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Abstract: Cryo-electron microscopy has greatly advanced our understanding of how the spliceosome
cycles through different conformational states to conduct the chemical reactions that remove introns
from pre-mRNA transcripts. The Cryo-EM structures were built upon decades of crystallographic
studies of various spliceosomal RNA-protein complexes. In this review we give an overview of the
crystal structures solved in the Nagai group, utilizing many of the strategies to design crystal packing
as described in the accompanying paper.

Keywords: crystallization; RNA-protein complexes; spliceosome

1. Introduction

The spliceosome is a dynamic macromolecular “machine” responsible for removing
introns and splicing together exons from eukaryotic precursor-mRNA transcripts (pre-
mRNAs). The spliceosome comprises five large RNA-protein complexes or Uridine-rich
small nuclear ribonucleoprotein particles (U snRNPs). Each U snRNP is named after
its snRNA component (U1, U2, U4, U5, and U6 snRNAs), and collectively they contain
approximately 170 proteins. Other than the seven Sm proteins that are commonly found in
U1, U2, U4, and U5 snRNPs forming the core domain, most proteins are specific to each U
snRNP. These U snRNPs assemble onto specific regions of the pre-mRNA and participate
through different states of the splicing cycle [1] (Figure 1A). The E complex forms when U1
snRNP binds to the 5′ exon-intron boundary or splice site (5′ss). The binding of U2 snRNP
at an invariant adenosine within the intron establishes the pre-spliceosome A complex.
The recruitment of the U4/U6-U5 tri-snRNP forms the pre-B spliceosome. Afterward,
the spliceosome undergoes dynamic remodeling via multiple conformational changes
to allow for catalysis (two trans-esterification reactions) to occur (See review Wilkinson,
2020). Since the “resolution revolution” of electron cryo-microscopy or Cryo-EM [2,3], high-
resolution structures of the spliceosome in different states of the splicing cycle have been
reported (http://spliceosomedb.ucsc.edu/structures, accessed on 11 August 2021). These
structures have dramatically increased our understanding of the molecular mechanism of
RNA splicing (see reviews [4–6]). Crystal structures of spliceosomal components solved
previously were fit into the Cryo-EM maps, thereby greatly facilitating model building
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(Figure 1B). Here, we review the Nagai group’s effort in solving X-ray structures of RNA-
protein spliceosomal complexes utilizing crystal packing design strategies discussed in the
accompanying paper [7].
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Figure 1. (A) The spliceosome in different catalytic states as revealed by Cryo-EM. Shown are the schematics of the pre-
mRNA and the silhouettes of each splicing complex from Cryo-EM structures. Proteins involved in remodeling the spliceo-
some are not included. NTC/NTR are protein complexes that help sculpt the active site of the spliceosome together with 
U2, U5, and U6 snRNPs. Prespliceosome (E, A complex): U1 snRNP recognizes the 5′ splice site (5′ss) forming the E complex. 
U2 snRNP recognizes and the invariant adenosine on the branch point (purple box) forming the A complex. Precatalytic 

Figure 1. (A) The spliceosome in different catalytic states as revealed by Cryo-EM. Shown are the schematics of the
pre-mRNA and the silhouettes of each splicing complex from Cryo-EM structures. Proteins involved in remodeling
the spliceosome are not included. NTC/NTR are protein complexes that help sculpt the active site of the spliceosome
together with U2, U5, and U6 snRNPs. Prespliceosome (E, A complex): U1 snRNP recognizes the 5′ splice site (5′ss) forming
the E complex. U2 snRNP recognizes and the invariant adenosine on the branch point (purple box) forming the A
complex. Precatalytic spliceosome (Pre-B, B Complex): The U4/U6.U5 tri-snRNP enters to form the Pre-B complex and the
helicase-dependent dissociation of U1 snRNP generates the B complex. Activated spliceosome (Bact-Complex, B*, C, C*): Further
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helicase-dependent remodeling releases U4 snRNA and U4/U6 di-snRNP proteins, which allow U6 snRNA to refold with
U2 snRNA and the pre-mRNA into a catalytic active conformation, allowing the 2-step splicing reactions to occur. In step 1,
the 2′-OH of the branch point adenosine attacks the phosphorous of the 5′ss to form the lariat intron. In step 2, the 3′-OH
of the cleaved 5′ss attacks the phosphorous of the 3′ss to form the ligated mRNA. Postspliceosomal complex (P complex):
Helicase-dependent release of the ligated exons. Disassembly of the spliceosome: Helicase-dependent release of intron lariat
and recycling of U snRNPs. (B) Secondary structures of the U snRNAs and a summary of crystal structures of spliceosomal
RNA-protein complexes determined by the Nagai lab from 1994 to 2015. The U snRNPs share seven common Sm proteins
that assemble on the Sm site (in red solid box). Blue dots represent the tri-methylguanosine cap. U6 snRNA does not have
an Sm site but instead contains a U-rich tail that is bound by seven paralogs of the Sm proteins (LSm 2–8). U1A/U1-SLII:
the hairpin loop II of U1 snRNA bound to the U1A protein was determined to be 1.92 Å in 1994. U2′AB′′/U2-SLIV: the
hairpin loop IV of U2 snRNA bound to the U2 specific proteins U2A′ and U2B′′ was determined to be 2.38 Å in 1998. U4
core: the core domain structure of the U4 snRNP containing two stem loops flanking the Sm site and seven Sm proteins
was determined in stages to the final refined structure at 3.6 Å (2005, 2011, 2016). U1 snRNP: The first U1 snRNP structure
was determined without U1A and the hairpin loop II to be 5.5 Å in 2009. The minimal snRNP, with the four-way junction
replaced by a stem loop and the N-terminal U1-70K peptide fused to SmD1, which was determined to be 3.3 Å in 2015.
U1A70K: the hairpin loop I of U1 snRNA bound to U1-70K was determined to be 2.50 Å in 2015.

2. Determining Spliceosomal Protein-Hairpin Structures

The hairpin loop II bound to protein U1A (U1A/U1-SLII) from the U1 snRNP and
hairpin loop IV bound to the two proteins U2A′/B′′ (U2A′B′′/U2-SLIV) from the U2
snRNP were the first structures of spliceosomal RNA-protein complexes the Nagai group
elucidated [8]. One challenge for hairpin loops is that the RNA has a high affinity to
form a self-dimer, instead of folding into a hairpin structure that can be bound by the
protein. Therefore, optimizing an annealing protocol to ensure proper folding of the
RNA and an assay that can confirm binding of the protein is the first requirement before
engineering crystal packing [9]. In these projects, the rationale for RNA engineering
involved optimizing end-to-end packing of the stem by creating overhangs and optimizing
its length and sequence. For both structures, extensive protein engineering was performed
in combination with different RNA constructs [9–11].

For the U1A/U1-SLII crystal structure, the construct combination that yielded diffract-
ing crystals were a 21-nt RNA composed of the hairpin loop with a single U overhang at
the 3′ end (Figure 2E) and an U1A construct with two surface mutations [10]. One of the
U1A mutations was engineered to disrupt a crystal contact that predominated a poorly
diffracting crystal form, and the other (Y31H) was engineered serendipitously through
a PCR error [10]. In the final 1.92 Å crystal structure, the three complexes (P/A, Q/B,
and R/C; named after their chain IDs), related by an NCS 3-fold, were present in the
asymmetric unit [12] (Figure 2A). Only protein-protein interactions were involved at the
NCS interface. The end-to-end RNA packing did not occur as designed. Nevertheless,
the ends of the duplex did make critical crystal contacts. The RNA-RNA contacts made
by each NCS complex and its symmetry-related partners were slightly different. In gen-
eral, the backbones of the RNA stems made a series of ribose-zipper-like interactions,
in which the 2′OH from one RNA duplex hydrogen bonded with the sugar edge base
from another duplex (Figure 2B). The sticky 3′ U21 was only fully ordered in one NCS
copy and Watson-Crick (WC) base pairing of the last bp (1A:20U) was not consistently
present. The accidental mutation Y31H made several key crystal packing interactions. The
P/A complex interacted with three symmetry-related molecules of the Q/B and R/C com-
plexes (Figure 2B). In the P/A complex, instead of base pairing between A1 and U20, each
nucleotide interacted separately with Y31H from the two symmetry-related complexes,
causing this pair to split up. U20 from the P/A complex hydrogen bonded with ND1 of
Y31H from one symmetry-related Q/B complex (Sym2), which, in turn, stacked with the
1A:20U end pair of another symmetry-related Q/B complex (Sym1). On the other strand,
the unpaired A1 was stabilized by Y31H from the symmetry-related R/C complex, making
stacking interaction to the base (Figure 2B).
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Figure 2. Hairpin structures of U1-SLII and U2-SLIV. (A-B) U1A/U1-SLII (PDB:1URN). (A) Three NCS copies related by a 
3-fold axis are present in the asymmetric unit. The complex is named after the chain ID. A, B, C: U1A and P, Q, R: U1-SLII. 
Only protein-protein interactions are observed between the NCS complexes. (B) Close up of the protein-RNA interaction 
between the NCS copies. The Y31H splits open the end pair (A1:U20) of the stem loop of P/A. (C-D) U2A’B”/U1-SLIV 
(PDB:1A9N). (C) Two NCS copies are present in the asymmetric unit. The complex is named after the chain ID. A, C:U2-
A’; B, D:U2-B”; Q, R:U2-IV. Interactions between U2-A’ are the only contacts between the NCS complexes. (D) The se-
quence A14, C15, C16 at the 3′ end of the loop forms a step ladder structure. A14 forms a Hoogsteen to WC base pair with 
the 3′ sticky U23. (E) The hairpin loop sequence of U1-SLII and U2-SLIV. The 5′ 6 nt loop sequence (in red) are identical 
between the two RNAs whereas the 3′ loop sequence confers binding specificity. Engineered sequence is colored in gray. 

U2B” is homologous to U1A, and its binding to the stem loop U2-SLIV requires U2A’. 
The 6-nt (AUUGCA) at the 5′ end of the U2-SLIV hairpin loop is identical to that of U1-
SLII (Figure 2E). Utilizing similar strategies to optimize end-to-end packing of the RNA 

Figure 2. Hairpin structures of U1-SLII and U2-SLIV. (A-B) U1A/U1-SLII (PDB:1URN). (A) Three NCS copies related by a
3-fold axis are present in the asymmetric unit. The complex is named after the chain ID. A, B, C: U1A and P, Q, R: U1-SLII.
Only protein-protein interactions are observed between the NCS complexes. (B) Close up of the protein-RNA interaction
between the NCS copies. The Y31H splits open the end pair (A1:U20) of the stem loop of P/A. (C-D) U2A′B′′/U1-SLIV
(PDB:1A9N). (C) Two NCS copies are present in the asymmetric unit. The complex is named after the chain ID. A, C:U2-A′;
B, D:U2-B′′; Q, R:U2-IV. Interactions between U2-A′ are the only contacts between the NCS complexes. (D) The sequence
A14, C15, C16 at the 3′ end of the loop forms a step ladder structure. A14 forms a Hoogsteen to WC base pair with the 3′

sticky U23. (E) The hairpin loop sequence of U1-SLII and U2-SLIV. The 5′ 6 nt loop sequence (in red) are identical between
the two RNAs whereas the 3′ loop sequence confers binding specificity. Engineered sequence is colored in gray.

U2B” is homologous to U1A, and its binding to the stem loop U2-SLIV requires U2A′.
The 6-nt (AUUGCA) at the 5′ end of the U2-SLIV hairpin loop is identical to that of U1-SLII
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(Figure 2E). Utilizing similar strategies to optimize end-to-end packing of the RNA stems,
the final RNA construct used to crystallize U2-SLIV/U2A’B” complex had 24 nts and a
3′ U overhang to create a sticky end. The final 2.38 Å crystal structure contained two
ternary complexes (Q/A/B and R/C/D, named after their chain IDs) interacting with each
other via the U2-A’ protein in the asymmetric unit (Figure 2C). Similar to the case for the
U1-SLII/U1A structure, end-to-end duplex packing did not occur. However, the 3′ sticky
end nucleotide U23 did make key crystal packing contacts interacting with the hairpin
loop sequence that confers binding specificity discriminating between U1A and U2A′/B′′

(Figure 2D). The crystal structure of U1-SLII/U1A showed that the last 3 nts of the loop
sequence (UCC) did not contact the protein and in two NCS copies, these nucleotides were
disordered (Figure 2E). In contrast, the 3′ loop nucleotides of U2-SLIV/U2A′B′′ (UACC)
made extensive interactions with the protein and nucleotides A14, C15, C16 formed a step
ladder facing the solvent (Figure 2D,E). The Watson edge of the 3′ sticky U23 formed a WC
to Hoogsteen bp with A14 (Figure 2D).

In summary, these early spliceosomal hairpin structures foretold the reality of engi-
neering crystal contacts, in that the packing may not occur as designed but the engineered
element still interacted with specific structural motifs available in each complex. Most
importantly, these projects led to the development of an in vitro transcription system
that allowed us to create large quantities of RNA with homogeneous ends, setting the
stage for more complicated RNA engineering for the next series of larger RNA-protein
complexes [13].

3. Utilizing the Tetraloop and Tetraloop Receptor RNA Motif to Crystallize the U4
snRNP Core Domain

The core domain is a common structural scaffold present in U1, U2, U4, and U5
snRNPs. The RNA components of these snRNPs share a conserved single-stranded region
called the Sm site upon which the seven Sm proteins (D1, D2, D3, B, E, F, and G) are
assembled (Figure 3). To visualize the architecture of this recurrent structural domain, the
quest to crystallize the core domain began. Prior to this work, crystal structures of two
sub-complexes of the core domain, the D1D2 and D3B heterodimers, revealed a common
fold and protein interface between the Sm proteins [14]. By incorporating these building
principles with biochemical data, a ring model comprising the seven Sm proteins was
proposed [14]. How the heptameric ring recognizes the Sm site specifically and the location
of the flanking RNAs were unknown. The U4 snRNP core domain was selected because
the Sm site of the U4 snRNA is immediately flanked by two stem loops, whereas other
U snRNAs have longer single-stranded regions that may induce flexibility undesirable
for crystallization (Figure 1B). With the in vitro transcription system that allowed us to
efficiently prepare any RNA sequence for crystallization in place, we first generated the
truncated U4 snRNA (SLII + Sm site + SLIII) with native sequence (Figure 3A). No crystals
were obtained with core domain complex reconstituted with this RNA or with a construct
where the stems were shortened and capped with GNRA tetraloops (TL) [15]. Next, we
designed a series of constructs with engineered crystal packing motifs at different positions
on the stem. The native sequence was maintained for the bottom 6–7 bp of the stem as
we rationalized that the region close to the Sm site may make critical interactions with
the core ring. We obtained several different crystal forms with constructs containing
a tetraloop and its tetraloop receptor (TLR) on each stem to promote a “head-to-tail”
interaction as described previously [15]. The best crystal diffracted anisotropically to 3.4
Å along c* but only 4 Å normal to it. The final crystal structure of the U4 snRNP core
domain contained seven Sm proteins bound to the truncated U4 snRNA with the tetraloop
on the 5′ SLII and its receptor engineered on the 3′ SLIII (Figure 3B). The tetraloop and
its receptor interacted as designed, bringing together the core rings to stack rim-to-rim
in a column along the c-axis (Figure 3F). Interactions between the core rings involved
mostly van der Waals contacts. Therefore, the long-range interactions between the inserted
TL/TLR motifs were responsible for contacts in directions perpendicular to the c-axis to
establish the three-dimensional lattice. The engineered contacts were strong and allowed
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the crystals to diffract to high resolution. The crystal belonged to the space group P31 with
12 complexes in the asymmetric unit. The complexes were packed as six distinct pairs via
the engineered crystal contacts. The 5′ TL from one complex (A) interacted with the 3′ TLR
of an NCS-related complex (B) and the 3′ TLR of complex A interacted with the 5′ TL of
the crystallographic symmetry-related complex B (Sym-B) (Figure 3E).

The placement of the TL and its TLR allowed the stem loops to interact consistently,
but also with room to accommodate variations in the tilt angle relative to the plane of
the core ring. The angle of the 5′ SLII varied from 21.9◦ to 34.7◦ (∆12.8◦), whereas the 3′

stem varied from 46.4◦ to 54.1◦ (∆7.7◦) (Figure 3D). The tilt angle variation allowed for
an optimal protein-protein interaction between the heptameric rings packed in columns
along crystal’s c-axis (Figure 3F). However, the combination of the TL/TLR being the
only interactions coupled to the variable tilt angle between the stem loops could have
contributed to the weaker anisotropic diffraction in the ab plane and the tetartohedral
twinning that made structure determination challenging [16,17]. Based on the packing
of this crystal form, further attempts to engineer the RNA by introducing more motifs to
stabilize the 5′ stem continued. We tried inserting the paromomycin binding site containing
two flip-out adenines to promote potential lateral contacts of the 5′ SLII and adding a 5′

single strand extension carrying a triple G motif that had the potential to form a quadruplex
crystal contact [7]. Although new crystal forms were obtained with these new constructs,
they did not improve diffraction [15]. Nonetheless, the U4 core domain structure refined
against a 3.6 Å data set provided important biological insights into the core domain. It
revealed the mechanism of Sm site recognition and how the RNA threaded through the
central hole with the 5′ SLII and 3′ SLIII located on the flat face and tapered face of the
core ring, respectively [16,17] (Figure 3C). Upon exiting out of the core ring, the 5′ SLII
bends over to the D2/D1/B sector on the flat face of the core ring (Figure 3C). Although
the D2/D1/B sector has a more electropositive potential (colored blue in Figure 3C),
electrostatic interaction cannot be responsible for the bending because of the large vertical
distance between the backbone of the 5′ SLII stem and the core ring (Figure 3D). Therefore,
the direction of bending is constrained by non-canonical base pairing in the ring-proximal
segment, which includes the GU wobble pair, the single U asymmetric internal loop, and
the AG pair (Figure 3B boxed). In subsequent structures of larger spliceosomal complexes,
the bending of the 5′ stem toward the D2/D1/B sector is maintained in the U4 snRNP with
native sequences [18,19]. The NCS copy with the most bent 5′ stem is the only complex
that fitted the U4/U6.U5 tri-snRNP Cryo-EM map [18]. Although U1, U2, and U5 snRNAs
have variable RNA structures 5′ to the Sm site compared to U4 snRNA, their backbones
also curve toward the D2/D1/B sector of their respective core domains (Figure 4) [18–23].
The curvature could be governed by their own RNA structural elements and stabilized by
interaction with the N- and C-terminal extensions of D2/D1/B located on the flat face of the
core ring. The extensions can be adapted to provide additional contacts to accommodate
different RNA structures, particularly the functionally important RNA elements located
5′ to the Sm site in all U snRNAs (Figure 1A). The pliability of these N- and C-terminal
extensions is demonstrated in the core domains of U4 and U1 snRNPs. In the U4 core
domain structure, the N-terminal extension (H0) of D2 was ordered into a helix in several
NCS copies while others remained disordered. Whether or not H0 made contact with the
RNA seemed to be dependent on the degree of RNA bending [16,17]. In the U1 snRNP
structure, which has an intact 4-way junction 5′ to the Sm site, the H0 of D2 appeared as an
ordered long helix to contact the RNA [24]. The coordinates of the U4 snRNP core domain
(4WZJ) have been used as the model template to build the core domains of U2, U4, and U5
snRNPs in all subsequent Cryo-EM structures [18–22].
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Figure 3. (A) Native sequence of the 3′ end of the U4 snRNA. (B) U4 construct used in the crystal structure. Highlighted in
green is the GAAA tetraloop (TL), in purple is another stable GRNA tetraloop, and in blue is the GAAA receptor (TLR).
The Sm site nucleotides that interact around the inner pore of the core ring is highlighted in red. Each Sm site nucleotide
interacts in the binding pocket of the Sm protein depicted underneath. (C) One complex of the U4 snRNP core domain. The
5′ SLII carrying the GAAA tetraloop is located on the flat face of the core ring and the 3′ SLIII carrying the TLR is located on
the tapered face of the core ring. The 5′ SLII bends over the D2/D1/B sector of the ring. The surface color represents the
electric potential of the surface (blue: positive, red: negative). (D) Superposition of the 12 NCS copies showing the stem
loops have variable tilt angles relative to the plane of the core ring. The plane and the axes were drawn using Chimera. The
plane was drawn by selecting the first residue after helix 1 of each Sm-fold. The orientation of the superposition is adjusted
slightly from that shown in Figure A to better highlight the tilt angles of the RNA stems. (E) One example of the TL/TLR
interactions between symmetry pairs. Twelve complexes packed as six distinct pairs are in the asymmetric unit. On the flat
face, the 5′ TL of complex A interacts with the 3′ TLR of the NCS complex B. On the tapered face, the 3′ TLR of complex A
interacts with another complex B related by crystallographic symmetry. (F) The TL/TLR interactions combines the core
rings to pack rim-to-rim along the c axis.



Crystals 2021, 11, 948 8 of 15
Crystals 2021, 11, 948 8 of 16 
 

 

core domain (4WZJ) have been used as the model template to build the core domains of 
U2, U4, and U5 snRNPs in all subsequent Cryo-EM structures [18–22]. 

 
Figure 4. The 3.3 Å Cryo-EM structure of Pre-B spliceosome captured before U1 snRNP dissociates (PDB:6QX9). The model 
is depicted in ribbons representation. The D2/D1/B sector of the four core domains is colored in red and D3/G/E/F is colored 
in bright green; all other protein components are colored in grey. U1 snRNA (yellow), U2 snRNA (purple), U4 snRNA 
(light blue), U5 snRNA (dark blue), U6 (orange), and pre-mRNA (cyan). The functionally important RNA structures all 
bend toward the D2/D1/B sector. Thus, the direction of the RNA backbone 5′ to the Sm site is significant in positioning 
structural elements that eventually form the catalytic active site. 

4. Utilizing the Kissing Loop Motif to Crystalize U1 snRNP 
The U1 snRNP recognizes the 5′ splice site of a pre-mRNA to form the spliceosomal 

E complex via base-pairing with the 5′ end of U1 snRNA. In addition to the seven Sm 
proteins of the core domain, human U1 snRNP (~240 kDa) has three additional proteins: 
U170K, U1A, and U1C. Flanking the single-stranded Sm site of the U1 snRNA is one stem 
loop (SL-IV) on the 3′ side and four stem loops (SL-I-III and H) connected by a four-way 
junction, which co-axial stack, on the 5′ side (Figure 5A).  

In a biochemical tour-de-force, all ten proteins of human U1 snRNP were produced 
by heterologous expression in bacteria and reconstituted with an in vitro transcribed U1 
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crystallization; however, the fully recombinant particle did not yield crystals when a sig-
nificant number of particle variants were generated. It was previously shown that the pro-
tein U1A was dispensable for U1 snRNP activity [28,29] and therefore, a variant of the 
recombinant particle was reconstituted lacking U1A. In addition, a ‘kissing loop’ motif 
was introduced in U1 snRNA in place of the U1A binding site on U1 snRNA. Specifically, 
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Figure 4. The 3.3 Å Cryo-EM structure of Pre-B spliceosome captured before U1 snRNP dissociates (PDB:6QX9). The model
is depicted in ribbons representation. The D2/D1/B sector of the four core domains is colored in red and D3/G/E/F is
colored in bright green; all other protein components are colored in grey. U1 snRNA (yellow), U2 snRNA (purple), U4
snRNA (light blue), U5 snRNA (dark blue), U6 (orange), and pre-mRNA (cyan). The functionally important RNA structures
all bend toward the D2/D1/B sector. Thus, the direction of the RNA backbone 5′ to the Sm site is significant in positioning
structural elements that eventually form the catalytic active site.

4. Utilizing the Kissing Loop Motif to Crystalize U1 snRNP

The U1 snRNP recognizes the 5′ splice site of a pre-mRNA to form the spliceosomal
E complex via base-pairing with the 5′ end of U1 snRNA. In addition to the seven Sm
proteins of the core domain, human U1 snRNP (~240 kDa) has three additional proteins:
U170K, U1A, and U1C. Flanking the single-stranded Sm site of the U1 snRNA is one stem
loop (SL-IV) on the 3′ side and four stem loops (SL-I-III and H) connected by a four-way
junction, which co-axial stack, on the 5′ side (Figure 5A).
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Figure 5. (A) Native sequence of U1 snRNA. (B) Construct used to crystallize the first U1 snRNP.
The base pairing between the kissing loop is depicted in cyan and orange. (C) Experimental electron
density map of U1 snRNP at 5.5 Å. Density for the major and minor grooves of the kissing loop
helices and the U1/5′ss helices is clear. (D) The packing arrangement of U1 snRNP for the P1 crystal
form (PDB:3CW1). The four NCS complexes are related by three orthogonal 2-fold symmetry axes
(shown as gray rods). The kissing loop interactions are formed along one 2-fold. The 5′ strand of the
U1 snRNA base pair with its NCS-related partner along another 2-fold axis, mimicking the U1/5′ss
interaction. (E,F) Summary of the next series of constructs modified to improve diffraction quality of
the P1 crystal form. Examples of constructs with modified 5′ end (E) and modified SL-III (F).

In a biochemical tour-de-force, all ten proteins of human U1 snRNP were produced
by heterologous expression in bacteria and reconstituted with an in vitro transcribed U1
snRNA. This complex was purified and shown to be functional [25,26]. Using native gel
electrophoresis and mass spectrometry, we further characterized this fully recombinant
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complex and showed it be compositionally homogeneous [25–27]. This set the stage for
crystallization; however, the fully recombinant particle did not yield crystals when a
significant number of particle variants were generated. It was previously shown that the
protein U1A was dispensable for U1 snRNP activity [28,29] and therefore, a variant of the
recombinant particle was reconstituted lacking U1A. In addition, a ‘kissing loop’ motif was
introduced in U1 snRNA in place of the U1A binding site on U1 snRNA. Specifically, a
U1 snRNA variant used for crystallization had a truncated U1-SLII capped with a kissing
loop motif that has only two cross-strand Watson-Crick GC base pair between two RNA
molecules (2KL) [7,30] (Figure 5B). Initially, needle-shaped crystals were grown (only at
4 deg C), which appeared after two hours but dissolved soon after. Examination of the
mother liquor revealed that the U1 snRNA was degraded. Further purification yielded
more stable crystals, but they did not diffract in-house. Improved crystals were generated
by seeding using cat whiskers. Ultimately, the best crystal form of the human U1 snRNP
diffracted to 5–6 Å [24]. Initial phases were obtained from MAD phasing with a Ta6Br12
derivative. The kissing loop interaction was evident in a 5.5 Å experimental map, as
RNA is more electron dense (Figure 5C). The crystal belonged to the space group P1 with
four complexes related by three orthogonal 2-fold symmetry axes (222 symmetry) in the
asymmetric unit (Figure 5D). Two kissing loop interactions formed along one of the 2-fold
axes. The 222 symmetry also resulted in a helix formed by the complementary base pairing
of the 5′ end of the U1 snRNA and its symmetry-related partner, thus mimicking how
the 5′ end of U1 snRNA could recognize the 5′ss of the pre-mRNA (Figure 5D). The final
structure, built into a multi-domain, multi-crystal averaged 5.5 Å map, revealed the first
glimpse of the arrangement of the RNA and protein components of the U1 snRNP [24].
This was achieved by a significant use of anomalous scatters (from seleno-methionine,
mercury derivatives, and a single zinc) to build protein into the electron density map [31].
The structure also explained how U1C stabilizes the interaction between a 5′ss and U1
snRNA and how U1-70K facilitates this interaction via its long unstructured N-terminus.
The structure was of such high quality that it was possible to use it to guide the engineering
of a disulfide cross-link between a 5′ss nucleoside and a proximal cysteine in U1-C [32].

Significant effort was taken to improve the diffraction of the crystals by altering the
number of base pairs in the SL-II, with no success. In order to obtain better diffracting
crystals so as to understand the detailed molecular recognition mechanism of the 5′ ss by
U1-C, substantial effort was made to further engineer the U1 snRNA based on the 5.5 Å
crystal structure. We first attempted to improve the crystal packing by modifying the 5′-end
sequence. We tried changing the length of the 5′-end and adding different palindromic
motifs that can self-fold into a stem loop structure capped with a tetraloop or the KL motif
(Figure 5E). Subsequently, we tried constructs with native U1-SLII sequence and added back
different variants of the U1A protein to the complex, with the hope that the U1A/U1-SLII
module will promote more desirable crystal packing [7]. We also attempted to modify U1-
SLIII by changing its length and moving the 2KL motif from U1-SLII to U1-SLIII (Figure 5F).
In order to design stronger crystal packing, we also tested another kissing loop motif from
the dimerization initiation site (DIS) of the HIV-1 genome (DIS-KL) (Figure 5F) [33]. The
DIS-KL motif forms a kissing loop complex with more extended base pairs (6 vs. 2 bps);
it also has two bulged adenines that can facilitate additional lateral contacts between the
stems [7]. While U1 snRNPs reconstituted with these various engineered RNA constructs
were crystallizable, we were not able to improve the resolution. The best diffracting crystal
with the 2KL motif placed on U1-SLIII with U1A/U1-SLII produced a ~6.6 Å map and
showed the scissoring motion of the 4-way junction. The flexibility of the junction and
our failed attempts to improve resolution after extensive engineering of the U1 snRNP
complex gave us the justification to try more artificial constructs, lacking the 4-helix junction.
Eventually, the best diffracting crystals were obtained from a “minimal” U1 snRNP in
which the entire 4-helix junction was replaced by one stem loop capped by the DIS-KL
motif (Figure 6D). The truncation removed the U1-SLI, the major binding site of the RNA
binding domain (RBD) of U170K (residues 100–180), thus drastically reducing the binding
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affinity of U170K to the particle. Based on backbone tracing using Se-Met anomalous
signals of single Se-Met mutants of U170K obtained from the low diffracting crystal form,
Pomeranz Krummel et al. modeled the N-terminus of U170K wrapping around the core
ring as an unstructured peptide to create a critical interaction with U1C near the 5′ss,
consistent with the previous report that showed the N-terminal region of U170K is crucial
for U1C assembly [34]. To ensure the incorporation of the U1C protein to the minimal
U1 snRNP and reveal the molecular mechanism of how the U1C protein stabilizes the
5′ss binding, the N-terminal 59 residue peptide of U170K was fused to the core protein
SmD1. The fusion construct was designed based on the 5.5 Å crystal structure in which the
C-terminal end of the unstructured peptide of U170K was mapped nearest to SmD1. This
extensive engineering resulted in crystals that diffracted to 3.3 Å [35]. The crystal structure
of the minimal U1 snRNP belonged to P212121, with four complexes in the asymmetric unit.
Only protein-protein contacts were observed between the NCS complexes. In contrast,
RNA-RNA contacts occurred between complexes related by crystallographic symmetry.
Each NCS complex formed a repetitive pattern of kissing loop and continuous end-to-end
stacking of the 5′ss/U1 duplex with the corresponding crystallographic symmetry-related
complex (Figure 6A,C). The DIS-KL interactions occurred at the crystallographic 2 folds
(Figure 5C). However, unlike the original crystal structure of the DIS-KL complex in which
two purines 5′ to the 6-nt kissing WC pairing flipped out and stacked with a neighboring
duplex [7,33], only one of the purines bulged out to stack with the equivalent nucleotide of
the kissing complex. The other purine formed a non-canonical base pair with the unpaired
A 3′ to the 6-nt kissing WC pairing (Figure 6B). The minimal U1 snRNP crystal structure
co-crystallized with a consensus 5′ss oligonucleotide, thus uninfluenced by possible crystal
packing of how U1 snRNP recognizes the 5′ss. In addition, the 2.5 Å atomic structure
of the remaining U170K (residues 60–216) protein was determined as part of the ternary
complex with an RNA fusion construct that had its cognate U1-SLI and the U1A bound
U1-SLII, the latter was introduced to promote crystal contacts. U1A participated in crystal
packing, interacting with the RRM of U170K. Thus, the detailed atomic architecture of how
U1C and U170K stabilize the U1 snRNP/5′ss duplex was finally revealed from these two
substructures [35]. The coordinates of both of these U1 snRNPs structures (3CWJ and 4PJO)
have been used as the model templates to dock into the pre-B complex of the spliceosome,
which reveals the mechanism of how the 5′ss is transferred from U1 snRNP to U6 snRNA
in the activated spliceosome [19].

The goal of crystal engineering is to remove structural heterogeneity by deleting flexi-
ble regions or introducing crystal contacts to reduce the degree of freedom of certain parts
of the molecule. The limitation of the strategy is that the flexibility may have biological
significance. In the Nagai group’s decades-long effort toward the structural understanding
of the spliceosome, informed decisions were made to engineer various complexes based on
available biochemical data at the time. In the case for U1 snRNP, the hairpin U1-SLII/U1A
fragment was the first RNA-protein complex determined [12]. However, this substructure
was removed to introduce the kissing loop that led to the first successful crystal structure
of U1 snRNP [24]. Removing the U1A binding site on the U1-SLII significantly shortened
U1-SLII (Figure 5A,B), which would reduce potential structural heterogeneity contributed
by multiple orientations of the distal end of the U1-SLII relative to the 4-way junction.
Subsequent extensive engineering effort further confirmed that U1-SLII/U1A is inherently
flexible as U1-SLII are in different orientations in three available crystal structures that con-
tain this stem-loop (no U1-A at 5.5 Å [24], PDB: 3CW1; with U1-A at 4.4 Å [23], PDB:3PGW;
and with U1-A at 6.6 Å [36]). Canonical splicing does not require U1A [28,29], but more
recent biochemical data shows that it plays a role in recruiting U1 snRNP in alternative
splicing [37,38]. Although the effect of U1-SLII truncation on alternative splicing was
not assayed for in our work, the combined structures can rationalize how the flexibility
of U1-SLII/U1A is functionally required to accommodate alternative splicing in differ-
ent cellular conditions. With newer biochemical data, it is conceivable to design a more
conformationally homogeneous U1 snRNP in a functional context that necessitates the
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rigidity of U1-SLII/U1A. For example, the SAM68 protein promotes alternative splicing
of the gene mTor by recruiting U1 snRNP specifically to intron 5. By binding to its target
intronic sequence near the 5′ss and interacting with U1A, SAM68 helps recruit and stabilize
U1 snRNP to intron 5 [37]. U1 snRNP in complex with SAM68 and an RNA fragment
containing the 5′ss and SAM68 binding site may be a plausible future U1 snRNP design
that can result in a higher resolution structure, which can shed light on how the structural
plasticity of U1 snRNP enables alternative splicing.

Crystals 2021, 11, 948 12 of 16 
 

 

 
Figure 6. (A) The packing arrangement of the minimal U1 snRNP in the P212121 crystal form 
(PDB:4PJO). Four NCS complexes (Complex 1–4) are present in the asymmetric unit. Complexes 3 
and 4 are located behind the page. Only protein-protein interactions are observed between the NCS 
complexes. Kissing loop interactions (KL) and end-to-end packing of the 5′ss/U1RNA helix (H) are 
the main crystal packing interactions occurring in this crystal form. Two sets of interactions are 
depicted in this figure. Complex 1 forms a KL interaction with the symmetry-related Complex 2 and 
a continuous duplex stacking with the symmetry-related Complex 3. Complex 2 forms a KL inter-
action with the symmetry-related Complex 1 and a continuous duplex stacking with the symmetry-
related Complex 4. An example of this cyclical packing arrangement is summarized in C. (B) An 
example of the KL interaction formed between Complex 1 and the symmetry-related Complex 2. 
Unlike the original DIS kissing loop complex crystal structure (PDB:1XPE), in which two bulged 
purines form crystal contacts lateral to the stems, only one purine is bulged out to stack with the 
equivalent nucleotide. The other purine forms a non-canonical base pair with the unpaired A 3′ to 
the 6-nt kissing loop complex. (C) An example of the packing arrangement involving kissing loops 
(KL) and continuous end-to-end stacking of the 5′ss/5′U1 duplex (H). Complex 1 interacts with 2–4 
in the NCS via protein contacts only. Each NCS complex makes the same packing arrangement with 
the same set of symmetry-related complexes. The text color for each complex is the same as those 
depicted in A. Text color in black are complexes that are not shown in A. (D) Secondary structure 
of the RNA construct used in the P212121 crystal form. 

The goal of crystal engineering is to remove structural heterogeneity by deleting flex-
ible regions or introducing crystal contacts to reduce the degree of freedom of certain parts 
of the molecule. The limitation of the strategy is that the flexibility may have biological 
significance. In the Nagai group’s decades-long effort toward the structural understand-
ing of the spliceosome, informed decisions were made to engineer various complexes 
based on available biochemical data at the time. In the case for U1 snRNP, the hairpin U1-
SLII/U1A fragment was the first RNA-protein complex determined [12]. However, this 

Figure 6. (A) The packing arrangement of the minimal U1 snRNP in the P212121 crystal
form (PDB:4PJO). Four NCS complexes (Complex 1–4) are present in the asymmetric unit.
Complexes 3 and 4 are located behind the page. Only protein-protein interactions are observed be-
tween the NCS complexes. Kissing loop interactions (KL) and end-to-end packing of the 5′ss/U1RNA
helix (H) are the main crystal packing interactions occurring in this crystal form. Two sets of inter-
actions are depicted in this figure. Complex 1 forms a KL interaction with the symmetry-related
Complex 2 and a continuous duplex stacking with the symmetry-related Complex 3. Complex 2
forms a KL interaction with the symmetry-related Complex 1 and a continuous duplex stacking with
the symmetry-related Complex 4. An example of this cyclical packing arrangement is summarized
in C. (B) An example of the KL interaction formed between Complex 1 and the symmetry-related
Complex 2. Unlike the original DIS kissing loop complex crystal structure (PDB:1XPE), in which two
bulged purines form crystal contacts lateral to the stems, only one purine is bulged out to stack with
the equivalent nucleotide. The other purine forms a non-canonical base pair with the unpaired A 3′

to the 6-nt kissing loop complex. (C) An example of the packing arrangement involving kissing loops
(KL) and continuous end-to-end stacking of the 5′ss/5′U1 duplex (H). Complex 1 interacts with 2–4
in the NCS via protein contacts only. Each NCS complex makes the same packing arrangement with
the same set of symmetry-related complexes. The text color for each complex is the same as those
depicted in A. Text color in black are complexes that are not shown in A. (D) Secondary structure of
the RNA construct used in the P212121 crystal form.
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5. Future Relevance of Designing Crystal Packing of Spliceosomal Complexes

The design of RNA constructs to promote crystal contacts is still relevant in the
splicing field. Despite the Cryo-EM field emerging and developing fast, there is still a
need for high resolution crystal structures [39]. The resolution of Cryo-EM structures may
not be uniformly high, particularly for peripheral or dynamic components. For example,
the activity of helicases plays a major role in remodeling the RNA structures to push the
spliceosome in different conformations throughout catalysis. These helicases located in
the periphery are poorly resolved in Cryo-EM maps. Another example is the LSm2–8
complex that recognizes the 3′ tail of the U6 snRNA. The LSm proteins are homologous
to the Sm proteins and form a heptameric ring that binds RNA. Despite the existence of
the number of high resolution Cryo-EM structures of the spliceosome that contain U6
snRNPs, the quality of these Cryo-EM maps for the U6/LSm2–8 complex is insufficient
in deducing atomic details. The molecular mechanism of how the Lsm2–8 specifically
recognizes the 2′,3′ cyclic phosphate end of the U6 snRNA was not revealed until the recent
crystal structures determined at 2.3 Å were published [40].

In the age of Cryo-EM, crystallography can complement Cryo-EM to enhance the
completeness and details of the structural information unearthed. Resolution in Cryo-EM
depends on the accuracy of alignment (centering and orientation) of the single particles,
which is analogous to long-range order in crystals. Better alignment results in better
averaging of the boxed images, hence higher resolution of the image reconstruction. The
large complexes, by containing more spatial information than the small complexes, are
more easily aligned with accuracy. Within large complexes analyzed by Cryo-EM, sub-
complexes existing in heterogenous orientations relative to the bulk of well-aligned particle
will be blurred in the averaging. Special techniques of image processing such as focused
refinement may not be able to recover the lost detail due to local misalignment. As
the smaller complexes are more amenable to growth of well-ordered crystals, it may be a
general approach to fill in structural details of misaligned sub-complexes by crystallography.
Another known barrier to achieving high resolution in Cryo-EM is preferred orientation of
the single particles, which causes increasingly incomplete sampling of the Fourier terms
with increasing resolution. This is analogous to anisotropic resolution in crystallography. If
the preferred orientation cannot be overcome by modifying the surface of the particle, or of
the EM grid, or by tilting the grid, etc., then crystallography of the sub-complex should be
considered.

Currently, Cryo-EM methodology is still limited in the speed for data collection, thus
restricting its practicality for drug screening. Dysregulation in alternative splicing leads to
many human diseases [41]. Therefore, discovering molecules that can normalize splicing
defects or enhance a weak splice site to compensate for a loss-of-function mutation can be a
therapeutic strategy. For example, spinal muscular atrophy is a motor neuron disease due
to the deletion of the survival of motor neuron 1 (SMN1) gene. The SMN2 gene is almost
identical to SMN1, except it is mostly spliced into a non-functional protein by the exclusion
of exon 7 [42]. Strategies that promote the inclusion of exon 7 of the SMN2 pre-mRNA
have been explored as one way to treat the disease [42]. Small molecules that bind and
stabilize the duplex formed between the 5′ end of the U1 snRNA and the SMN2 pre-mRNA
have been identified as potential drugs. By stabilizing the 5′ss/U1 duplex, the drugs
convert exon 7 into a strong splice site [43,44]. Since U1 snRNP plays a key role in splice
site selection, U1 snRNP crystals can serve as a drug screening platform for developing
compounds that can exert therapeutic effects by manipulating splicing mechanisms.
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