
The spring bounces back: introducing 
the strain elevation tension spring embedding 
algorithm for network representation
Jonathan Bourne* 

Introduction
With the rise of social media and e-commerce, graph and complex networks have 
become a common concept in society. Their ubiquity and the already digitised nature 
of social networks have led to a great deal of research. Although there is a range of algo-
rithms that can perform supervised learning directly on graphs (Cao et  al. 2016; Kipf 
and Welling 2016; Seo et al. 2018; Scarselli et al. 2009) [see Wu et al. (2020) for a recent 
survey on the subject], a more common approach is to create embeddings in a latent 
vector space that traditional supervised learning techniques can then use. These embed-
ding algorithms can either embed the entire graph (Narayanan et  al. 2017; Gutiérrez-
Gómez and Delvenne 2019) or individual nodes (Grover and Leskovec 2016; Ou et al. 
2016; Perozzi et  al. 2014; Roweis and Saul 2000); this paper uses only methods that 

Abstract 

This paper introduces the strain elevation tension spring embedding (SETSe) algorithm. 
SETSe is a novel graph embedding method that uses a physical model to project fea-
ture-rich networks onto a manifold with semi-Euclidean properties. Due to its method, 
SETSe avoids the tractability issues faced by traditional force-directed graphs, having 
an iteration time and memory complexity that is linear to the number of edges in the 
network. SETSe is unusual as an embedding method as it does not reduce dimension-
ality or explicitly attempt to place similar nodes close together in the embedded space. 
Despite this, the algorithm outperforms five common graph embedding algorithms, 
on graph classification and node classification tasks, in low-dimensional space. The 
algorithm is also used to embed 100 social networks ranging in size from 700 to over 
40,000 nodes and up to 1.5 million edges. The social network embeddings show that 
SETSe provides a more expressive alternative to the popular assortativity metric and 
that even on large complex networks, SETSe’s classification ability outperforms the 
naive baseline and the other embedding methods in low-dimensional representation. 
SETSe is a fast and flexible unsupervised embedding algorithm that integrates node 
attributes and graph topology to produce interpretable results.

Keywords:  Structural network properties and analysis, Community structure in 
networks, Complex networks in statistical mechanics, Social networks

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/.

RESEARCH

Bourne ﻿Appl Netw Sci            (2020) 5:88  
https://doi.org/10.1007/s41109-020-00329-4 Applied Network Science

*Correspondence:   
jonathan.bourne.15@ucl.
ac.uk 
University College London, 
Gower Street, London, UK

http://orcid.org/0000-0003-2616-3716
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-020-00329-4&domain=pdf


Page 2 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 

create embeddings at node level. The embedding algorithms create a vector represen-
tations, preserving valuable network properties such as distance on the graph, com-
munity structure and node class. These algorithms find embeddings by minimising 
the distance between similar nodes, within the structure of the network. The literature 
review by Goyal and Ferrara (2018) provides a survey of the most significant of these 
algorithms. With recent improvements in neural networks, there has been substantial 
growth in research on graph embedding algorithms, with over 50 new neural-network-
based embedding algorithms published between 2015 and 2020 (Fey and Lenssen 2019). 
Whilst most methods return Euclidean embeddings, there are also non-Euclidean 
approaches, such as using hyperbolic space (Nickel and Kiela 2017; Wang et al. 2019). 
These approaches can outperform Euclidean embeddings when modelling complex and 
hierarchical structures and can reduce the necessary number of dimensions needed for 
an effective embedding.

Physics models can also be used to embed graphs in vector space; however, these are 
typically used only for drawing graphs. While other graph drawing techniques exist 
(Frick et  al. 1995; Koren 2005; Krzywinski et  al. 2012), force-directed physics models 
are some of the most popular (EADES 1984; Fruchterman and Reingold 1991; Kamada 
and Kawai 1989). These algorithms originated in the 1960s (Tutte 1963), and use simple 
physics to find an arrangement of nodes that provides an aesthetically pleasing plot of 
a graph or network. These algorithms are sometimes called ‘spring embedders’ (Kob-
ourov 2013) due to using springs or spring-like methods to place nodes, and typically 
attempt to optimise an ideal distance between nodes, minimising the energy of the sys-
tem. Although popular at the end of the 20th century, spring embedders became less 
common in research as machine learning became more popular.

The importance of drawing graphs is discussed in several papers (Chen et  al. 2018; 
Matejka and Fitzmaurice 2017; Peel et  al. 2018; Revell et  al. 2018). These researchers 
demonstrate that graphs that are structurally very different can appear identical until 
visualised. A popular statistical equivalent is Anscombe’s quartet (Anscombe 1973), a 
series of four figures showing very different data. However, in terms of the mean, vari-
ance, correlation, linear regression and R2 , all four figures in the quartet appear identical. 
Such visualisations highlight the importance of visualising data and the weaknesses of 
some commonly used statistical tools.

The Strain Elevation Tension Spring embedding (SETSe) algorithm takes its name 
from the embeddings it produces. SETSe takes the node attributes of a graph, represent-
ing them as a force. The edges are represented by springs whose stiffness is dependent on 
the edge weight. The algorithm finds the position of each node on a manifold such that 
the internal forces created by the nodes are balanced by the resistive forces of the springs 
and the network is in equilibrium. The SETSe algorithm acts as a hybrid between the 
advanced techniques of the machine learning graph embedders used for analysis and the 
intuitive simplicity of the spring embedders used for graph drawing. SETSe functions in 
a different way to most graph embedding methods. Whilst most algorithms allow the 
user to choose the dimensionality of the embedded results, SETSe returns a manifold of 
a fixed number of dimensions that is the same as the number of node features plus the 
graph space. This effectively means that whilst most graph embedding algorithms use a 
latent embedded space, SETSe uses an explicit feature space using the node features to 



Page 3 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 	

extend the number of dimensions the graph occupies; in some ways, this is similar to 
a kernel method. The final key difference is that SETSe does not try and place similar 
nodes close together; as such, there is no loss function in the conventional sense. The 
original purpose of SETSe was to provide a metric of robustness for power networks to 
cascading failure. The algorithm can also be applied to understanding conflict in social 
networks, and predicting culture in organisations amongst others. This paper is there-
fore used to introduce the method and basic functioning of SETSe.

This paper demonstrates that in a world of sophisticated machine learning, there is 
still a role for simple, intuitive embedding methods. It shows that SETSe can find mean-
ingful embeddings for the Peel’s quintet (Peel et al. 2018) series of graphs, as well as the 
relations in Facebook data (Traud et  al. 2012). It finds these embeddings efficiently in 
linear iteration time and space complexity. An R package has been created that provides 
all the functionality necessary to run SETSe analysis/embeddings (available from https​://
githu​b.com/Jonno​B/rSETS​e).

The paper asks can SETSe distinguish between graphs that are identical using tradi-
tional network metrics? It also asks can SETSe be used to classify individual nodes? To 
gauge how well SETSe performs these tasks, it is compared against several popular graph 
embedding algorithms: node2vec (Grover and Leskovec 2016), SDNE (Wang et al. 2016), 
LLE (Roweis and Saul 2000), Laplacian Eigenmaps (Belkin and Niyogi 2003), HOPE (Ou 
et al. 2016) and one deep graph convolutional embedding method DGI (Velič ković et al. 
2018).

Method
This section begins by providing a simple example of the SETSe algorithm. It then 
describes and defines the physics model that underpins the embedding method. The 
algorithmic implementation and practical issues related to convergence are also briefly 
described. The datasets used in this paper are then introduced. Finally, the analyses per-
formed are described.

Introduction to SETSe: a simple example

The SETSe algorithm takes a network G containing the set of V nodes and the set E 
edges. It converts the n attributes or variables of each node into orthogonal forces where 
each attribute occupies a single dimension. In each dimension, the total sum (across the 
network) of the forces in that dimension is 0 (i.e. the network is balanced in all dimen-
sions). Each edge is converted to a spring whose stiffness k is taken from an attribute 
of the edge, typically the edge weight. If no edge attribute is to be used, all the edges 
in the network take k as an arbitrary constant. The algorithm then positions each node 
on an n+ 1-dimensional manifold such that no node experiences a net force. Like other 
spring embedders (Fruchterman and Reingold 1991; Kamada and Kawai 1989; Quigley 
and Eades 2001), SETSe is subject to the n-body problem (Aarseth 2003; Springel et al. 
2005) and must be solved iteratively.

The functioning of SETSe is best described using example. Consider the simple net-
work shown in Fig. 1. The network is planar, and so can be drawn in two dimensions (x 
and y), with no edges crossing. The nodes in the network have a single attribute/vari-
able that acts perpendicular to the plane; as such, the nodes in the network act as beads 

https://github.com/JonnoB/rSETSe
https://github.com/JonnoB/rSETSe


Page 4 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 

whose movement is restricted to the z-axis and are fixed in x and y. The nodes in the 
network have an identical mass m, and the edges between the nodes have a common 
distance d, which is the length of the spring at rest. Node A exerts a force of 1, node B 
exerts no force on the network, while nodes C and D exert a force of −1 each, resulting 
in a net force of 0. The edges of the network are springs that, when stretched, act accord-
ing to Hooke’s law F = �Hk , where �H is the extension of the edge and k the spring 
stiffness such that 0 < k ≤ ∞.

Although the vertical forces (defined by the node attribute) across the network sum 
to 0, the individual nodes are not in equilibrium and so begin to move in the direction 
of their respective forces. The vertical distance between node pairs resulting from this 
movement extends the springs, creating a resistive force. The network will find a three-
dimensional equilibrium when the net force acting on each node is 0. This occurs when 
the elevation of the nodes in the system is such that for each node, the sum of the vertical 
tension in all edges connected to that node is equal and opposite to the force produced 
by the node itself. As an example, if k = 1000 and d = 1 , the equilibrium positions of the 
nodes are 0.1450, 0.0185, −0.0818 and −0.0818 for the nodes A to D, respectively. The 
interested reader can confirm that the net forces on each node are 0, using Pythagoras’ 
theorem and Hooke’s law.

A crucial point in this example is that the nodes are beads. As such, the xy positions 
are fixed and only the vertical component of the spring tension has an impact on the 
nodes; all horizontal forces can be disregarded. Ignoring the horizontal force means that 
the xy position of the nodes can be ignored, reducing the initial layout of the network 
to a zero-dimensional point in space, out of which a one-dimensional node elevation 
appears. The horizontal distance between nodes is reduced to a crucial but abstract 
mapping value.

SETSe space is a non-Euclidean metric space of n+ 1 dimensions where n is the num-
ber of attributes the network has. The n+ 1 th dimension is the graph space, representing 
the graph adjacency matrix. The distance between connected nodes in the graph space 
is di,j . Dimensions 1 to n are Euclidean, while the graph dimension is not. This concept 
is visualised in Fig. 2, which shows nodes embedded in pairwise two-dimensional space 

x

y

D=−1

A=2

B=0

C=−1

Fig. 1  A network of four nodes and three edges. The node attributes are considered forces that act in the 
z-direction. The forces acting on the network balance, but the forces acting on the nodes only balance when 
the nodes are in the appropriate position in the z-axis; the network is shown in the x–y planes



Page 5 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 	

and pairwise three-dimensional space. The graph space acts as the minimum distance 
between the nodes. Figure  2 shows that the nodes occupy parallel Euclidean hyper-
planes separated by the graph space. As SETSe space is locally Euclidean, it is an n+ 1

-dimensional manifold. As an example of a network that is pairwise Euclidean but not 
Euclidean overall, consider a maximally connected network of four nodes. There is no 
arrangement of the nodes on a plane where the distance between all nodes is equal, 
although pairwise all nodes can have the same distance. As the example implies, SETSe 
can produce entirely euclidean embeddings if the network adjacency matrix can be rep-
resented in Euclidean space, such networks include planar networks. However, such net-
works are special cases, and the generalised non-Euclidean adjacency matrices only are 
discussed here.

Creating the physics model

The calculation of the solution of a single variable graph is described below. The exten-
sion for higher dimensions is described in the subsequent paragraph. The net force act-
ing on node i can be written as Fnet,i = Fi − Fvten,i , where Fi is the force produced by the 
node and Fvten,i is the vertical component of the net tension acting on the node from the 
springs. The net force on node i is shown again in Eq. 1 where Ften,i,j is the total tension 
in edge i, j. The angle θi,j is the angle of the force between nodes i and j. The tension in an 
edge is given by Hooke’s law as Ften,i,j = ki,j(Hi,j − di,j) , where Hi,j is the length of the 
extended spring and di,j is the graph distance between the nodes. The length of the 
extended spring length Hi,j can be found, as it is the hypotenuse of the distance triangle 
between nodes i and j such that Hi,j =

√

�z2i,j + d2i,j  , where �zi,j is the elevation differ-

ence between nodes i and j, �zi,j = zj − zi . As cos θ = �z
H  , the equation for net tension 

can be rearranged into an alternative expression of edge tension, which is shown in Eq. 3. 
The strain component of SETSe is simple mechanical strain and is shown in Eq. 4. Strain 
and tension are perfectly correlated in the special case that k is constant for all edges in 
the network.

Fig. 2  Two nodes in a network in two-dimensional and three-dimensional SETSe systems. The minimum 
distance d between the nodes is maintained by the graph space dimension



Page 6 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 

The extension of SETSe from a graph with a single attribute to a graph with n attrib-
utes is straightforward. The hypotenuse vector is Hi,j = zi − zj + d , which is a vector of 
n+ 1 elements, where the first n elements are the differences in position between nodes 
i and j in the n dimensions, and the n+ 1 th dimension is the graph distance d. The scalar 
length of Hi,j is the Euclidean distance between the nodes in n+ 1-dimensional space, 
i.e. Hi,j =

√
(
∑n

1(zi,q − zj,q)
2 + d2i,j) . To find the angle between the hypotenuse and the 

distance between the two nodes in dimension q, the cosine similarity is used, as shown 
in Eq. 5. As all entries of �zq,i,j are 0, apart from the qth entry, the cosine similarity sim-
plifies to Eq. 6, which is the ‘vertical’ distance between the nodes in dimension q over the 
scale length of Hi,j . It is then easy to see that Eq. 7 is the multidimensional equivalent of 
Eq. 3.

The distance d between the nodes is a key parameter when it comes to finding the final 
elevation embedding. If the distance is not a constant, it must be meaningful for the 
type of network being analysed. As an example, the distance in metres between two con-
nected points on an electrical circuit is unlikely to be meaningful; however, a variable 
distance may be appropriate if traffic were being analysed. Understanding meaningful 
distance metrics is not explored in this paper, and distance between nodes is considered 
a constant across all edges. It should also be noted that although SETSe is embedded 
in Euclidean space and the graph space, other non-Euclidean spaces can be used. For 
example, the hyperbolic space used by Nickel and Kiela (2017) could be used instead of 

(1)Fnet,i = Fi −
n

∑

j

Ften,i,j cos θi,j

(2)Fnet,i = Fi −
n

∑

j

ki,j(Hi,j − di,j)
�zi,j

Hi,j

(3)Fnet,i = Fi −
n

∑

j

ki,j�zi,j

(

1−
di,j

Hi,j

)

(4)εi,j =
Hi,j − di,j

di,j

(5)cos θq,i,j =
zq,i,j ·Hi,j

∥

∥zq,i,j

∥

∥

∥

∥Hi,j

∥

∥

(6)cos θq,i,j =
�zq,i,j

Hi,j

(7)Fnet,q,i = Fq,i −
n

∑

j

ki,j�zq,i,j

(

1−
di,j

Hi,j

)



Page 7 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 	

Euclidean space as Newtonian physics is still valid; whilst such options are intriguing, 
they are beyond the scope of this paper.

SETSe can be used on continuous and categorical variables. In both cases, the forces 
must be balanced; this is when the net value of the sum of the forces across all nodes equals 
0. For continuous variables, the raw attribute force of node i ( Fi ) is normalised to create bal-
anced force Fi,bal by subtracting the mean from all values, as shown in Eq. 8, where |V| is the 
number of nodes in the network.

For categorical node attributes, each level is treated as a binary attribute, making as 
many new dimensions as there are levels; this is similar to how variables in linear and 
logistic regression are treated. The total force level dimension γ is the fraction that level 
makes up of the total number of nodes, as shown in Eq. 9. The force produced by the 
nodes in each level dimension can then be treated as continuous variables, as described 
previously in Eq. 8.

With the force and distance relationship between pairs of nodes defined, it is now pos-
sible to look at the method used to find the equilibrium state of the network and its 
corresponding strain, elevation and tension embeddings. The difficulty in solving such 
a problem is that the relationship between the final elevation of a node and the force 
it experiences is non-linear. In addition, each node is affected by all other nodes and 
spring stiffness k in the network. This interaction creates a situation that is similar to the 
n-body problem of astrophysics. In this case, although the nodes act as bodies, instead of 
exerting a force on all other nodes, as celestial bodies do, they exert a force only on those 
nodes with which they have a direct connection.

The equilibrium solution can be found by treating the problem as a dynamic system and 
iterating through discrete time steps until the system reaches the equilibrium point. By rep-
resenting the network as a dynamic system, the acceleration and velocity of each node must 
be calculated. Using Newton’s second law of dynamics, F = ma , where F is the force acting 
on the node and a is the acceleration, the nodes need to be assigned an arbitrary constant 
mass m (note mass does not affect the final embeddings). The net force acting on each node 
at time step t is then Eq. 10, where F is the force generated by the node according to the 
node attribute. The system is assumed to be a viscous laminar fluid, and so the damping is 
simply the product of the velocity v and the coefficient of drag c. Friction is used to cause 
the system to slowly lose energy and converge. While it does not affect the value at con-
vergence, it needs to be correctly parametrised or the system will not converge. This is dis-
cussed in the Additional file 1: Appendix.

Knowing the net force acting on the node allows calculation of the equations of 
motion at each time step. Velocity can be calculated as vt = vt−1 + Fnet,t

m �t , where 

(8)Fi,bal = Fi −
1

|V|

|V|
∑

1

Fi

(9)Fγ =
∣

∣Vγ

∣

∣

|V|

(10)Fnet,i = Fvteni + Fi − cvi



Page 8 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 

v is the velocity at time t. Distance is the elevation embedding and is calculated by 
z = vt−1�t + 1

2at�t2 + zt−1.
The SETSe algorithm is shown in algorithm 1. The equations described in Eqs. 1–

10 are either converted to vectors or matrices, allowing all nodes and edges in the 
network to be updated simultaneously. The algorithm takes a graph G , which has 
been processed so that each edge has distance di,j and spring constant ki,j . The 
dynamics of the network are all initialised at 0; only the forces exerted by the nodes 
are non-zero values. In algorithm  1, vectors are lower-case letters in bold, while 
matrices are in bold and capitals. The time in the system is represented by t and the 
time step per iteration is �t . The elevation of each node in the system is represented 
by the matrix Z . The elevation difference across each edge is �Z , and is obtained by 
subtracting the transpose of the elevation matrix from the original elevation matrix. 
The hypotenuse, or total length, of the edge is represented by the matrix H and is 
found using the elevation difference �Z as well as the horizontal difference d . The 
vertical component of the tension in each edge is represented by Fvten and is the ele-
ment-wise product of the edge spring stiffness matrix K with the extension of the 
edge; this matrix is then multiplied element-wise again using the element-wise prod-
uct by the tangent of the angle of the edge. Line 8 shows that the vertical component 
of the force fvten is updated by summing the rows of each line in the Fvten matrix 
using a column vector of 1s, that is, |V| long. The elevation of each node is updated 
on line 9 of the algorithm. The vector z is then reshaped using a function into matrix 
form. Line 11 updates the velocity of each node in the network. Line 12 updates the 
static force on each node fstatic . Static force is the force exerted by the node minus 
the sum of the tensions exerted by all the connected edges. The next update is the 
system friction or drag fd . The system force fnet is then updated. Finally, the accelera-
tion a to be used in the next iteration is calculated.

One of the advantages that SETSe has over traditional force expansion algorithms 
(Kamada and Kawai 1989; Fruchterman and Reingold 1991) is that the distance 
from the optimal solutions is known. In the other algorithms, the loss function is to 
reduce the total energy of the system to some unknown minimum. However, SETSe 
has a loss function more similar to the error metrics used in statistics or machine 
learning. The ideal static force of the system is 0 and the initial static force is 

∑

‖Fi‖ , 
which is thus bounded in a finite space. This is an important consideration when it 
comes to efficient convergence and auto-convergence and is discussed further in the 
Additional file 1: Appendix. Although the stop condition of the algorithm is that the 
static force in the network is 0, in practice, the system is said to have converged if 
fstatic ≈ 0 . In this paper, the tolerance for convergence will be fstatic ≤

∑

�Fi�
103

 , that is 
when the static force is reduced to 1/1000th of the absolute sum of forces exerted by 
the nodes.



Page 9 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 	

Practical convergence issues

The implementation of the algorithm in the R package rSETSe has two modes: 
sparse and semi-sparse. Semi-sparse mode is used on smaller graphs, and sparse 
mode is for larger graphs (starting at 5000–10,000 edges); the complexity of sparse 
mode is linear to the number of edges O(|E|) . The mode has no impact on the final 
embeddings. Time and space complexity are discussed further in "Complexity" 
section.

Although there are several parameters of the physical model that must be ini-
tialised before running the algorithm, only two have any real bearing on the final 
embeddings. Drag, time step and mass affect the rate of convergence, but not the 
final outcome (when Fstatic = 0 ). The distance between the nodes affects the out-
come as the final elevation will change. However, when Fstatic = 0 , the angle between 
the nodes is unaffected by the length of the edges and so elevation can be normal-
ised. Only the force variable and the spring stiffness have an impact on the final con-
verged values. The force variable is not controlled by the user, leaving only k. As 
such, the value of k must be constant for all networks under evaluation, or if k is a 
function, then k = f(x) must be consistently parametrised.

All networks in this paper are embedded using bi-connected SETSe, a more 
advanced method than algorithm  1. This method breaks the network into bi-con-
nected sub-graphs then calls auto-SETSe, which is an algorithm that chooses the 
coefficient of drag using a binary search. Bi-connected SETSe and auto-SETSe are 
discussed in detail in the Additional file 1: Appendix.

Data

Two datasets are used in this paper to illustrate how SETSe works and how it can 
be used to gain insight into network structure and behaviour. Both datasets have 
binary edges, meaning that k is constant across all edges in all networks. This 
reduces the embeddings from three to two, as strain and tension have a perfect lin-
ear relationship.



Page 10 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 

Peel’s quintet

Peel’s quintet (Peel et  al. 2018) is an example of the graph equivalent of Anscombe’s 
quartet (Anscombe 1973). It is a collection of five binary attribute graphs that have an 
identical number of nodes, edges connections between and within classes, and assor-
tativity. The networks are very different when visualised (see Fig. 3). In (Peel et al. 2018) 
the authors achieve this situation by dividing the binary classes into two sub-classes, 
which have different mixing patterns. They then develop an alternative metric and dem-
onstrate that it can distinguish between the quintet and other network structures. Peel’s 
quintet is essentially a hierarchical stochastic block model. Each network has two blocks 
containing two sub-classes. Each sub-class contains 10 nodes, with a total of 40 nodes 
per network. Each network has 160 edges with 80 edges connecting the classes together 
and 80 edges internally in each class. Because the number of edges connecting within 
and between the sub-class is distinct, the overall network structure is itself distinct, even 
though in terms of traditional network metrics they are identical. Peel’s quintet will be 
used as an example of how SETSe is affected by graph topology and the network attrib-
utes, in this case, the two known communities and the hidden communities.

Figure 3 shows Peel’s quintet. The classes are shown as being either turquoise or red, 
while the two hidden classes are triangles or circles. While type A is simply a random 
network, the other networks show varying types of structure produced by the inter-hid-
den group connection patterns. Table 1 shows the block models the network is based on.

Facebook data

The Facebook 100 dataset by Traud et al. (2012) is a snapshot of the entire Facebook net-
work on a single day in September 2005. At this time, Facebook was open only to 100 US 
universities. There were very few links between universities then, so each one can be con-
sidered a stand-alone unit. Such an assumption would not be possible now. The data allow 

Type A Type B Type C

Type D Type E

The Peels quintet of assortativity identical graphs

Fig. 3  These networks were introduced by Peel et al. (2018). They are all networks that have identical 
numbers of nodes edges, group size, within-group connections and between-class connections. However, 
the networks are clearly structurally distinct



Page 11 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 	

insight into the structure of relationships in attributed social networks. The networks are 
anonymised and the universities are referred to by a reference. Caltech36 is the smallest 
university network and has only 769 nodes and 16,656 edges, while Penn94 has the most 
nodes with 41,554 and Texas84 has the most edges with 1,590,655. The original study on 
this dataset (Traud et al. 2012) found there were assortativity patterns within the variables 
that were generally common across all universities, such as tendency to be connected to 
students who will graduate at the same time or who lived in the same university accom-
modation. The networks have seven attributes, all of which are categorical and have been 
anonymised. These attributes are: student type, gender, major, minor, dorm, year of gradua-
tion and high school.

Experimental analysis

The experiments are broken across the two datasets. The first set of experiments will 
focus on Peel’s quintet, distinguishing network types, then distinguishing between node 
types. The second set of experiments will look at the Facebook data, first comparing 
assortativity with SETSe, which is similar to distinguishing between networks, then dis-
tinguishing between node types on the Facebook dataset. The two SETSe dimensions 
will be elevation and node tension. Node tension is the mean absolute tension in the 
edges connected to the nodes vten,i =

∑

Ften,i,j
n  , where for this expression only, n is the 

number of edges for node vi.
This paper uses four accuracy metrics: accuracy (Eq. 11), balanced accuracy (Eq. 12), f1 

score (Eq. 13) and Cohen’s kappa (Eq. 14), where P , N , TP , TN , FP and FN are the num-
ber of positives, negatives, true positives, true negatives, false positives and false nega-
tives, respectively. TPR is the false positive rate, TPR = TP

P  , and TNR is the true negative 
rate, TNR = TN

N  . po is the observed probability of two events occurring, e.g. predict class 
one truth is class one. pe is the expected probability of two events occurring, given their 
overall prevalence.

(11)ACC =
TP+ TN

P+N

(12)BAL_ACC =
TPR+ TNR

2

Table 1  Block model for Peel’s quintet

(a) (b) (c)

(d) (e)



Page 12 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 

Distinguishing between networks

The first analysis of the performance of SETSe will be to compare it to a selection of 
other node embedding methods using Peel’s quintet (Peel et al. 2018). The methods that 
it will be compared against are node2vec (Grover and Leskovec 2016), SDNE (Wang 
et al. 2016), LLE (Roweis and Saul 2000), Laplacian Eigenmaps (Belkin and Niyogi 2003), 
HOPE (Ou et al. 2016) and DGI (Velič ković et al. 2018). The methods cover three main 
areas: graph factorisation (Roweis and Saul 2000; Belkin and Niyogi 2003; Ou et  al. 
2016), random walks (Grover and Leskovec 2016) and deep learning (Wang et al. 2016; 
Velič ković et al. 2018). It should be noted that of the seven alternative methods, only 
DGI uses node features as part of the embedding. A set of 100 networks from each of the 
five classes of Peel’s quintet will be generated and embedded into two dimensions using 
each of the embedding methods. The embeddings are produced at node level and will 
be aggregated using the mean to network level. The linear separability of the aggregated 
embeddings for each class will be compared.

Classifying class and sub‑class of Peel’s quintet

This section will test the ability of the embedding methods to separate the hidden classes 
of Peel’s quintet. The embeddings generated in the previous experiment will be used, 
and a multinomial logistic regression will be created for each network to see the accu-
racy of separating either the nodes into their known classes or into their hidden classes. 
In theory, SETSe should be able to almost trivially separate the classes as the algorithm 
is class aware; however, separating the sub-classes is less clear. The logistic regression 
will use as the independent variables the two embedding values at node level that were 
generated when distinguishing between network types. In the case of SETSe, these will 
be the node elevation and the mean node tension. The role of the logistic regression is 
not so much to be a predictive model but to test the separability of the data; as such, no 
cross validation will be necessary. The accuracy measure will be accuracy as the classes 
are balanced. The performance of SETSe will be compared against all other embedding 
methods. As each node’s relation to the rest of the network is being analysed using eleva-
tion and mean edge tension the graph space is effectively removed; as a result, the data 
are no longer non-Euclidean and logistic regression can be used.

Relationship with assortativity

The Facebook data will be embedded for all of the 100 universities using the graduation 
year of the student. Although technically categorical data, graduation year can be treated 
as continuous and will be done so for speed of calculation. Missing data will not exert 
a force. The embeddings will be aggregated to network level using the mean elevation 
and mean node tension. The resulting two-dimensional data will be compared to the 

(13)f1 =
2TP

TP+ FP+ FN

(14)κ =
po − pe

1− pe



Page 13 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 	

assortativity scores of the data to see if there is a relationship between the SETSe embed-
dings and the network assortativity.

Predicting node class in Facebook data

This tests to see how well SETSe can separate the classes within large and complex net-
works. Year of graduation will be the embedding class, student type will be the hidden 
sub-class. The two main classes of student are types 1 and 2, which make up 80% and 
15% of the dataset, respectively. The meaning of student type is not clear from the origi-
nal paper, but it appears to be graduate students or alumni. Due to the distribution of 
student type 2, only 2005 will be used for the hidden sub-class test. Student type is being 
chosen over the other variables, as dorm, major, minor and high school have so many 
levels that embedding would be impractical. Gender has two levels only; however, there 
is almost no assortativity suggesting a complete lack of structure.

Due to the complexity of the data, a k-nearest-neighbour approach will be used. This 
method will label the node as the majority class of the nearest k nodes in SETSe space. 
The nearest-neighbour model will be compared with graph adjacency voting. Graph 
adjacency voting finds the majority class amongst all nodes for which the target node 
shares an edge. The graph adjacency voting will use the full network, but only student 
types 1 or 2 will count towards the totals. The metrics used to evaluate performance will 
be accuracy, balanced accuracy, Cohen’s kappa and the f1 score. The hidden classes are 
highly imbalanced in some of the universities, and so the results need to be interpreted 
with care. The hidden class model accuracy will also be compared against the naive ratio 
of type 2 students (the majority class) to all students.

Computational details

Each simulation used a single core Intel Xeon Gold 2.3 GHz processor with 16 GB of 
RAM, and maximum wall clock time per simulation was limited to 12 hours. Code and 
analysis used R version 4.0, and made extensive use of igraph (Csardi and Nepusz 
2006) and rSETSe https​://githu​b.com/Jonno​B/rSETS​e packages. HOPE, LLE, Lapla-
cian Eigenmaps and SDNE embeddings were performed using the GEM library (Goyal 
and Ferrara 2018), node2vec was performed using the pip installable implementation 
from https​://githu​b.com/elior​c/node2​vec and DGI used the Stellargraph library (Data61 
2018). The Python version was 3.8.

Results
Peel’s quintet

The first test of the SETSe algorithm uses Peel’s quintet of networks. The 100 networks 
of each class are projected into SETSe space then aggregated using the mean abso-
lute elevation and the mean of the node tension. Figure 4 shows the results of the six 
algorithms reducing the networks to two-dimensional space. It is clear that the differ-
ent connection patterns between the nodes result in distinctive tension elevation pat-
terns within the graph class. This results in the five networks being trivially separable in 
SETSe space. The other graph embedding algorithms struggle to differentiate the net-
work types, node2vec is the most successful projecting the graph types into more or less 
concentric quarter rings in two dimensions. The HOPE algorithm also has some success, 

https://github.com/JonnoB/rSETSe
https://github.com/eliorc/node2vec


Page 14 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 

but like node2vec failed to provide a clear linear separability. The SDNE algorithm was 
unable to provide successful embeddings; this may be due to the number of embedding 
dimensions being so low, or due to the structure of the quintet graphs themselves.

Clearly, SETSe is successful at separating the graph types. However, it is also interest-
ing to know whether it can assign the nodes to the correct sub-classes within each graph 
type. Figure 5 shows the SETSe embedding of the nodes in the elevation tension dimen-
sions for an example graph of each type. The nodes are coloured by the hidden sub-class. 

LLE node2vec SETSe

DGI HOPE LapEig

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

first dimension (tension for SETSe)

se
co

nd
 d

im
en

si
on

 (e
le

va
tio

n 
fo

r S
E

TS
e)

type

A

B

C

D

E

Separating Peel's Quintet in two dimensions

Fig. 4  One hundred examples of each of the five network classes of Peel’s quintet introduced by Peel et al. 
(2018). The networks are clearly linearly separable in the averaged SETSe space even though all 500 are 
identical using assortativity

Type D Type E

Type A Type B Type C

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

node tension

no
de

 e
le

va
tio

n

sub class

A 1

A 2

B 1

B 2

The position of individual nodes in each graph type of Peel's Quintet

Fig. 5  Embeddings of individual nodes; the x-axis is node tension and the y-axis is node elevation. This 
representation reveals the hidden structure of the groups in all network types apart from type A



Page 15 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 	

As can be seen, there are clear patterns in the node placement. Although the sub-classes 
of type A cannot be distinguished, types C, D and E appear to be linearly separable in 
the elevation dimension alone. In contrast, type B produces a roughly symmetrical dis-
tribution requiring elevation and strain for separation. The separability is checked for all 
500 networks using SETSe and the five other embedding types. The results are shown in 
Fig. 6. The figure shows how each embedding technique separates the classes and sub-
classes for each type of graph in Peel’s quintet. A multinomial logistic regression with 
two independent variables, reflecting the two dimensions of the embedding, was used to 
model the accuracy of each class and sub-class within the graphs. The SDNE algorithm 
was not included in the figures due to poor performance at low dimensions.

As can be seen from Fig.  6, SETSe outperforms the other embedding algorithms in 
every case, again node2vec and HOPE come next in terms of performance. Despite 
being class aware, DGI could not separate the classes or sub-classes very well at such 
low dimensions. When comparing pure linear separability, SETSe greatly outperforms 
all other embedding techniques. With the exception of identifying the sub-class of 
graph type A, SETSe can linearly separate the classes and sub-classes at least 67% of 
the time. And it can perfectly linearly separate the sub-classes in four of the ten cases. 
No other embedding method is comparable to SETSe; DGI can linearly separate all four 
sub-classes for graph E 39% of the time, whilst HOPE separates D 32% of the time, but 
for most cases, linear separation is not possible on either the known binary class or the 
four hidden sub-classes. In addition, 25% of the graphs failed to converge with the DGI 
embedding. When the other methods are allowed to embed the 20 node graphs in eight 
dimensions, their performance increases substantially to a level comparable with SETSe. 
The failure of SETSe to have perfect class separation in types B, C and E comes from spe-
cific nodes having so many neighbours of the opposite class that they are pulled below 
the class line. As an additional comparison, three community detection algorithms were 

Type E: class detection Type E: sub class detection

Type C: class detection Type C: sub class detection Type D: class detection Type D: sub class detection

Type A: class detection Type A: sub class detection Type B: class detection Type B: sub class detection

DGI

HOPE

La
pE

ig
LL

E

no
de

2v
ec

SETSe
DGI

HOPE

La
pE

ig
LL

E

no
de

2v
ec

SETSe

DGI

HOPE

La
pE

ig
LL

E

no
de

2v
ec

SETSe
DGI

HOPE

La
pE

ig
LL

E

no
de

2v
ec

SETSe

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

Comparison of graph embeddings methods for class identification on Peel's Quintet

Fig. 6  Using the knowledge of the groups, SETSe greatly outperforms the other node embedding 
techniques, at separating the classes and sub-classes for each type of Peel’s quintet. The upper and lower 
bounds on the boxes describe the 26th and 75th percentiles. The whiskers are 1.5 times the inter-quartile 
range



Page 16 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 

also compared: Fast Greedy (Clauset et al. 2004) , Walktrap (Pons and Latapy 2006) and 
Louvain (Blondel et  al. 2008). These algorithms were not successful at distinguishing 
between the classes or sub-classes.

Analysing Facebook data using SETSe

The Facebook 100 dataset was embedded into SETSe space using the variable gradu-
ation year. The results for four different universities are shown in Fig.  7. For ease of 
viewing, the x-axis is presented on a log scale. Figure  7 shows three universities with 
low assortativity (Auburn, Maine and Michigan), meaning that there is a high degree 
of mixing between years, and one university with a high assortativity (BC), meaning 
students tend to associate within years. Although it is not possible to explain why the 
universities have these differences [Peel et al. (2018) suggest it is due to housing alloca-
tion policy], it is possible to analyse the relation between assortativity and SETSe. It is 
clear from the figure that the years separate to roughly their own tension elevation band 
within the data. This is what we would hope to see given that the embedding uses force 
based on the graduation year. The overall shape of the data is a funnel with the ‘nose’ at 
the low-tension end and the funnel at the higher-tension end. It is clear from the plot 
that the younger years (those graduating in 2008 and 2009) are more separate than the 
older years (graduation in 2004, 2005 and 2006). This is because they have had less time 
to form cross-year bonds, and so are more assortative. The nose is created because the 
nodes that are most central within their year experience the least tension.

The three low assortativity universities have very different tension and elevation 
scores. It can be seen that higher tension appears to create a fuzzier, less clearly defined 
groups within each year. Low elevation creates a single ‘nose’ for the whole cone, but 
higher elevation starts separating out, forming a nose for each year. It is impractical to 

assort=0.16 abs elevation=1.2 tension=5assort=0.18 abs elevation=0.93 tension=3.9

assort=0.58 abs elevation=1.3 tension=3.5assort=0.19 abs elevation=0.76 tension=2.7

Maine59 Mich67

Auburn71 BC17

−2.5 0.0 2.5 −2.5 0.0 2.5

−5

0

5

−5

0

5

log mean tension

el
ev

at
io

n

Year

2004

2005

2006

2007

2008

2009

Node level Facebook embeddings of selected universities

Fig. 7  The node level embedding shows that the tension and elevation distribution of nodes by type 
are distinct and related to the overall network tension and elevation; this is not possible to explore with 
assortativity



Page 17 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 	

understand the differences of the universities by looking at the scatter plots of thousands 
of students across 100 universities. The elevation and node tension are thus aggregated 
at university level, and all 100 universities are plotted in Fig. 8. The points are coloured 
by assortativity. It can be seen that while there is a positive relationship between tension 
and elevation, there is, in fact, a negative relationship between the tension and eleva-
tion dimensions and the value of assortativity. Analysing the distribution of the tension, 
elevation and assortativity scores for all 100 universities, it is found that the data are 
normally distributed. Creating a linear regression on assortativity using tension and ele-
vation as independent variables provides an R2 = 0.82 , where the coefficients are sig-
nificant to p < 0.001 . Creating linear models using either tension or elevation provides 
R2 = −0.006 and 0.429, respectively. The other embedding methods did not produce 
insightful embeddings with regard to assortativity; the linear model of node2vec had an 
R2 = 0.36 , although it got a 20 point bump if squared terms were used, the other embed-
ding methods had very low R2 values. SDNE was not included in the analysis due to its 
poor performance on low dimensions in the previous section. In addition, LLE failed to 
converge for any of the Facebook networks at such low dimensions.

Next, the ability of the embeddings to be able to predict the k nearest-neighbour nodes 
is tested against a baseline of graph adjacent voting. The model is an effective predic-
tor of year with high values of kappa (59% when k is 9), and balanced accuracy (77% 
when k is 9) indicating that the model predicts above the naive baseline value. However, 
the graph adjacency model outperforms the knn using SETSe by between 7 and 10% in 
terms of accuracy; kappa and f1 score and up to 15% on balanced accuracy. It should 
be noted that high levels of performance are expected as the model is predicting on the 
data it was embedded with. Despite this caveat and the poor performance against the 
adjacency voting model, the results show that the embeddings produced are meaningful, 
even on large and complex networks, although the actual graph structure is lost.

node2vec SETSe

DGI HOPE LapEig

−2 −1 0 1 −2 −1 0 1 2

0.0 2.5 5.0 7.5 10.0 0 2 4 −1 0 1 2 3
−1

0

1

2

3

4

5

0

2

4

6

8

−2

−1

0

1

2

0

1

2

3

4

−1

0

1

2

first dimension (tension for SETSe)

se
co

nd
 d

im
en

si
on

 (e
le

va
tio

n 
fo

r S
E

TS
e)

0.2

0.3

0.4

0.5

year
assortativity

The normalised average absolute embeddings of the Facebook 100 dataset.

Fig. 8  There is a clear relationship between the SETSe embeddings and year assortativity; however, the 
pattern is dependent on elevation and tension. SETSe finds large differences between networks with very 
similar assortativity



Page 18 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 

Figure 6 showed that SETSe could uncover the hidden structure of the network; how-
ever, the question is can SETSe do that on a complex real-world dataset, and how does 
it compare to the other embedding methods? Using the same year embeddings for the 
Facebook 100 dataset, the k nearest neighbours were used to predict student type. The 
results show that the accuracy of the student-type embeddings averaged across all 100 
universities. SETSe outperforms the naive rate of student type 2 over student type 1 
at all values of k. SETSe’s performance is also quite stable for all values of k, accuracy 
is around 71%, balanced accuracy is 55%, kappa is very low at 12% and the f1 score is 
around 79%. The low balanced accuracy is not significantly higher than 0.5, and the low 
kappa score signifies that the results could simply be due to chance. However, as shown 
in Fig. 9, the model comprehensively beats the nearest-neighbour voting method in all 
metrics for almost all values of k. SETSe also generally outperforms the other embedding 
methods, although Laplacian eigenvectors have a similar performance. Note that the f1 
score is not reliable in this case as there are a significant number of occasions where type 
1 students are not predicted at all, resulting in perfect prediction. This is because the f1 
score is dependent on the class labelling; balanced accuracy and Cohen’s kappa avoid 
this issue.

Complexity

The time taken to embed the Facebook graphs is plotted in Fig. 10. The top right panel 
of the figure shows that the iteration time complexity is linear ( O(|E|) ). This is fast for 
spring embedders, which generally have complexity O(

∣

∣V2
∣

∣) (Trenti and Hut 2008); it is 
also faster than FADE (Quigley and Eades 2001) which uses the Barnes–Hutt algorithm 
(Barnes and Hut 1986) to run in O(

∣

∣E+ V log V
∣

∣) . The time taken to reach convergence 
is shown in the right panel. The convergence complexity shows heteroscedasticity and is 

Cohen's kappa F measure

Accuracy Balanced accuracy

0 5 10 15 20 0 5 10 15 20

0.2

0.3

0.4

0.5

0.6

0.97

0.98

0.99

1.00

0.850

0.875

0.900

0.925

0.950

0.975

0.4

0.6

0.8

number of nearest neighbours

fra
ct

io
n 

of
 ti

m
es

 e
m

be
dd

in
g 

be
at

s 
gr

ap
h 

ne
ig

hb
ou

r v
ot

in
g

model

DGI

HOPE

LapEig

node2vec

SETSe

Predicting student type from year embeddings relative to graph neighbour voting

Fig. 9  Comparing embedding methods and the naive baseline. SETSe is generally the method with the 
best performance across the metrics, although is outperformed by Laplacian eigenvectors in some cases. 
SETSe beats the baseline more than 50% of the time for all values of k. Note for ease of viewing, the y-axis is 
truncated for each metric



Page 19 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 	

closer to running in quadratic time ( O(|E|2) ). This is slower than DGI (Wu et al. 2020), 
LLE, Laplacian, Eigenmaps and HOPE, which have a complexity of O(|E|) , as well as 
node2vec ( O(|V|) ) and SDNE ( O(|V||E|) ) for two-dimensional embeddings. The differ-
ence between the theoretical and empirical run times may be related to the implemen-
tation. It should be noted that SETSe’s time to convergence is highly dependent on the 
network topology, using the bi-connected component method a tree network is solved 
in linear time; see the Additional file 1: Appendix for details on the bi-connected com-
ponent method. The bottom left panel of Fig. 10 shows the space complexity of the algo-
rithms measured in maximum memory used during the embedding process. SETSe has 
linear space complexity relative to the number of edges/nodes and lower memory use 
than all the other methods (in the figure, nodes are shown as the other methods are node 
dependent).

Discussion
SETSe acts as a hybrid between the advanced techniques of the graph embedders used 
for analysis and the intuitive simplicity of the spring embedders used for graph draw-
ing. It does this by projecting the network onto an n+ 1-dimensional manifold, using 
node attribute as a force. This is different from traditional spring embedders where all 
nodes exert an equal force (Kamada and Kawai 1989; Fruchterman and Reingold 1991; 
EADES 1984). As such, unlike the graph embedding algorithms that were used to bench-
mark performance in this paper, SETSe cannot be said to ‘learn’ the properties of the 
network. Instead, similar to the other spring embedders, SETSe finds an equilibrium 
position wherein all forces are balanced. SETSe also distinguishes itself from many of 
the graph embedders and spring embedders by being entirely deterministic. In addition, 
SETSe provides an intuitive method to include node attribute data, these data act as the 

0.0

0.1

0.2

0.3

0.4

0.5
Embedding time (mins) Iteration time (secs)

0 500 1000 1500 0 500 1000 1500
0

200

400

600

number of edges (000's)

va
lu

e

Space and memory complexity of the embeddings methods

Memory (Gb)

0 10 20 30 40
0

5

10

15

number of nodes (000's)

va
lu

e

Model

DGI

HOPE

LapEig

LLE

node2vec

SETSe

Fig. 10  The per-iteration complexity is linear for SETSe; however, the complexity of the total time to 
convergence is closer to quadratic. Memory complexity is linear and substantially lower than in the other 
methods



Page 20 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 

‘force’ experienced by the nodes and acts orthogonally to the graph space. The SETSe 
algorithm is fast within each iteration, running in O(|E|) linear time. The time to con-
vergence is not linear and appears to be closer to O(|E|2) , which is slower than most 
machine learning embedders. However, it is also linear in space complexity and appears 
to use substantially less memory than the comparison algorithms.

When separating Peel’s quintet, only SETSe managed to find a successful two-dimen-
sional representation of the networks. Two points should be made about this: the other 
techniques produce a two-dimensional representation of each node, whilst SETSe pro-
duces a one-dimensional representation of each node and a two-dimensional represen-
tation of each edge (although strain and tension are identical in this case). Another point 
is that the other graph embedding algorithms can embed the graph in any number of 
dimensions; typically, the graph would be embedded in higher-dimensional space then 
visualised in two dimensions by embedding the nodes a second time using some other 
data reduction method (Van Der Maaten and Hinton 2008; Pearson 1901). These two 
points illustrate the fundamentally different approach to embedding that SETSe takes 
as it is able to natively project high-dimensional data in meaningful low-dimensional 
space without needing a secondary embedding method. The explicit edge embedding 
also allows for flexibility when it comes to projection choices, which is something other 
embedding methods lack. The goal of typical graph embedders is to minimise the dis-
tance between nodes according to some measure of similarity. In contrast, SETSe does 
not try to optimise the meaning in the data; instead, it maps the attributes and edge 
weights of the network to a new space (the manifold), and in doing so reveals properties 
of the network.

When embedded in eight dimensions, most of the other graph embedders are able to 
linearly separate the sub-classes of Peel’s quintet; this finding is similar to that of Goyal 
and Ferrara (2018). However, this leads to new problems such as how many dimensions 
should be used? What dimension reduction algorithm should then be chosen to reduce 
the dimensions again for plotting purposes, and how can the results be interpreted? 
In the case of using the output of the embedding for a model, dimensional parsimony 
is paramount. Being able to model the dependent variable in two dimensions is much 
more desirable than getting the same results with 16 dimensions. This is not to say that 
SETSe is always better than the other methods tested here. In particular, for applica-
tions where node similarity is the most important feature, or a large number of dimen-
sions is advantageous, it would almost certainly be outperformed. Such a situation is the 
Facebook data, which would almost certainly benefit from a large number of embedded 
dimensions provided by more advanced methods such as those described in Grover and 
Leskovec (2016), Ou et al. (2016), or the hyperbolic algorithm described by Nickel and 
Kiela (2017). Unlike most machine learning graph embedders, SETSe is unable to per-
form link prediction. Being bound by physics also means SETSe cannot be easily tuned 
to target specific goals. However, while most graph embedders are designed to express 
a similarity chosen by the designer and parametrised by the user, SETSe in contrast is 
broadly goal agnostic. Instead, it simply allows the graph to express in a different way 
what was already there and provides insight into the underlying data in the process. In 
some cases, SETSe could be used in the preprocessing stage of the more sophisticated 
graph embedders, providing edge and attribute data to support similarity optimisation.



Page 21 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 	

Conclusions
The SETSe algorithm is an unsupervised spring embedding method for graphs that uses 
a physics model to combine network topology with node and edge attributes. SETSe 
projects the graph onto an n+ 1-dimensional manifold, where n is the number of vari-
ables, and the final dimension is the graph space. The strain, elevation and tension values 
produced by the embedding process provide insight into the original data and can reveal 
structure that was not available when the embedding was produced.

Although SETSe could be classed as an unsupervised learning algorithm, SETSe does 
not learn any properties of the system or attempt to optimise similarity. As such, it can 
be considered as an auxiliary of, and a counterweight to, machine learning techniques. 
This fundamental difference is important as although the value of machine learning in 
current research progress cannot be overstated, the field of machine learning and arti-
ficial intelligence has been criticised as focusing too much on certain technologies, 
particularly deep learning (Klinger et  al. 2020). In addition, often, the more sophisti-
cated a technique, the more subjective choices are required, in development and in 
parametrisation.

This paper showed that SETSe outperforms several popular graph embedding algo-
rithms, on tasks of network classification and node classification in low-dimensional 
space. SETSe also provides distinctions between networks that appear to be similar or 
identical when using the popular assortativity metric.

As was mentioned in the introduction, the SETSe algorithm can be applied to a variety 
of different problems such as power grid robustness, conflict on social networks, organi-
sational culture as well as more graph-theoretic issues such as the graph isomorphism 
problem and chemoinformatics. These areas are the focus of further research.

Although spring embedders lost popularity with the rise of machine learning, SETSe 
shows that there is still a role for unsupervised physics models in modern data analysis. 
The spring has bounced back.

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1007/s4110​9-020-00329​-4.

Additional file

Additional file 1: Appendix. The Appendix contains details on the auto-SETSe and bi-connectedSETSe algorithms 
used to make network convergence easier.

Acknowledgements
I would like to thank Connor Galbraith and Patrick De Mars for their thoughtful and patient advice at all stages of this 
project; Dr. Ellen Webborn for her insightful and thorough feedback on the manuscript; and my supervisors Dr. Elsa 
Arcaute and Dr Aidan O’Sullivan for giving me the space to pursue this idea. I acknowledge use of the UCL Myriad High 
Performance Computing Facility (Myriad@UCL), and associated support services, in the completion of this work.

Authors’ contributions
Not applicable

Funding
This work was funded by the EPSRC International Doctoral Scholars - IDS Grant (EP/N509577/1). The author declares that 
no outside body impacted the contents of this study.

Availability of data and materials
In addition an R package has been created, rSETSe, which can be used to create SETSe embeddings. The package can 
be installed from https​://githu​b.com/Jonno​B/rSETS​e. The Peel’s Quintet networks (Peel et al. 2018), can be generated 

https://doi.org/10.1007/s41109-020-00329-4
https://github.com/JonnoB/rSETSe


Page 22 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 

from from the generate_peels_network function in the rSETSe package. The facebook data is available from 
Traud et al. (2012).

Competing interests
The authors declare that they have no competing interests

Received: 30 July 2020   Accepted: 22 October 2020

References
Aarseth SJ (2003) The N-body problem. In: Gravitational n-body simulations: tools and algorithms. Cambridge mono-

graphs on mathematical physics. Cambridge University Press, Cambridge, pp 1–17. https​://doi.org/10.1017/CBO97​
80511​53524​6.002

Anscombe FJ (1973) Graphs in statistical analysis. Am Stat 27(1):17–21. https​://doi.org/10.2307/26828​99
Barnes J, Hut P (1986) A hierarchical O(N log N) force-calculation algorithm. Nature 324(6096):446–449. https​://doi.

org/10.1038/32444​6a0
Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 

15(6):1373–1396. https​://doi.org/10.1162/08997​66033​21780​317
Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech 

Theory Exp 2008(10):10008. https​://doi.org/10.1088/1742-5468/2008/10/p1000​8
Cao S, Lu W, Xu Q (2016) Deep neural networks for learning graph representations. In: Thirtieth AAAI conference on artifi-

cial intelligence. https​://www.aaai.org/ocs/index​.php/AAAI/AAAI1​6/paper​/view/12423​ Accessed 2020-05-11
Chen H, Soni U, Lu Y, Maciejewski R, Kobourov S (2018) Same stats, different graphs. In: Biedl T, Kerren A (eds) Graph 

drawing and network visualization. Lecture notes in computer science. Springer, Cham, pp 463–477. https​://doi.
org/10.1007/978-3-030-04414​-5_33

Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E. https​://doi.
org/10.1103/physr​eve.70.06611​1

Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695
Data61 C (2018) StellarGraph Machine Learning Library. GitHub. Publication Title: GitHub Repository. https​://githu​b.com/

stell​argra​ph/stell​argra​ph
Eades P (1984) A heuristic for graph drawing. Congressus Numerantium 42:149–160
Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch geometric. arXiv​:1903.02428​ [cs, stat]. arXiv​: 

1903.02428​. Accessed 29 May 2020
Frick A, Ludwig A, Mehldau H (1995) A fast adaptive layout algorithm for undirected graphs (extended abstract and 

system demonstration). In: Tamassia R, Tollis IG (eds) Graph drawing. Lecture notes in computer science. Springer, 
Berlin, pp 388–403. https​://doi.org/10.1007/3-540-58950​-3_393

Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. Softw Pract Exp 21(11):1129–1164. 
https​://doi.org/10.1002/spe.43802​11102​

Goyal P, Ferrara E (2018) Graph embedding techniques, applications, and performance: a survey. Knowl Based Syst 
151:78–94. https​://doi.org/10.1016/j.knosy​s.2018.03.022

Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD 
international conference on knowledge discovery and data mining. KDD ’16, pp 855–864. Association for Comput-
ing Machinery, San Francisco, California, USA. https​://doi.org/10.1145/29396​72.29397​54. Accessed 11 May 2020

Gutiérrez-Gómez L, Delvenne J-C (2019) Unsupervised network embeddings with node identity awareness. Appl Netw 
Sci 4(1):1–21. https​://doi.org/10.1007/s4110​9-019-0197-1

Kamada T, Kawai S (1989) An algorithm for drawing general undirected graphs. Inf Process Lett 31(1):7–15. https​://doi.
org/10.1016/0020-0190(89)90102​-6

Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks
Klinger J, Mateos-Garcia J, Stathoulopoulos K (2020) A narrowing of AI research? arXiv​:2009.10385​ [cs]. arXiv​: 2009.10385​

. Accessed 30 Sep 2020
Kobourov SG (2013) Force-directed drawing algorithms. In: Tamassia R (ed) Handbook of graph drawing and visualiza-

tion. CRC Press, Boca Raton, pp 383–408
Koren Y (2005) Drawing graphs by eigenvectors: theory and practice. Comput Math Appl 49(11):1867–1888. https​://doi.

org/10.1016/j.camwa​.2004.08.015
Krzywinski M, Birol I, Jones SJ, Marra MA (2012) Hive plots-rational approach to visualizing networks. Brief Bioinform 

13(5):627–644. https​://doi.org/10.1093/bib/bbr06​9
Matejka J, Fitzmaurice G (2017) Same stats, different graphs: generating datasets with varied appearance and identical 

statistics through simulated annealing. In: Proceedings of the 2017 CHI conference on human factors in comput-
ing systems. CHI ’17, pp 1290–1294. Association for Computing Machinery, Denver, Colorado, USA. https​://doi.
org/10.1145/30254​53.30259​12. Accessed 07 May 2020

Narayanan A, Chandramohan M, Venkatesan R, Chen L, Liu Y, Jaiswal S (2017) graph2vec: learning distributed representa-
tions of graphs. arXiv​:1707.05005​ [cs]. arXiv​: 1707.05005​. Accessed 23 Sept 2020

Nickel M, Kiela D (2017) Poincaré embeddings for learning hierarchical representations. In: Guyon I, Luxburg UV, Bengio S, 
Wallach H, Fergus R, Vishwanathan S, Garnett R (eds) Advances in neural information processing systems, vol 30, pp 
6338–6347. Curran Associates, Inc. http://paper​s.nips.cc/paper​/7213-poinc​are-embed​dings​-for-learn​ing-hiera​rchic​
al-repre​senta​tions​.pdf. Accessed 21 Sep 2020

Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric transitivity preserving graph embedding. In: Proceedings of the 
22nd ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’16, pp 1105–1114. 

https://doi.org/10.1017/CBO9780511535246.002
https://doi.org/10.1017/CBO9780511535246.002
https://doi.org/10.2307/2682899
https://doi.org/10.1038/324446a0
https://doi.org/10.1038/324446a0
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12423
https://doi.org/10.1007/978-3-030-04414-5_33
https://doi.org/10.1007/978-3-030-04414-5_33
https://doi.org/10.1103/physreve.70.066111
https://doi.org/10.1103/physreve.70.066111
https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1903.02428
https://doi.org/10.1007/3-540-58950-3_393
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1007/s41109-019-0197-1
https://doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1016/0020-0190(89)90102-6
http://arxiv.org/abs/2009.10385
http://arxiv.org/abs/2009.10385
https://doi.org/10.1016/j.camwa.2004.08.015
https://doi.org/10.1016/j.camwa.2004.08.015
https://doi.org/10.1093/bib/bbr069
https://doi.org/10.1145/3025453.3025912
https://doi.org/10.1145/3025453.3025912
http://arxiv.org/abs/1707.05005
http://arxiv.org/abs/1707.05005
http://papers.nips.cc/paper/7213-poincare-embeddings-for-learning-hierarchical-representations.pdf
http://papers.nips.cc/paper/7213-poincare-embeddings-for-learning-hierarchical-representations.pdf


Page 23 of 23Bourne ﻿Appl Netw Sci            (2020) 5:88 	

Association for Computing Machinery, San Francisco, California, USA. https​://doi.org/10.1145/29396​72.29397​51. 
Accessed 11 May 2020

Pearson K (1901) LIII. On lines and planes of closest fit to systems of points in space. https​://doi.org/10.1080/14786​44010​
94627​20. Accessed 29 May 2020

Peel L, Delvenne J-C, Lambiotte R (2018) Multiscale mixing patterns in networks. Proc Nat Acad Sci 115(16):4057–4062. 
https​://doi.org/10.1073/pnas.17130​19115​.

Perozzi B, Al-Rfou R, Skiena S (2014) DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM 
SIGKDD international conference on knowledge discovery and data mining. KDD ’14, pp 701–710. Association for 
Computing Machinery, New York, New York, USA. https​://doi.org/10.1145/26233​30.26237​32. Accessed 11 May 2020

Pons P, Latapy M (2006) Computing communities in large networks using random walks. J Gr Algorithms Appl 10(2):191–
218. https​://doi.org/10.7155/jgaa.00124​

Quigley A, Eades P (2001) FADE: graph drawing, clustering, and visual abstraction. In: Marks J (ed) Graph drawing. Lecture 
notes in computer science. Springer, Berlin, pp 197–210

Revell LJ, Schliep K, Valderrama E, Richardson JE (2018) Graphs in phylogenetic comparative analysis: Anscombe’s quartet 
revisited. Methods Ecol Evol 9(10):2145–2154. https​://doi.org/10.1111/2041-210X.13067​

Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326. 
https​://doi.org/10.1126/scien​ce.290.5500.2323

Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The graph neural network model. IEEE Trans Neural 
Netw 20(1):61–80. https​://doi.org/10.1109/TNN.2008.20056​05

Seo Y, Defferrard M, Vandergheynst P, Bresson X (2018) Structured sequence modeling with graph convolutional recur-
rent networks. In: Cheng L, Leung ACS, Ozawa S (eds) Neural information processing. Lecture notes in computer 
science. Springer, Cham, pp 362–373. https​://doi.org/10.1007/978-3-030-04167​-0_33

Springel V, White SDM, Jenkins A, Frenk CS, Yoshida N, Gao L, Navarro J, Thacker R, Croton D, Helly J, Peacock JA, Cole S, 
Thomas P, Couchman H, Evrard A, Colberg J, Pearce F (2005) Simulations of the formation, evolution and clustering 
of galaxies and quasars. Nature 435(7042):629. https​://doi.org/10.1038/natur​e0359​7

Traud AL, Mucha PJ, Porter MA (2012) Social structure of Facebook networks. Physica A 391(16):4165–4180. https​://doi.
org/10.1016/j.physa​.2011.12.021

Trenti M, Hut P (2008) N-body simulations (gravitational). Scholarpedia 3(5):3930. https​://doi.org/10.4249/schol​arped​
ia.3930

Tutte WT (1963) How to draw a graph. Proc Lond Math Soc 13(1):743–767. https​://doi.org/10.1112/plms/s3-13.1.743
Van Der Maaten LJP, Hinton GE (2008) Visualizing high-dimensional data using t-sne. J Mach Learn Res. https​://doi.

org/10.1007/s1047​9-011-0841-3
Velič ković P, Fedus W, Hamilton WL, Liò P, Bengio Y, Hjelm RD (2018) Deep graph infomax. arXiv​:1809.10341​ [cs, math, 

stat]. arXiv​: 1809.10341​. Accessed 05 Oct 2020
Wang X, Zhang Y, Shi C (2019) Hyperbolic heterogeneous information network embedding. In: Proceedings of the AAAI 

conference on artificial intelligence, vol 33, no. 01, pp 5337–5344. https​://doi.org/10.1609/aaai.v33i0​1.33015​337. 
Number: 01. Accessed 21 Sep 2020

Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD international 
conference on knowledge discovery and data mining, pp 1225–1234. ACM, San Francisco, California, USA. https​://
doi.org/10.1145/29396​72.29397​53

Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2020) A comprehensive survey on graph neural networks. IEEE Trans Neural 
Netw Learn Syst. https​://doi.org/10.1109/TNNLS​.2020.29783​86

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1073/pnas.1713019115.
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.7155/jgaa.00124
https://doi.org/10.1111/2041-210X.13067
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1007/978-3-030-04167-0_33
https://doi.org/10.1038/nature03597
https://doi.org/10.1016/j.physa.2011.12.021
https://doi.org/10.1016/j.physa.2011.12.021
https://doi.org/10.4249/scholarpedia.3930
https://doi.org/10.4249/scholarpedia.3930
https://doi.org/10.1112/plms/s3-13.1.743
https://doi.org/10.1007/s10479-011-0841-3
https://doi.org/10.1007/s10479-011-0841-3
http://arxiv.org/abs/1809.10341
http://arxiv.org/abs/1809.10341
https://doi.org/10.1609/aaai.v33i01.33015337
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1109/TNNLS.2020.2978386

	The spring bounces back: introducing the strain elevation tension spring embedding algorithm for network representation
	Abstract 
	Introduction
	Method
	Introduction to SETSe: a simple example
	Creating the physics model
	Practical convergence issues

	Data
	Peel’s quintet
	Facebook data

	Experimental analysis
	Distinguishing between networks
	Classifying class and sub-class of Peel’s quintet

	Relationship with assortativity
	Predicting node class in Facebook data

	Computational details

	Results
	Peel’s quintet
	Analysing Facebook data using SETSe
	Complexity

	Discussion
	Conclusions
	Acknowledgements
	References


