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Abstract: The rate of aging has increased globally during recent decades and has led to a rising burden
of age-related diseases such as cardiovascular disease (CVD). At the molecular level, epigenetic
modifications have been shown recently to alter gene expression during the life course and impair
cellular function. In this regard, several CVD risk factors, such as lifestyle and environmental factors,
have emerged as key factors in epigenetic modifications within the cardiovascular system. In this
study, we attempted to summarized recent evidence related to epigenetic modification, inflammation
response, and CVD in older adults as well as the effect of lifestyle modification as a preventive
strategy in this age group. Recent evidence showed that lifestyle and environmental factors may
affect epigenetic mechanisms, such as DNA methylation, histone acetylation, and miRNA expression.
Several substances or nutrients such as selenium, magnesium, curcumin, and caffeine (present in
coffee and some teas) could regulate epigenetics. Similarly, physical inactivity, alcohol consumption,
air pollutants, psychological stress, and shift working are well-known modifiers of epigenetic patterns.
Understanding the exact ways that lifestyle and environmental factors could affect the expression of
genes could help to influence the time of incidence and severity of aging-associated diseases. This
review highlighted that a healthy lifestyle throughout the life course, such as a healthy diet rich in
fibers, vitamins, and essential elements, and specific fatty acids, adequate physical activity and sleep,
smoking cessation, and stress control, could be useful tools in preventing epigenetic changes that
lead to impaired cardiovascular function.

Keywords: epigenetics; older adults; cardiovascular disease; aging; lifestyle; environment; physical
inactivity; diet; nutrients; caffeine; alcohol consumption

1. Introduction

The World Health Organization (WHO) predicts that the worldwide proportion of in-
dividuals aged 65 and older will double between the years 2000 and 2050, from the current
6.9% to 16.4% [1]. The older adult population in 2050 will be 16 times larger than that in
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1998, with the male-to-female ratio of centenarians falling to almost 1:4 [2]. Although in-
creasing the population’s longevity is considered an accomplishment of healthcare systems,
aging has been associated with a progressive decline in several physiological processes
and increased risk of chronic conditions [3]. Aging increases the burden and prevalence
of many common diseases such as cancers, diabetes, and cardiovascular disease (CVD).
CVD is the leading cause of death later in life [4]. Aging affects the cardiovascular system
as reflected in pathological conditions such as myocardial hypertrophy, changes in left
ventricular (LV) diastolic function, diminished LV systolic reverse capacity, increased arte-
rial stiffness, and impaired endothelial function. For example, increasing arterial stiffness
leads to myocardial compensatory mechanisms, including LV hypertrophy and fibroblast
proliferation, resulting in decreased cardiac output and an increase in fibrotic tissue [5–7].
Older adults frequently suffer from various comorbidities and often they have different
comorbidities, therefore determining several phenotypes. These various phenotypes are
characterized by different frailties as well as different cardiovascular outcomes. Findings
from the Registro Politerapie SIMI (REPOSI) registry showed that being male, history of
hospitalization, polypharmacy (more than five drugs), lower functional status and fragility,
depression, CVD, chronic obstructive pulmonary disease, and urinary tract infection were
related with a higher risk of hospitalization in older adults [8]. Moreover, aging is character-
ized by chronic low-grade systemic inflammation, and is associated with multiple chronic
conditions such as ischemic heart disease, heart failure, myocardial infarction, diabetes,
lung cancer, osteoporosis, and metabolic syndrome as well as CVD risk factors such as
lipid disorders [9–12]. A study by Li et al., demonstrated that an epigenetic modification
in ELOVL fatty acid elongase 2 (Elovl2), a gene whose epigenetic alterations are most
highly correlated with age prediction, contributes to aging by regulating lipid metabolism.
Impaired Elovl2 function disturbs lipid synthesis with increased endoplasmic reticulum
stress and mitochondrial dysfunction, leading to key accelerated aging phenotypes [13].

Consequently, understanding the molecular mechanisms related to CVD throughout
the life course could help us to understand what happens during aging in the cardiovas-
cular system. A growing body of evidence suggests that epigenetic modifications may
significantly disrupt gene expression routes during the life course, thus affecting the molec-
ular phenotype and function of involved cells [14]. Therefore, in the present review, we
discuss the emerging role of epigenetics in CVD among older adults and the potential
impact of lifestyle and environmental modifications on preventing deleterious epigenetic
changes in this age group [15].

Aging, Cardiovascular Disease, and Epigenetics

Aging results from the collective effect of molecular and cellular damage over time [16].
A combination of genetic and environmental factors (e.g., diet, smoking, obesity, and stress)
affects the aging process [16]. At the molecular level, any changes in gene expression
can result in altered cellular and tissue function. For example, aging of the heart is
accompanied by changes in the expression of genes encoding proteins that are involved in
inflammatory and stress responses that, when exceeding the homeostatic levels, impair
cardiac function [17]. These changes can be triggered by genetic mutations or epigenetic
modifications that cause changes in the gene expression profile. Any changes in the
structure of DNA, RNA, and proteins throughout life alter their function and may lead to
changes in cellular and organ function, leading to various diseases [18–20]. Consequently,
understanding the molecular processes that contribute to CVD during the life course could
provide information on the mechanisms that underlie cardiovascular aging. In the present
review, we discuss the emerging role of epigenetics in CVD among older individuals and
the possible impact of lifestyle and environment in this population [15].
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2. Aging, CVD, and Epigenetic Modification

While cardiac hypertrophy and cardiac fibrosis are considered as the main causes of
heart failure, several genes have increased expressions, e.g., Nappa, Nppb, Myh7, and
skeletal alpha-actin [19–21].

2.1. Age-Related DNA Methylation

DNA methylation, an epigenetic mechanism that leads to changes in gene expression,
is heritable and impacted by aging and various environmental exposures [22]. Levels of
DNA methylation, which cluster in specific loci of the human genome, could be used as a
marker of biological aging. DNA methylation age (DNAmAge) can provide an estimate of
the biological age, and can be used as a tool to estimate “accelerated biological aging” which
contributes to several diseases such as diabetes, CVD, and dementia, and, ultimately, mor-
tality risk [20,23–30]. A recent methylome-wide association study conducted on 718 men
and women aged between 25 and 72 demonstrated a positive correlation between increased
methylation of CpG islands, shores, and shelves with aging [25,31]. Numerous studies
have associated DNA hypermethylation with the pathogenesis of atherosclerosis [32,33].

Interestingly, a monozygotic twin study demonstrated that the epigenomes of young
monozygotic twins are very similar, but patterns of methylation in monozygotic pairs
differ as they age [25]. In this regard, Fraga et al., examined the global and locus-specific
differences in DNA methylation and histone acetylation of a large cohort of monozygotic
twins and demonstrated that while twins are epigenetically indistinguishable during the
early years of life, they exhibited noticeable differences in their overall content and genomic
distribution of 5-methylcytosine DNA and histone acetylation as they aged, resulting in
overall different gene expression profiles [25]. Specific methylation changes, usually hyper-
methylation, have been found in the promoter region of genes that are considered protective
against atherosclerosis, such as extracellular superoxide dismutase, estrogen receptor α,
endothelial nitric oxide synthase, and 15-lipoxygenase [34,35]. McKay et al., identified the
genome-wide DNA methylation changes and the locus-specific CpG alterations taking
place during the onset and progression of human atherosclerotic lesions. The methyla-
tion of the p66Shc promoter is reduced by different CVD risk factors (i.e., hyperglycemia,
ox-LDL), whereas JunD promoter methylation is increased, the latter being particularly
evident with aging [36]. Both p66Shc and JunD expression levels are profoundly altered in
the circulating endothelial progenitor cells isolated from older adult patients compared to
young individuals [37].

2.2. The Effect of Aging on Histone Modifications

The basic unit of chromatin structure is the nucleosome, which consists of 147 base
pairs of DNA wrapped around a histone octamer that comprises two copies of each core his-
tone protein, H2A, H2B, H3, and H4 [38]. The post-translational changes in histone tails are
another epigenetic modification that regulates gene expression by chromatin remodeling.

Histone methyltransferases are responsible for the methylation of histone lysine and
arginine at different sites. Briefly, H3K4 methylation induces gene activation while H3K9
and H3K27 methylation inhibit gene expression. In addition, modification of polymethyl
groups on histone lysine leads to different levels of methylation that may have different
biological significance. Interestingly, age-related DNA hypermethylation in mesenchymal
stem cells (MSCs) is associated with repressive histone marks H3K27me3/H3K9me3 [39],
while hypomethylated DNA sequences are powerfully enriched with the active chromatin
mark H3K4me1 [40]. Histone modifications such as acetylation of histone 3 at lysine
9 (H3K9Ac) and trimethylation of sirtuins are crucial regulators of the aging process from
yeast to mammals [41].

A study carried out by Ashleigh et al., demonstrated that changes in histone modi-
fications facilitated the development and progression of carotid atherosclerotic plaques
of patients with carotid artery stenosis. They indicated that the level of methylation in
H3K9 and H3K27 significantly decreases in CVD patients whereas methylation in H3K4,
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H3K9ac, and H3K27ac increases in atherosclerotic MSCs and macrophages. Another
study by Greißel et al. [42–44] demonstrated that the histone acetyltransferase activity in
GCN5-like protein 1 (GCN5L) and histone acetyltransferase KAT8 (MYST1) is correlated
with the progression of atherosclerosis. In addition, they found that acetylation [45] his-
tone acetyltransferase activity in GCN5L and MYST1 correlates with the progression of
atherosclerosis. They also observed that acetylation in H3K9ac increases in the endothelial
cells of atherosclerotic plaques.

2.3. Aging-Related microRNAs (miRNAs)

The miRNAs are 19–25 nucleotides in length, encoded in the genome, and transcribed
into primary miRNA (pri-miRNA) [46]. These small and unstable molecules regulate gene
expression via degradation of the transcript or repression of translation when binding
to the 3′-untranslated region of the target mRNA [47]. The expression levels of certain
miRNAs are significantly upregulated during aging, leading to post-transcriptional inhibi-
tion of endothelial genes [48]. Numerous miRNAs have been described to be differently
expressed and to regulate different cell types and pathways throughout cardiac aging
(Table 1) [32,40,41]. Zhang et al., reported that cardiac miR-21 is upregulated with ag-
ing [36]. miR-21 has profibrotic effects that are induced via ERK–MAP kinase pathway
activation in cardiac fibroblasts (CFs) after injury [37]. Cardiac miR-21 and miR-22 play a
crucial role in heart aging and heart failure [36,49–53], whilst miR-29 promotes pathologic
hypertrophy of cardiac myocytes and overall cardiac dysfunction. However, miR-29 is
not an appealing target in older adults with heart failure since its overexpression could
counteract post-myocardial infarction remodeling and otherwise sensitize the aorta to the
formation of aneurysms (a common phenomenon during aging) [54,55]. miR-204 inhibition
can modify vascular smooth muscle cell growth upon injury [56]. Upregulation of miR-122
leads to atherogenesis and endothelial dysfunction [57]. Similarly, the downregulation
of other mRNAs is deleterious. One example is the downregulation of miR-181 during
aging, CVD, and hypertension. These findings suggest that the loss of miR-181 is detrimen-
tal for the cardiovascular system [58–60]. Age-dependent NF-κB activation is associated
with systemic inflammation and impaired endothelial-dependent vessel dilation [61–67]
and, therefore, targeting miRs of this pathway is considered a potential therapy against
proinflammatory cells (macrophages).

Table 1. Summary of microRNA (miRNA) involvement in cardiac and vascular aging.

Tissue miRNA Molecular Targets Functions

Aging heart miR-21 [68] Increase ERK-MAP kinase
signaling

Profibrotic (role on cardiac
fibroblast (CFS))

Aging heart miR-22 [69] Increase Mimecan/osteoglycin Accelerate CF senescence and
migration

Aging heart miR-18 and miR-19 [70] Decrease
Thrombospondin-1
and connective tissue
growth factor

Anti-heart failure-related
fibrosis during aging

Aging heart miR-17-3P [71] Decrease PAR-4 Reduce CF cellular
senescence

Aging heart miR-34a [72] Increase Phosphatase 1 nuclear
targeting subunit

Increase age-related
cardiomyocyte apoptosis and
cardiac dysfunction

Vascular aging miR-34a [73] Increase SIRT1
Stimulate senescence in
endothelial cells and vascular
smooth muscle cells

Vascular aging miR-217 [74] Increase SIRT1
Stimulate endothelial
senescence, decrease nitric
oxide
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Table 1. Cont.

Tissue miRNA Molecular Targets Functions

Vascular aging miR-29 [75] Decrease Collagen and elastin
Extracellular matrix
impairment (risk of
age-related aortic aneurism)

Vascular aging miR-146 [76] Increase IRAK and NOX4 Proinflammation or
antioxidative stress

Vascular aging miR-92 [77] Decrease TNF receptor 1 and
collagen type1

Reduction in mimic arterial
aging

Vascular aging mir-20a [78] Decrease MKK3, activation of
p38 MAP kinase

Inhibit endothelial cell
migration by the inhibition of
MKK3 and the activation of
p38 MAP kinase

Vascular aging mir-126 [79] Decrease PLGF
Increase cell apoptosis,
decrease proliferation,
endothelial cell migration

Vascular aging mir-10a [80] Decrease

p53/Rb network,
including p53
regulator MDM4, Rb
regulator RB1CC1, p21
regulator TFAP2C, p53

Endothelial progenitor cell
dysfunction

Vascular aging mir-21 [81] Decrease PTEN, SPRY1, SPRY2 Regeneration of endothelial
progenitor cells

Vascular aging mir- 217 [82] Increase SIRT1, FOXO1, eNOS Impair endothelial
angiogenesis

Vascular aging mir-146a [83] Decrease Toll-like receptor 4
(TLR4) Senescent endothelial cells

Vascular aging mir-17-92 [84] Decrease Chk1/2, G-H2AX,
ATM

Regulators of
chromatin-related proteins

Vascular aging miR-204-3p [56] Decrease PDGF Vascular smooth muscle cell
growth upon injury

3. Aging, Epigenetic Modification, and Inflammation

The term “inflamm-aging” is a relatively new term added to the medical vocabulary
by Franceschi et al., in 2000. It refers to the upregulation of the inflammatory response
later in life as a consequence of epigenetic changes with a subsequent systemic low-grade
chronic proinflammatory state that underlies most age-associated diseases [85,86]. One of
the common effects of aging is the excessive production of inflammatory cytokines and
reactive oxygen species (ROS) [58,63,64,67]. ROS production increases with age due to
a variety of epigenetic stimuli, including physical, chemical, and biological agents. Ox-
idative stress occurs as an imbalance between ROS production and the body’s capacity
to detoxify the resultant reactive intermediates or repair consequent impairment. ROS
is behind endothelial dysfunction, effectively lowering the threshold for many diseases,
especially CVD [87]. Oxidative stress increases vascular permeability and promotes leuko-
cyte adhesion as well as an inflammatory response. A low level of chronic inflammation
is associated with atherosclerosis, CVD, and diabetes. The immune system produces
more proinflammatory cytokines under the regular stimulus accompanying aging. IL-6,
TNF-α, and CRP mark the onset of CVD in older adults, and their levels correlate with
the severity of left ventricular dysfunction and degree of activation of sympathetic and
renin–angiotensin systems. Table 2 summarizes the most relevant epigenetic changes and
inflammation processes in CVD.
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3.1. C-Reactive Protein (CRP)

CRP is a biomarker of systemic inflammation and a risk factor for the development of
inflammation-mediated diseases such as CVD, metabolic syndrome, type 2 diabetes, and
hypertension [88,89]. The production of CRP in the liver is triggered by cytokines (e.g., IL-6
which is secreted by macrophages and T cells) in response to inflammatory conditions.
CRP level is associated with the epigenetic profile, specifically DNA methylation, which
may represent the joint effect of both genetic and environmental factors [90]. Sun et al.,
identified over two hundred genes containing CRP-associated DNA methylation sites. The
most significant CRP-associated DNA methylation sites are cg07073964, cg09358725, and
cg11822932, which are in the KLK10, LIM, and LMO gene loci, respectively. There are
several gene families related to the immune system that are enriched in the gene set of
CRP-associated DNA methylation. Six immunoreceptor (CD) genes, CD1D, CD7, CD22,
CD27, CD59, and CD82, and five interleukin and receptor genes, IL1R2, IL2RA, IL19, IL21R,
and IL32, were identified by epigenetic association analysis. The methylation sites in five
G-protein-coupled receptor (GPR) gene loci, GPR21, GPR65, GPR81, GPR84, and GPR171,
were also found to be associated with CRP [90].

3.2. Interleukin 6 (IL-6)

IL-6 is a multifunctional cytokine that plays an important role in the development
of ischemic heart diseases. DNA hypomethylation in the IL-6 promoter was associated
with an increased risk for coronary heart disease, especially in acute myocardial infarction.
Lepeule et al., suggested that differential DNA hypomethylation of the two distinct CpGs
in IL-6 may reflect different cumulative effects from endogenous and exogenous exposure
factors, and then contribute differently to the susceptibility to coronary heart disease.
Transcription factor binding sites (BAF155, Inil, c-Myc, BAF170, Max, NRSF, and Nrf1)
were identified for position 1, whereas position 2 was free of the binding sites [91].

3.3. Tumor Necrosis Factor α (TNF-α)

TNF-α is a proinflammatory cytokine with pleiotropic effects in human disease and
well-characterized pathogenic contributions to inflammatory and autoimmune diseases
such as atherosclerosis and type 2 diabetes. Treatment with TNF inhibitors has been shown
to lower the risk of cardiovascular disease among patients with autoimmune disease [92].
Altered methylation of CpG loci in the TNF promoter has been associated with TNF-α
expression [93,94]. In addition, DNA methylation loci in two genomic regions mapping
to NLRC5 and DTX3L/PARP9 changes expression of corresponding genes and alters
circulating TNF-α levels. These processes are induced chiefly by interferon γ (IFN-γ)
stimulation, Toll-like receptor ligands, and other interferons in response to diverse stimuli
such as viral infections [95]. By activating CD8+ T cells via major histocompatibility
complex class I proteins, NLRC5 has also been shown to upregulate IFN-γ, creating a
positive feedback loop that ensures an effective response to intracellular pathogens [96].
Increased expression of DTX3L-PARP9 has been shown to enhance IFN-γ signaling and
therefore host immune response [97]. Recent evidence suggests that DTX3L-PARP9 may
also play a key role in vascular inflammation and atherosclerosis. There are associations
between TNF-α levels and methylation loci in the α 1-3-n-acetylgalactosaminyltransferase,
and α 1-3-galactosyltransferase gene (ABO) [98].
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Table 2. Summary of the most relevant epigenetics changes and inflammation processes in CVD.

Epigenetic Modifications Sites Affected Gene

DNA methylation

KLK10, LIM, LMO, D1D,
CD7, CD22, CD27, CD59
and CD82, IL1R2, IL2RA,
IL19, IL21R, IL32, GPR21,
GPR65, GPR81, GPR84,
and GPR171

CRP [99]

BAF155, Inil, c-Myc,
BAF170, Max, NRSF, and
Nrf1

IL-6 [100]

NLRC5 and
DTX3L/PARP9, IFN-γ,
and ABO

TNF-α [101]

Histone modification
H3K4me3

SIRT1, FoxO3, NF-κB, and
p53 [102]
TNF-α [103], SET1A/B,
SET7, MLL1/2, MLL3/4,
LL1, and VEGFA [104]

H3K4me3 and H3K9ac TNF-α [103]
H3K9me2 VSMC [105]

4. Effect of Lifestyle and Environmental Factors on Epigenetic Modification in Older
Adults with CVD

Lifestyle and environmental factors contribute to epigenetic modifications with a
cumulative effect during aging. These factors seemed to accelerate the aging process and
affect health by triggering age-related chronic illnesses such as vascular aging [106,107].
Genome-wide association studies and epigenome-wide association studies highlighted the
crucial role of diet in the development of chronic diseases associated with aging. Epigenetic
mechanisms favor the development of obesity and type 2 diabetes which are important risk
factors for CVD [108]. Both conditions are prevalent in older adults and totally dependent
on lifestyle variables [100]. The well-known lifestyle and environmental factors related to
epigenetic modification and aging in CVD patients are summarized in Table 3 and Figure 1.

Figure 1. Interaction between various lifestyle interventions on epigenetic alterations and CVD in
older adults.
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4.1. Nutritional Habits and Food Consumption
4.1.1. Nutrients

Several studies have focused on dietary patterns and their effects on risk of disease
and mortality. For example, the Mediterranean diet is associated with a lower degree
of inflammation and has a protective role on cardiovascular and cerebrovascular events.
Olive oil, which is abundant in the Mediterranean diet, contains phenols, which have
anti-inflammatory effects that can help to reduce the risk of cancer. Some of the beneficial
effects of olive oil have been attributed to its epigenetic effects, and in particular its effects
on DNA methylation pattern [109,110]. A clinical trial with individuals with class II/III
obesity showed that 50 mL/day extra virgin olive oil modulate positive changes in body
composition, reducing body fat and increasing lean mass and free fat mass, in addition to
the presence of the Ala allele of the Pro12Ala polymorphism [111].

A recent genome-wide DNA methylation study with 3096 participants demonstrated
that tea and coffee consumption are also associated with altered methylation in two dif-
ferentially methylated CpG sites (DNAJC16 and TTC17) [111]. Another study reported
an association between ω-3 PUFA supplementation and vegetable and fruit consumption
and lower GrimAgeAccel, DNAm PAI-1, DNAm ADM, and DNAm cystatin C which are
considered epigenetic age markers enriched for DNA methylation sites that are surrogate
biomarkers for blood plasma proteins related to aging [112,113].

It is well known that fatty acids have a distinct influence on DNA methylation. In an
in vitro study with arachidonic acid (AA) and oleic acid (W9) [114,115], they provided
complex results characterized by a general hypermethylation and hypomethylation of
the DNA, respectively. AA-coordinated DNA methylation occurred for palmitic acid,
atherosclerosis, diabetes, and obesity. Evidence indicates thatβ-oxidation of the peroxisome
proliferator activated receptor alpha (PPAR-α) and sirtuin 1 is essential to mediate DNA
methylation changes caused by AA [115].

Cruciferous vegetables such as broccoli, cauliflower, cabbage, kale, watercress, and
Brussels sprouts contain sulforaphane, which is an isothiocyanate which can alleviate
age-related diseases. This effect is due, in part, to the inhibition of inflammation by
hypomethylation of the DNA. For example, the attenuation of DNA hypermethylation was
mediated by DNMT in the promoter region of factor 2 related to NF-E2 (Nrf2), noting that
Nrf2 is a transcription factor that regulates the reduction–oxidation balance and has been
linked to inflammation and neurodegeneration [109,116].

4.1.2. Phytochemicals and Representative Compounds

Curcumin has long been used not only as a very common spice in Eastern cuisine but
also as a medicinal herb. It is a phytochemical that has been shown to improve metabolic
dysfunction. Studies indicate that curcumin is metabolically effective in regulating DNA
methylation. Li et al., demonstrated that curcumin reduced DNA hypermethylation at
CpG sites [C0] 360, [C0] 341, [C0] 329, [C0] 316, and [C0] 307 in the PPARα promoter
region [109,117,118].

Ascorbic acid is known as a potent antioxidant and anti-inflammatory. It attenuates
“inflammation”, regardless of its antioxidative function, because it has been shown to
modify the epigenome. Ascorbate has been identified as a cofactor for the methylcytosine
dioxygenases that are responsible for DNA demethylation. It is also a potential cofactor
for some JmjC field containing histone demethylases that accelerate histone demethy-
lation. Therefore, ascorbic acid can combat a proinflammatory state of aging, and its
consequent diseases, regulating the function of immune cells that require the activation of
demethylase [119–121].

4.1.3. Trace Elements and Vitamins

Similarly, magnesium and selenium levels may function as potential epigenetic regu-
lators via modulating different signaling pathways [112,113,122]. The possible epigenetic
effects of selenium are the modulation of epigenetic information editors, interaction with
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miRNAs, as well as influence on the metabolism of a carbon, which acts as a methyl donor
for DNA methylation [123,124].

Fiorito et al. [125] reported that a low dietary intake of B vitamins promotes DNA
methylation in specific genes (TCN2, CBS, PON1, AMT) that mediate CVD risk. In ad-
dition, a low intake of riboflavin has been associated with higher methylation at 1 CpG
(cg21230392) [51,92,96,112], and supplementation with flavanols and polyphenols may
affect the activity of DNMTs [112,126]. Higher LINE-1 methylation levels have been demon-
strated in participants of the North Texas Health study who had high vegetable and fruit
intake [126].

4.2. Physical Activity

Epigenetic mechanisms may be implicated in mediating the effects of physical activ-
ity [110]. Physical activity can modulate gene expression through epigenetic alternations.
Physical activity causes epigenetic effects that can result in health benefits and help pre-
vent chronic diseases. The different effects related to the type, duration, and intensity of
physical activity are still unclear. The epigenetic mechanisms that interact with physical
activity collaborate to reduce basal inflammation, thus preventing the development of
diseases associated with low-grade chronic inflammation, such as obesity and diabetes. It
is already known that physical activity attenuates hypomethylation and hypermethylation
processes linked to neoplastic mutations in the genome, in addition to post-translational
modifications of histones (hPTMs) and non-coding RNA, especially microRNAs (miRNAs),
can be induced by physical activity [106,127].

4.3. Smoking

Tobacco smoking induces dysregulated DNA methylation in hundreds of CpG sites
which are related to the epigenetic clock [110]. Therefore, the epigenetic alterations of
smoking and vaping include DNA methylation, microRNA, and non-coding RNA, and
research in animals and humans has also reported that the use of electronic cigarettes
(vaping) is linked to worse general and respiratory health, similar to effects observed with
conventional smoking [128].

4.4. Alcohol Consumption

It is well established in the literature that ethanol can alter gene expression through
epigenetic mechanisms, that is, prolonged exposure to ethanol can alter DNA and histone
methylation, histone acetylation, and microRNA expression [129].

4.5. Psychological Stress and Insufficient Sleep

Psychological stress and epigenetic aging have significant associations and primary
findings propose that epigenetic aging could be avoidable and in some cases reversible [130].
A randomized prevention trial by Brody et al., to test hypotheses about the ways risky
family processes contribute to accelerated epigenetic aging suggested that developmentally
appropriate family-centered interventions designed to enhance parenting and strengthen
families can buffer the biological residue of life in a risky family. The intervention amelio-
rated the effect of parental behavior on offspring epigenetic aging.

New findings suggest that appropriate targeting of behavioral interventions might pre-
vent the influence of a stressful environment on the aging process. A cohort study showed
that changes in epigenetic factors and aging were associated with different stress-related
measures within a 6-month interval. For example, results obtained by Boks et al. [131]
demonstrated that exposure to war in Afghanistan was associated with increased DNA
methylation-predicted age.

Insufficient sleep may have an impact on epigenetics. An epigenetic reprogramming
of circadian genes, changes in Alu repetitive element methylation, and gene-specific methy-
lation of IFN-γ and TNF-α promoters have been observed [110]. Short sleep duration
or insomnia may lead to an increased risk of various psychiatric and cardio-metabolic
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conditions. A cross-sectional genome-wide analysis of DNA methylation by Lahtinen et al.,
demonstrated a strong relationship between self-reported insufficient sleep and that epige-
netic modifications in ERC2, MAGI2, CAST, and CDK5R1 might be triggered by insufficient
sleep [132].

4.6. Environmental Factors
4.6.1. Arsenic

Observational studies have shown that exposure to arsenic is associated with hypo-
and hypermethylation at various genetic loci in vivo or in vitro [133].

4.6.2. Air Pollution

Air pollution exposure is estimated to contribute to approximately seven million
early deaths every year worldwide and more than 3% of disability-adjusted life years
lost [134] (REF). Air pollution has numerous harmful effects on health and contributes
to the development and morbidity of cardiovascular disease, metabolic disorders, and
several lung pathologies. Emerging data indicate that air pollution exposure modulates the
epigenetic DNA methylation, and that these changes might in turn influence inflammation,
disease development, and exacerbation risk [135–137].

4.6.3. Aromatic Hydrocarbons and Other Organic Pollutants

These environmental pollutants are a potential risk for morbidity and mortality in
the community in general and in workers exposed to them. A study in an animal model
showed that exposure to polycyclic aromatic hydrocarbons favors the non-monotonic
modification of (hydroxy)methylation of DNA and RNA, in addition to affecting the
glutathione status [138].

4.6.4. Shift Work

DNA methylation can be used to assess biological age which has been associated with
age-related disease risks and is strongly influenced by shift work. A study of 2574 non-
Hispanic white women aged 35–74 was carried out to quantify the biological consequences
of shift work. The greatest acceleration of age was observed in night work (β = 0.12, 95%
CI: 0.03–0.21). The association was stronger for ≥10 years of night work (β = 3.16, CI
95%: 1.17–5.15), and when evaluating the association of the whole epigenome, years of
night work were associated with DNA methylation at 85 CpG sites (FDR < 0.05). Years of
night work were associated with lower methylation of CpG in the gene body of ZFHX3
(cg04994202, q = 0.04), a gene linked to the circadian rhythm [139,140].

Recent evidence shows that lifestyle and environmental factors may affect epigenetic
mechanisms, such as DNA methylation, histone acetylation, and miRNA expression.
Several common substances or nutrients such as caffeine (present in coffee and some teas)
and curcumin or trace elements like selenium and magnesium could regulate epigenetics.
Similarly, physical inactivity, alcohol consumption, air pollutants, psychological stress, and
shift working are well-known modifiers of epigenetic patterns. Understanding the exact
ways that lifestyle and environmental factors could affect the expression of genes could
help to influence the time of incidence and severity of aging-associated diseases.
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Table 3. Lifestyle and environmental factors and type of epigenetic modification and CVD.

Item
Epigenetic Changes

DNA
Methylation

Histone
Modification

microRNA
Involvement

DNMT
Enzymes

Nutritional
habits and food
consumption

Polyunsaturated fatty acids [141] +
Arachidonic acid and oleic acid [142] +
Diets rich in fruits and
vegetables—sulforaphane—
for example, broccoli, cauliflower,
cabbage, kale [143]

+ +

Folate and vitamin B12 intake [121] + + + +
Polyphenols (green tea, tea, and coffee
are a rich source of polyphenols) [144] + -

Magnesium and selenium [122] + +
Curcumin +
Ascorbic acid +

Physical activity [145,146] + + +
Tobacco smoke [147–149] + + +
Alcohol consumption [110] +
Psychological stress and sleep deficiency [132,150–155] +

Environmental
pollutants

Arsenic [156–158] +
Air pollution [159] + +
Aromatic hydrocarbons and other
organic pollutants +

Shift work [160] +

5. Conclusions

Aging is a natural and unavoidable process that is associated with epigenetic changes
that may impair tissue and organ function. Epigenetic effects are manifested by altered
gene transcription in response to lifestyle and environmental cues and provide mechanistic
insight into individual responses to the environment. Ensuring healthy aging requires
lifestyle modifications that counteract deleterious effects of epigenetic alterations such as
adequate physical activity and promoting healthy nutrition. In the last few years, several
investigations have examined the relationship between epigenetic marks and lifestyle
factors, including nutrition, behavior, stress, physical activity, working and sleep habits,
smoking, and alcohol consumption. These studies have shown that a healthy diet (rich in
fibers, vitamins, essential elements, and beneficial fatty acids), adequate physical activity
levels, smoking cessation, stress reduction, and adequate sleep could be useful in prevent-
ing deleterious epigenetic changes that lead to the activation of inflammatory processes.
Although epigenetic modifications are influenced by lifestyle and the environment and
are mostly modifiable, they may be transmittable from one generation to another [161].
There is a possibility that this phenomenon impacts successive generations it is referred
to as transgenerational epigenetic inheritance [162,163]. Further research into the role of
epigenetics will assist in better understanding healthy aging and avoiding early aging.
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