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Abstract 

Gut microbiota-derived metabolites, such as short-chain fatty acids (SCFAs) have vasodilator 

properties in animal and human ex vivo arteries. However, the role of the gut microbiota and 

SCFAs in arterial stiffness in humans is still unclear. Here we aimed to determine 

associations between the gut microbiome, SCFA and their G-protein coupled sensing 

receptors (GPCRs) in relation to human arterial stiffness. Ambulatory arterial stiffness index 

(AASI) was determined from ambulatory blood pressure monitoring in 69 participants from 

regional and metropolitan regions in Australia (55.1% women, mean±SD 59.8±7.26 years of 

age). The gut microbiome was determined by 16S rRNA sequencing, SCFA levels by gas 

chromatography, and GPCR expression in circulating immune cells by real-time PCR. There 

was no association between metrics of bacterial α and β diversity and AASI or AASI 

quartiles in men and women. We identified 2 main bacteria taxa that were associated with 

AASI quartiles: Lactobacillus spp. was only present in the lowest quartile, while Clostridium 

spp. was present in all quartiles but the lowest. AASI was positively associated with higher 

levels of plasma, but not faecal, butyrate. Finally, we identified that the expression of GPR43 

(FFAR2) and GPR41 (FFAR3) in circulating immune cells were negatively associated with 

AASI. In conclusion, this suggests that arterial stiffness is associated with lower levels of the 

metabolite-sensing receptors GPR41/GPR43 in humans, blunting its response to BP-lowering 

metabolites such as butyrate. The role of Lactobacillus spp. and Clostridium spp., as well as 

butyrate-sensing receptors GPR41/GPR43 in human arterial stiffness needs to be determined.     

 

Keywords: arterial stiffness, pulse wave velocity, metagenome, short-chain fatty acids, 

metabolites  
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Introduction 

 

Vascular dysfunction, most notably arterial stiffness, represents a vital preclinical stage in the 

development of cardiovascular disease. Arterial stiffness is typically defined as reduced 

distensibility of the arterial wall (1), resulting in gradual loss of elastic compliance and thus, 

stiffening (2). The gut microbiota is the community of microorganisms that inhabit the 

intestine (3,4). Perturbations to the composition of the gut microbiota are known as gut 

dysbiosis (5). Recent data have indicated that gut dysbiosis elicit inflammatory responses and 

oxidative stress on metabolically active tissues such as the vasculature (6,7). 

The human gut microbiota has been associated with blood pressure (BP) in several 

human studies.(3,4,8) Experiments using germ-free animal models have shown that the gut 

microbiota is not merely associated with BP, but it indeed can increase BP (9,10). A possible 

mechanism involves gut microbial-derived metabolites, such as short-chain fatty acids 

(SCFAs), which are produced during the fermentation of certain types of dietary fibre by 

intestinal bacteria (3). We and others have demonstrated that treatment with the three main 

SCFAs, acetate, propionate and butyrate, lowers BP and reduces total peripheral resistance in 

mice (9,11). Relevant to arterial stiffness, acetate, propionate and butyrate have vasodilator 

effects in human (12) and mouse ex vivo arteries (13,14). While there is increasing evidence 

for a role of the gut microbiota in arterial stiffness, this remains poorly understood in humans. 

This knowledge could represent new therapeutic opportunities to reduce arterial stiffness, 

such as being studied in human hypertension (15). 

Ambulatory arterial stiffness index (AASI) is a measure of arterial stiffness calculated 

from ambulatory BP monitoring (16). Here we aimed to study the relationship between 

arterial stiffness in humans, measured as AASI, and the gut microbiome, their metabolites 

and receptors.  
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Methods 

Participants and recruitment 

The cohort was recently described elsewhere (17). A total of 69 participants (40 in a 

metropolitan clinic and 29 in a regional clinic) untreated for hypertension were recruited 

between October-2016 and April-2018. Probiotic or antibiotic use in the past 3 months were 

used as exclusion criteria, among others. This study complied with the Declaration of 

Helsinki, and was approved by the human research ethics committee of the Alfred Hospital 

(approval 415/16, registration ACTRN12620000958987). All participants provided informed 

consent.  

Blood pressure measurement and hypertension diagnosis 

Participants were fitted with a calibrated ambulatory BP monitoring device (AND or 

SpaceLabs) for 24-hours. AASI values were automatically derived from the regression slope 

of diastolic blood pressure (DBP) and systolic blood pressure (SBP) using unfiltered 24-h 

recordings, following the formula: AASI=1–slope (DBP / SBP). The cohort was separated 

into quartiles (Q1: <0.365; Q2: 0.365–0.504; Q3: 0.504–0.581; Q4: >0.581), top 50% 

(>0.504) and bottom 50% values (<0.504) of the AASI distribution.  

Faecal DNA extraction, library preparation and sequencing 

This study followed guidelines for gut microbiota studies in hypertension (18) and the 

Strengthening The Organization and Reporting of Microbiome Studies (STORMS) reporting 

(19) (available at (17)). Sample collection, DNA extraction and library preparation and 

sequencing were described in detail previously (17). Briefly, the V4-V5 region of the 

bacterial 16S rRNA was amplified by PCR, and were sequenced in an Illumina MiSeq 

sequencer (300bp paired-end reads). To increase the reproducibility of the findings, all 
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samples were independently sequenced twice. These technical duplicated samples were 

combined for the analyses described below. Microbiome data is publicly available at the 

NCBI Sequence Read Archive database at 

https://dataview.ncbi.nlm.nih.gov/object/PRJNA722359?reviewer=qu9taron24c26mcfvgk30q

f56g.  

Bioinformatic analyses of gut microbiome 

Sequence reads from samples were first analysed using the QIIME2 framework (20) as we 

reported recently (17), trained against the SILVA database (version 138) 99% OTU reference 

sequences specific for bacterial V4-V5 rRNA regions. β diversity metrics were generated 

from the rarefied samples, including unweighted and weighted Unifrac metrics shown as 

Principle Coordinate Analysis (PCoA) plots. Linear discriminant analysis (LDA) effect size 

(LEfSe) (21) was used to identify differentially abundant taxa between groups, with a 

specified effect size cut-off of 2.0 and Kruskal-Wallis test P<0.05. This data was validated 

using edgeR differential abundance analysis (false discovery rate adjusted P<0.05 on species) 

on MicrobiomeAnalyst (22,23). Further analyses were performed on MicrobiomeAnalyst 

from the rarefied samples, including α diversity, abundance profiling and clustering analysis. 

Features with a minimum of four counts occurring at a prevalence of 10% in samples were 

included. One participant was excluded from all analyses due to low total number of 

sequencing reads (<10,000). Data was scaled using the Total Sum Scaling (TSS) 

normalisation method to account for technical bias associated with varying sequencing depths 

in different libraries (24).  

Short-chain fatty acids measurement 

Briefly, plasma SCFAs were measured in 200 µL and faecal SCFAs were measured from 1 g 

of faecal sample, all in triplicates, as previously published, in an Agilent GC6890 coupled to 

https://dataview.ncbi.nlm.nih.gov/object/PRJNA722359?reviewer=qu9taron24c26mcfvgk30qf56g
https://dataview.ncbi.nlm.nih.gov/object/PRJNA722359?reviewer=qu9taron24c26mcfvgk30qf56g
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a flame-ionisation detector (25,26). A coefficient of variation of <10% within triplicate 

samples was used as a quality control measure. 

Blood expression of SCFA receptors and transporters   

As previously explained (17), we quantified the expression of the mRNA of the three main 

SCFA-sensing receptors GPR41 (FFAR3), GPR43 (FFAR2) and GPR109A (HCAR2) in 

circulating immune cells (which highly express them (27)) in 50 participants by real-time 

PCR (qPCR). TaqMan assays were used (17), with glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) and β-actin (ACTB) as housekeeping genes. All expression 

experiments were run in duplicates and significance was assessed by 2-ΔΔCT method.   

Statistical analyses 

Data were analysed blind. GraphPad Prism (version 8) package was used for graphing, and 

SPSS for Windows (release 25) for statistical analyses. Non-parametric tests were used in the 

case of non-normally distributed data. One-way ANOVA was performed on AASI quartiles, 

while a two-tail independent sample t-test was used to compare AASI data between two 

groups (top/bottom 50%; Q1 versus Q2–Q4 of the AASI distribution). α diversity score 

correlations with AASI values were performed using Spearman’s correlation coefficients. 

Further analyses were conducted using step-wise multiple linear regression models for 

acetate, butyrate, propionate, GPR41, GPR43 and GPR109A levels. These models had 

clinical (age, sex, body mass index, overall mean arterial pressure [MAP]) variables as 

independent parameters (criteria of F-entry probability: 0.15, removal: 0.20). Data are 

presented as mean±SD unless otherwise specified, and those with a P<0.05 considered 

significant. 
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Results 

Baseline characteristics 

Table 1 summarises the baseline characteristics of the 69 participants included in this study 

across quartiles, top 50% and bottom 50% of the AASI distribution. As expected, participants 

in the top 50% of the AASI distribution had significantly higher AASI scores (P< 0.001). No 

significance was found between quartiles, as well as top and bottom 50% of the AASI 

distribution for all other independent variables listed in Table 1. 

Gut microbiome 

A total of over 4.3 million reads were denoised, merged and underwent chimera filtering, 

resulting in an average read count of 63,000 per sample. Samples were rarefied to 29,000 

reads to allow for consistent and plateauing diversity metrics (Figure S1), achieved with the 

exclusion of data from one participant (thus, total 68 participants were included). Two 

frequently used metrics for predicted gut microbiome studies were measured; α- and β-

diversity. We found no association between four metrics of α-diversity (observed OTUs, 

Chao1 index, Shannon index, Simpson index) and AASI (Figures 1, 2 and S3). These 

findings were validated in correlations between α-diversity and AASI as a continuous 

measurement (Figure 2), as well as in regression analyses adjusted by sex, age, BMI and 

MAP (data not shown, all P>0.9). Due to numerous studies having explored sexual 

dimorphism in arterial stiffening, as well as one report finding an association between α-

diversity and arterial stiffness (28), we also performed a separate analysis between α-diversity 

and AASI scores in female participants only (Figure S4). Consistent with our findings in the 

complete cohort, we did not observe any significant correlations. Similar results were 

observed when assessing β-diversity of the entire cohort; both weighted and unweighted 

UniFrac distances showed no significant clustering patterns of either AASI as a continuous 
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variable (Figure 3A, B) or quartiles (Figure 3C, D). Furthermore, as expected, phylum-level 

taxa plots of the quartiles and top 50% and bottom 50% of AASI distribution showed that the 

overall relative abundance of taxa belong to the two main phyla Firmicutes and Bacteroidetes 

(Figure 4). We explored this further by performing LEfSe in order to identify potential taxa 

that were more prevalent in one group compared to another, shown by LDA scores higher 

than 2.0 (Figure 5). This cut-off was specifically chosen to allow for the identification of taxa 

that were likely to have biological significance as opposed to just a significant P-value. We 

found that two specific taxa, Lactobacillus spp. and Clostridium spp., were differentially 

abundant between the top 50% and bottom 50% of the AASI distribution, as well as between 

Q1 versus Q2, Q3 and Q4. These findings were validated through edgeR differential 

abundance analysis, which allowed for the exploration of the quartiles of the AASI 

distribution, which we could not do using LEfSe (Figure 6). We identified that participants 

within Q1 of the AASI distribution had a greater abundance of Lactobacillus, 

Lachnoclostridium and Ruminoclostridium compared to participants with AASI values within 

the three remaining quartiles. Interestingly, several uncultured species of Clostridium were 

found to be significantly more abundant in participants with AASI values within Q2-Q4 

compared to participants with AASI values in Q1 (Figure 6).  

Short-chain fatty acids and receptors  

We then studied the levels of SCFAs in the circulation and in faecal samples in relation to 

AASI. There was a positive, albeit not significant, correlation between plasma butyrate 

(r=0.20, P=0.131) and AASI. We then performed a sensitivity analysis, which showed that 

both plasma acetate (β=-0.001±0.001, P=0.024) and butyrate (β=0.033±0.012, P=0.008) 

remained significant, as well as BMI and sex. However, butyrate had the largest impact on 

AASI, evidenced as standardised β (0.42), compared to all other variables (-0.31 to -0.37). 

All faecal SCFAs were not associated with AASI (data not shown).  We then analysed the 
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expression of the SCFA receptors GPR41 (FFAR3), GPR43 (FFAR2) and GPR109A 

(HCAR2) in circulating immune cells in relation to AASI. We identified that FFAR2 (r=-

0.373, P=0.011) and FFAR3 (r=-0.300, P=0.043) were negatively correlated with AASI, but 

and HCAR2 (r=-0.222, P=0.148) were not significant.  

 

Discussion 

Through the combination of gut microbiome sequencing, metabolite and receptor 

quantification, we were able to uncover novel relationships with arterial stiffness, shown as 

AASI. In particular, we identified that AASI was associated with lower abundance of 

Lactobacillus spp. and higher abundance of several species from the genus Clostridium. 

Moreover, to our knowledge, this is the first study to assess SCFAs and GPCRs in relation to 

human arterial function. Specifically, our results demonstrated a small but positive 

correlation between plasma butyrate levels and AASI scores independent of conventional risk 

factors (e.g. sex, BMI, MAP), but reduced levels of the main receptors that sense these 

metabolites, GPR41 and GPR43, in circulating immune cells.  

A growing body of evidence supports the gut microbiota has a causal role in 

experimental and human hypertension (3,4). Thus, a relationship between the gut microbiota 

and arterial stiffness, a preclinical marker of cardiovascular disease, would be expected. Gut 

microbiota contributes to the onset of pro-inflammatory pathways, affecting metabolic tissues 

including, but not limited to, the vasculature (6,29), suggesting a microbial compositional 

difference between lower and higher degrees of arterial stiffness. Moreover, sex-specific 

differences in arterial stiffness have also been reported (2,30). Particularly relevant for our 

findings is the report of an inverse association between gut microbiome α-diversity and 

arterial stiffness, measured by pulse wave velocity, in women (31). However, we were not 
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able to replicate this association between microbial α-diversity and AASI scores in our 

cohort. We cross-validated these findings with female-only participants to potentially identify 

a sex-specific difference in microbial diversity, and obtained similar results. This may be due 

to the difference in the technique used to assess arterial stiffness between studies (31). Our 

findings may suggest that microbial pathways, instead of major microbiota dysbiosis, are 

more relevant to arterial stiffness, as we reported in hypertension (17).   

Despite this, we were able to identify some differentially prevalent bacteria taxa 

between participants with lower versus higher AASI. Especially important are the greater 

levels of Lactobacillus spp., a low abundance species commonly used in probiotics, observed 

in the lowest quartile of the AASI distribution. This is consistent with findings that high 

sodium intake in mice and humans reduced intestinal survival of Lactobacillus spp. and drove 

an increase in BP via Lactobacillus-derived metabolites (32). Contrastingly, we detected 

greater levels of several Clostridium spp. in the three highest AASI quartiles, while they were 

absent in the lowest AASI quartile. This is unsurprising, as an array of Clostridium spp. are 

positively associated in cardiovascular disease (33) and have been found to be amongst the 

more abundant bacterial species in hypertensive patients (34). This may explain the elevated 

levels of plasma butyrate found in participants with higher AASI values, as the main 

butyrate-producing bacteria are anaerobes, including those of the Clostridia family (35).  

Plasma butyrate, the third most abundant SCFAs reported to have BP-lowering 

properties in mice (27), was found to be elevated in patients with higher AASI. However, it 

should be noted that this association was relatively small. Butyrate is sensed by three GPCRs, 

including GPR41 and GPR43 (9,27). We previously showed mouse models lacking GPR41 

and GPR43 have increased cardiac fibrosis (9). Moreover, six-months-old GPR41 knockout 

mice have increased pulse wave velocity, and collagen and elastin deposition in their arteries 

(13). Importantly, GPR41/GPR43 are highly expressed in immune cells (27). When activated 
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through the binding of SCFAs, GPR41 and GPR43 promote anti-inflammatory downstream 

pathways (35,36), such as through the polarisation of T lymphocytes into T regulatory 

lymphocytes (37). These cells then migrate and accumulate in the renal cortex where they 

may elicit their BP-lowering properties (38). In our study, we found participants with higher 

AASI values had lower levels of the SCFA-sensing receptors GPR41 and GPR43 in 

circulating immune cells, which may blunt their response to BP-lowering metabolites. This 

may also explain why we observed an increase in plasma butyrate, as it is unable to bind to 

its receptors to elicit its reported vasodilatory effects on the vasculature (12). Moreover, 

deficiency in GPR41/GPR43 signalling can lead to immune dysfunction and a shift from an 

anti- to pro-inflammatory phenotype, evidenced through enhanced peripheral neutrophil-to-

lymphocyte ratios in hypertensive patients (39). Thus, the deficiency of GPR41/GPR43 

signalling may be partially responsible for the pro-inflammatory phenotype, which in turn 

affects vasculature and increases arterial stiffness.  

We acknowledge that there are some limitations to our study, including the relatively 

small sample size. However, our samples are well-characterised with ambulatory BP 

monitoring as well as SCFA and GPCR quantification. Due to the small sample size, our 

results need to be independently validated, preferably through meta-analysis. However, this 

will be difficult to achieve due to lack of gut microbiota studies with ambulatory BP 

monitoring data available. Despite this, our study took advantage of the only multi-site cohort 

published to date that has AASI reported in both men and women who were all untreated for 

hypertension. We also acknowledge that carotid-to-femoral pulse wave velocity would be a 

more suitable measurement of arterial stiffness. However, AASI has been validated as a 

surrogate marker of pulse wave velocity and arterial stiffness (16).  

Conclusion 
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Arterial stiffness, measured as AASI, was not associated with gut microbiota α-diversity. 

However, we identified associations between the abundance of specific taxa, namely lower 

Lactobacillus spp. and higher Clostridium spp., and AASI. Moreover, it was found that 

higher levels of the SCFA butyrate was up-regulated in participants with higher AASI values. 

The immune expression of butyrate’s main sensing receptors, GPR41/GPR43, were 

negatively associated with AASI. This suggests that specific microbial taxa may impact 

human vascular function via production of SCFAs and sensing via their receptors, as well as 

their downstream inflammatory pathways.  
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Figure Legends 

Figure 1. α-diversity profiles and box plots of quartiles of the AASI distribution. α-

diversity profiling and consequent box plots illustrating α-diversity indices of quartiles of the 

AASI distribution using A) observed OTUs (P=0.27), B) Chao1 (P=0.26), C) Shannon 

metrics (P=0.91), and D) Simpson indeces (P=0.91). Box plot data presented as median and 

inter-quartile range (IQR).  

Figure 2. α-diversity score correlation analyses with AASI. α-diversity scores and AASI 

values showing Spearman correlation using A) observed OTUs, B) Chao1 index, C) Simpson 

index and D) Shannon index.   

Figure 3. β-diversity principal coordinate analysis plots. β-diversity principal coordinate 

analysis plots of A) unweighted (i.e., microbial diversity based on presence/absence) and B) 

weighted (i.e., microbial diversity based on abundance) UniFrac analyses of AASI values and 

C) unweighted and D) weighted UniFrac analyses of quartiles of the AASI distribution.  

Figure 4. Phylum-level taxa plots. Percentage of total bacteria presented at the phylum level 

in A) quartiles and B) top 50% and bottom 50% of the AASI distribution.  

Figure 5. Predicted gut microbiome taxa linear discriminant analysis effect sizes. 

Predicted gut microbiome taxa that are different between A) top 50% and bottom 50% of the 

AASI distribution, B) Q1 versus Q2–Q4 at the genus level, and C) at the species level of Q1 

versus Q2 – Q4 with a linear discriminant analysis (LDA) score of at least 2.  

Figure 6. Differential abundance analysis of specific bacterial taxa using the edgeR 

algorithm. Differential abundance analysis of Lactobacillus spp. and Clostridium spp. 

between quartiles (A–D) and Q1 versus Q2–Q4 (E–J) of the AASI distribution. By default, 

relative log expression normalisation was performed on the data, and data presented is 
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presented as log-transformed count. False discovery rate adjusted P-value cut-off=0.05. Box 

plot data presented as median and IQR.   
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Tables 

Table 1. Demographics and clinical characteristics of participants.  

Variable Quartile 1 

(< 0.365) 

Quartile 2 

(0.365–0.504) 

Quartile 3 

(0.504–0.581) 

Quartile 4 

(> 0.581) 

P-value  Top 50% of 

AASI (> 

0.504) 

Bottom 50% 

of AASI (< 

0.504) 

P-value 

Sample size (n, %) 17, 24.6% 17, 24.6% 18, 26.1% 17, 24.6%   35, 50.7% 34, 49.3%  

Age (years) 59.0±7.14 58.6±8.72 58.3±6.85 62.5±6.05 0.319  60.4±6.71  58.9±7.93 0.401 

BMI (kg/m2) 25.4±2.74 25.6±2.61 25.6±2.91 24.1±3.02 0.486  24.8±3.01 25.5±2.63 0.324 

Waist to hip ratio 0.85±0.077 0.89±0.069 0.86±0.088 0.87±0.11 0.472  0.87±0.075 0.86±0.096 0.673 

24-hour MAP 87.6±6.43 90.1±10.3 89.8±12.3 94.1±10.5 0.389  91.9±11.5 88.9±8.54 0.221 

Sex (% female) 70.6% 64.7% 44.4% 35.3% 0.891  54.3% 55.9% 0.894 

AASI score  0.268±0.0911 0.443±0.0474 0.537±0.0232 0.705±0.0753 0.430  0.618±0.101 0.355±0.114 <0.001 

Data are shown as mean±standard deviation or numbers and percentages. Legend: ambulatory arterial stiffness index, AASI; body mass index, 

BMI; waist to hip ratio. 
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