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Abstract 

A narrow residence time distribution (RTD) is desirable in several chemical engineering processes. 

However, in systems operating at low Reynolds number, axial dispersion can be significant. To lower 

it, we utilized two mixing approaches: secondary flow achieved with curved geometries and oscillatory 

variation of the flow rate. We investigated their combined effect on axial dispersion in millifluidic 

channels with three geometries: straight tube, helically coiled tube (HCT) and coiled flow inverter (CFI). 

We studied the influence on axial dispersion of two key parameters of pulsating flows: amplitude and 

frequency of pulsation; in dimensionless form, these are expressed via the amplitude ratio and 

Strouhal number, respectively. For unsteady flow, we performed numerical simulations to 

characterise mixing. The results indicate that pulsation enhances radial mixing significantly. Our 

experimental studies show that axial dispersion is lower in the presence of pulsation, and increasing 

amplitude and/or frequency has a positive effect. For the same amplitude ratio and Strouhal number, 

axial dispersion decreases more in the CFIs than in the HCTs. Comparing two extremes, the straight 

capillary with steady flow (no RTD enhancement) and the CFI with pulsation (lowest axial dispersion 

achieved in our work), we observed a 10-fold reduction in the axial dispersion number.   

about:blank
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1. Introduction 

Micro and millifluidic devices tend to operate at low Reynolds number; this means that viscous forces 

dominate over inertial forces. The absence of turbulence implies that for the simplest devices (e.g., 

straight cylindrical channels) diffusion, a comparatively slow process, is the only mechanism of radial 

mixing. This limits mixing considerably. Therefore, significant research efforts into microfluidics focus 

on developing techniques that improve mass transfer. Mixing techniques can be active or passive. The 

first utilize external sources of energy to achieve better mixing; common examples are sound and 

ultrasound waves [1], including acoustic pressure fluctuations and bubble-induced vibrations, periodic 

flow rate variation [2] and the use of mechanical devices (for instance, small impellers [3] or integrated 

microvalves and pumps [4]). Passive mixing techniques utilize the flow energy to enhance mixing; they 

involve altering the geometry of the system (for instance, by adding baffles or mixing structures, or by 

curving the channel) to create eddies in the flow or decrease the diffusion path [5]. In this work, we 

combined active and passive mixing, using pulsation in curved capillaries. 

In curved geometries (e.g., coils), Dean vortices form owing to centrifugal forces [6]. These vortices 

enhance radial mixing, and using them is a well-established passive mixing approach. The strength of 

Dean vortices is characterised by the Dean number, Dn ≡ Re �𝑑𝑑 𝐷𝐷𝑠𝑠⁄ , where 𝐷𝐷𝑠𝑠 is the diameter of the 

support structure (which is twice the curvature radius), 𝑑𝑑 is the diameter (or equivalent diameter) of 

the channel, and Re ≡ 𝜌𝜌𝑢𝑢𝑏𝑏𝑑𝑑/𝜇𝜇 is the Reynolds number, where 𝑢𝑢𝑏𝑏 is the (time-independent) fluid 

mean velocity, while 𝜌𝜌 and 𝜇𝜇 are the fluid density and dynamic viscosity, respectively. 

Varying the flow rate periodically (a process called pulsation) is an active mixing approach established 

in the early 60s [7]; however, its potential is still being investigated by the flow chemistry community 

[8]. For oscillatory flows in curved channels, the time-dependent cross-sectional average axial velocity 

is equal to 𝑢𝑢(𝑡𝑡) = 𝑢𝑢𝑝𝑝 sin(2𝜋𝜋𝜋𝜋𝑡𝑡) + 𝑢𝑢𝑏𝑏, where 𝑡𝑡 is the time, 𝜋𝜋 is the pulsation frequency, and 𝑢𝑢𝑝𝑝 is the 

amplitude of the sinusoidal part of the instantaneous fluid velocity. The oscillatory Dean and Reynolds 

numbers can be defined as Dno ≡ Reo �𝑑𝑑 𝐷𝐷𝑠𝑠⁄  and Reo ≡ (α + 1) Re, respectively, where α ≡ 𝑢𝑢𝑝𝑝/𝑢𝑢𝑏𝑏 

is the amplitude ratio. Note that in the literature different definitions exist for the oscillatory Reynolds 

number; this dimensionless group is defined in terms of either 𝑢𝑢𝑝𝑝 or of 𝑢𝑢𝑝𝑝 + 𝑢𝑢𝑏𝑏. In this work, we based 

the definition on 𝑢𝑢𝑝𝑝 + 𝑢𝑢𝑏𝑏 (the resulting Reynolds number is sometimes referred to as total Reynolds 

number). In these flows, another key dimensionless quantity is the Strouhal number, St ≡ 𝜋𝜋𝑑𝑑/𝑢𝑢𝑏𝑏. St 

can be regarded as a dimensionless frequency. In the literature, researchers have used Reo, Dno, α 

and St to characterize the effects of pulsation on Dean flows, but in the present work we opted for 

the equivalent set Re, Dn, α and St. Using the dimensionless numbers α and Re is convenient, because 

it allows decoupling the periodic part of the flow from the bulk part of the flow. 
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The simplest curved structure is the helically coiled tube (HCT), a tube wrapped around a cylindrical 

support, where the centrifugal force acting on the fluid generates two symmetrical Dean vortices. 

However, this simple structure presents two dead zones at the centre of each vortex, where the radial 

velocity is zero; moreover, the convective mixing between the two vortices is limited. To overcome 

these limitations, Saxena and Nigam [9] proposed coiled flow inverters (CFIs), where 90o bends are 

introduced in the support structure to change the direction of the centrifugal force and in turn of the 

Dean vortices. Owing to the absence of mixing dead zones, CFIs enhance mixing more than HCTs. The 

residence time distribution (RTD) for both systems has been extensively studied at steady state [10-

14]; these studies showed that HCTs reduce the axial dispersion when compared to straight tubes, but 

CFIs reduce it even more [9-11, 12, 14]. 

Dispersion in pulsating flows was first investigated by Aris [7], who solved the problem analytically and 

showed that pulsation increases the axial dispersion coefficient slightly, its effect rarely contributing 

a fraction of more than 1/128 to the total dispersion coefficient. However, his work concerned straight 

tubes and laminar flows. Further research has shown that pulsation can generate turbulence and, at 

sufficiently high frequency and amplitude, turbulence reduces dispersion [15-17]. 

In curved geometries, if the pulsation amplitude is sufficiently high, Lyne instabilities arise [18]. These 

shift the Dean vortices to the outer walls and form two additional vortices in the centre of the tube 

[19]. Sudo et al. [20] established that Lyne instabilities appear solely for α > 19, but they also reported 

that for flows at lower amplitude ratio (in the range 6-10), deformed Dean vortices are present [20]. 

The effects of both Lyne instabilities and Dean vortices have been investigated for HCTs; Pedley and 

Kamm reported that for flows where Re and Dn are constant, axial dispersion decreases with an 

increase in frequency when 𝛽𝛽2 ≡ 𝜋𝜋𝑑𝑑2/4𝑘𝑘 > 10, where 𝑘𝑘 is the tracer diffusivity [21]. Recently, there 

have been advances on this topic, with McDonough et al [22] highlighting the benefits of using HCTs 

in operating conditions just before the onset of Lyne instabilities. This work showed that axial 

dispersion can be reduced with an increase in either the Strouhal number or the amplitude ratio. 

Other works have investigated pulsation in straight channels with baffles. An entire set of reactors, 

referred to as continuous oscillatory baffled reactors (COBRs), was developed for these applications. 

Despite significant geometrical differences between HCTs/CFIs and COBRs, one can draw a parallel 

between Dean vortices and vortices formed around baffles, because both form owing to the channel 

geometry. It has been established that in COBRs nearly plug-flow behaviour can be achieved either at 

high flow rates or at lower flow rates in the presence of pulsation, the latter offering the additional 

benefit of longer space-time [23]. Moreover, for different configurations of baffles, it was observed 

that the width of the RTD reduces when the amplitude ratio increases [24–26]. Mazubert et al. [27] 
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compared the performance of COBRs and helical reactors in the presence of pulsation, showing that 

these two systems offer similar benefits. 

This work investigates experimentally and numerically the behaviour of straight tubes, HCTs and CFIs 

in the presence of pulsation. The main motivation is achieving a narrow RTD while maintaining the 

desired space-time (𝐿𝐿/𝑢𝑢𝑏𝑏, where 𝐿𝐿 is the length of the tube), thus keeping the bulk flow rate constant. 

As said, two dimensionless groups were selected to characterize flow pulsation: amplitude ratio (α) 

and Strouhal number (St). The other dimensionless groups characterising the flow (e.g., Re, Dn and 

𝐿𝐿/𝑑𝑑) were kept constant to maintain a constant space-time in the selected geometry. Large values of 

the amplitude ratio permitted investigating the operational region where turbulence starts occurring 

and the interaction between the latter and Dean vortices. At the same time, we aimed to maintain 

both Strouhal number and amplitude ratio low enough to prevent the formation of Lyne instabilities, 

focussing on operating conditions that have received limited attention in the literature. This paper is 

organised as follows. Section 2 presents the experimental procedure and the method employed to 

implement pulsation. In Section 3, we investigate straight and curved tubes via numerical simulations, 

the results revealing the effects of Strouhal number and amplitude ratio on radial mixing. Finally, in 

Section 4, we present the experimental investigation of the effects of pulsation on axial dispersion in 

straights tubes, HCTs and CFIs. 

2. Experimental methodology 

The schematic of the experimental setup used for residence time distribution measurements is shown 

in Figure 1. 100 ml glass syringes (SGE Analytical Science) were filled with carrier fluid (deionized 

water) and tracer fluid (75 mg/L solution of Basic Blue 3, Dye content 25%, Sigma-Aldrich, diffusivity 

in water 𝐷𝐷𝑚𝑚 = 6.4 ∙ 10−10 m2/s). With a syringe pump (Harvard Apparatus PHD 2000), these fluids 

were simultaneously pumped to a six-way injection HPLC valve (M-461, IDEX) that allowed switching 

between carrier fluid and tracer fluid to flow within the tube, thereby enabling a step change in 

concentration of blue dye at the tube inlet. Before the experiment, the carrier fluid was pumped 

through the system. At the start of the experiment, the feed was changed to tracer fluid. An additional 

syringe pump (KDS Scientific Legato 210) with a 5 ml glass syringe (SGE Analytical Science) filled with 

heptane (H₃C(CH₂)₅CH₃, >97% pure, VHR) was connected with a T-junction (PEEK, 0.5 mm thru-hole, 

IDEX Health & Science) to the main tube via a short polytetrafluoroethylene (PTFE) tube (~10 cm 

length, 1 mm I.D., 1.6 mm O.D., Bohlender). The main tubes were also from PTFE and were ~5 m long, 

with 1 mm I.D. and 1.6 mm O.D. Their exact length varied by 5-10 cm and was measured for each HCT 

and CFI. Each support structure for both HCTs and CFIs had a diameter 𝐷𝐷𝑠𝑠 of 17 mm, and there were 

8 turns on each of 10 arms of the CFI. There were 90 ± 1 turns in total for each HCT (depending on the 

exact length of the tube). All connector tubes were also made of PTFE. 
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Figure 1: Schematic representation of the residence time distribution measurement system with a UV-Vis detection flow 

cell. 

When pulsation is applied during the experiments, the tracer may diffuse back from the T-junction 

towards the pulsation syringe pump. Documented in the literature [2], this issue has been observed if 

the capillary tube between the pulsation syringe pump and the main tube is filled with carrier fluid. 

To avoid this problem, inside this capillary tube we employed heptane. Since blue dye and water are 

insoluble in heptane, the heptane/water interface behaves like a piston, allowing pulsating the flow 

while preventing the tracer from diffusing back into the pulsation syringe. Moreover, utilizing heptane 

allows reducing the dead zone in the capillary tube between the pulsation syringe pump and the main 

tube; the length of this dead zone was only 1 cm and can be considered to be negligible in comparison 

to the 5 m length of the main tube. Before each RTD experiment, we ensured that the experimental 

system operated at pseudo-steady-state (i.e. same behaviour during each pulsation cycle). The tracer 

was not injected until all the heptane droplets and air bubbles had left the system and no additional 

heptane droplets were forming (the interface between heptane and water became stable). To pulsate 

the flow, on the pulsation syringe pump we switched periodically between the infuse and withdrawal 

functions. The net bulk flow (characterized by the time-independent velocity 𝑢𝑢𝑏𝑏) was delivered via the 

bulk-flow syringe pump, which was operated at constant flow rate. The combination of the two flows 

resulted in the pulsatile flow through the channel. The distance between the HPLC valve and the T-
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junction where the pulsating pump and bulk flow combined, did not exceed 5 cm, which is negligible 

in comparison to the 5 m length of the main tube. In the pulsation syringe pump, we could set three 

quantities: flow rate amplitude (related to 𝑢𝑢𝑝𝑝), pulsation period (related to 𝜋𝜋) and displaced volume 

of liquid in the syringe; only two had to be specified to define the operation of the pump. For this 

study, we changed a) the flow rate amplitude to vary the amplitude ratio and b) the period of pulsation 

to vary the frequency (or equivalently the Strouhal number). This is the only way to vary 𝛼𝛼 and St 

independently of each other. The values of the parameters studied in this work are given in Table 1. 

 

Bulk velocity 𝑢𝑢𝑏𝑏 0.021 m s⁄  

Amplitude of the sinusoidal 

part of the velocity 
𝑢𝑢𝑝𝑝 0.021− 0.21 m s⁄   

Length of the (main) tube 𝐿𝐿 5 m 

Inner tube diameter  𝑑𝑑 0.001 m 

Support structure diameter  𝐷𝐷𝑠𝑠 0.017 m 

Coil-to-tube ratio 𝑑𝑑 𝐷𝐷𝑠𝑠⁄  0.059 

Dean number Dn ≡ Re �𝑑𝑑 𝐷𝐷𝑠𝑠⁄  5.1 

Reynolds number Re ≡ 𝜌𝜌𝑢𝑢𝑏𝑏𝑑𝑑/𝜇𝜇 21.2 

Concentration of the tracer − 75 mg L⁄  

Amplitude ratio 𝛼𝛼 ≡ 𝑢𝑢𝑝𝑝/𝑢𝑢𝑏𝑏 0 − 10 

Frequency 𝜋𝜋 0.1−  2 Hz 

Strouhal number  St ≡ 𝜋𝜋𝑑𝑑/𝑢𝑢𝑏𝑏 0.0047− 0.094 

Oscillatory Reynolds number Re𝑜𝑜 ≡ (α + 1) Re 21.2− 212 

Oscillatory Dean number Dn𝑜𝑜 ≡ Reo �𝑑𝑑 𝐷𝐷𝑠𝑠⁄  5.1− 51 

Table 1: Values of the parameters studied in this work.  

The tracer concentration was measured at the tube outlet via UV-Vis spectroscopy. As discussed in 

our previous work [11], the light absorption was directly proportional to the concentration according 

to the Beer-Lambert law for the range of dye concentration used in this study. A light source (Ocean 

Optics DH-2000-BAL) was connected via a fibre optic cable to one side of a flow cell through which the 

main tube passed. The other side of the flow cell was connected, via another fibre optic cable, to a 

spectrophotometer (Ocean Optics USB2000+ UV–Vis-ES), where the light intensity was measured at 

regular intervals of 0.1 s. The average light intensity in the 645-660 nm wavelength region (which 
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corresponds to the wavelength of light absorbed by the blue dye) was recorded by the Ocean Optics 

Spectra Suite software. Before each experiment, the light absorption of tube wall and pure water were 

measured and removed as background. Then, the collected absorbance data were postprocessed: the 

detector noise was removed via a Savitzky-Golay filter, and the resulting data were converted from 

absorbance to concentration using the linear relationship between them. 

The measured outlet concentration, C(t), was converted into a cumulative distribution function, F(t), 

by normalising the curve. The RTD function, E(t), was then calculated by differentiating F(t) with 

respect to time. To simplify the process, we calculated E(t) by normalizing and differentiating the 

absorbance curve (because the Beer-Lambert law applies and the normalized absorbance is equivalent 

to the normalized concentration). Thus, E(t) was calculated as follows:  

E(t) =
1

𝐴𝐴max
dA(t)

dt
                                                                            (1) 

where A is the absorbance and 𝐴𝐴max is its maximum value (achieved at the concentration of tracer of 

75 mg/L). To compare experimental results more easily, we made E(t) dimensionless: 

Eθ(θ) ≡ τ E(t)                                                                                    (2) 

where θ ≡  𝑡𝑡 𝜏𝜏⁄  is the dimensionless time and 𝜏𝜏 ≡ 𝐿𝐿/𝑢𝑢𝑏𝑏 is the space-time. 

In the literature, dimensionless axial dispersion numbers (Nd or NL) are often used to characterise 

hydrodynamic dispersion within a system (these are defined by Eq. 3). These dimensionless numbers 

can be calculated from the experimental results by fitting the predictions of the axial dispersion model 

(ADM), described by Eqs. 4 and 5, to the experimental data [28]. The fitting was done using MATLAB 

Curve Fitting Toolbox via the least square method, where Dax was the fitting parameter. The residual 

error did not exceed 10−3. Based on Dax, calculated from the fitting, the corresponding values of 

Nd and NL were determined using Eq. 3. The exact length and internal diameter of the tube were 

measured for each structure for accurate ADM fitting. The diameter was determined by measuring 

experimentally the volume of the entire tube and then calculating the mean diameter.  The length of 

the tube was kept at 5 ± 0.2 m, and the internal diameter was 1 ± 0.03 mm.  The measured values 

were used during the ADM fitting. The system had open-open boundaries, and we took care to operate 

in the region where the ADM holds. For straight tubes, this region is identified in the flow map 

reported in Rossi et al. [11], with the Bodenstein number (𝑢𝑢𝑏𝑏𝑑𝑑 𝐷𝐷𝑚𝑚⁄ , where 𝐷𝐷𝑚𝑚 is the tracer diffusivity) 

and the tube length-to-diameter ratio (𝐿𝐿 𝑑𝑑⁄ ) as coordinates. In our work, these were equal to 3 ∙ 104 

and 4 ∙ 104, respectively. Under these conditions, the flow falls in the region of the map where the 

ADM holds. Moreover, the ADM should be applicable in HCTs and CFIs when the residual error of the 

fitting does not exceed 10−3 [11], which is the case for all the experiments conducted in our work.   
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Nd ≡  
𝐷𝐷𝑎𝑎𝑎𝑎
𝑢𝑢𝑏𝑏 𝑑𝑑

;    NL ≡  
𝐷𝐷𝑎𝑎𝑎𝑎
𝑢𝑢𝑏𝑏 𝐿𝐿

                                                                     (3) 

𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 =
1

�4𝜋𝜋𝐷𝐷𝑎𝑎𝑎𝑎𝑡𝑡
exp �−

(𝐿𝐿 − 𝑢𝑢𝑏𝑏 𝑡𝑡)2

4𝐷𝐷𝑎𝑎𝑎𝑎𝑡𝑡
�    for NL > 0.01               (4) 

𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 = �
𝑢𝑢𝑏𝑏3

4𝜋𝜋𝐷𝐷𝑎𝑎𝑎𝑎𝐿𝐿
𝑒𝑒𝑒𝑒𝑒𝑒 �−

(𝐿𝐿 − 𝑢𝑢𝑏𝑏 𝑡𝑡)2

4𝐷𝐷𝑎𝑎𝑎𝑎𝐿𝐿/𝑢𝑢𝑏𝑏
�  for NL < 0.01                 (5) 

 

Above, 𝐷𝐷𝑎𝑎𝑎𝑎 is the axial dispersion coefficient, 𝑢𝑢𝑏𝑏 is the time-independent mean fluid velocity, 𝑑𝑑 is the 

internal diameter of the tube and 𝐿𝐿 is the length of the tube. Note that 𝑁𝑁𝐿𝐿  is the inverse of the vessel 

Peclet number. 

Initially, in order to characterise the pulsation generated by the pump, the flow rate was measured. 

The flow rate values were obtained by injecting a small air bubble into the tube between the pulsation 

pump and the main channel, measuring the time-dependent displacement of the centre of the bubble, 

and determining the bubble velocity. The bubble diameter was equal to the tube diameter. Assuming 

that the slip between the fluid and the bubble is negligible, the bubble velocity is equal to the mean 

fluid velocity, which is directly proportional to the flow rate. The measurements were conducted by 

taking repeat images (at constant frame rate) and using image processing to identify how much the 

bubble had moved. The measurements were taken three times per second, and the results were 

smoothed using a 3-point moving average. The results are reported in Figure 2. The sinusoidal wave 

was generated using the pump settings (specifying the flow rate amplitude and frequency). The flow 

rate of the pulsation pump closely resembles a sinusoidal wave; thus, for the numerical modelling of 

the system, we assumed a sinusoidal pulsating flow rate profile. 



9 
 

 

Figure 2: Flow rate delivered by the pulsation pump at a pulsation frequency of 1 Hz. Black solid line: experimentally 

measured bubble velocity and corresponding flow rate; grey dashed line: sinusoidal wave; grey solid line: flow rate (and 

corresponding bubble velocity) specified with the pump settings. The periodic flow rate produced by the pulsation syringe 

pump closely resembles a sinusoidal wave. 

 

3. Numerical simulation of hydrodynamics in HCTs 

The work reported in this section involves the numerical simulation of the flow in a 4-turn helically 

coiled tube (HCT) for one full cycle of pulsation. Literature findings show that, for steady-state flows, 

Dean vortices fully develop within the first turn, which acts as an upstream development region [29]. 

Our numerical results confirmed this; however, to be conservative, we considered the first two turns 

as development region. We modelled the pulsating flow at the highest amplitude ratio used in the 

experiments, where the length of the development region is expected to be the longest. For Dn < 7 

and α < 10, our simulations showed that, at all times during one period of pulsation, the velocity field 

remains the same in the turns after the second one; therefore, we assumed that the velocity field in 

the third turn of the HCT was representative of all the other subsequent 84 turns (two turns constitute 

the development region near the inlet and the outlet of the capillary). Hence, we used the numerical 

simulation of the first four turns of the structure to assess the behaviour of the entire structure. For 

the CFI, a similar approach could not be used, because the introduction of 90° turns in the support 
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structure prevented us from extrapolating the behaviour of the first few turns to the subsequent ones. 

The entire CFI structure must be simulated, a task that is too demanding computationally. For this 

reason, we investigated CFIs only experimentally. 

The three-dimensional velocity profile was computed (using COMSOL Multiphysics 5.3) by solving the 

Navier-Stokes and continuity equations:  

ρ
∂𝐮𝐮
∂t

+ ρ(𝐮𝐮 ∙ ∇𝐮𝐮) − μ∇2𝐮𝐮+ ∇P = 0                                              (6) 

∇ ∙ 𝐮𝐮 = 0                                                                                               (7)  

where 𝐮𝐮 and P denote the velocity and dynamic pressure of the fluid, respectively. Eqs. 6 and 7 were 

integrated numerically for a specified geometry in transient conditions. Pure water was used as fluid 

for all simulations. No-slip boundary conditions at the wall were set (𝐮𝐮 = 𝟎𝟎 at 𝑟𝑟 = 𝑅𝑅, where 𝑟𝑟 is the 

radial coordinate and 𝑅𝑅 is the radius of the tube). At the tube outlet, a Dirichlet boundary condition 

for pressure was set. Since we are only interested in the change in pressure, the value for the pressure 

was set to 0. The resultant boundary condition reads 𝑃𝑃 = 0 at 𝑒𝑒 = 𝐿𝐿, where 𝑒𝑒 is the axial coordinate. 

At the tube inlet, a normal inflow velocity boundary condition was used, where the velocity magnitude 

varied with time (𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑝𝑝 sin(2𝜋𝜋𝜋𝜋𝑡𝑡) + 𝑢𝑢𝑏𝑏 at 𝑒𝑒 = 0, where 𝑡𝑡 is the time). Note that the parabolic 

velocity profile develops within the first quarter of a turn, and so using a laminar velocity profile or a 

uniform velocity profile as boundary condition at the tube inlet does not affect the simulation results. 

To improve numerical convergence, initially the flow field simulation was conducted at steady state in 

the absence of pulsation. The solution to this simulation was then used as the initial condition for the 

time-dependent simulations of pulsating flow. The total volume of the 4-turn structure was 470 mm3 

and was divided in 628483 mesh elements; further refinement of the mesh did not change the results 

appreciably (for details, refer to the Supplementary Information). The simulations were performed on 

a PC with Intel Xeon E5 3.5 GHz CPU and 192 GB of RAM. The computational time step was kept at 

least three orders of magnitude lower than the period of pulsation. The total computed time for each 

simulation was at least two pulsation periods. The results are displayed on a cutting plane normal to 

the tube to show the radial velocity field; which cutting plane is used is unimportant (for all the radial 

velocity profiles are the same), as long as it is after the second turn.   

The results show the presence of Dean vortices within the tube, as can be observed in Figure 3a. These 

results agree with the literature [30,31], where similar flow patterns were observed in fully developed 

Dean vortices. A shift of the axial velocity peak is also observed (Figure 3b), a fact that is known and 

has been reported in the literature [e.g., 6]. The legend in Figure 3a shows the magnitude of the 

component of the velocity vector parallel to the cross-section of the tube; this is significantly smaller 
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than the magnitude of the axial velocity component. For example, while the magnitude of the peak 

axial velocity is 4.07 cm/s, the maximum magnitude of the radial velocity component (owing to the 

Dean vortices) is 0.16 cm/s. It might appear that the convective mass transport induced by Dean 

vortices is negligible, but this is not the case. When comparing straight tubes to HCTs, one must 

contrast the diffusion time in the radial direction for the former with the convection time in the radial 

direction for the latter, because these phenomena are responsible for radial mixing in the 

corresponding systems. These characteristic times are given by:  

tradial diffusion ~ 
𝑑𝑑2

𝐷𝐷𝑚𝑚
                                                             (8) 

tradial convection ~ 
𝑑𝑑
𝑢𝑢𝐴𝐴

                                                           (9)  

where 𝑑𝑑 is the diameter of the tube, 𝑢𝑢𝐴𝐴 is the velocity scale within the Dean vortices, and 𝐷𝐷𝑚𝑚 is the 

molecular diffusion coefficient. The velocity within the Dean vortices varies in the tube cross-section, 

as can be observed in Figure 3a. In Eq. 9, the velocity scale can be taken to be the maximum velocity 

within the Dean vortices. The cross-section mean velocity can be used as well, since these values are 

within one order of magnitude of each other. The radial diffusion time (for 𝐷𝐷𝑚𝑚 = 6.4 ∙ 10−10 m2/s 

and 𝑑𝑑 = 1 mm) was ~1500 s, while the radial convection time (based on the maximum velocity within 

the Dean vortices) was ~0.6 s. Hence, in the presence of centrifugal forces, radial mixing improves 

significantly, while axial dispersion reduces significantly. So, the width of the RTD in the HCT should 

be smaller than that in the straight tube, as reported in the literature [9, 11, 14]. 
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Cutline 1 

m/s a) 

Figure 3: (a) Velocity field over a cross-section of the helically coiled tube after two turns without pulsation. The colour legend 
represents the velocity magnitude. (b) Axial velocity profile along Cutline 1. The mean axial velocity is 2.12 cm/s. 

b) 
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For simulations with pulsation, the mean (i.e., cross-sectional averaged) axial velocity was taken to be 

sinusoidal, as shown in Figure 2. The velocity becomes negative around the trough of the pulsation 

cycle, because for amplitude ratios greater than one, the maximum flow rate of the pulsating flow 

(𝐴𝐴𝑢𝑢𝑝𝑝) is larger than the flow rate of the main flow (𝐴𝐴𝑢𝑢𝑏𝑏). In the presence of pulsation, the maximum 

value of the mean axial velocity is time-dependent (this value, however, is uniform along the axis on 

the tube). The highest magnitude of this cross-sectional averaged axial velocity is at the peak of the 

pulsation cycle. At the trough of the cycle, the absolute value of the mean axial velocity is lower than 

that at the peak, but is higher than its time-averaged value (𝑢𝑢𝑏𝑏, the bulk velocity). In fact, for most of 

the cycle the absolute value of the mean axial velocity is higher than the mean axial velocity of a 

steady-state process with the same space-time (please, refer to the Supplementary Information for 

further discussion). The radial velocity due to Dean vortices increases with the increase in the mean 

axial velocity of the fluid. This is seen in Figure 4, where the radial velocity over one pulsation period 

is displayed for St = 0.044 (for equivalent axial velocities and our comments on axial flow patterns 

refer to the Supplementary Information). We performed similar simulations over a range of Strouhal 

numbers (varying the pulsation frequency); for each simulation, we calculated the radial convection 

time for the pulsating flow, using Eq. 9. In this equation, to find the velocity scale 𝑢𝑢𝐴𝐴, we operated as 

follows. At each time 𝑡𝑡, we extracted from the simulation the maximum value of the radial velocity of 

the fluid; these velocities were then averaged over one pulsation period as follows: 

𝑢𝑢𝐴𝐴 = 𝜋𝜋� |urad.  max(t)| dt
1 𝑓𝑓⁄

0
                                                 (10) 

So, the velocity scale 𝑢𝑢𝐴𝐴 coincides with the time-averaged maximum radial velocity. This approach is 

only applicable when the period of pulsation is at least an order of magnitude smaller than the space-

time; this was the case for all our results, the difference being 2-3 orders of magnitude.  
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Figure 4: Radial velocity field inside a curved tube during one period of pulsation (P = 1 s). Re = 21, Dn = 5, 𝛂𝛂 = 10, St = 

0.044. At t = 0.527 s, the axial velocity averaged over the cross-section of the tube is zero, because the flow direction 

changes. 

Based on the above approach, we calculated the radial convection time as a function of the Strouhal 

number and amplitude ratio. The results are shown in Figures 5 and 6, where the radial convection 

time is normalized by the characteristic diffusion time (see Eq. 8). This ratio yields the inverse of the 

Peclet number, but the velocity scale used here is that of the radial velocity, not of the entire velocity 

vector. Figure 5 shows the variation of the dimensionless radial convection time with the Strouhal 

number. We observe that, within the range of conditions studied in this work, the dimensionless radial 

convection time is independent of the frequency of pulsation (the small variations observed in the 

graph are due to numerical discretization). However, at all Strouhal numbers, the radial convection 

time was four times lower than that in the non-pulsating flow (corresponding to St = 0). So, one 

would expect axial dispersion to be lower in the presence of pulsation. 
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Figure 5: Dimensionless time-averaged radial convection time for pulsating flow in a curved tube as a function of the 

Strouhal Number for Re = 21, Dn = 5, 𝛂𝛂 = 10. The data point at St = 0 corresponds to non-pulsating flow.  

A similar behaviour was observed when the amplitude of pulsation was varied (which is represented 

in dimensionless form by the amplitude ratio). The results are displayed in Figure 6. In this case, the 

dimensionless radial convection time gradually decreases with the amplitude ratio. When α increases, 

the mean axial velocity and in turn the mean radial velocity increase, so that the radial convection 

time decreases (while the diffusion time remains constant). In addition, a higher pulsation amplitude 

ratio results in a smaller fraction of time where the absolute value of the inlet velocity is lower than 

the bulk velocity. Both effects lead to a decrease in the radial convection time, justifying the trend 

observed in Figure 6. 

The numerical results reveal that radial mixing is more vigorous in the presence of pulsation. For the 

conditions investigated, the frequency of pulsation should have no effect on the radial mixing caused 

by Dean vortices and similar RTDs should be observed at all frequencies. By contrast, the amplitude 

of pulsation affects significantly the radial velocity, and we would expect to observe narrower RTDs at 

higher amplitudes. 
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Figure 6: Dimensionless time-averaged radial convection time for pulsating flow in a curved tube as a function of the 

amplitude ratio for Re = 21, Dn = 5, St = 0.025. The data point at 𝜶𝜶 = 0 corresponds to non-pulsating flow. 

One more observation must be made. In all the presented cases and at all the operating conditions 

described in Section 3, fully-formed Dean vortices were observed and the effect of Lyne instabilities 

was insignificant. Research conducted in a tube with I.D. of 14.1 mm [20] suggests that the 

deformation of Dean vortices (due to the onset of Lyne instabilities) should start at amplitude ratios 

above 6. However, this is not the case for the smaller tubes used in our work, where viscous forces 

are much higher. Thus, in our system the onset of Lyne instabilities should occur at higher amplitude 

ratios [20]. We did not observe Lyne instabilities at amplitude ratios less than 12, but at higher 

amplitudes, slight deformation of Dean vortices is expected to occur, and at amplitude ratios higher 

than 15, we did see such flow patterns in our numerical simulations. 
 

4. Experimental results on RTD in straight tubes, HCTs and CFIs 

We investigated the RTD for curved geometries in the presence of pulsation experimentally. We fitted 

each measured RTD to the axial dispersion model (ADM) [28], obtaining the resulting axial dispersion 

number as outlined in Section 2. We considered three geometries: straight tube, helically coiled tube 

(HCT) and coil flow inverter (CFI). Sample RTD curves for one of the experiments are shown in Figure 

7. The periodic fluctuations observed in Figure 7(a) are due to the pulsation of the flow; these 

fluctuations are absent in Figure 7(b), because the curve was smoothed. 



17 
 

 

Figure 7: Experimental results from RTD experiments at Re = 21, Dn = 5, α = 10, St = 0.044 in an HCT. (a) Unprocessed F-

curve showing the variation of the normalised tracer concentration with time. (b) E-curve after noise removal, smoothing, 

nondimensionalization and ADM fitting. The relative error of fitting did not exceed 𝟏𝟏𝟎𝟎−𝟑𝟑. 

When comparing the performance of the three systems for a fixed amplitude ratio, we noticed (Figure 

8) that the CFI and HCT perform similarly in the presence of pulsation, while both present lower axial 

a) 

b) 
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dispersion than the straight tube. In the absence of pulsation, the CFI performing better than the HCT 

is well-established in the literature [9,11] and is due to the presence of 90° bends in the CFI, which 

vary the direction of the Dean vortices and remove the mixing dead zones existing in the HCT. 

 

Figure 8: Axial dispersion number as a function of the Strouhal number for Re = 21, Dn = 5, α = 10 for the three tubes 

(straight, HCT, CFI). The data points at St = 0 correspond to non-pulsating flow. 

For the straight tube, the decrease in axial dispersion coefficient with the Strouhal number might be 

unexpected, since, for laminar flow, pulsation should increase axial dispersion, even if by a very small 

amount [7]. However, this is not necessarily the case at high amplitude ratios and frequencies, since 

the flow may not be laminar. In pulsating flows, the transition from the laminar to the turbulent 

regime occurs at far lower values of Re than in steady-state flows [32,33]. For example, the flow of a 

fluid oscillating around a point with no net flow can be turbulent if the amplitude ratio or frequency 

are sufficiently high, even if Re = 0. Various studies have determined the critical oscillatory Reynolds 

number (Reo) at which the flow becomes turbulent [34,35]; however, these values are system specific. 

Ahn and Ibrahim [17] developed an empirical correlation, expressed in terms of a Reynolds number 

based on the Stokes-layer thickness:  
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√2 Re𝛿𝛿,critical = (211)
8
7 �√Va�

1
7                                                         (10) 

Re𝛿𝛿 ≡ 𝜌𝜌 𝑢𝑢𝑚𝑚𝑎𝑎𝑎𝑎 𝛿𝛿 𝜇𝜇⁄    ;    Va ≡ 𝜋𝜋𝜌𝜌𝜋𝜋𝑑𝑑2/ 2𝜇𝜇                                         (11) 

𝛿𝛿 =  (2𝜇𝜇 𝜌𝜌𝜋𝜋⁄ )0.5                                                                                       (12) 

𝑢𝑢𝑚𝑚𝑎𝑎𝑎𝑎 ≡ (𝛼𝛼 + 1)𝑢𝑢𝑏𝑏 ≡ 𝑢𝑢𝑏𝑏 + 𝑢𝑢𝑝𝑝                                                              (13) 

Here Va is the Valensi number, 𝑢𝑢𝑚𝑚𝑎𝑎𝑎𝑎 is the maximum magnitude of the cross-sectional mean velocity 

during one pulsation cycle, and 𝛿𝛿 is the Stokes-layer thickness (a parameter used to describe periodic 

flows around no-slip boundaries). Turbulence is present if Re𝛿𝛿 exceeds its critical value, given by Eq. 

10. Based on this equation, for the present system, the critical value of Re𝛿𝛿 is in the range of 280-300. 

In our experiments, Re𝛿𝛿 is in the range of 20-450, suggesting that turbulence may occur in our system. 

Note that this correlation indicates a developed turbulent flow; weak turbulence is reported to occur 

at lower values of Re𝛿𝛿 [34]. For example, a study has reported temporary turbulence during a change 

of flow direction at Re𝛿𝛿 = 200 [36]. The onset of turbulence in pulsating flows is still being actively 

investigated, and the scientific community still has to agree on when it is expected to occur. Various 

investigations have determined the critical Reynolds number at which the transition from laminar to 

turbulent flow should occur [34,35], but these findings are not detailed enough to yield reliable values 

of the critical Reynolds number for the systems considered in our work. 

A correlation for an exact value of the onset of weak turbulence is unavailable in the literature. We 

could try to employ CFD to understand if turbulence is expected to occur in the experiments described 

in this work. Standard turbulence models 𝑘𝑘 − 𝜀𝜀, 𝑘𝑘 − 𝜔𝜔 or their combination do not provide sufficient 

accuracy to evaluate the turbulence caused by pulsation, an issue discussed in depth in the literature 

[17]. There have been several advances in the field of modelling the transitional regime for pulsating 

flow, such as the model developed by Lovik et at. [37] or the three equation 𝑘𝑘 − 𝑘𝑘𝐿𝐿 − 𝜔𝜔 model, which 

describes intermittent turbulent fluctuations during pulsating flows [38]. Developing or implementing 

an accurate CFD model to understand eddy formation is beyond the scope of this study and, despite 

recent advances, the models available are insufficient to fully describe the behaviour of our systems. 

Several other literature sources have considered the dispersion in pulsating flows in straight tubes. At 

high St, the flow tends to develop turbulent regions that reduce dispersion [38]. Our results for straight 

tubes are in agreement with experimental [40] and theoretical [15] findings in the literature, where, 

when the frequency is increased (at sufficiently high amplitude ratios), a rapid fall in axial dispersion 

is reported. Another literature source presents a reduction in the axial dispersion number when α/St 

exceeds 20-30 [36]. The onset of turbulence is the key mechanism for the reduction of axial dispersion 

in straight tubes, and based on literature findings, onset of turbulence or intermittent turbulence are 
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expected in the system we considered. This highlights the importance of conducting experiments in 

straight tubes for comparison with curved geometries, since intermittent turbulence is hard to identify 

from numerical methods [37, 38], while experiments (in combination with prior literature findings) 

may suggest its existence. 

In curved geometries, pulsation reduces axial dispersion more significantly than in straight tubes. In 

the HCT, when the Strouhal number increases, the axial dispersion number decreases. For St<0.02, 

the reduction is modest, less than 10%. For 0.02<St<0.03, the effects of pulsation are significant and 

dispersion reduces appreciably. For St>0.03, the dispersion number plateaus, which indicates that the 

maximum possible reduction in axial dispersion has been reached. In HCTs, radial mixing occurs owing 

to Dean vortices and, as discussed in the numerical section, a change in frequency has limited effect 

on them (the radial convection time does not vary significantly when the frequency increases). In light 

of this, one could expect a negligible dependence of Nd on St. However, between and at the centres 

of the Dean vortices, convective mixing is essentially absent and, as a result, mixing dead zones exist, 

with no mixing across the centreline of the tube. In non-oscillatory HCTs, this issue is solved by utilizing 

CFIs, where varying the direction of the centrifugal force changes the direction of the Dean vortices, 

thereby eliminating mixing dead zones. In oscillatory HTCs, oscillations can lead to a similar outcome, 

inducing mixing between and within the Dean vortices through the temporary turbulence that occurs 

when the direction of the flow changes. As the pulsation frequency (i.e. St) increases, the flow changes 

direction more frequently, and this justifies the reduction in axial dispersion observed in Figure 8 for 

0.02<St<0.03. 

In the CFI, a similar trend to the HCT is observed. For St<0.02, there is no reduction in dispersion, or, 

if a reduction is present, this is of the order of magnitude of the error bars. At St>0.02, Nd reduces 

rapidly and eventually plateaus at a value in the range 20-50, which is similar to that found for the HCT 

(50-60). As discussed above, the main benefit of CFIs over HCTs is the elimination of the mixing dead 

zones owing to the change in direction of the Dean vortices. In the presence of pulsation, turbulence 

has a similar effect, so the benefits of using the CFI instead of the HCT are reduced.  
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Figure 9: Axial dispersion number as a function of the amplitude ratio for Re = 21, Dn = 5, St = 0.044 for the three tubes 

(straight, HCT, CFI). Not all error bars are visible; some error bars are in the order of magnitude of the marker. The data 

points at α = 0 correspond to the non-pulsating flow. 

The results of the experiments where the amplitude ratio (α) was altered are shown in Figure 9. In the 

straight tube and the HCT, the axial dispersion number decreases with the amplitude ratio, while in 

the CFI it first decreases and then plateaus. For a straight tube, pulsation reduces axial dispersion 

owing to the onset of turbulence, as discussed above. Pulsation affects axial dispersion more 

significantly in curved geometries. This further indicates that pulsation enhances the Dean vortices. In 

the HCT, experiments show that increasing the amplitude ratio makes the axial dispersion number 

gradually decrease, while the numerical results (Figure 6) indicate that an increase in amplitude ratio 

makes radial mixing gradually more vigorous, thus decreasing the radial convection time. There is no 

established empirical correlation between radial convection time and axial dispersion number, but we 

expect that axial dispersion should decrease when radial mixing becomes more vigorous; this indicates 

that the numerical and experimental results agree. In the CFI, the introduction of pulsation leads to a 

significant, and more abrupt, decrease in the axial dispersion number, from 123 to 29. This reduction 

is fully achieved at α = 2, and a further increase in amplitude ratio has little effect on axial dispersion. 

In the CFI, for both Strouhal number and amplitude ratio, the dispersion number plateaus; this plateau 
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indicates the highest reduction in axial dispersion that one may achieve (in the systems investigated) 

by combining the effects of pulsation and Dean flow.  

Pulsation can affect temporary turbulence in two ways. As said above, temporary turbulence primarily 

occurs when the flow changes direction. An increase in amplitude ratio or Strouhal number both lead 

to an increase in the rate of variation of the flow rate at its inversion point, and this increases the 

turbulence intensity. But increasing the Strouhal number also leads to an increase in the frequency at 

which the change in flow direction occurs, and so to an increase in the frequency of turbulent events. 

The significant difference in the values of the axial dispersion number between the HCT and the CFI in 

Figure 9 suggests that, within the operating conditions considered, an increase in the amplitude ratio 

(increase only in the intensity of temporary turbulence, but not in the frequency of its events) does 

not eliminate the mixing dead zones, since the variations in the direction of the Dean vortices in the 

CFI leads to a further significant reduction in dispersion. By contrast, the small difference in the Nd 

values between the HCT and the CFI in Figure 8 suggests that an increase in the Strouhal number 

(increase in both the frequency of turbulent events and their intensity) essentially eliminates the 

mixing dead zones, because in this case the variations in the direction of the Dean vortices in the CFI 

do not result into a further significant reduction in dispersion. This analysis shows that the reduction 

in axial dispersion owing to temporary turbulence is primarily guided by the frequency of the turbulent 

events, and therefore by the frequency at which the direction of the flow changes. 

An increase in amplitude ratio has other beneficial effects; in particular, it increases the velocity within 

the Dean vortices, which leads to stronger radial mixing. Thus, in Figure 9, for the HCT Nd decreases 

with 𝛼𝛼 for two reasons: as 𝛼𝛼 increases, the intensity of temporary turbulence and the velocity within 

the Dean vortices increase. Both effects reduce dispersion, and the second is likely dominant. In this 

case, temporary turbulence does not eliminate the mixing dead zones and so Nd does not plateau. In 

Figure 9, for the CFI, Nd decreases with 𝛼𝛼 for the same two reasons, but here also the variation in the 

direction of the Dean vortices contributes to reducing Nd. This contribution plays a key role, as it 

allows Nd to plateau, suggesting that in this case the mixing dead zones are eliminated.  

When the issues of the mixing dead zones has been addressed and the velocity of the Dean vortices is 

high enough, we obtain the maximum possible reduction in dispersion, as indicated by Nd plateauing 

at high St and amplitude ratio. This plateau can only be achieved when a mechanism for eliminating 

the mixing dead zones is present. In Figure 8, for the HCT, this mechanism is the rise in the frequency 

of temporary turbulence events, which occurs due to the rise in frequency of flow inversion events. In 

Figure 9, for the CFI, this mechanism is due to the change in the direction of the Dean vortices, while 

in Figure 8, again for the CFI, both of the above mechanisms act together.  
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Literature findings for studies in millifluidic HCTs at high oscillatory Dean (in the range of 70-200) and 

Reynolds numbers (in the range of 10-50) also suggest a decrease in axial dispersion with increase in 

amplitude ratio and Strouhal number until a maximum possible reduction is achieved; further increase 

in amplitude ratio and Strouhal number have the opposite effect [22]. In our work, we found that 

when the amplitude ratio varies, a configuration change from HCT to CFI is shown to have a more 

significant effect on the reduction of axial dispersion than going from a straight capillary to an HCT. 

This difference is most substantial for amplitude ratios in the range 1-4, a range that can be reasonably 

achieved in milliscale channels. One can avoid using the CFI by operating at higher amplitude ratios in 

the HCT, but this comes at the cost of higher pressure drop and pumping requirements, especially in 

channels at the border between milliscale and microscale (d<1mm). 

Finally, one can draw a parallel between a continuous oscillating baffle reactor (COBR) and curved 

tubes. Slavnic [24] developed a correlation for the axial dispersion number (referred to as reciprocal 

of the Peclet number) based on the Reynolds number, Strouhal number and amplitude ratio. This 

correlation, based on experimental data by the author as well as by others in the literature [41–44], 

suggests that the axial dispersion number for a COBR operated at similar conditions (amplitude ratio 

and Strouhal number) to our system is in the region of 30-50. Thus, as we can see from Figures 8 and 

9, our millifluidic CFI performs similarly to a COBR. While in the HCT the efficiency of mixing is lower, 

a low axial dispersion number can still be achieved at high Strouhal number and/or amplitude ratio. 

Ahmed et al. [25] showed that a COBR operated in similar conditions to those discussed in this work 

behaves similarly, axial dispersion decreasing with the amplitude ratio (up to 𝛼𝛼 < 10). In general, the 

CFI and HCT operated with pulsation match the performance of an equivalent COBR in terms of mixing, 

while simplicity of manufacturing adds additional appeal. 

5. Conclusions 

This work aimed to investigate axial dispersion in curved tubes in the presence of a pulsating flow. We 

developed an experimental system to conduct RTD experiments, imposing a step change in tracer 

concentration at the tube inlet and measuring the tracer concentration via UV-Vis spectroscopy at the 

tube outlet. Experiments without pulsation were also conducted for comparison. We studied the 

effects of two key parameters: amplitude ratio and Strouhal number. The results indicated that 

pulsation leads to narrower RTDs, the effect being more pronounced at higher amplitude and 

frequency of pulsation. The axial dispersion number in the coiled flow inverter with pulsation can be 

an order of magnitude lower than that in a straight tube without pulsation (the maximum variation 

being from 190 to 20). Using the coiled flow inverter and pulsation independently reduced the axial 

dispersion number from 190 to 120 and 100, respectively. Numerical simulations supported the 

experimental results, showing that in the presence of pulsation the characteristic radial mixing time 
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reduces considerably. The difference between numerical simulations and experimental results, along 

with literature findings, suggests the existence of temporary turbulence caused by pulsation.  There 

are two key factors that affect the axial dispersion in helically coiled tubes: a) existence of mixing dead 

zones between and within Dean vortices and b) low radial velocity within the Dean vortices. The first 

factor is addressed by using more complex structures, such as coiled flow inverters, or by introducing 

oscillatory flows with sufficiently high frequency, which can generate turbulence. The second factor is 

addressed by increasing the instantaneous axial velocity magnitude; this can be achieved by increasing 

the amplitude of the oscillatory flow. When both factors are addressed, the maximum reduction (for 

the systems considered) in axial dispersion can be achieved. When this happens, the value of the axial 

dispersion coefficient plateaus. The results show a promising technique for reducing the RTD width 

and attaining a performance similar to that of continuous oscillatory baffled reactors, with systems 

that are easier and cheaper to manufacture. 
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