (Figure 5a). Similarly to the published tree,
PACTION’s inferred clone tree contains a trunk with the same four clonal CNA events.
However, PACTION’s tree contains additional branching events that are absent in the
published SNV tree. Specifically, we observed that two SNV clones in the published tree
(i.e., 2 and 3) were split into multiple clones in PACTION’s refined tree (i.e., (2, 2), (2, 4),
and (2, 5) for SNV clone 2, and (3, 3), (3, 6), and (3, 7) for SNV clone 3). Importantly,
a subset of these refined clones are present at large proportions in the sequenced samples
(Figure 6d), thus showing that PACTION enables a more fine-grained analysis of current
sequencing data.

Finally, we found that the more refined clone trees inferred by PACTION also reveal
novel insights about the relative temporal ordering of SNVs and CNAs. This phenomenon
is particularly interesting in patient A10 (Figure 7a), for which PACTION inferred a clone
tree with 17 clones and relatively high corrections to the previous SNV clone proportions
(Figure 7b-d). PACTION’s tree recapitulates the same four clonal CNAs identified in the
previous tree, including gain of chromosome 8q and amplifications of genes NCOA2, CTNNB1
and MDM2 (gray edge in Figure 7a). Importantly, PACTION’s tree also recapitulates
subclonal CNA events as in the previous tree but further revealed that these CNA events
precede the SNV events placed on the same edges in the published SNV clone tree (Figure 7e).
More specifically, PACTION revealed that LOH of chromosome 8p and amplification of
gene NCOA2 occur on the edge from clone (2, 3) to (2, 7) which precedes the SNV cluster
represented by the edge from clone (2, 7) to (3, 7). Similarly, PATION revealed that LOH of
chromosome 8p occurs on the edge from clone (1, 1) to (1, 2) which precedes the SNV cluster
represented by the edge from clone (1, 2) to (6, 2).
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In summary, we demonstrated on metastatic prostate cancer patients that PACTION
is able to resolve the temporal ordering of mutations and reveal branching events that are
either unclear or hidden when the SNV tree or the CNA tree are considered in isolation.

6 Discussion

In this paper, we introduced PACTION, a new algorithm that infers comprehensive tumor
clonal compositions by reconciling the clones proportions of both SNVs and CNAs that are
inferred by existing methods. Our algorithm can additionally leverage SNV and CNA clone
trees reconstructed by existing methods to obtain a refined tumor clone tree and correct
potential errors in the input proportions. We formulated two problems, the PCR problem to
infer the clones and their proportions, and the PCTR problem to additionally infer tumor
clone trees with both SNVs and CNAs. We showed that both problems are NP-hard and
can be solved exactly by PACTION using two mixed inter linear programming formulations.
We demonstrated the performance of PACTION on simulations, showing that our method
accurately reconciles clone trees, reliably handles errors in clone proportions, and scales
to practical input sizes. Finally, we applied our method to whole-genome sequencing data
from 10 metastatic prostate cancer patients [16], obtaining a higher resolution view of tumor
evolution than previously reported.

In addition to the contributions of this study, we foresee four major avenues for future
research. First, building upon the established relationship of the error-free PCTR and the
cladistic multi-state perfect phylogeny deconvolution problems, we can adapt the existing
method SPRUCE [9] to enumerate all possible solution of the PCTR problem in the presence
of errors in the input proportions. Second, PACTION can be extended to account for
uncertainty in the input clone trees and quantify its effect on the solution space. One way of
incorporating the uncertainty in the input clone trees, is to consider a set of possible clone
trees for each feature instead of a single input tree, choosing the best tree that leads to the
most parsimonious solution. Moreover, we plan to adapt the PCR and PCTR to incorporate
probabilistic models that account for uncertainty in the estimated clone proportions. Third,
the PCR and PCTR problems can be generalized to reconcile more than two features. For
instance, in addition to SNVs and CNAs, tumor cells may be partitioned into clones based on
RNA expression or DNA methylation profiles. Finally, a likelihood-based objective function
could be used to incorporate a joint evolutionary model for SNVs and CNAs [32].
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A MILP formulation for the PCTR problem
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B Simulation Details

We perturb the proportion matrices U1 and U2 by introducing noise following a user-defined
level h ∈ [0, 1]. For each sample p ∈ [m], let u(1)

p = [u(1)
p,i ] for i ∈ [n1] and u(2)

p = [u(2)
p,j ] for

j ∈ [n2]. The perturbed proportions ū(1)
p and ū(2)

p are drawn from the following distributions

ū(1)
p ∼ (1 − h)u(1)

p + hDir(1n1), ∀p ∈ [m],

ū(2)
p ∼ (1 − h)u(2)

p + hDir(1n2), ∀p ∈ [m].

The resulting proportion matrices are Ū1 = [ū(1)
p,i ] for p ∈ [m], i ∈ [n1] and Ū2 = [ū(2)

p,j ] for
p ∈ [m], j ∈ [n2]. Note that when noise level h = 0, we have Ū1 = U1 and Ū2 = U2. Also,
for any h ∈ [0, 1], the matrices Ū1 and Ū2 satisfy the conditions laid out in the definition of
proportion matrices (Definition 2).

C Computation of SNV Clone Proportions

Each edge of the SNV clone tree T1 reported by Gundem et al. [16] represents a set of
mutations, also known as mutation clusters. As such, for a SNV clone tree T1 with n1
vertices, there are n1 − 1 mutation clusters. The authors have provided the cancer cell
fraction (CCF) for each of the mutation clusters in each sample of the ten patients. They
used pigeonhole principle (PPH) to construct the SNV clone tree manually. For a given
patient, let F ∈ [0, 1]m×(n1−1) be the CCF matrix such that F = [fp,k] and fp,k is the CCF
of mutation cluster k ∈ [n1 − 1] in sample p ∈ [m]. The SNV clone tree T1, excluding the
root vertex which represent the normal cell, is used to construct a perfect phylogeny matrix
B [30]. We use the perfect phylogeny matrix B and the CCF matrix F to get the proportion
U ′ of SNV clones, excluding the normal clone, in each sample of the ten patients by solving
the following linear program

min |F − BU ′|1,

s.t. 0 ≤ up,i ≤ 1, ∀p ∈ [m], i ∈ [n1 − 1],
n1−1∑
i=1

up,i = 1, ∀p ∈ [m],

where | · |1 is the entry-wise L1 norm. Finally, we correct the proportion matrix U ′ for the
purity of the tumor samples (also known as tumor cellularity), which is the proportion of
cancer cells in the tumor. We use the proportion of normal cells in each sample, inferred by
HATCHet [44], to compute the purity of the tumor samples. Let γ ∈ [0, 1]m×1 be a vector
such that γp,1 is the purity of sample p ∈ [m] inferred using HATCHet. The proportion
matrix U ∈ [0, 1]m×n1 of the SNV clones is given by

U =
[
Diag(γ)U ′ 1m − γ

]
where 1m is a m×1 vector with all entries equal to 1 and Diag(γ) is a m×m diagonal matrix
with the diagonal elements given by the entries of the vector γ. It is easy to see that the
proportion matrix U satisfies the conditions for being a proportion matrix (see Definition 1).
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Figure S1 Clone recall for the two modes of PACTION on the simulated instances. We
show the clone recall of PACTION with the PCR and the PCTR mode on the simulated instances
for varying noise levels h and number m of samples. For majority of simulated instances, PACTION
in the PCTR mode has a higher recall compared to the PCR mode.

Table S1 Median running time of PACTION in PCT and PCTR modes for simulation instances
with varying number of samples m.

number of samples m PCR runtime (s) PCTR runtime (s)

1 0.84820 0.74365
2 0.6949 0.7379
5 0.81985 0.84460

Table S2 Statistics of the metastatic prostate cancer data [16]. Number m of samples,
number n1 of SNV clones and number n2 of CNA clones for the 10 patients from Gundem et al. [16].
The CNA clones were identified using HATCHet [44].

patient number m of samples number n1 of SNV clones number n2 of CNA clones

A10 4 10 8
A12 3 5 8
A17 5 11 6
A21 8 15 6
A22 10 16 4
A24 4 10 4
A29 2 6 4
A31 5 11 6
A32 5 13 6
A34 3 14 6
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