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Abstract—Human Activity Recognition (HAR) is becoming in-
creasingly important in smart homes and healthcare applications
such as assisted-living and remote health monitoring. In this
paper, we use Ultra-Wideband (UWB) and commodity WiFi
systems for the passive sensing of human activities. These systems
are based on a receiver-only radar network that detects reflections
of ambient Radio-Frequency (RF) signals from humans in the
form of Channel Impulse Response (CIR) and Channel State
Information (CSI). An experiment was performed whereby the
transmitter and receiver were separated by a fixed distance in
a Line-of-Sight (LoS) setting. Five activities were performed in
between them, namely, sitting, standing, lying down, standing
from the floor and walking. We use the high-resolution CIRs
provided by the UWB modules as features in machine and deep
learning algorithms for classifying the activities. Experimental
results show that a classification performance with an F1-score
as high as 95.53% is achieved using processed UWB CIR
data as features. Furthermore, we analysed the classification
performance in the same physical layout using CSI data extracted
from a dedicated WiFi Network Interface Card (NIC). In this
case, maximum F1-scores of 92.24% and 80.89% are obtained
when amplitude CSI data and spectrograms are used as features,
respectively.

I. INTRODUCTION

Recently, Human Activity Recognition (HAR) using device-
free methods has become a reality with the proliferation of
wireless devices in both residential and commercial environ-
ments. These methods, which are mostly based on Radio-
Frequency (RF) sensing, can provide an automated, inexpen-
sive and non-invasive solution for use in surveillance to predict
criminal activities in public places, vehicular technology and
in other scenarios that involve human and machine interaction
[1]. Furthermore, over the past few decades, there have been
increasing concerns related to health issues such as mental
health problems, cardiovascular diseases, Alzheimer’s, strokes
among many others. Activity sensing can provide insightful
information related to pattern-of-life and can be used to
monitor a patient’s health in terms of inactivity or falls. These
indicators can then be used to identify chronic diseases or
any other health issues for which early treatment interventions
are critical [2]. This has inspired a number of research to
be carried out for automated human activity and behaviour
sensing using technological devices such as wearable sensors
[3] and camera-based systems [4].

On the other hand, device-free passive sensing using RF
waves provides a better alternative since the users or patients
do not have to face any discomfort by wearing devices on

their body. Moreover, passive sensing systems do not breach
the user’s privacy compared to camera-based systems and
also, they are not sensitive to lighting conditions and physical
obstacles do not pose a problem. In addition to these benefits,
wireless systems such as WiFi are found in almost all resi-
dential and commercial indoor environments nowadays. These
devices are also inexpensive and they do not require additional
infrastructure for passive wireless sensing.

Ultra-wideband (UWB) is another wireless communication
technology that has been used over the years for providing
ranging and positioning with centimetre-level accuracy. The
main features of this technology include a wide frequency
bandwidth (≥ 500 MHz) to provide high localisation accuracy,
high immunity against multipath phenomenon and interference
and low output power [5]. UWB systems are used extensively
in industry where manual operations have been replaced by
automated machineries and hence it is vital to track these
systems to ensure their proper functioning. This technology
can also be used to locate tagged assets in factories and
warehouses or track medical personnel in a hospital, among
many other applications.

In this work, we make the following contributions:

• Very limited work has been performed regarding HAR
using UWB technology. Therefore, in this paper we
present the techniques and address the feasibility of using
UWB signals for HAR.

• We extract high-resolution Channel Impulse Responses
(CIRs) from UWB modules and use them as features
in machine/deep learning algorithms for classifying the
different human activities.

• We also compare the activity classification performance
using fine-grained WiFi Channel State Information (CSI)
in the same physical layout .

The rest of the paper is organised as follows. The related
works on HAR using WiFi CSI and UWB signals are given in
Section II. Section III describes the system models for UWB
and WiFi CSI. Section IV presents the signal processing tech-
niques applied to the UWB and WiFi CSI signals for activity
sensing. The performance evaluation of the two systems is
investigated in Section V in terms of activity classification
accuracy using machine and deep learning algorithms. Finally,
conclusions are drawn at the end of this paper.



II. RELATED WORK

The granularity of the information provided by RF signals,
such as those emitted from WiFi, may be used for different
applications. For instance, [6] leverages the fluctuations in
the coarse-grained Received Signal Strength Indicator (RSSI)
from a single Access Point (AP) to detect in-air hand gestures
around the user’s mobile device with an accuracy of 87.5%.
The downside of RSSI is that it is vulnerable to multipath
fading and has a tendency to fluctuate over time, even in a non-
dynamic environment. Hence, recent studies have considered
the fine-grained CSI extracted from WiFi signals for various
applications such as HAR [7]–[9], fall detection [10], gait
[11], gesture [12], [13] and sign recognition [14], intrusion
detection [15] and crowd-counting [16]. The work in [8]
achieved a high activity recognition accuracy (≈96%) for
activities such as sitting, walking and falling down by using
the time-frequency features of the WiFi CSI signals. The
authors of [11] used torso and limb velocities, derived from
the information obtained in CSI spectrograms, to detect a
walking human with an accuracy of 92% at a distance of 14 m.
While there are numerous studies on HAR using WiFi CSI,
it is not the case for UWB technology. The latter has been
designed for localisation, positioning or tracking purposes.
Since UWB chips are commercially available, a number of
research studies have been carried out to test this technology
in various scenarios in terms of localisation and ranging but
very limited research has been dedicated to activity recognition
using UWB signals. For instance, the authors of [17] proposed
to use the CIR data extracted from the UWB signals for HAR.
They achieved a classification accuracy as high as 95% for
simple activities such as sitting, standing and laying down
using machine learning algorithms.

III. SYSTEM MODELS

A. DW1000 Specifications

In the experiment, two Decawave’s EVK1000 evaluation
boards are used. Each board consists of a DW1000 chip,
ARM Cortex M3 microcontroller, LCD display, USB interface
and an off-board antenna. The evaluation kit is based on
the 802.15.4a standard and it uses the Two-Way Ranging
(TWR) protocol to provide accurate distance measurements.
The EVK1000 board provides various modes of operation such
that the user can choose between different carrier frequencies
(from 3.5 to 6.5 GHz), bandwidths (500 MHz and 900 MHz),
data rates (110 kbps, 850 kbps or 6.81 Mbps), Pulse Repetition
Frequency (PRF) of 16 MHz or 64 MHz, and preamble lengths
from 64 to 4096 symbols [18].

B. UWB Channel Impulse Response (CIR)

The IEEE 802.15.4 frames consist of preambles. The
DW1000 chip estimates the CIR by correlating a known
preamble sequence with the received signal and accumulating
the result over a period of time [19]. The CIR h(t) charac-
terises the multipath propagation between the transmitter and
receiver and is represented as

h(t) =

P−1∑
p=0

αpδ(t− τp), (1)

where P is the number of paths in the multipath channel,
αp and τp denote the amplitude and delay of the pth path,
respectively. The CIR is stored in the accumulator of the
DW1000 chip and it spans one symbol period. This represents
1016 and 992 samples for the nominal 64 MHz and 16 MHz
PRFs, respectively [18]. Each sample is made up of a 16-bit
real integer and a 16-bit imaginary integer and the sampling
interval is equal to 1/(2 × 499.2 MHz) ≈ 1.0016 ns. Since
an UWB system has a high multipath resolution capability,
the Time-of-Flight (ToF) of the first path, τ0, can easily be
identified and the distance, d, between the transmitter and
receiver can simply be computed as

d = c× τ0, (2)
where c is the speed of light (≈3×108 m/s).

C. WiFi CSI System

In this work, we extract the CSI from an Intel 5300 chipset
using the Linux CSI tool [20] which is based on the IEEE
802.11n standard. In a WiFi system based on the Orthogo-
nal Frequency Division Multiplexing (OFDM) physical layer
waveform, the channel bandwidth is shared among multiple
orthogonal and overlapping subchannels which carry the data
in a wireless channel. When a signal is transmitted through a
wireless channel, it suffers from various propagation phenom-
ena such as multipath fading, attenuation, scattering, phase
shift, etc. In order to ensure reliability of the communication
link and recover the transmitted data, the receiver needs to
estimate the channel. Similar to the UWB system which uses
preambles to estimate the CIR, the WiFi system also sends
pilot symbols on specific OFDM subcarriers, which are known
by both the transmitter and receiver, through the wireless
medium. This process is also known as channel sounding. The
receiver basically uses the known transmitted and received
pilot symbols to compute the channel estimates (i.e., CSI)
as complex-valued coefficients in the frequency domain. The
equaliser then uses the CSI to reverse the effects of the channel
and recover the transmitted data. For a Wi-Fi system with
Multiple-Input Multiple-Output (MIMO) OFDM capability,
the CSI in each received packet is obtained as a 3-dimensional
(3D) matrix with nt × nr × N complex values, where nt is
the number of transmit antennas, nr is the number of receive
antennas and N is the number of subcarriers. For a given
packet, the CSI for the kth subcarrier can be represented as

Hk =


h1,1 h1,2 · · · h1,nt

h2,1 h2,2 · · · h2,nt

...
...

. . .
...

hnr,1 hnr,2 · · · hnr,nt

 , (3)

where hi,j is the complex-valued channel coefficient between
the jth transmit antenna and ith receive antenna. Using the
tool in [20], CSI can be extracted over only 30 subcarriers in
the 20/40 MHz channel bandwidths for both the 2.4 GHz and
5 GHz bands.



(a) (b)

Fig. 1. (a) Raw CIR (1016 samples) and (b) CIR after denoising (150
samples).

IV. SIGNAL PROCESSING FOR ACTIVITY SENSING

A. UWB

For the UWB system, we use the high-resolution CIRs as
features for activity classification using machine/deep learning
algorithms. However, before proceeding with this step, the raw
CIR is denoised, where the samples before the first peak in
Fig. 1(a) are considered as noise and removed and the 150
subsequent samples as from the first peak are retained to obtain
the processed CIR in Fig. 1(b). This pre-processing step also
reduces the dimensionality of the data, thereby decreasing the
computational complexity of the system. In order to show how
the activities affect the UWB signals, we convert the raw CIR
signal (1016 samples) to the frequency domain using Fast
Fourier Transform (FFT) and the resultant signal is known
as the Channel Frequency Response (CFR). Fig. 2 shows the
signals recorded for the five different activities in terms of CFR
amplitude versus time duration for one frequency sample out
of the 1016 samples. As can be observed in Fig. 2, the UWB
signals are free from environmental noise or interference and
hence do not require denoising in this domain. On the other
hand, the raw WiFi CSI signals are much noisier in nature due
to the WiFi channels being overcrowded and hence they are
susceptible to a lot of interference and environmental noise, in
addition to electrical noise in the hardware. Therefore, some
filtering or denoising techniques need to be applied to obtain
clean signals. This will allow the classification algorithms to
learn the patterns in the signals more efficiently. From Fig.
2, it can be observed that each activity results in a distinct
pattern that can be easily distinguished from each other.

B. WiFi CSI

The signal processing techniques that are applied to the raw
CSI data for the purpose of HAR are described next.

1) Noise Filtering: The raw CSI values that are measured
are inherently noisy. The noise reduction process is an im-
portant step to minimise the impact of environmental factors
in the monitoring area such as interference or variations in
the signal due to moving objects or people in the vicinity
[17]. For de-noising the WiFi CSI data, we utilise the Discrete
Wavelet Transform (DWT) technique for filtering in-band
noise while preserving the high frequency components to pre-
vent the signal from being distorted. This technique transforms
the signal into the wavelet domain by passing it through a
number of lowpass and highpass filters which provide the

Fig. 2. Raw UWB signals for five activities (CFR amplitude versus time
duration).

Example of signals following denoising and filtering

Fig. 3. Filtered WiFi CSI signals.

approximation and detailed coefficients, respectively [10]. The
detailed coefficients in the first level hold information about
the noise and the abrupt changes as a result of human activities.
These coefficients are used to compute a threshold which is
adapted for lower wavelets and the noise is eliminated in all
levels without significantly distorting the signal. Fig. 3 shows
the denoised WiFi CSI signals for different measurements
which cover the five activities. As can be observed, the CSI
measurements across the received packets capture the changes
in the wireless signal due to the latter’s interaction with the
human activities. The signals show distinct patterns for each
activity and therefore after the activity segmentation step,
the resultant signals can be directly fed to a classification
algorithm or retained for further processing [7].

2) Activity Segmentation: The variations in the signal due
to a given activity can be segmented using the Moving
Variance Segmentation (MVS) [21] approach. The key idea
behind this technique is to compute, in a stepwise fashion, the
moving variance in the CSI stream like the one shown in Fig.
4(a). Basically, in each step, a moving variance is computed
over a sliding window of length L across neighbouring CSI
samples, and the window is centred about the CSI sample in
the current position. The moving variance for a CSI stream
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Fig. 4. MVS for standing activity (a) CSI stream (b) Corresponding moving
variance sequence.

Fig. 5. Experiment Layout for HAR.

which consists of M packets is computed as [21]

CSImv =

M∑
m=1

[
1

L− 1

L∑
l=1

|CSIl∈L − µ2|

]
, (4)

µ =
1

L

L∑
l=1

CSIl,

where µ and l denote the mean and packet number in the
sliding window of length L, respectively, and m is the current
sample position in the CSI stream. The CSI stream in Fig. 4(a)
corresponds to the variations in the signal due to the standing
up activity and its corresponding moving variance stream is
shown in Fig. 4(b), where a sliding window of length L = 100
has been chosen to achieve the best results. As can be observed
in Fig. 4(b), the variations in the signal due to human motion
result in high moving variance values while slight fluctuations
such as those obtained in a static environment, result in smaller
values. Using the MVS method, the start and end points of an
activity can be easily identified and therefore segmentation can
be performed to remove undesired samples and consequently
improve the system’s performance [7].

3) Data Size Reduction: In this experiment, an AP sent data
across one transmit antenna (nt = 1) and CSI was extracted
at the receiver over three antennas (nr = 3). For this setup,
1 × 3 × 30 = 90 complex CSI values are obtained in each
packet. A packet rate of 1 kHz was considered and this results
in significant amount of data that needs to be processed [7].
Therefore, in this work we consider the Principal Component
Analysis (PCA) technique for reducing the dimensionality
of the CSI data, thereby decreasing the computational com-
plexity. PCA identifies the time-varying correlations between
the CSI waveforms which are then optimally combined to
obtain components that represent the variations due to human
activities [22]. We extract the first six principal components
but discard the first one since it contains noise due to reflection
from stationary objects like walls, furniture, etc., and therefore

(a) (b)

Fig. 6. (a) Classification performance using UWB CIR (150 samples)
as features (b) Impact of the number of CIR samples on classification
performance.

discarding it will not result in any loss of information [8], [11],
[16].

4) Time-Frequency Analysis (using spectrograms): The CSI
data is sensitive to changes in the monitoring area such that
the signals which are reflected from the human body result
in different frequencies when various activities are performed
[7]. The change of frequencies over time can be identified
by applying the Short-time Fourier Transform (STFT) to the
CSI signal. The basic idea behind STFT is to apply a sliding
window to the signal to obtain equally-sized segments and then
FFT is applied to the samples in each segment. The window
size selected for the FFT determines the trade-off between
time and frequency resolutions. A large window size results
in a high frequency resolution but low time resolution, and
vice versa.

V. PERFORMANCE EVALUATION

A. System Description

The UWB CIR and WiFi CSI data collection was carried out
in a monitoring area of dimension 4 m × 5 m with furniture
and other objects in the surroundings. As shown in Fig. 5, one
EVK1000 board is configured as an anchor (receiver) while
the other is configured as a tag (transmitter). Since HAR is
the main focus of this study, the two boards were kept fixed
at a separation distance of 3 m in a Line-of-Sight (LoS) setup
and 5 activities were performed between them, namely, sitting,
standing, walking, lying down and standing from the floor. It
should be noted that the activities were performed in different
orientations in a natural way, as would be the case in the real
world. The two boards were configured in Mode 3, which
specifies a bandwidth of 500 MHz for a carrier frequency of
4.0 GHz, PRF of 64 MHz, preamble length of 1024 and data
rate of 110 kbps. The anchor was connected to a laptop and
CIR data was logged for offline processing.

The WiFi CSI was extracted using the Linux 802.11n
[20] tool which was also stored for offline processing. The
transmitter was a TP-Link AP transmitting data with one
antenna while the receiver was an Intel Next Unit of Com-
puting (NUC) device equipped with the Intel 5300 Network
Interface Card (NIC) from which CSI is extracted from 30
out of 56 subcarriers for each transmit-receive antenna pair.
The CSI data was collected over 3 receiving antennas in
the 5 GHz band (40 MHz bandwidth) by pinging the AP
at a rate of 1000 packets/s. This rate was chosen to capture
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Fig. 7. WiFi CSI spectrograms: (a) walk, (b) sit, (c) stand, (d) lay down, (e) stand from floor.

Fig. 8. Performance comparison between WiFi CSI and UWB CIR for HAR.

noticeable variations or patterns in the time domain signal due
to human motion. The UWB CIR and WiFi CSI data were
collected alongside video recording to obtain ground truth
labels. Both the wireless data (UWB and WiFi) and video
were timestamped using an external Network Time Protocol
(NTP) server for synchronisation purposes.

B. Experimental Results

In this section, we evaluate and compare the performance of
the HAR system using UWB CIR and WiFi CSI as features.
For this purpose, we considered six classification algorithms,
namely, 2D Convolutional Neural Network (CNN), Deep
Neural Network (DNN), Gaussian Naive Bayes (GNB), K-
Nearest Neighbour (KNN), Random Forest and Support Vector
Machine (SVM). The 2D CNN consists of a convolutional
layer with 64 filters and 2×2 kernel size and the rectifier
(ReLU) as the activation function. The next layer is the max-
pooling layer with a stride of 2. The output from the max-
pooling layer is then flattened to create a single 1D feature
vector. The latter is fed to two fully connected layers (with
ReLU activation), the first and second layers consisting of 64
and 32 filters, respectively. Finally, a softmax layer is used for
classification of the 5 classes of activities. The DNN consists
of 3 fully connected neural network layers with 128, 64 and
16 nodes, respectively. ReLU is used as the activation function
in these layers. The output from the third layer is flattened
and then fed to a softmax layer for activity classification. For
KNN, the number of neighbours was set to 5. A maximum
depth of 50 was selected for the Random Forest algorithm
while a linear kernel was considered in the SVM algorithm.

80% of the dataset was randomly chosen and used for
training while the remaining 20% was used for testing. Fig.
6(a) shows the classification performance of the 6 algorithms
when UWB CIR data are used as features. As can be observed,

five out of the six algorithms achieve an F1-score above
90% when only 150 samples are considered in the CIR data
as features and used for activity classification. The Random
Forest algorithm achieves the highest F1-score at 95.53%
while the lowest score is achieved with GNB at 88.04%. The
lower score in the GNB case may be attributed to the fact that
it assumes feature independence within a class [17], which
may not be true in our case. The high score achieved by the
Random Forest algorithm may be attributed to its ensemble
learning method and its lower susceptibility to over fitting the
data even when the number of trees increases.

Fig. 6(b) shows the F1-score comparison when different
number of UWB CIR samples are used as features. The F1-
scores have been averaged over the 6 classification algorithms
and plotted for each number of CIR samples in Fig. 6(b). As
can be observed from the latter figure, the highest F1-score
is achieved at 92.57% when 150 CIR samples are used as
features. However, when 50 and 75 samples are used, the F1-
scores are 90.05% and 92.39%, respectively, which are close
to the value for the 150 samples case. Therefore, as the number
of CIR samples is increased above a certain value, around 75
in this case, there is no major increase in the performance.
This means that the rest of the CIR samples do not benefit the
machine and deep learning algorithms and can therefore be
safely removed when the raw CIR data is denoised. This will
further reduce the size of the data and thus the computational
complexity is also decreased. From Fig. 6(b), it can also be
deduced that using all the 1016 CIR samples (as illustrated
in Fig. 1(a)) as features is not beneficial to the classification
performance.

Next, we compare the performance of the HAR system
when UWB CIR data (150 samples) and WiFi CSI data are
used as features. For the WiFi CSI data, we considered two
types of feature representations. In the first case, we use
the filtered/denoised amplitude values of all 90 subcarriers
as features and these are fed to the classification algorithms
for performance evaluation. In the second representation, the
WiFi CSI data is denoised, reduced in size using PCA and then
transformed into spectrograms using STFT, which are then fed
to the classification algorithms. Fig. 7 presents spectrograms
for the 5 activities. As can be observed in Fig. 7, the activities
that involve rapid body motion such as walking have high
energy in the higher frequencies in the spectrogram. From Fig.
8, it can be observed that for most classification algorithms,
the UWB CIR data (150 samples) achieves better results than
WiFi CSI. However, it can also be noticed that the performance
with the amplitude WiFi CSI data is very close to the UWB



CIR data. For instance, the amplitude CSI data achieves an
F1-score of 92.24% using DNN. The main difference is that
the UWB CIR data has a much lower data size than the
amplitude WiFi CSI data and still achieves a higher score. As
for the case when the CSI spectrograms are used as features,
the performance is even lower. For example, a maximum F1-
score of 80.89% is achieved using the DNN. The lower scores
may be attributed to the fact that when PCA was used for
dimensionality reduction, the optimum number of principal
components might not have been selected to represent a
good variance of the data. Furthermore, in some studies,
higher packet rates are used, for example, 2500 packets/s, to
capture maximum variations/details in the CSI data caused
by human activities of smaller durations [11]. However, this
would have resulted in an even larger data size, increasing the
computational complexity.

VI. CONCLUSION

The scope of this work was to evaluate the HAR perfor-
mance in a LoS setup using the high resolution UWB CIR
as features. The features were trained using machine/deep
learning algorithms to classify five classes of activities includ-
ing sitting, standing, lying down, standing from the floor and
walking. Our results showed that by using CIR samples as
features, the five activities could be classified with an F1-score
as high as 95.53%. We also evaluated the HAR performance
with WiFi CSI data. By considering two types of features
for the WiFi CSI data; firstly, denoised amplitude values of
90 subcarriers and secondly, spectrograms obtained from a
few principal components, maximum F1-scores of 92.24%
and 80.89% were obtained with a DNN, respectively. We can
conclude that the UWB technology not only provides a better
performance than its WiFi counterpart in terms of HAR but
also has several benefits like smaller data dimension and lower
signal processing requirement as compared to WiFi systems.
In this study it has been shown that, in addition to the primary
function of the UWB system which is active localisation, it
can also be used as a receiver-only radar system for the passive
sensing of human activities.
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