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Environmental DNA (eDNA) surveys have become a popular tool for assessing the 
distribution of species. However, it is known that false positive and false negative 
observation error can occur at both stages of eDNA surveys, namely the field sampling 
stage and laboratory analysis stage. We present an RShiny app that implements the 
Griffin et al. (2020) statistical method, which accounts for false positive and false nega-
tive errors in both stages of eDNA surveys that target single species using quantitative 
PCR methods. Following Griffin et al. (2020), we employ a Bayesian approach and 
perform efficient Bayesian variable selection to identify important predictors for the 
probability of species presence as well as the probabilities of observation error at either 
stage. We demonstrate the RShiny app using a data set on great crested newts collected 
by Natural England in 2018, and we identify water quality, pond area, fish presence, 
macrophyte cover and frequency of drying as important predictors for species presence 
at a site. The state-of-the-art statistical method that we have implemented is the only 
one that has specifically been developed for the purposes of modelling false negative 
and false positive observation error in eDNA data. Our RShiny app is user-friendly, 
requires no prior knowledge of R and fits the models very efficiently. Therefore, it 
should be part of the tool-kit of any researcher or practitioner who is collecting or 
analysing eDNA data.

Keywords: Bayesian variable selection, environmental DNA, multi-level occupancy 
model, PCR

Background

Environmental DNA (eDNA) is increasingly used within biodiversity assessments 
(McClenaghan et al. 2020). The method relies on the detection of DNA released 
from source organisms into aquatic or terrestrial environments. This DNA is extracted 
from a sample of the substrate, usually water or soil (Thomsen and Willerslev 2015) 
(stage 1), and then analysed using qPCR (Thomsen et al. 2012) or metabarcoding 
(Valentini et al. 2016) (stage 2).
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We present an RShiny app, ‘eDNA 1.0’, for modelling 
single-species eDNA data resulting from qPCR analysis by 
implementing the Bayesian model developed by Griffin et al. 
(2020). The app can be used to model eDNA scores, which are 
defined as the number of qPCR runs that have successfully 
been amplified, for each sample and site. The model estimates 
site-specific probabilities of species presence while accounting 
for false positive and false negative observation error at both 
stages of eDNA surveys. The Griffin et al. (2020) model is 
an extension of the work by Guillera-Arroita et al. (2017) 
but in contrast to the latter, the Griffin et al. (2020) model 
does not require augmenting the eDNA data with other 
types of survey data. This is due to the specification of novel 
informative prior distributions that reflect our belief that 
the probability of a false positive observation is smaller than 
the probability of a true positive observation at either stage. 
Nevertheless, if opportunistic records of species presence exist 
for any of the sites, these can easily be accounted for within 
the model. Finally, Griffin et al. (2020) presented an MCMC 
algorithm that employs the Pólya-Gamma sampling scheme 
(Polson et al. 2013) and hence enables fast computation 
times and efficient Bayesian variable selection for all model 
parameters.

Methods and features

Bayesian model

Griffin et al. (2020) presented a hierarchical Bayesian model 
that describes the different stages of eDNA surveys in terms 
of the probabilities of species presence and the probabilities 
of observation error. All of these probabilities can be func-
tions of site-specific covariates, with dependencies modelled 
using logistic regressions. Subscript s is used to denote sites, 
s = 1,…, S, while subscript m is used to denote samples from 
sites, m = 1,…, M. The list of parameters is given in Table 1 
and a schematic representation of the model is provided in 
Fig. 1.

As explained in Griffin et al. (2020), the model is only 
locally identifiable, so that there exist countably many, in this 
case four, sets of parameter values that result in the same like-
lihood function value (Cole 2020). This identifiability issue 
is overcome by introducing informative prior distributions 
that express our belief that a false positive observation is less 
likely than a corresponding true positive at each stage, so 

that the probabilities that θ11 < θ10 or p11 < p10 are small. We 
clarify here that these constraints apply to the probabilities of 
observation error and regardless of the probability of species 
presence. For example, we expect that θ11 is greater than θ10, 
which suggests that the probability that a sample from an 
occupied site includes DNA of the targeted species is greater 
than the probability that a sample from an unoccupied site 
includes DNA of the targeted species, and similarly for the 
probabilities referring to the results of the qPCR analysis.

The MCMC algorithm presented in Griffin et al. (2020) 
employs the Pólya-Gamma sampling scheme (Polson et al. 
2013), enabling fast computation for logistic regression 
models and efficient Bayesian variable selection, which is per-
formed using an Add–Delete–Swap algorithm (Brown et al. 
1998, Chipman et al. 2001). As the name of the algorithm 
suggests, at each MCMC iteration, we either propose to add 
a covariate that is not currently in the model, to delete a 
covariate that is in the model or to swap a covariate that is in 
the model with one that is not in the model at that iteration. 
This process gives rise to the posterior inclusion probabilities 
(PIPs, Barbieri et al. 2004), which indicate the proportion 
of iterations that each covariate was in the model for each 
parameter. PIPs can be used to understand how useful each of 
the covariates is as a predictor for the corresponding param-
eter and often a threshold of 0.5 is applied to identify the 
most important predictors (Ghosh 2015).

RShiny app

The RShiny app ‘eDNA 1.0’ is freely available and can be 
accessed via the RShiny server <https://seak.shinyapps.io/
eDNA/>. However, we recommend that the app is down-
loaded via our dedicated website <https://blogs.kent.ac.uk/
edna/> and run locally. Our website includes information 
on how to download the app, in the Download tab, as well 
as simulated data and a step-by-step analysis of a simulated 
data set, in the Examples tab. The app is implemented in 
R (<www.r-project.org>), with several functions written 
in C++ for faster implementation. It also relies on a num-
ber of shiny packages: shiny (Chang et al. 2020), shi-
nythemes (Chang 2018), shinycssloaders (Sali 
and Attali 2020), shinyalert (Sali and Attali 2020) 
and shinyjs (Attali 2020), packages for creating plots: 
ggplot (Wickham 2016) and grid (<www.r-project.
org>), for running and summarising posterior simula-
tion: coda (Plummer et al. 2006), for manipulating data: 

Table 1. Parameters of the Griffin et al. (2020) model. Note that θ01s = 1 − θ11s, θ00s = 1 − θ10s, p01s = 1 − p11s, p00s = 1 − p10s, and hence our 
RShiny app only reports results in terms of the probabilities of a positive (either true or false) observation at either stage.

Name (probability of) Detailed explanation (probability that)

ψs Species presence Site s is occupied by the target species
Stage 1
 θ11s Stage 1 true positive observation A sample from occupied site s includes DNA of the target species
 θ10s Stage 1 false positive observation A sample from unoccupied site s includes DNA of the target species 
Stage 2
 p11s Stage 2 true positive observation A qPCR on a sample (from site s) that includes DNA of the target species is positive
 p10s Stage 2 false positive observation A qPCR on a sample (from site s) that does not include DNA of the target species is positive
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reshape (Wickham 2007) and dplyr (Wickham et al. 
2020) and finally, for making a beeping sound when the 
MCMC has finished running: beepr (Bååth 2018).

The app includes a detailed help section with several 
tabs that provides a step-by-step description of how to 
format the data, which need to be uploaded in a .csv file, 
how to upload the data, how to fit the model and how to 
access the results. Once the data have been uploaded, the 
user needs to specify the number of qPCR runs for each 
sample (this is assumed to be the same for all samples) and 
to select the parameters that are to be considered as func-
tions of covariates, as shown in Fig. 2. It is not necessary 
to consider covariates for any of the parameters, but the 
set of covariates uploaded will be considered as potential 
predictors for all parameters that have been specified in the 
settings window.

The settings window also allows users to change the 
number of iterations, including number of chains, burn-in 

and thinning, as well as the prior distribution parameters, 
although we would recommend that the prior settings are 
not changed unless the user has a good understanding of 
the model. Once the user clicks on Run, the app will begin 
model fitting and the iteration number will be shown in the 
bottom right corner.

The results are available in the Results tab. These include 
posterior summaries for all model parameters, or corre-
sponding coefficients of covariates for parameters that have 
been modelled as functions of covariates. All of the results 
and figures that are produced as part of the output can be 
downloaded.

The diagnostics tab produces traceplots for all model 
parameters as well as effective sample sizes (ESS) obtained. A 
message will appear to indicate if any of the parameters have 
ESS lower than 500 so a closer inspection of the traceplots 
and ESS outputted would help identify the parameters that 
are not mixing well.

Figure 1. Schematic representation of the Griffin et al. (2020) model. Unobservable states are represented by ellipses and data by rectangles. 
The parameters are defined in Table 1. The latent variable zs indicates whether site s is occupied by the target species (1) or not (0) and the 
latent variable wsm indicates whether sample m from site s includes DNA of the target species (1) or not (0). The part of the model that is 
presented in grey corresponds to how opportunistic records of species presence are modelled. Specifically, parameter π indicates the prob-
ability that an occupied site has an opportunistic record associated with it and indicator variable ks indicates whether site s is known to be 
occupied (1) or not (0).

Figure 2. Settings tab in the eDNA RShiny app.
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Example

We consider a data set on great crested newts collected by 
Natural England in 2018. M = 1 water sample was collected 
from each of S = 2215 sites and K = 12 qPCR runs were per-
formed for each water sample. A replicate was considered 
positive if an exponential growth phase was observed within 
the qPCR amplification curve. We have considered six cat-
egorical covariates and four continuous covariates (listed in 
Table 2) for the probability of occupancy, while all other 
parameters have been modelled as constant. We have also 
accounted for confirmed species presences that were available 
for 120 sites (see Fig. 1 for description on how opportunistic 
data of this type are modelled). We run 1000 burn-in itera-
tions and 2000 additional iterations with thinning set to 20. 
Fitting the model using the RShiny server took just under 2 
h, despite the large number of sites and considerable number 
of covariates considered. We note that running time depends 
on the number of sites, number of samples per site, number 
of covariates considered and of course operating system.

The app outputs posterior summaries of the site-specific 
probability of species presence, saved in a .csv file. For illus-
tration purposes, we plot these summaries for a random sam-
ple of 50 sites in Fig. 3 and provide the code for producing 
similar plots in the Help section of the app.

The PIPs for the probability of occupancy are provided 
by the app in a plot (Fig. 4). A high PIP indicates stronger 
support for a covariate as a predictor. In this case, water qual-
ity, pond area, fish presence, percentage of macrophyte cover 
and frequency of pond drying all stand out as important pre-
dictors for the probability that a pond is occupied by great 
crested newts.

Posterior summaries of the corresponding coefficients are 
given in Fig. 5, showing that, even though geographic loca-
tion and the percentage of pond that is shaded had PIPs above 
the 0.5 threshold, the 95% posterior credible intervals (PCIs) 
for the corresponding coefficients include 0. On the other 
hand, we can see that better water quality, lower pond area, 
lower levels of fish presence, higher levels of macrophytes and 
pond desiccation increase the probability of a pond being 
occupied by great crested newts. The predictors identified by 
the model and their corresponding effects are broadly con-
sistent with current understanding of the preference of great 

crested newts for vegetated, fish-free and clean water ponds 
(Oldham et al. 2000). These results demonstrate that impor-
tant predictors for the probability of species presence can be 
identified using eDNA data and our RShiny app.

Posterior summaries of the probabilities related to obser-
vation error in both stages are given in Table 3. Stage 1 is 
related to higher probabilities of false observations, either 
positive or negative, compared to stage 2. The processes by 
which samples are collected mean that it is more likely for 
DNA to fail to be collected in the field, or contamination 
to be introduced at this stage, while lab protocols are more 
tightly controlled.

Finally, the app outputs the posterior probability of species 
absence conditional on x = 0,…, K positive qPCR replicates. 
For this example, the results are shown in the first row of 
Table 4 where we can see that the posterior conditional prob-
ability of species absence is very close to 1 given four or fewer 
qPCR positives, but then it declines sharply and plateaus at 

Table 2. List of covariates considered as predictors for the probability of occupancy of great crested newts in the example. These are based 
on the Habitat suitability index proposed by Oldham et al. (2000).

Covariate Type Levels

Geographic location categorical 1 – optimal; 2 – marginal; 3 – unsuitable
Frequency of pond drying categorical 1 – never; 2 – rarely; 3 – sometimes; 4 – annually
Water quality categorical 1 – bad; 2 – poor; 3 – moderate; 4 – good
Waterfowl intensity categorical 1 – absent; 2 – minor; 3 – major 
Fish intensity categorical 1 – absent; 2 – possible; 3 – minor; 4 – major
Terrestrial habitat quality categorical 1 – bad; 2 – poor; 3 – moderate; 4 – good
Percentage pond shading numerical NA
Pond area numerical NA
Pond density numerical NA
Percentage macrophyte cover numerical NA

Figure 3. Posterior summaries of site-specific probabilities of occu-
pancy for a random sample of 50 sites.
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around 37%. The second row of Table 4 shows the posterior 
probability of x, x = 0,…, 12, positive qPCR replicates con-
ditional on species presence. This conditional distribution is 
clearly bimodal. Specifically, the posterior probability of zero 
qPCR positives given species presence is just under 10% and 
this probability decreases for x = 1, 2, 3, 4 before it starts to 
increase again reaching the second peak at x = 11 (28%). This 
bimodality is due to the observation error in stage 1: the first 
peak at 0 is a result of a stage 1 false negative observation, 
whereas the second peak is a result of a stage 1 true positive 
observation.

It is important to note that when M = 1 the model is non-
identifiable and hence the results obtained are not reliable, 
unless the probability of occupancy, ψ, or the probabilities 
of observation error in stage 1, θ11 and θ10, are modelled as 
functions of covariates. Incorporating covariates helps over-
come the identifiability issues, while an alternative solution 
is to incorporate information on confirmed species presences 
at some of the sites. These confirmed species presences can 
be, for example, opportunistic records of species presence 
while collecting samples from sites. Similarly, when K = 1, 
the probabilities of observation error, either in stage 1 (θ11 
and θ10) or in stage 2 (p11 and p10), need to be functions of 
covariates for the model to be identifiable.

Discussion

As eDNA surveys become increasingly used as monitoring 
tools, they have the potential to replace traditional survey 
methods that rely on direct observation of species, especially 
for difficult to detect species. Our RShiny app provides the 

necessary tool for researchers and practitioners to analyse 
their single-species eDNA data and obtain reliable estimates 
of site-specific probabilities of species presence while account-
ing for false positive and false negative observation error.

Unlike previous R-packages for fitting multi-scale occu-
pancy models that have been applied to eDNA data (Dorazio 
and Erickson 2018, Stratton et al. 2020), our implemen-
tation of the Griffin et al. (2020) model is novel in that it 
enables the estimation of false positive as well as false negative 
observation errors, both of which are known to be non-negli-
gible in eDNA surveys. In addition, our RShiny app enables 
efficient Bayesian variable selection, which works well even 
when the number of predictors to be considered is large.

In terms of professional practice and conflicts involving 
the presence of protected species, a court of law may demand 
‘proof ’. Expressing presence/absence in terms of eDNA detec-
tion probabilities may therefore create uncertainties in making 
important decisions. As discussed by Griffiths et al. (2015), 
we urge practitioners to interpret ‘probability’ in terms of ‘risk’ 
level when it comes to decision-making. Ultimately, the level 
of certainty that is acceptable will therefore depend on the 
risk appetite for the decision concerned. Either way, ignor-
ing uncertainty altogether is very high risk, as it is inherently 

Figure 4. PIPs for the probability of occupancy. The horizontal line 
indicates the PIP = 0.5 line.

Figure 5. Posterior summaries of the coefficients of covariates for the 
probability of occupancy.

Table 3. Posterior summaries of the probabilities of a positive obser-
vation, true or false, in both stages of the survey.

Parameter Mean (95% PCI)

θ11 0.867 (0.802, 0.922)
θ10 0.078 (0.004, 0.145)
p11 0.862 (0.851, 0.872)
p10 0.026 (0.023, 0.028)
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present in all ecological sampling, whether it is estimated or 
not. We therefore recommend that practitioners embrace 
models that estimate detection probability and the risk of false 
positives and false negatives as a matter of course.

To cite RShiny app or acknowledge its use, cite this 
Software note as follows, substituting the version of the appli-
cation that you used for ‘version 1.0’:
Diana, A. et al. 2021. An RShiny app for modelling environmental 

DNA data: accounting for false positive and false negative 
observation error. – Ecography 44: 1838–1844 (ver. 1.0).
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