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Abstract: Non-infectious uveitis (NIU) is a potentially sight-threatening disease. Effector CD4+ T
cells, especially interferon-γ-(IFNγ) producing Th1 cells and interleukin-17-(IL-17) producing Th17
cells, are the major immunopathogenic cells, as demonstrated by adoptive transfer of disease in a
model of experimental autoimmune uveitis (EAU). CD4+FoxP3+CD25+ regulatory T cells (Tregs)
were known to suppress function of effector CD4+ T cells and contribute to resolution of disease. It has
been recently reported that some CD4+ T-cell subsets demonstrate shared phenotypes with another
CD4+ T-cell subset, offering the potential for dual function. For example, Th17/Th1 (co-expressing
IFNγ and IL-17) cells and Th17/Treg (co-expressing IL-17 and FoxP3) cells have been identified in
NIU and EAU. In this review, we have investigated the evidence as to whether these ‘plastic CD4+ T
cells’ are functionally active in uveitis. We conclude that Th17/Th1 cells are generated locally, are
resistant to the immunosuppressive effects of steroids, and contribute to early development of EAU.
Th17/Treg cells produce IL-17, not IL-10, and act similar to Th17 cells. These cells were considered
pathogenic in uveitis. Future studies are needed to better clarify their function, and in the future,
these cell subsets may in need to be taken into consideration for designing treatment strategies
for disease.

Keywords: Th17/Th1 (CD4+IFNγ+IL-17+) cells; Th17/Treg (CD4+IL-17+FoxP3+) cells; regulatory
(Treg) T cells; Th1 cells; Th17 cells; experimental autoimmune uveitis; uveitis; CD4+ T cell plasticity

1. Introduction

Non-infectious uveitis (NIU) is a sight-threatening inflammatory ocular disease par-
ticularly affecting people of working-age [1]. The prevalence of the disease is relatively
rare, affecting 9 to 730 cases per 100,000 people [2]. As a result of inflammation, 20% of
patients were reported to develop vision loss [1]. The etiology of NIU can be attributed
to either autoimmune with systemic involvement, autoinflammatory, or idiopathic [3].
Despite the heterogeneous causes of NIU, current management comprises of management
of the inflammation with corticosteroids; exactly how they are given depends on the site
of the inflammation. Posterior segment involvement is sight-threatening and requires im-
munosuppression of acute inflammation with corticosteroids, and a stepladder approach
of introduction of other immunosuppressant drugs, whilst newly discovered biologics
serve predominately as third line agents for those with more severe vision-threatening
NIU or who failed previous treatments [4]. However, without fully understanding the root
cause of each clinical subtype of NIU, development of personalized medicine in the use of
immunosuppression is limited.

The sequestration of the eye from the immune system protects vision from inflam-
matory insults. The common feature in all types of uveitis is the breakdown of the blood-
aqueous and blood-retinal barriers (BRB) with vascular leakage observed by fluorescein
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and indocyanine green angiography. It is followed by leukocytes entering the eye, present-
ing as inflammatory cells observed clinically as anterior uveitis, vitritis, retinitis, choroiditis,
and vasculitis. The clinical observations were supported by evidence of mainly CD4+ T
cells, as opposed to CD8+ T cells, infiltrating the retinae, as observed by histology [5].
Naive T cells, when activated by the antigen presenting cells (APCs), differentiate into dis-
tinct cytokine-producing effector CD4+ T cells, with IFNγ-producing Th1 and interleukin
17 (IL-17)-producing Th17 cells being dominant in NIU. These cells are also characterized
by their transcription factor expression, with Tbet involved in Th1 cell development, and
RORγt in Th17 cell development. These cells then recirculate back to the eye, induce
Th1- and Th17-related responses, and activate myeloid cell responses, thus contributing to
structural damage in the retinal tissues in NIU and in the experimental model (EAU) [6,7].
Further studies have shown that Th17 and Th1 cells may play a role during different stages
of inflammation and in different uveitis entities [8].

Recent findings have suggested that certain mature CD4+ T cells are able to de-
differentiate or trans-differentiate into other T cell subsets with multiple phenotypic charac-
teristics in response to injury and inflammation [9]. This can occur between T helper (Th)
and T follicular helper (fh) cells, for example, between Th1/Th2, Th2/Th17, Th17/Th1,
Treg/Th17, Tfh/Th17, Th2/Tfh, and Th2/Th9 cells [10]. Plasticity between distinct CD4+

T cell subsets was reported in both human and mouse T cells, under certain conditions,
in vitro [11] and in mice in vivo [12,13]. It was proposed that a diverse repertoire of
antigen-specific CD4+ T lymphocytes is essential for the host to respond to emerging
microbial threats, to allow secondary responses to previously encountered pathogens, to
suppress immune responses after microbial clearance to avoid tissue damage resulting
from inflammation, and may be the solution for evolutionary preservation [10,14,15].

It has been reported that CD4+ T cells, in particular Th1 and Th17 cells specific for
retinal antigens, were both able to induce EAU in naïve mice by adoptive transfer [16].
However, little is known about the involvement of so-called plastic CD4+ T cell subsets in
uveitis. The present study aimed to review the function and roles of plastic CD4+ T cell
subsets in uveitis patients. We will focus on two of the subsets—Th1/Th17 and Th17/Treg
cells—in uveitis, as Th2, Th9, and Tfh subsets have only a limited involvement in the
pathogenesis of uveitis.

2. Evidence of CD4+ T Cell Subsets in Monophasic and Relapsing EAU Models

EAU is a CD4+ T lymphocyte-mediated autoimmune disease model that recapitu-
lates many features of NIU and can be used to study the pathogenesis, specifically the
cellular interactions to retinal-specific antigens from immunologically privileged sites [17].
Historically, EAU has been successfully induced with retinal extracts, purified protein,
and synthetic peptides in rabbit, guinea pig, rat, and mouse models [17–20]. Our review
focusses on induced rat and mouse EAU due to the details of T cell subsets that have
been published (as given below). Since the specific T-cell response, in adoptive transfer
models, is dependent on the phenotypes of the antigen-specific CD4+ T-cells injected, and
the response in the passively induced EAU in genetically-modified mice depends on the
genes modified, so data are only included from some of these models.

Only certain rat and mouse models of uveitis allow investigation of the immune
mechanisms underlying relapsing and monophasic autoimmune reactions at the level of
autoantigen specificity. The most commonly used antigens for the induction of EAU in
Lewis rats include peptide R14 (aa 1169–1191), R16 (aa 1177–1191, ADGSSWEGVGVVPDV),
and peptide PDSAg (aa 341–354), extracted from retinal S-Ag, which are emulsified in
complete Freund’s adjuvant (CFA) and fortified with Mycobacterium tuberculosis (mTB)
strain H37RA. These models induce an acute, clinically severe posterior uveitis with
high incidence (up to 100%) [21,22]. PDSAg and R14 induce a pan-uveitis involving
cellular infiltrations in the anterior chamber, as well as in the retina and vitreous, resulting
retinal structural damage. R16 also induces anterior and posterior uveitis, although in a
monophasic presentation [23].
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Classical EAU in mice is mainly induced in B10.RIII and C57/Bl6 strains, using
IRBP161–180 (SGIPYIISYLHPGNTILHVD) and IRBP1–20 (GPTHLFQPSLVLDMAKVLLD),
respectively. The most susceptible mouse strain for EAU is B10.RIII, whilst C57/Bl6 mice
are only moderately susceptible to EAU. These two mouse strains develop similar signs
of posterior uveitis, including vasculitis, optic neuritis, retinitis, vitritis, and choroiditis.
However, the time course of disease is very different between the two strains. The disease
in B10RIII peaks at 14 days post induction (dpi) and resolves after 21 dpi, with B10.RIII
mice presenting a more severe form of disease [20]. In contrast, in C57/Bl6 mice, the onset
is later, peaking at 21 dpi, and retinal inflammation lasts several months. Recently, it has
been reported that EAU in C57/Bl6 involves Th1-cell involvement in disease induction
phase and a Th17-cell response at peak and later phases [8]. In addition, by administer-
ing a lower dose of IRBP in C57/Bl6 and B10.RIII mice, one quarter exhibited chronic
uveitis lasting 6–8 months post induction and low-grade disease (<2) throughout [20].
These chronic models are characterized by prominent choroiditis, outer retinal structural
damage, and less vitreous or retinal infiltrates [24]. IRBP-pulsed matured-DC injection
induced posterior uveitis in B10.RIII mice with more pronounced retinal vasculitis, and
less focal retinitis representing a less severe (autoinflammatory) disease than classical EAU
with a prominent granulocytic rather than lymphocytic infiltration in the eye [25].

It is known that effector CD4+ T cell subsets express a functional T cell receptor (TCR)
and develop tolerance for self-antigens within the thymus by a positive and a negative selec-
tion process before being released into the periphery and secondary lymphoid organs [10].
A newly developed TCR transgenic (Tg) mouse line (R161H), expressing a TCR specific
for IRBP peptide on the B10.RIII background, generates 100% spontaneous uveitis by 2
months of age. The pattern of uveitis mainly involves vitritis initially before progressing
to posterior uveitis, with minimal anterior segment inflammation developing [19,26–28].
Another model with which to investigate the role of central tolerance to retinal antigens
in the development of spontaneous uveoretinitis is the Autoimmune Regulator knock-
out (AIRE-/-) EAU model. Many retinal antigens, including IRBP, are controlled by the
negative selection of AIRE transcription factor for their expression in the thymus, which
is supported by the discovery that the susceptibility of mouse strains to EAU correlates
reciprocally with the amount of IRBP expressed in the thymus [29]. AIRE-/- mice develop
a spontaneous and chronic-progressive multi-focal chorioretinitis at 5–6 weeks of age and
scar formation at 10–14 weeks [30]. The ocular inflammation observed is, however, less
aggressive than that seen in R161H mice [26]. A table summarizing the roles of different T
cell subsets in each EAU model are detailed in Table 1.
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Table 1. Involvement of CD4+ T cells in induced EAU models in rat and mice.

Mouse Model Method of Induction Duration of Retinal
Inflammation

Patterns of Intraocular T
Cells

Monophasic Lewis rat EAU
[8,31]

R16 in CFA and mTB H37Ra.
PTX ip.

Effector phase: 9–18 dpi
Peak phase: 14 dpi

Th17: Highest levels at peak
disease, declining thereafter
Treg: Levels increase at peak

disease, remaining high
throughout [31]

Th17/Th1 and Th17/Treg: ND

Monophasic Lewis rat EAU
[22]

PDSAg in CFA and mTB
H37Ra.

Effector phase: 11–21 dpi
Onset: 11–13 dpi

Peak phase: 13–16 dpi

Th1 and Th17: levels remain
stable throughout

FoxP3+ Treg: peak at
resolution

Th17/Th1: Levels increase
from onset, peaking at

resolution phase
Th17/Treg, Th1/Treg: not

detected throughout

Relapsing
Lewis rat EAU [22] R14 in CFA and mTB H37Ra.

Effector phase: 7–23 dpi
Onset: 7–9 dpi

Peak phase: 9–13 dpi
Relapse: 23 dpi

Th1: Gradually increase from
onset, peaking at resolution

and relapse stage
Th17: Highest at onset, then

gradually declining.
FoxP3+ Treg: peak at

resolution phase
Th17/Th1: stable at 10%

throughout
Th17/Treg, Th1/Treg: not

detected throughout

Monophasic and relapsing
classic EAU in B10. RIII &

B10.A mice [6]

IRBP1–20 in CFA, mTB H37Ra,
+/− PTX

Onset: ~10–12 dpi
Peak: 14–21 dpi

Retinal atrophy phase starts
4–5 weeks pi

Th1: Dominant at peak and
disease relapse [32]

Th17: Dominant at induction
phase

Treg: Increase at peak disease
and remain at high levels

thereafter [33]
Th17/Th1: Comprises 10% of
CD4+ T cells at peak disease

[34]

Monophasic and relapsing
classic mouse EAU in C57/Bl6

[6,32]

IRBP161–180 in CFA, mTb
H37Ra, PTX

Effective phase: 7–28 dpi
Onset: ~10–12 dpi

Peak: 14–21 dpi
Retinal atrophy phase starts

4–5 weeks pi

Th1: Dominant at peak
disease and during relapse

[32].
Th17: Dominant at induction

phase
Treg: Appears at peak disease
and increases thereafter [35]

Th17/Th1: 5–10% at peak
disease [36,37].

Treg/Th17 cells: ND
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Table 1. Cont.

Mouse Model Method of Induction Duration of Retinal
Inflammation

Patterns of Intraocular T
Cells

Chronic EAU in B10.RIII mice
[24]

IRBP1–20 in CFA, mTb H37Ra,
PTX

Effector phase: 14 dpi
Peak and plateau: 10 wk pi

Peak phase: memory CD44hi

Th17 cells dominate with
minimal Th1 cells.

Treg: NDTh17/Th1: less than
1% at 12 wk pi
Treg/Th17: ND

Chronic EAU in C57/Bl6 mice
[24]

IRBP1–20 in CFA, mTb H37Ra,
PTX

Effector phase: 21 dpi
Peak and plateau: week 7 pi

Peak disease: memory CD44hi

Th17 cells dominate, with
fewer than 1% Th1 cell

involvement.
Treg: appears at 14 dpi,

gradually increasing
thereafter [35]

Th17/Th1: less than 1% at 12
wk pi

Treg/Th17: ND

Relapsing uveitogenic DC
induced-EAU [25]

Infusion of IRBP-pulsed
mature DC (sc) to B10.RIII

mice

Inconsistent results. Onset:
12–14 dpi.

Remains active for 3 months.

Th1 and Th2 responses
dominate at peak disease
Th17 response is minimal

Treg: ND
Th17/Th1 and Th17/Treg

cells: ND

IRBP-specific (R161H) B10.RIII
TCR Transgenic mice [27,28]

The model generates high
proportion of effector CD4+ T

cells specific to IRBP161–180

Onset: 5–6 wk.
Peak: 8–10 wk.

Remains active for 4 months.

Th1 and Th17: both
pathogenic, with Th1 cells
being dominant cell type.

Both polarised Th1 and Th17
cells are susceptible to EAU.

Th17/Th1: presented < 1% at
peak disease.

Treg: Less Treg were detected
intraocularly in R161H mice
than the wild type EAU and

they were generated
extrathymically.

AIRE−/− EAU [30] Spontaneous model of EAU
due to central tolerance Effective phase: 5–14 weeks

Th1 cells dominant and a
milder Th17 response

Th17/Th1 and T17/Treg cells:
ND

CFA: complete Freund’s adjuvant; dpi: days post disease induction; EAU: experimental autoimmune uveitis; ND: not determined; mTB:
killed mycobacterial antigen; PTX: pertussis toxin; wk: week.

3. Role of Th17/Th1 Cells in EAU

It has been reported that Th17 cells have substantial plasticity and readily acquire
ability to produce IFNγ in addition to IL-17 [15,38]. Our previous data suggested that the
ability of Th17/Th1 cells to produce both IL-17 and IFNγ correlates with RORγt+ and Tbet+

transcription factor co-expression [36]. This subset, so-called Th17/Th1 cells, is thought
to be due to Th17 cell plasticity, facilitated through IL-12 or IL-23 stimulation [39,40].
In the context of infection, it has been reported that IL-1β serves as a pro-inflammatory
regulator of Th17 cells for its re-direction to Th17/Th1 cells [41]. Human Th17/Th1 (IL-
17+IFNγ+) cells are characterized by their expression of CD161, CCR6, IL-17 receptor E,
RORC, and IL-4-induced gene 1 [38,42,43]. These Th17/Th1 cells are characterized by
their resistance to corticosteroids in IRBP-induced EAU at peak disease, which may be
due to a stable expression of multi-drug transporter type 1 (MDR1), an ATP-dependent
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membrane efflux pump [36]. It is supposed that Th17/Th1 cells lose their ability to
produce IL-17 and become non-classical Th1 cells (expressing both RORγt and Tbet, but
producing only IFNγ) following an IL-17/IFNγ double-producing phase [44]. In addition,
these CD161–CCR6+ CXCR4+ non-classical Th1 cells could further progress to a fully
differentiated Th1 phenotype under the control of transcription factor Eomes [44–47].
Nevertheless, a reverse plasticity from the presumed static Th1 to Th17 cell in response to
TGFβ and IL-6 has been reported [47,48].

Trans-differentiation of CD4+ T cells into Th17/Th1 cells may be vital in protective
and pathogenic immune responses [49]. It has been reported that Th17/Th1 cells are
involved in the pathogenesis of Th17-mediated diseases, for example, in juvenile idiopathic
arthritis [50], graft versus host disease (GVHD) [51], in skin lesions in Behçet’s disease [52],
experimental autoimmune encephalitis (EAE) [53], Crohn’s disease [54], and in dry eye
disease (DED) [55,56]. These Th17/Th1 cells were reported to be associated with β-cell
autoantibody activity in human and animal models of type I diabetes mellitus and could
be used as a biomarker [57]. In a DED mouse model, the existence of Th17/Th1 cells were
found originated from Th17 cells and contributed to dry eye severity in addition to Th17
cells [55]. In a Th17-induced colitis mouse model of inflammatory bowel disease (IBD),
Th17/Th1 cells were confirmed to participate in initiation of intestinal inflammation [58]. It
has been reported that plasticity of Th17 cells may develop due to the absence of RORγt in
the participation of transcription factor activation, via stabilizing positive feedback, thus re-
linquishing its original function, developing plasticity with the influence of environmental
signals [59].

In previous studies investigating the natural history of CD4+ effector T cells using rat
and mouse EAU models, it was reported that Th17 and Th1 cells are involved at different
stages of inflammation (Table 1). The level of retinal Th1 and Th17 cells were comparable
at uveitis onset and the levels remained similar throughout in a monophasic rat EAU
model. Th17/Th1 cells were initially observed at a low level but increased two-fold at
disease resolution [22]. However, the composition of CD4+ T cell subsets was divergent
in a chronic relapsing rat EAU model. Th17 cells dominated during the initial phase of
disease and decreased thereafter. Conversely, Th1 cells participated minimally at disease
onset but became prevalent during resolution and relapse phases. Th17/Th1 cells remained
at similar detection levels throughout [22]. In the monophasic and relapsing mice EAU
models, Th1 cells were reported to participate in disease induction, whereas Th17 cells
were increased during peak disease. There were about 10% of Th17/Th1 cells detectable at
the peak of retinal inflammation [6,34,36,37]. In the chronic EAU mouse models, during
the initial peak stage of inflammation, Th17 cells are more readily detected, whilst Th1 cells
have limited function and only relatively few Th17/Th1 cells were observed [24]. In the
DC-induced EAU model, more Th1 than Th17 cells were detected at peak disease during
retinal inflammation, although Th17/Th1 cells were not investigated in that study [25].
It has been reported in an IRBP-specific TCR-transgenic EAU model (R161H) that only
minimal levels of Th17/Th1 cells (<1%) were detected as compared to EAU in a wild type
B10.RIII model (10–15%) at peak disease [28].

Using the R161H model, Th17 cells were found to become less pathogenic following
exposure to IL-24, via a negative feedback mechanism through the IL-17A receptor and
the NF-kB signaling pathway. However, IL-10-producing cells were unaffected by IL-
24 [60], suggesting that Th17/Th1 cells could be regulated by IL-24 produced by Th17
cells. There is supporting evidence that these Th17/Th1 cells were generated by local
inflammatory signals, rather than being induced in the thymus. In rheumatoid arthritis,
human Th17/Th1 cells proliferate to regulate disease activity in response to TCR signaling,
cytokine polyfunctionality and resistance to Treg suppression [11]. In both the AIRE-/-
and R161H spontaneous EAU models in which central TCR signaling to retinal antigens is
manipulated, minimal Th17/Th1 cells were indeed observed. In contrast, in experimental
autoimmune encephalomyelitis (EAE), an autoimmune CD4+ T cell-mediated central
nervous system inflammatory model similar to EAU, it has been hypothesized that PTX
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and CFA immunization induce early expansion and differentiation of encephalitogenic
CD4+ T cells and promote the expansion of Th17/Th1 cells but not Th17/Treg cells [61].
Even if the cells were generated centrally, it has been noted that Th17/Th1 cells were able
to migrate, using an in vitro CNS barrier endothelial cell model, at comparable levels to
Th1 and Th17 cells [62], suggesting that the genetically manipulated EAU models are not
appropriate for studying CD4+ T-cell plasticity.

4. Evidence of Th17/Th1 Cells in Uveitis

It has been reported that different clinical presentations of Behçet’s disease (BD)
involve different T cell subsets. For example, Th17 cells have been shown to play a more
dominant role in BD patients with associated NIU (ocular BD) and folliculitis [63]. In BD
patients with oral ulcer involvement, it has been shown that the levels of Th17/Th1 cells,
producing both IL-17A and IFNγ, were significantly increased in BD patients compared
with healthy subjects [64]. In sarcoidosis with lung involvement, however, the presence of
tissue CD4+Tbet+RORγt+CXCR3+CCR6+ T cells was associated with a better prognosis [65].
Another study investigating peripheral blood from active or quiescent NIU patients all
receiving systemic corticosteroids, compared to healthy controls, reported that levels of
CD4+Tbet+RORγt+ T cells were not associated with disease status [66]. These studies,
however, were limited since the cytokine production by the Th17/Th1 cells was not
investigated and their findings may be obscured by an effect of mixing non-classical
Th1 with Th17/Th1 cells. Currently there are limited data regarding Th17/Th1 cells in
NIU patients. An increase in CD4+ CD161+ non-classical Th1 cells or Th17/Th1 cells
in the bloods from patients with juvenile idiopathic arthritis (JIA)-associated uveitis as
compared with idiopathic anterior uveitis patients and healthy controls has been reported.
However, no such increase was observed in JIA without uveitis [67]. This indicates a
possible role for Th17/Th1 cells, and non-classical Th1 cells may solely reside within the
eye and may be considered a selective target for treatment with biologics. It is known
that corticosteroids suppress mainly Th1 cells and not Th17 cells [68]. On the other hand,
cyclosporin A, an inhibitor of calcineurin, which is a beneficial therapeutic tool, especially
in different NIUs and thrombophlebitis in course of Behçet’s disease, appears to suppress
Th17 more than Th1 cells [68]. There is very little evidence available yet to determine if
cyclosporin A can suppress Th17 cell plasticity although it is tempting to speculate that
this will be the case. The anti-TNF-α mAb biologics (etanercept and adalimumab) have
both been shown to preferentially suppress Th17/Th1 cells and Th17 cell plasticity in vivo
in juvenile idiopathic arthritis [69]. In addition, Th17/Th1 cells (CD4+IL-17+CD161+) have
been demonstrated to be sensitive to methotrexate (MTX) treatment in JIA uveitis [67].
These would explain the clinical benefits seen following anti-TNF-α and MTX therapy in
JIA-associated uveitis. From this work, it is tempting to speculate that the Th17/Th1 cells
contribute to the pathogenesis of retinal inflammation and act as a depot for generating
effector Th1 or Th17 cells during EAU.

5. Importance of Treg/Th17 Cells in Autoimmune Disease and EAU

CD4+Foxp3+ regulatory T cells (Treg) possess the unique ability to protect the host
from life-threatening autoimmune reactions by dampening inflammatory responses.
Forkhead box protein 3 (Foxp3) has been identified as a transcription factor that character-
izes Treg and is used as a marker to study its function in mice and man over the past two
decades [70,71]. The majority of CD25+Foxp3+ Treg develop in the thymus under the con-
trol of TCR/CD28 stimulation and IL-2, with IL-15 signaling via a two-step model in which
CD25 is induced first and then FoxP3 [72]. These Treg produce anti-inflammatory cytokines
such as IL-35, TGF-β and IL-10 which suppress effector CD4+ T-cell responses [73]. In short,
Treg modulate their regulatory function by suppressing cytolysis, modulating dendritic
cell (DC) function, and by metabolic competition [74,75]. Recently, it has been reported that
a newly discovered Treg subset, TIGIT+ Treg, promotes disease remission in autoimmune
uveitis and potentially other autoimmune diseases, and this is dependent on the expression
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of A2Ar [66,76,77]. Treg (CD4+CD25hi or CD4+FoxP3+) have been shown to play an impor-
tant role in protecting against Vogt-Koyanagi-Harada (VKH), ocular BD, JIA-associated
uveitis and other NIUs by functionally suppressing Th1 and Th17 cells [66,67,78,79].
Furthermore, in EAU models, Treg have been identified as exerting anti-inflammatory
effects within the eye [35,80].

The balance of Th17 cells and Treg is thought to be important in the development
of NIU and EAU [81]. In the eye, Treg and the IL-23 receptor (IL-23R) form a pos-
itive feedback loop, which serves to stabilize the pathogenic Th17 cells in EAU [82].
Another subset of Treg, CD4+CD25–CD127low/– cells, co-expressing 30–50% FoxP3, were
reported to be dysfunctional Tregs, in that these cells lacked proliferative potential and
were unable to suppress T-cell proliferation in vitro. These cells, however, retain the
characteristics of Treg with regards to their production of IL-2 [83,84]. Previous studies
have demonstrated that IL-10 and TGF-β induce antigen-activated CD4+CD25– Treg to
become CD4+CD25+ Treg [85]. However, contradictory reports have indicated that in
some autoimmune diseases such as systemic lupus erythematosus, these CD4+CD25–

FoxP3+CD127low/– dysfunctional Treg are associated with disease activity [83]. On the
other hand, it has been reported that these CD4+CD25–FoxP3+ T cells were shown to
down-regulate Foxp3 and “transdifferentiate” into interleukin (IL)-17-producing effector
Th17 cells under the influence of IL-6 and TGF-β [86]. Conflicting reports have suggested
that CD4+CD25intFoxp3intRORγt+ cells, also characterized by CD45RAhigh, CD45ROlow,
HLADRint, and production of IL-10 instead of IL-17, are a subset of plastic Tregs which
lose their anti-inflammatory function and do not differentiate into Th17 cells in polyposis
and colon cancer patients [13]. Other reports, however, suggest that CD4+RORγt+Foxp3+

Treg were either in a one-way transitional process during commitment to the Treg effector
lineage under high levels of TGFβ, retinoic acid and IL-2 stimulation, or to IL-17-producing
Th17 cells under IL-6, IL-21, IL-23, and low levels of TGFβ [14]. These CD4+RORγt+Foxp3+

Treg, characterized by the expression of Sox4, CCR6, CCL20, IL-23R, and receptor activator
of NF-kB ligand (RANKL, also called TNFSF11) [87], however, do not transdifferentiate
into IFNγ-producing Th1 cells. In addition, the anti-inflammatory properties of those
CD4+Foxp3+IL-17+ Treg are compromised, and they expand within a cancer environ-
ment [88]. CD4+Foxp3+IL-17+ Treg were reported to be pathogenic in the context of
rheumatoid arthritis and IBD, inducing a local surge of IL-6 [87,89].

In the ocular context, it has been reported that circulating IL-17+ plastic Treg play
a pathogenic role in idiopathic orbital inflammation and dry eye disease [90,91]. In a
dry eye disease (DED) mouse model, it has been reported that aged Treg were prone to
develop plasticity and become pathogenic, contributing to increased corneal permeability
and conjunctival goblet cell loss [91]. Our previous study slightly contradicted that result,
in that the levels of CD4+RORγt+Foxp3+ Treg in the peripheral blood did not differ be-
tween active and inactive NIU patients [66]. IL-10-producing Th17 cells were found to be
increased in the resolution phase of monophasic rat EAU and decreased in number dur-
ing resolution and relapse phases of the disease, indicating that they are non-pathogenic.
However, freshly isolated rat effector T cells also co-expressed the markers CD25 and
FoxP3, thus data showing the relationship of plastic Treg coexpressing CD25 and FoxP3
in this rat EAU model is difficult to interpret [21]. In mouse models of EAU, 10% of
Treg are detectable at peak EAU, although plasticity within the Treg/Th17 axis is still
unclear. The plasticity of Treg towards an effector cell phenotype may be an important
factor contributing to the disease.

6. Concluding Remarks and Future Perspectives

It is traditionally thought that effector CD4+T-cells are critical for eliciting inflam-
mation, and FoxP3+ Treg are important to maintain homeostasis and prevent structural
damage resulting from retinal inflammation in NIU. Despite the progress in our under-
standing of Th1, Th17, and Treg as major players in uveitis, there remain key unanswered
questions. Although these plastic CD4+ T cells comprised only a minor proportion during
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disease, their presence may, in part, explain why some individuals respond poorly to cer-
tain immunosuppressive agents. Further studies to investigate their immunopathogenicity,
phenotypic plasticity and functional adaptability are necessary in order to understand their
modulatory role(s) in disease.
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