
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX XX 1

Hashing Fuzzing: Introducing Input Diversity to
Improve Crash Detection

Hector D. Menendez and David Clark,

Abstract—

The utility of a test set of program inputs is strongly influenced by its diversity and its size. Syntax coverage has become a standard
proxy for diversity. Although more sophisticated measures exist, such as proximity of a sample to a uniform distribution, methods to use
them tend to be type dependent. We use r-wise hash functions to create a novel, semantics preserving, testability transformation for
C programs that we call HashFuzz. Use of HashFuzz improves the diversity of test sets produced by instrumentation-based fuzzers.
We evaluate the effect of the HashFuzz transformation on eight programs from the Google Fuzzer Test Suite using four state-of-the-art
fuzzers that have been widely used in previous research. We demonstrate pronounced improvements in the performance of the test
sets for the transformed programs across all the fuzzers that we used. These include strong improvements in diversity in every case,
maintenance or small improvement in branch coverage – up to 4.8% improvement in the best case, and significant improvement in
unique crash detection numbers – between 28% to 97% increases compared to test sets for untransformed programs.

Index Terms—System Testing, Fuzz Testing, HashFuzz, Universal Hashing

F

1 INTRODUCTION

Contemporary software, once it reaches a certain scale,
can be too large and too heterogeneous to be amenable
to formal verification and validation. Assuring correctness,
security, safety, robustness, or any other property of the
code in the absence of formal techniques relies on testing,
that is, on a finite set of executions that the tester hopes is
representative of all executions. All executions may effec-
tively be finite but this does not help as the number is large
and there is insufficient time. This is the central problem
of software testing: how best to represent a population
with a sample. Statistical theory has answers but it can be
difficult to apply them to software. What is the probability
distribution of the population? It may be very imperfectly
known. Statistics says to employ the Maximum Entropy
Principle [1]. Choose the probability distribution, consistent
with what you know, that has the maximum entropy. In the
common testing situation of knowing nothing, this will be
a uniform distribution. Entropy is a measure of diversity in
the distribution and this fits with the tester’s intuition that
the test set must be as diverse as possible – sampling from
a maximal entropy distribution produces a more diverse,
more widely spread sample that better represents the whole
population.

However, statistical sampling from some combinations
of program types is challenging. Accurately sampling from
string distributions in particular is challenging, leading to
the promulgation of alternative techniques such as ones
based on algorithmic information theory [2]. The most
widely adopted alternative to statistical methods is the best

• H. Menendez is with the Computer Science Department of Middlesex
University London.
E-mail: h.menendez@mdx.ac.uk

• David Clark is with the Computer Science Department of University
College London.
E-mail: david.clark@ucl.ac.uk

Manuscript received April 19, 2005; revised August 26, 2015.

known method, the industry mandated method, and the one
based on the software under test itself: coverage criteria.
Semantic behaviours of the code are represented in the code
syntax. Cover the syntax according to some criterion and
you have some guarantee of diversity.

Software testing strategies are commonly based on cov-
erage. This influences contemporary methods for system
testing, such as fuzzers. However, there is evidence that
coverage, in terms of branch or line coverage, is not enough
by itself to expose faults in software [3]. Other lines of
research point to the usefulness of sampling from uniform
distributions by way of random-based test case generators,
particularly in improving fault detection abilities [4]. While
the limitations of coverage are related to lack of diversity
[3], the limitations of random sampling based methods are
related to their inability to cover specific paths [5].

A combination of diverse sampling and syntax cover-
age may produce test sets that improve the representation
power, and hence diversity, of those produced by either
method. This idea has been explored in the context of
program testing via symbolic execution. A relevant example
here is from the work of Chakraborty et al. [6], [7]. Their
chief aim was to apply universal hashing, i.e. the use of in-
dependent hash functions to partition a domain, to achieve
as much sampling diversity as possible, with a close to
uniform distribution sample as a target (Section 2.2). The
obvious limitation for this methodology is induced by the
use of program constraints. As Plazar et al. demonstrated,
this limitation makes them inapplicable to large programs
[8]. The scalability of these systems is poor and they can
hardly be applied to system testing of software [9].

We seek to improve system testing on larger scale pro-
grams by producing test sets that combine good coverage
with input samples from a near uniform distribution. We
show how universal hashing can be the basis of a testability
transformation [10] for programs in the context of fuzzing.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX XX 2

The key to achieving near uniform test sets is to transform
the program by adding new branches immediately after the
input. These branches force each input to be chosen from
one part of a partition on the input space induced by r-
wise independent hash functions (Section 2.2), embedding
the hash function partition into the behaviour of the pro-
gram. This is a semantics preserving transformation that,
to successfully produce near uniform test sets, relies on the
fuzzer being both mutational on inputs and instrumented to
seek branch coverage via a feedback loop (Section 3). This
idea applies to any programming language that can leverage
feedback-based fuzzers for system testing.

To this end we introduce HashFuzz, a novel testability
transformation on programs that improves the test sets
resulting from fuzzing them. As a testability transformation,
it is agnostic with regard to the instrumentation-based mu-
tational fuzzer employed.

To demonstrate the effectiveness of HashFuzz, we per-
formed system testing experiments on a set of 8 known,
open source projects from Google’s Fuzzer Test Suite [11].
These have an average of 200,000 lines of code each. In
the experimentation we used 4 state-of-the-art fuzzers: AFL,
FastAFL, FairFuzz, and LibFuzzer. The before and after re-
sults demonstrate huge improvements in diversity: the test
suites generated by the fuzzers on the pre transformation
programs are highly non-diverse according to the L2-test, a
statistical test for discrete uniform distributions [12]. After
transformation, diversity is so high that each test set is close
to being “sampled from a uniform distribution”. This is
especially true in the case of post transformation test sets
produced by LibFuzzer.

The post transformation test sets found by the four
fuzzers improve coverage for up to 37.5% of the programs.
Particularly impressive is how the HashFuzz transformation
improves the ability of the fuzzers to detect more unique
crashes than they can on the untransformed programs. For
62.5% of the post transformation programs there was an
up to 97% improvement in the number of unique crashes
found. Each experiment on a triple of program, transformed
program, and fuzzer, was performed twenty times and the
numbers reported above are median values over the twenty
repetitions.

The main contributions of this work are:

• We introduce HashFuzz, a novel, semantics pre-
serving, testability transformation that improves the
diversity and coverage of test sets produced by
instrumentation-based mutational fuzzers (Section
3). Its implementation is also publicly available 1.

• We evaluate the effect of the HashFuzz transforma-
tion on eight programs from the Google Fuzzer Test
Suite using four state-of-the-art fuzzers that have
been widely used in previous research (Section 4).

• Our results show various improvements in the test
sets for the transformed programs across all the
fuzzers that we evaluated. These improvements are:
a strong improvement in their test input diversity
in every case, maintenance or small improvement in

1. The current version of the repository can be found here: https:
//github.com/hdg7/hashfuzz

their branch coverage – of up to 4.8%, and main-
tenance or significant improvement in their unique
crash detection numbers, of up to 97% more unique
crashes than on the untransformed program (Section
5).

The HashFuzz testability transformation could be
adapted to other search-based test suite generation methods,
insofar as they use coverage information from the software
under test.

2 BACKGROUND

HashFuzz aims to diversify the behaviour of fuzzers by
applying the theory of universal hashing. More specifically,
our work applies the part of the theory that relates to XOR
constraints. This section explains how our methodology
benefits fuzzing and how universal hashing and the XOR
constraints work.

Fuzzers as system testing tools have begun to dominate
the state of the art of automatic test generation for security
as they have discovered multiple bugs in several systems
that are daily used by millions of users per hour [13], for
instance, the Heartbleed bug in OpenSSL [14]. Our goal
is to combine fuzzers with a program transformation that
causes a fuzzer’s test suite generator to become closer to a
uniform generator over the whole input domain. This kind
of transformation, based on uniform hashing, has shown
significant improvements in bug detection in electric circuits
at the level of unit testing, when they are combined with
SAT or SMT solvers [6] but, until now, they have never
scaled up to system testing.

2.1 Mutational Fuzzers
Mutational fuzzers work mainly on the input space [15],
[16], [17], [18], [19], [20]. They aim to create diverse inputs
through repeated mutations of known inputs and so iden-
tify previously unexplored branches or paths on programs.
These previously unexplored branches or paths can lead to
potential bugs or previously unseen crashes. Some current
fuzzers, such as AFL [17] or LibFuzzer [20], combine muta-
tion with feedback from an instrumentation process to assist
them in prioritising known inputs to be fuzzed. This type
of fuzzer is called an instrumentation-based fuzzer and this
type is the target of our research. Other fuzzers, such as zzuf
[15] or Radamsa [16], manipulate inputs based on heuristics
but, by default, they do not use information extracted from
the program. They are out scope for this work.

Fuzzers commonly start with a set of seeds, or inputs,
together with the program under test. Instrumentation-
based fuzzers also add instrumentation to the program,
normally in the compilation and linking phase, to guarantee
that they can receive feedback during the testing process.
This feedback is usually the coverage information achieved
by the generated test suite. Instrumentation-based fuzzers
perform the fuzzing process in three steps: 1) they add
the set of seeds into a queue, 2) each input in the queue
is mutated via some heuristic, and 3) when a new input
finds an uncovered path, this new input is also added to
the queue, as after mutation it can yield new inputs that
potentially find further new branches. A round of fuzzing

https://github.com/hdg7/hashfuzz
https://github.com/hdg7/hashfuzz

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX XX 3

is normally terminated by the user, however, some fuzzers,
such as LibFuzzer, terminate the round when they find an
input that crashes.

The performance of a mutational fuzzer is affected by
the selection of the initial, seed inputs for any instance of
its application and, more generally, by the heuristics used
by the fuzzer to achieve fresh mutations of the inputs.The
heuristics might not be able to generate well formed inputs
for specific paths because these are guarded by conditionals
that have a required structure [5]. Diversity in the seeds
can help overcome limitations in the mutational heuris-
tics. Mostly, these heuristics mutate the inputs as binary
strings. However, some fuzzers incorporate specific struc-
ture information into their heuristic. This approach has led
to grammar-based fuzzers [21], [22] and dictionary-based
strategies [17]. Improving the diversity of grammar-based
fuzzers would be more complex than our approach as
the diversity needs to be generated at the grammar level.
Therefore, it is out of scope for this paper.

2.2 Universal Hashing and XORSample’
Universal hashing of test suites focuses on diversifying
the automatic test generation process. This diversification
is based on the uniform distribution. Assuming specific
constraints for a program, the aim is to generate inputs for
specific parts of the program where each possible input has
the same probability of being generated, i.e. a generator
following a uniform distribution. This aim is formalised
as follows: considering G as a probabilistic generator for
a program P , and i ∈ I an input for P , the aim of a uniform
generator Gu must satisfy:

p(Gu(P) = i) = 1/|I|.

The algorithms XORSample’ [23] and UniGen [6] were
created to improve the diversity of deterministic solver-
based generators. They were originally applied to test
electrical circuits. Their target for diversity was achieving
sample sets close to the uniform distribution, the closer
the better. Their limitations only allow them to create near-
uniform generators. This type of generator is defined simi-
larly to a uniform generator, but the individual probabilities
are biased by a constant factor c ∈ (0, 1], therefore,

p(Gnu(P) = i) = c(1/|I|).

To create the near-uniform generators, these two algo-
rithms perform three main steps: 1) partition the original
space into parts, generated by r-wise independent hash
functions, 2) select one part uniformly at random and, 3)
select an element inside the part uniformly at random.

The input space depends on the input variables and
the alphabet of these. Let Σ = {0, 1} be an alphabet, let
X = {x1, . . . , xn} be variables whose values correspond to
the alphabet, i.e. they have binary values, and let FX be a
function on these variables. For instance, FX(x1, x2, x3) =
x1 ⊕ x2 ⊕ x3 would be an XOR operation on the variables
of the alphabet. Suppose that you need to generate inputs
for FX , satisfying FX = true (or 1). An obvious input for
the example would be (x1, x2, x3) = (1, 0, 0). Sending FX

to a SAT solver would produce this result or a similar one.
Moreover, if no extra constraints are included in the solver,

it might constantly provide this input or a similar one, as
solvers are based on heuristics.

In general, submitting a function repeatedly to a solver
produces results that are very similar over all queries [23].
This reduces diversity when generating inputs from con-
straints, as some valid inputs will have a higher probability
than others. To deal with this problem, XORSample’ and
UniGen add extra constraints that force the solver to look
for inputs in different sections of the input space.

This idea is based on the properties of r-wise indepen-
dent hash functions. An r-wise independent hash function
h, selected uniformly at random from a family of r-wise
independent hash functions H , satisfies:

p [h(k1) = v1, . . . , h(kr) = vr] =
1

|V |r
, (1)

where ki ∈ K are potential keys and vj ∈ V potential
values. This means that if we apply the hash function to
the variables of a function, every possible combination of
values would have the same probability. Moreover, the
hash is a projection to a lower dimensional space. This
projection defines a partition in the original input space.
One part of this partition will be selected before we create
an input, and the input will belong to this part. The part
is selected uniformly at random. This approach spreads the
input generation process through the input space.

Our work focuses on the HXOR family. This family is
formed by any hash function that performs XOR operations
on the variables. The previous example, FX , is part of this
family. Every hash function (hi) of a family H is defined
from a set of keys K to a set of values V , hi : K → V . In
the case of FX , the keys can be thought of as any binary
number from 0 (000) to 7 (111) and the values, according to
the function, are their parities (1 or 0). HXOR is a family of
3-wise independent hash functions, as Gomes et al. proved
in [23]. Therefore it satisfies that for any h ∈ HXOR, selected
uniformly at random:

p [h(k1) = v1, h(k2) = v2, h(k3) = v3] =
1

|V |3
. (2)

In the case of HXOR, two elements can describe every
function inside the family: a vector of coefficients a that
multiplies each variable, and an independent element b.
Therefore, the definition of every hi(X) is:

hi(X) = bi ⊕ (
n⊕

j=1

aji · xj) (3)

If a and b are selected uniformly at random, hi is selected
uniformly at random from HXOR [23]. Partitioning the
input space requires selecting more than a single hash func-
tion, as we want to control the granularity of the partition.
The higher the number of hashes we select, the smaller each
part of the partition is.

Let HXOR(X, q) be a hash function generator on the
set of variables X where each variable is selected with
probability q every time that we generate a hash function.
If q = 1/2, then, every XOR constraint is chosen with
probability 2−(n+1), where n is the number of variables. As
the total number of possible hash functions in HXOR(X, q)

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX XX 4

Algorithm 1 XorSample’ algorithm
Require: A formula fP (~x), representing a deterministic cir-

cuit P ; a natural number s ≤ n
1: Qs = {s constraints randomly sample from
HXOR(X, 1/2)}

2: fs
P (~x) = fP (~x) ∪Qs

3: mc =SATModelCount(F s
P)

4: if mc 6= 0 then
5: i = sample(1,mc)
6: Extract i elements of F s

P with the solver
7: Select the i-th element

is 2(n+1), by definition, their selection is uniform, as we
require.

This hash function generator satisfies the first step of
the input diversification process, as it partitions the original
space into parts. Moreover, the uniform selection of the
different hi equations from HXOR(X, q) corresponds to the
selection of each part. Once we have the part, a SAT solver
can provide every input inside it and we can select one
uniformly at random. Controlling the granularity of the
parts is extremely relevant to guaranteeing termination in a
timely way. This whole process generates the XORSample’
algorithm [23]. This algorithm (Algorithm 1) starts with
the formula representing a logic circuit fP and the value
s that controls how many hash functions are selected, i.e.
the granularity of the parts. Then, it selects s hash functions
uniformly at random from the HXOR family, by simply
choosing the a and b coefficients of equation 3 (line 1). The
hash functions are included as new constraints for fP and
submitted to a SAT solver to count the number of possible
solutions that satisfy them (lines 2 and 3). Then, the index
for a solution is chosen uniformly at random (i at line 5)
and the solver is asked to generate solutions until this index
is reached (line 6). This paper leverages this idea to embed
XOR hashes in programs and generate inputs from their
constraint without solvers, just by using the existing ma-
chinery of the fuzzer and a semantics preserving testability
transformation on the target program (Section 3.1).

3 UNIVERSAL HASHING AND FUZZERS

Universal hashing improves unit testing, especially for elec-
trical circuits [23]. Nevertheless, the necessity of transform-
ing the programs into a set of constraints and submitting
them to an SMT or SAT solver limits its ability to be
extended to system testing [8]. Our methodology, called
HashFuzz, extends universal hashing to system testing by
replacing the solver with a fuzzer and leveraging a testa-
bility transformation to improve diversity in the fuzzer’s
queue.

HashFuzz is focused on instrumentation-based fuzzers,
as it needs information from the program to increment
measures of coverage. As the fuzzer generates test suites
that cover all possible branches in the program, we divide
the input space in a way that every part in the partition
corresponds to a first branch of a unique path.

1 int main(int argc, char *argv[]){
2 int a,b,c;
3 scanf("%d%d",&a,&b);
4 if(a > 0) {
5 a=a%100;
6 c=b/a; //Potential division by zero
7 }
8 print("%d",c);
9 return(0);

10 }

————————————–

1 int main(int argc, char *argv[]){
2 int a,b,c;
3 scanf("%d%d",&a,&b);
4 if(a % 100)
5 //...
6 if(a > 0) {
7 a=a%100;
8 c=b/a; //Potential division by zero
9 }

10 print("%d",c);
11 return(0);
12 }

Fig. 1. Example of a buggy program with a division by zero in Line 6
(top) and the same program with an extra path that alters the behavior
of an instrumentation-based fuzzer (bottom).

3.1 Testability Transformation

When an instrumentation-based fuzzer creates the queue
of inputs, it starts with the seeds provided by the analyst.
Afterwards, every input that discovers a new branch is
included in the queue (Section 2.1). For instance, Figure 1
(top) shows a program with a potential division by zero
error in the sixth line. This division by zero produces a crash
when a%100 is zero. Suppose that the input (2,1) is a seed
to this program. This input does not activate the crash and
it produces the correct output. This input will be part of
the queue and mutated until a new input covers the path
a ≤ 0. The final test suite will have maximum coverage on
the program, but as (2,1) is the only input traversing the bug,
it will neither activate the bug nor a potential observation of
it.

Adding a constraint to the previous program (Figure 1,
bottom) produces two new branches that divide the input
space between the area where a%100 is 0 and the area where
it is not. The original program has two branches while
the transformed one adds two more. During the fuzzing
process, the fuzzer generates another input different to (2,1)
that traverses the bug, as a must satisfy the new constraint.
This activates it. We extend this idea to the whole input
space intending to generate diverse test suites.

Our testability transformation leverages universal hash-
ing [23] by adding branches controlled with XOR constraints
at the entry point of the program. The transformation ap-
plies these constraints to the program input. Figure 2 shows
an example of the testability transformation and Figure 3
shows an example of how the hashes are applied to the
input. Equation 3 generates the XOR hash constraints by
choosing its coefficients uniformly at random (i.e. a and b
in the equation). To maintain semantics, the basic blocks
associated with the branches (if/else) do not change any
variable or path on the program, but add an extra step that

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX XX 5

Algorithm 2 HashFuzz algorithm
Require: A program P

1: Select the coefficients a and b uniformly at random.
2: Create the 3 constraints (Qs) using the XOR expressions

of equation 3.
3: Add the Qs at the entry point of the program as condi-

tions for branches.
4: Apply the fuzzer.

a fuzzer understands as a new branch to cover (Section 3.3).
This process partitions the input space into parts whose
boundaries are set uniformly at random, similarly to XOR-
Sample’ (Section 2.2). The main difference is that we embed
the partition constraints directly into the program, via the
testability transformation, and this requires the fuzzer’s
mutation heuristic to choose inputs for each of these parts.
This eliminates the dependency on solvers of previous work
but keeps the near uniform capability of the original solver
approach.

HashFuzz performs four steps (summarized in Algo-
rithm 2):

1) Choose the form of input for the program, normally
the standard input.

2) Select the hash by choosing random values for the
coefficients a and b in equation 3. This partitions the
whole input space into disjoint parts.

3) Set the hash at the entry point of the program, so
not to affect program execution. This creates 2n new
branches in the program, where n is the number
of hash equations. We select n as 3 as the XOR
hash functions are 3-wise independent [23]. This
creates the smallest possible parts that keep the 3-
wise independence property but does not overload
the program significantly.

4) Submit the transformed program to a fuzzer. The
modification on the branches causes the fuzzer to
tend to look for inputs in different parts when
covering branches. The queue conserves these in-
puts as each part is associated with a new branch.
The queue’s inputs generate new inputs covering
different regions of the input space.

It is a common practice to repeat the fuzzing process
several times, as in Klees et al. [13]. Our methodology
benefits from this practice when the hashes are reset in
every repetition. This changes the parts and, as a conse-
quence, the fuzzer finds other inputs in different areas of
the space. Therefore, different executions of HashFuzz gen-
erate different test suites, reducing collisions among them,
and compensating for the diversity bias introduced by the
mutational heuristics.

It is important to remark that HashFuzz can create more
than three branches, but it needs another r-wise indepen-
dent hash function satisfying that the r value is greater than
3 in order to meet the theoretical requirements.

3.2 Implementation
Although HashFuzz is program and language agnostic, for
experimentation we used programs in C and C++. Differ-
ent fuzzers leverage different methodologies to introduce

1 int main(int argc, char *argv[]){
2 int a,b,c;
3 if(XORhash1(stdin))
4 //...
5 restablish(stdin)
6 if(XORhash2(stdin))
7 //...
8 restablish(stdin)
9 if(XORhash3(stdin))

10 //...
11 restablish(stdin)
12 scanf("%d%d",&a,&b);
13 if(a > 0) {
14 a=a%100;
15 c=b/a; //Potential division by zero
16 }
17 print("%d",c);
18 return(0);
19 }

Fig. 2. Example of instrumentation for the program in Figure 1. Every if
also has an else associated. Both generate two new basic blocks.

inputs to C-family programs, where the most common is
the standard input (stdin).

We consider the input provided by the fuzzer as
the hash target. For AFL-based fuzzers, this is the
stdin and, for LibFuzzer, it is the data input of the
LLVMFuzzerTestOneInput function. We modify each
program by adding three XOR hashes created by equation
3 (see Section 2.2). We can not control the input size, as the
fuzzer generates different inputs of different sizes, therefore
our hashing selects coefficients for one byte and applies
them to an input byte by byte along its length (Figure 3). We
consider the main function as the entry point and we set the
hashing immediately after the variable declaration. Figure 2
shows an example of Figure 1’s program instrumented.

In this example, we can see that every if creates two
branches. On the first one, the hash is different to zero,
while, on the second (else), it is 0. Following equation
3, it is easy to see that the only possible values of the
XOR equations are 0 and 1. As a simple optimisation, the
assignment of the coefficients to byte-level can be replaced
by a combination of XOR operations on the AND between
the coefficients and each byte of the input. For instance, if
we consider a hexadecimal input such as 0xFFEECC and
a hash with coefficients 0xAA, the hash operation according
to equation 3 is equivalent to:

XOR(FF&AA)⊕XOR(EE&AA)⊕XOR(CC&AA),

where the XOR function applies the operation to the whole
byte at bit-level. This reduces the workload of the operations
as the hash performs simple byte operations. There are three
hash functions applying these operations. If the result of one
of these operations is 0, the input will be in a part of the
input space, while, if it is 1, it will be in a different part. This
allows us to partition the input space into 8 parts, depending
on the results of these hashes (Figure 4, top). The branches
will force the fuzzer to keep up to one input for each part
into the queue because they are exposing new transitions
between branches (Section 3.1).

During the process, we use the stdin as a file, setting
it to its beginning every time we reach the EOF symbol. In
this way, we do not need information about the size of the

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX XX 6

Input

<xml>...</xml>
image.png

json
Numbers/Strings

0x44|55|71|B9|A7|...

Binary Representation

H1H2H3

. . .

⊕
H1(T) H2(F) H3(T)

Fuzzer Trans.

I → H1{T}
H1{T} → H2{F}
H2{F} → H3{T}
H3{T} → X

. . .

Fig. 3. Example of the application of the hash functions to an input.
The hashes consider the binary representation of the input, therefore
they can be applied to any kind of input. Once the hashes have been
evaluated on a specific input, byte by byte, the branches associated with
the hashes provide new transitions for the fuzzer to cover.

input, and we can hash it while we are reading it. The code
inside the if/else statements needs to be simple enough
to not produce an overload of the execution, but complex
enough to guarantee that the compiler does not optimise it.
To address this, our implementation uses a static counter,
which is an atomic operation that is not optimised by the
compiler, and it does not produce an overload. After the
program modifications finish, the program is submitted to
the fuzzer, which generates a test suite for it.

3.3 Fuzzer’s Behavior
After the testability transformation, the fuzzers create inputs
to cover the new branches. The number of inputs that
they include in the queue is higher than those included in
the original program queue. For instance, the example of
Figure 2 includes the seed, that we assume is (2,1), and up to
8 more inputs for a branch-based fuzzer, while the original
program in Figure 1 includes up to 2 inputs including the
seed.

To make sure that the diversification is not producing a
bottleneck in a specific area of the program, we have set it at
the beginning. Considering that the operations do not add
a lot of computation to the execution, as they are fast, the
main problem is in the exploitation of these solutions.

The exploitation depends on the fuzzer’s logic, but
fuzzers commonly increment the number of branches vis-
ited. Inputs traversing the new branches set at the beginning
remain in the queue if they visit these branches for the
first time. They also belong to different parts of the input
space. Although not all the parts may be visited, reapplying
HashFuzz before the next fuzzing iteration creates new
parts, improving diversity each time the fuzzer is executed.

For AFL-based fuzzers [17], [18], [19], for instance, every
input that adds a new transition stays in the queue. These
transitions work as follows. Imagine a trace of Figure 1’s
example, whose control flow graph is represented in Fig-
ure 4 (left). The two possible sequences of blocks and their
associated transitions are:

I− > AT− > E [I −AT,AT − E]
I− > AF− > E [I −AF,AF − E]

Once we introduce the hash functions, as in Figure 2, there
are new transitions on the transition table (Figure 4). These
transitions correspond to parts of the partition induced
by the hashes. The parts are disjoint sets. When an input
traverses, for instance, H1T→H2F→H3T, it is in a different

XOR H2 H3

H1
Input Space

Init

a > 0

End

[I]

[A]

[E]

Transitions 1 2-3 4-7
I-A{T, F}
A{T, F}-E
I-H1{T, F}
H1{T, F}-H2{T, F}
H2{T, F}-H3{T, F}
H3{T, F}-A{T, F}

Hits

Hits

5

F T

Init

H1

H2

H3

a > 0

End

F T

F T

F T

F T

F T

Fig. 4. Example of the branch modification produced by the program
transformation applied to Figure 1. The control flow graph of the original
program is on the left while the equivalent on the transformed program
is on the right. The table represents the transition hits of an AFL-
based fuzzer. The transitions are summarised. I−A{F, T} summarises
transitions I −AT and I −AF .

part to another input traversing H1T → H2T → H3T. AFL
includes the transitions on its table, and their related inputs
on its queue. The inputs related to these transitions diversify
future inputs of the program as they are in different parts of
the input space.

The fuzzers prioritise inputs by discovered branches
using different strategies. The most common strategy, used
by AFL [17] and LibFuzzer [20], is direct exploitation, where
the queue is consulted in order. Nevertheless, AFLFast [18]
and FairFuzz [19] use different strategies to this. Both tools
aim to maximise rare paths to identify more crashes. As
our diversification is set at the beginning, this selection
makes sure that the fuzzer follows as many parts as possible
initially, guaranteeing stronger diversity in the test suite
from the very beginning. This leads to a better exploration
of the input space.

4 EXPERIMENTAL SETUP

HashFuzz improves diversity during the fuzzing process,
by forcing exploration of different regions of the input
space. This process improves crash detection and has a
low negative impact on coverage. Universal hashing has to
date only been shown to be effective on solvers and electric
circuits [6]. Our research focuses on the implementation and

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX XX 7

evaluation of this technique on fuzzers and significantly
large programs. Our main research questions are:

RQ1: Does HashFuzz produce diverse test suites whose
distribution is close to a uniform distribution? The original
work in this area shows that algorithms such as XorSample’
or UniGen are near-uniform [6], [23]. We evaluate whether
our testability transformation affects the diversity of the
test suite generated by the fuzzer. We measure whether the
inputs generated are following a distribution close to the
uniform distribution. We apply the L2-test for uniformity
which estimates the distance between a sample set and a
discrete uniform distribution based on number of collisions
[12].

RQ2: Does HashFuzz affect coverage? Using the llvm-
cov tool, we compare the coverage achieved by each pair
of generated test sets produced by a given fuzzer on each
original program / transformed program pair. This is done
for each of the four chosen fuzzers run on each of the
16 programs in the eight pairs with each fuzzer run on a
program for 24 hours.

RQ3: Does HashFuzz detect new unique crashes on the
programs? We execute the same scheme as in RQ2, but this
time we focus on the unique crashes of the program. As
different fuzzers and the HashFuzz process can modify the
uniqueness of the crashes we only consider crashes of the
original program before transformation and instrumenta-
tion. Therefore, we take the set of unique crashes generated
by each fuzzer and reduce them based on the original
program, using the minimisation process of afl-cmin. This
minimisation forces the removal of every crash that does not
introduce any unique edge in the original program, which
is the maximal minimisation of the tool. This also removes
every false alarm that a fuzzer may generate. Based on this,
we can check whether our process finds new unique crashes
that have not been found before in the original program.

4.1 Dataset and Fuzzing tools
The evaluation of HashFuzz has been performed on pro-
grams from the Fuzzer Test Suite of Google [11]. This
dataset contains 24 open-source programs some of which
have known crashes. We selected eight programs randomly,
the number of programs and fuzzers chosen as a sweet
spot between generality and computation effort. Experiment
effort for a single CPU over all experiments was 1,280
computation days, corresponding to 24 hours per itera-
tion, 20 repetitions, four fuzzers and eight program pairs.
Fortunately, we were able to execute eight fuzzer-program
pairs in parallel at a time, with the number of elapsed days
needed being 160. Table 1 shows the size of the programs in
terms of lines of code. As several of these programs contain
multiple languages, we specifically show the number of
lines of code in C and C++, which are the ones instrumented
by the fuzzers. The average number of lines of code is
201,433.

We apply the testability transformation at the entry point
of each program. After, we compile both the original and the
transformed program and execute each fuzzer on both. The
selected fuzzers for the evaluation are:

• AFL [17]: American Fuzzy Lop. It instruments the
program under test to measure branch coverage

Project Name Total LoC Total LoC in C/C++

C-ares 137,064 118,369
LibPng 75,928 28,241
LibXml2 452,203 230,232
OpenSSL101f 377,328 278,351
OpenSSL102d 442,864 304,904
Pcre2 89,932 70,161
RE2 32,621 28,267
Woff 3,525 3,434

TABLE 1
The number of lines and the number of instrumented lines for the

subject projects.

statistics during the test generation process. It mu-
tates inputs using several different heuristics to max-
imise branch coverage and to detect unique crashes
and hangs.

• LibFuzzer [20]: this fuzzing library is embed-
ded in the program via the SanitizerCover-
age. It uses a specific target function called
LLVMFuzzerTestOneInput and produces inputs
for this function. During the generation process, it
mutates these inputs, similarly to AFL.

• AFLFast [18]: AFLFast extends AFL to activate low-
frequency paths, so detecting more behaviours of the
program. This tool improves the selection of seeds to
be mutated and includes a power schedule to control
the number of times a seed is fuzzed.

• FairFuzz [19]: This modification of AFL focuses on
guiding the creation of inputs so as to exercise rare
branches during the generation process. It performs
both seed prioritisation and heuristic selection to
guide its input mutations.

For a fair evaluation of the fuzzers, we have provided
them with the same set of initial seeds and the same amount
of time, following the advice of Klees et al. [13]. All of
them use the default configuration. In the case of LibFuzzer,
which stops when it finds a crash, we set a loop that restarts
the fuzzing until it reaches the time limit. In every iteration
of this loop, the test suite found remains as seeds for the
repetition. Each fuzzer ran on 3 cores of a 24 core machine,
with no memory limitation apart from the physical machine
limitation (128Gb of RAM). Due to the stochastic nature of
this process, we have repeated each experiment 20 times,
and we report the median values for coverage and unique
crashes.

5 EVALUATION

HashFuzz improves diversity of the test suites generated
by fuzzers by applying a semantics preserving testability
transformation. One of our evaluations of HashFuzz mea-
sures the improvement in diversity as proximity of the
fuzzers’ test sets to a uniform distribution (Section 5.1).
Another measures the effect of the transformation on branch
coverage (Section 5.2) and the third evaluation measures
how it increases the detection of unique crashes (Section
5.3).

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX XX 8

Methodology Espsilon Values
0.1 0.05 0.01

AFL 0.00% 0.00% 0.00%
AFLFast 0.00% 0.00% 0.00%
FairFuzz 0.00% 0.00% 0.00%
LibFuzzer 0.00% 0.00% 0.00%

Hash + AFL 100% 87.5% 75.0%
Hash + AFLFast 100% 87.5% 87.5%
Hash + FairFuzz 100% 75.0% 75.0%
Hash + LibFuzzer 100% 100% 100%

TABLE 2
Percentage of programs that pass the L2-test for uniformity before and

after applying the hashing process. The epsilon values measure the
different levels of proximity to the uniform distribution.

5.1 Uniformity of the inputs

As we explain in Section 2.2, the notion of diversity that
underpins and motivates the invention of the HashFuzz
program transformation is the proximity of a sample set,
in this case a fuzzer’s test suite, to a discrete uniform
distribution. We perform this measure of proximity by
applying the L2-test [12]. The L2-test is a collision-based
statistical test that compares the self-collisions (repetitions)
occurring in a sampling process with repetition to determine,
based on a mathematically calculated threshold, how far a
distribution is from a uniform distribution. The sampling
process requires a minimum number of instances to test
a chosen threshold distance from uniform with a given
confidence level (95% in our case). In the literature, the
minimum distances are usually in the 0.5 - 0.1 range, which
require up to 6,000 samples to test. In our case, as the fuzzers
provide a large number of inputs in the queue, we can
test for distances up to 0.01-far from uniform. For these
measurements, we need to generate 12,000 inputs for 0.05
and 18,000 inputs for 0.01, according to Lemma 5 of [12],
which bounds the number of samples for specific values of
epsilon, the distance parameter..

Table 2 shows the results of the L2-test on test suites
generated by the fuzzers before (top) and after (bottom)
HashFuzz. Each row measures the percentage of programs
whose test suites pass the test for 0.1, 0.05 and 0.01 distance
from uniform. As a measure of diversity, the uniformity is
showing that, after hashing, every program is, at least 0.1-far
from the uniform distribution, which is the limit normally
analysed in the literature [12]. For the fuzzers based on AFL,
we obtain a good amount of programs that are, at least,
0.05-far and 0.01-far (between 75 and 87.5%). In the case
of LibFuzzer, the amount is maximum for every distance
threshold.
RQ1: HashFuzz always produces test suites at least 0.1-
far from the uniform distribution, according to the L2-test.
Combined with LibFuzzer, the level of uniformity is a maximal
up to 0.01-far from uniform.

5.2 Coverage of HashFuzz

We want to measure the coverage reached by the original
fuzzers and their coverage after the program transforma-
tion. Although coverage is not a guarantee to detect bugs,
as several authors have discussed in recent work [3], it is
relevant for us in order to measure the trade-off between

the potential coverage lost of stressing the same branches
several times, and the diversity improvement produced by
the universal hashing process (Section 3).

Table 3 shows the branch coverage achieved by the
different fuzzers before and after the application of Hash-
Fuzz. The table shows that the different fuzzing strategies
are reaching similar coverage results in almost all cases.
LibFuzzer is the main outlier. After the transformation, there
are a few cases where the coverage is higher, especially
for the tools based on AFL, and fewer cases where it is
significantly lower, according to the Wilcoxon test. The
global overall improvement on coverage is small: 4.8% for
AFL, 2.3% for AFL-Fast, 1.9% for FairFuzz and 3.5% for
LibFuzzer. In order to evaluate whether HashFuzz would
improve the coverage for a specific technique, we applied
the Vargha-Delaney effect size [24]. This measures in which
percentage HashFuzz improves the normal fuzzing cam-
paign. If the value is smaller than 0.5, HashFuzz improves
the campaign, otherwise, the campaign is better without
it. As an average for all the case studies, we can see that
HashFuzz is improving the coverage during the campaign,
although the improvement is small: 0.484 for AFL, 0.492
for AFL-Fast, 0.492 for FairFuzz and 0.484 for LibFuzzer.
In general the measure is 0.483 for coverage. These im-
provements in coverage show that our diversity method is
not producing a trade-off with coverage, as we might have
expected.
RQ2: HashFuzz has no negative effects on branch coverage.
On the contrary, HashFuzz improves branch coverage by up
to 4.8%.

5.3 Crashes Exposed by HashFuzz
This final experiment aims to measure whether HashFuzz
is able to identify new unique crashes in programs. Table 4
shows the number of unique crashes that the fuzzing tools
identify both before the program transformation (O) and
after (H). Each fuzzer runs for 24 hours using the same
resources of memory and CPUs as the others (Section 4.1).
The results show that the transformation always obtains the
same or better results than the original program. When the
original number of crashes is low or none, as is the case for
the programs c-ares, libpng and openssl101f, the transfor-
mation makes no improvements. In the case of libpng, the
bug reported in the Google database is a timeout, instead of
a crash. This timeout has an effect on the multiple executions
of the fuzzers, and it also produces low coverage (Section
5.2). The crashes of c-ares and openssl101f are found in less
than 10 minutes. In the case of c-ares, the fuzzer can not
explore the program more deeply as its execution is stopped
by the crash.

When the fuzzer can explore more deeply into the
program, as is the case of libxml2, openssl102d, pcre2,
re2 and woff, the number of crashes found is affected by
the fuzzers strategy. AFL and LibFuzzer, for instance, are
the fuzzers that generally discover fewer crashes in these
programs except in the case of pcre2 for AFL and re2 for
LibFuzzer. FairFuzz obtains really good results on LibXML2
and better than the others on Woof2 as a consequence of its
ability to interact with structured data [20]. Also, these two
techniques obtain better results than LibFuzzer and AFL on
openssl102d.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX XX 9

Dataset AFL (O) AFL (H) AFL-Fast (O) AFL-Fast (H) FairFuzz (O) FairFuzz (H) LibFuzzer (O) LibFuzzer (H)

C-ares 139 139 139 139 139 139 139 139
LibPng 1192 1192 1192 1192 1194 1192 621 †N1566
LibXml2 9855 †N10417 10062 ‡H9527 9718 †N9899 9527 9527
OpenSSL101f 6342 †N7022 6440 †N7022 7048 H7022 6445 6445
OpenSSL102d 1446 1446 1446 1446 1446 1446 1197 †N1446
Pcre2 8044 H8015 7675 †N8029 8003 N8103 7809 7805
RE2 4407 †N4790 4407 †N4790 4407 †N4796 4837 4837
Woff 2007 2007 2009 2007 2007 2007 2185 H2160

Improvement 4.8% 2.3% 1.9% 3.5%
Vargha-Delaney 0.484 0.492 0.492 0.484

TABLE 3
Median branch coverage achieved during the fuzzing process divided by different fuzzing techniques and programs. The Nsymbol shows that

there is a statistically significant improvement between the original execution of the fuzzer and its execution after applying the program
transformation, according to the Wilcoxon test with a p-value smaller than 0.05. The Hsymbol shows the opposite. The † symbol indicates when
the Vargha-Delaney value favours HashFuzz (VD value lesser than 0.45), while the ‡symbol shows the opposite (VD value greater than 0.55).

Once the testability transformation is applied to the
programs and the fuzzing process is executed, the result-
ing test suites show improvements, especially for libXML2,
openssl102d and pcre2. Also, when there are no improve-
ments, the results are the same as for the test suites obtained
when fuzzing the original program. The improvements on
AFL after the crash minimisation process are: 8 times more
unique crashes for libXML2, 50% more for openssl102d and
54% more for pcre2. Counting the total number of unique
crashes, the improvement for AFL is 55.4% higher. In the
case of AFL-Fast, we notice that it produces improvements
in more programs, as this one also improves test suites for
c-ares and woff2 after transformation, but, percentage-wise,
they are less significant (100% for c-ares, 43% for libXML2,
20% for openssl102d, 55% for pcre2 and 50% for Woff). The
total improvement for AFL-Fast is 52.9%. The application of
HashFuzz on programs for FairFuzz improves test suites for
the same programs as on AFL but these improvements find
the maximum number of crashes found in the available time
for LibXML and openssl102d. The improvements are 30.8%
for LibXML2, 36.4% for openssl102d and 106% on pcre2.
The total improvements for FairFuzz are 96.7%. Finally, for
LibFuzzer the improvements are focused on openssl102d
(33%), pcre2 (8%), re2 (67%) and woff (200%). This fuzzer
is the only one that detects unique crashes in re2. The total
improvement, in this case, is the lowest (27.9%).

We also applied the Vargha-Delaney measure to the fault
detection process. As an average among all the case studies,
we were able to see that the results are better for fault
detection than for coverage. For AFL the measure is 0.438,
for AFLFast is 0.438, for FairFuzz 0.461 and for LibFuzzer is
0.414. The general improvement is 0.457, which shows that
HashFuzz is either the same or better in the 54.3% of the
cases.
RQ3: HashFuzz either improves the number of unique crashes
found by the test suites or maintains it, depending on the depth
achieved in the fuzzing process. These improvements on the
number of unique crashes range from 28% up to 97%.

6 DISCUSSION AND LIMITATIONS

HashFuzz improves test suite diversity for fuzzers by apply-
ing a semantic preserving testability transformation. This
approach follows the idea of Chakraborty et al. [6], when
they were facing the adversarial behaviour of solvers during

the input generation process. Our results show that the
fuzzer skills also improve in terms of crash detection and
coverage for several cases when diversity is embedded
within the generation process. This is similar to the results of
Böhme et al. [25] when they leverage entropy to increase the
diversity of behaviours during fuzzing campaigns. There-
fore, r-wise independent hash functions compensate the
adversarial behaviour of fuzzers and solvers during the
input generation process by improving the fuzzers diversity.

In terms of scalability, HashFuzz depends on the based
fuzzer. It only includes more diversity by selecting proper
seeds at the beginning, but it has no negative influence in
coverage or fault detection (Section 5).

The fuzzer’s logic affects our testability transformation
in terms of uniformity (Section 5.1). LibFuzzer follows a
path-based strategy to measure coverage while AFL follows
a transition-based one. We can see that diversity is more
effective in the first case than in the second. Also, those
fuzzers that are targeting specific kinds of paths (such as
rare paths) are more resistant to diversity that those that
do not focus on specific kinds of targets. This is the case of
FairFuzz.

To validate HashFuzz, we applied the Vargha-Delaney
effect size measure [24] to compare the effectiveness of the
transformation under different projects of different sizes in
the same amount of time and resources.

In our experiments, the Vargha-Delaney measure is 0.483
for coverage (Table 3) and 0.457 for fault detection (Table 4),
indicating that the normal fuzzers performed worse than
HashFuzz for both, because 0.48 and 0.457 are less than 0.5.
We can also interpret the fault detection value as: HashFuzz
will work better by detecting faults 55% of the time, while in
the other 45% it will behave in the same way as a campaign
without the testability transformation.

In terms of analysing how the coverage and fault de-
tection are affected by uniformity, we also compare it with
the Vargha-Delaney measure. This shows that, when the
uniformity is high (Table 2) the Vargha-Delaney will be
more significant, as it is in the case of LibFuzzer for both
coverage and fault detection. Even if the improvement in
general numbers is not higher, HashFuzz will improve more
projects than the normal campaign.

In terms of coverage, there are no significant penaliza-
tions after applying HashFuzz. On the contrary, it improves

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX XX 10

Dataset AFL (O) AFL (H) AFL-Fast (O) AFL-Fast (H) FairFuzz (O) FairFuzz (H) LibFuzzer (O) LibFuzzer (H)

C-ares 1 1 1 N2 (100%) 1 1 1 1
LibPng 0 0 0 0 0 0 0 0
LibXml2 1 †N8 (700%) 7 †N10 (43%) 13 †N17 (31%) 5 5
OpenSSL101f 1 1 1 1 1 1 1 1
OpenSSL102d 8 †N12 (50%) 10 N12 (20%) 11 †N15 (36%) 6 N8 (33%)
Pcre2 310 †N478 (54%) 253 †N391 (55%) 213 †N439 (106%) 24 N26 (8%)
RE2 0 0 0 0 0 0 3 †N5 (67%)
Woff 2 2 2 †N3 (50%) 3 3 3 †N9 (200%)

Improvement 55.4% 52.9% 96.7% 27.9%
Vargha-Delaney 0.438 0.438 0.461 0.414

TABLE 4
Median unique crashes detected during the fuzzing process divided into different fuzzing techniques and programs. The Nsymbol shows that there
is a statistically significant improvement between the original execution of the fuzzer and its execution after applying the program transformation,

according to the Wilcoxon test with a p-value smaller than 0.05. For those cases where there is a significant improvement, the results also provide
the improvement percentage. The † symbol shows when the Vargha-Delaney value favours HashFuzz (VD value smaller than 0.45).

coverage in the same amount of time. Therefore, adding
diversity will help to discover new branches within pro-
grams faster (Section 5.2) and also new crashes (Section 5.3).
In some specific cases the number of branches discovered
are reduced (normally one per fuzzing campaign), but the
general trend improves the covered branches. The most in-
teresting case is the combination of HashFuzz and AFLFast
when applied to LibXML2. In this case, our combination
exposes on average 500 fewer branches than AFLFast alone.
However, in terms of reported unique crashes, the campaign
detects 3 more unique crashes. It is possible that the ex-
ploration/exploitation tradeoff had been altered by using
HashFuzz together with AFLFast thus finding new branches
that are more interesting in terms of exposing bugs than
the ones that AFLFast discovered without the testability
transformation. On further investigating the LibXML2 and
AFLFast result, we first noted that LibXML2 coverage could
have been significantly improved with a longer campaign.
This was also apparent in the experimental work of Böhme
in his paper on the connections between biological species
coverage and fuzzing campaigns [26]. Böhme included
LibXML2 as a SUT in his experimental effort and, using
longer campaigns than we did, discovered a large jump
in coverage for LibXML2 once the number of discovered
branches passes around 6,000. Also, he witnessed cover-
age growth showing strong variation in each iteration. We
concluded that the 500 branch difference is likely to be
statistical noise in the median values of the 20 repetitions
with and without HashFuzz. This left the question as to why
the combination with HashFuzz discovered three faults that
AFLFast did not. We noted that we used the dictionary op-
tion with all the fuzzers in every campaign as keeping some
extra records at the beginning, as HashFuzz does, improves
diversity during the construction of complex XML inputs.
Nonetheless, these inputs do not necessarily activate more
branches but further explore the ones already discovered.
The generation of these extra, exploratory inputs on paths
has in this case found three memory access faults. Of course,
these faults could also be discovered by the fuzzers anyway,
given a longer campaign, but HashFuzz induced diversity
allows them to be discovered more efficiently.

Finally, one interesting outcome for HashFuzz is related
to the uniqueness of the crashes. In the case of c-ares, the
second unique crash can only be discovered if HashFuzz

is applied; for LibXML and OpenSSL102d, 4 crashes can
only be exposed by HashFuzz; for pcre2, around 100 unique
crashes are only discovered when HashFuzz is applied
and for woff 6 crashes are only exposed when we apply
HashFuzz. These crashes are all memory violations that the
inputs activate. They are not associated with any specific
property of HashFuzz. We assume that adding diversity or
giving more time or iterations to the fuzzers, they would
also be able to discover them at some point. HashFuzz only
tends to accelerates this process.

6.1 Threats to Validity

Our study shows the influence of augmenting diversity
during the process of fuzzing. Although our testability
transformation applies diversity at a binary level, which
makes it applicable to any kind of program, it lacks infor-
mation about the input’s structure. This information will
help to include other kinds of diversity which will help to
discover new bugs in programs. Another internal threat to
our study is the generalisation. We have been limited by our
resources and performed fuzzing campaigns on 8 projects
during 20 runs for 24 hours, covering 1,280 computational
days. Although more projects could have been evaluated,
the selected projects cover different aspects in terms of lines
of code (Table 1), branches (Table 3) and crashes (Table 4)
giving us enough information to evaluate the effects of
diversity in fuzzing. In terms of experimental replication, we
have provided the code for the experiments and the data has
already been published. Since our comparison is based on
performance, using different machines will affect the final
results. The results might also be affected if the fuzzers
add a new diversity strategy, as was recently the case
for LibFuzzer, that now includes the “Entropic” extension,
improving diversity during the queue selection process [25].

The external threats of validity depend on the fuzzers
and their limitations. During our experiments, we can see
that the fuzzer selection influences significantly in the cam-
paign’s performance. Some fuzzers are more effective than
others. Our testability transformation adds diversity to the
fuzzer generation process, therefore if this is already imple-
mented, we assume that the transformation will have no
influence on the performance, although we have not found
any fuzzer with this attribute during our experimentation.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX XX 11

7 RELATED WORK

In what follows we discuss the influence of diversity in
software testing (Section 7.1) and the relevance of current
fuzz testing methodologies (Section 7.2).

7.1 Diversity and Uniformity in Software Testing
Our work uses the uniform distribution as our target for
diversity. This distribution is, by definition, the distribution
that provides the same probability to each possible event [1].
It connects with the concept of entropy, from an Information
Theory perspective, as the maximum entropy of a random
variable is only reached when its probability distribution is
uniform (Theorem 2.6.4 of [1]).

Diversity can complement other criteria for testing, es-
pecially coverage [4], [27], [28], when the target is fault
detection. There are several works applying diversity to test
suite generation [4], [6], [7], [29], [30], [31], [32], [33] or selec-
tion [2]. Diversity complements the lack of exploration that
specific tools suffer, such as solvers [6]. One of the first and
most significant works on diversity was Adaptive Random
Testing (ART) [4]. ART was a diversification methodology
on random testing, intending to spread the inputs all around
the input space. To reach this goal, Chen et al. applied a
uniform sampling of the space, instead of using pseudo-
random generators, and reported a significant improvement
in the results. Our work combines diversity with coverage
and extends the that of Chakraborty et al. [6] on universal
hashing applied to electronic circuits and SAT solvers. Our
main aim is to achieve good scalability on software. Solvers
do not scale to large programs, as papers on symbolic
execution have demonstrated [9]. Moreover, as Plazar et
al. showed recently [8] universal hashing algorithms fail
to scale to large systems and “more work is required” to
deal with the trade-off between uniformity and scalability.
Nevertheless, as we explained in Section 3, the idea of
universal hashing can be adapted to a search-based scenario.

There are also other diversity-based approaches focused
on different aspects of the programs that have demonstrated
potential for detecting different kinds of bugs. Good exam-
ples are those focused on output diversity. For instance,
the work of Alshahwan and Harman [34], [35] introduced
an adequacy criterion based on the uniqueness of outputs
to generate test suites whose outputs would be as diverse
as possible. Nevertheless, they did not focus on the same
concept of diversity as our current work, as their diversity
criterion is the total count instead of spread and uniformity
of outputs. Another good example is the work of Matinnejad
et al. who introduced similarities between output signals for
Simulink models, to diversify these signal via search [36].

The definition of diversity significantly affects the qual-
ity of the work, for instance, in Matinnejad et al.’s work
they define a similarity measure [36]. The definition of
diversity is not clear in the literature, therefore, our work
has focused on finding a consistent definition inherited
from information theory. In information theory, diversity
is usually connected either with the Kolmogorov complex-
ity or the entropy, which are themselves related. From a
Kolmogorov complexity perspective, diversity is practically
measured via the normalised information distance (NID)
[32], or its computable version: the normalised compression

distance (NCD). An effective, practical measure of test suite
diversity is diameter of a test suite, the equivalent of an
average NCD distance between the tests [2]. Maximising
this diameter is equivalent to maximising the diversity
in terms of Kolmogorov complexity. On the other hand,
entropy directly connects with the uniform distribution, and
some papers aim to maximise the diversity of test suites
via entropy maximisation [33] or uniformity [6]. We follow
this last definition, as we consider a test suite generator
diverse when the entropy of its test suites is maximum or
its generation probability distribution is uniform.

Our main concern once the diversity measure was cho-
sen was to select a proper method to estimate it. Our
methodology for creating entropic generators descends
from Chakraborty et al.’s [6], as we include universal
hashing, but the evaluation of these generators leverages
uniformity tests (Section 5.1). This kind of evaluation is
novel with respect to other state-of-the-art methodologies
in uniformity which use visual evaluation [6], [7], [23], [31].
We selected the L2-test, a collision-based test that can deal
with discreet and continuous spaces in tandem, which is the
normal scenario for program inputs [12]. Although there are
other different statistical tests for uniformity as Marhuenda
et al. collected in [37], these are not suitable for our problem
and they can either measure continuous or discrete spaces,
but not both together. The main problem of collision-based
tests is that they require a significant number of samples for
performing the test [12], nevertheless, fuzzers, as we have
shown, were able to generate enough inputs in the time
provided to pass or discard the test (Section 5.1).

Our methodology can be considered as “diverse by
construction”, as our testability transformation forces the
diversity during the test suite generation process. A similar
idea is GödelTesting. Poulding and Feldt [29] introduced
this technique as a methodology to manually create test
suite generators that are parametrised and then select suit-
able parameters to create diversity. In contrast with this
technique, we do not need a manual generation process as
the introduction of the uniform hashing constraints together
with the input mutation is automatic (Section 3). This idea
extends our previous work on output diversity [38] and
focused testing [39], where we used a solver to generate the
inputs. In this case, the solver does not limit our generation
process due to we are replacing it with fuzzers.

7.2 Automated Test Generation and Fuzzers

Automatic unit test case generation has classically leveraged
different strategies such as symbolic execution, model-based
testing, adaptive random testing, search-based testing and
combinatorial testing [40]. The common goal of these tech-
niques is finding bugs and, normally, the common strategy
is coverage. Nevertheless, some of these strategies, such as
symbolic execution, lack scalability, while others, such as
search, require major levels of sophistication to exploit their
potential.

The work of Shamshiri et al. [41] has shown these lim-
itations by comparing the fault detection abilities of three
different unit test case generation tools (EvoSuite [42], [43],
Randoop [44] and Agitar [45]). Shamshiri et al. showed
how the tools struggle to find more than 40.1% of the bugs

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX XX 12

when they work independently and more than 55.7% when
they work together. This work is a good example of how
coverage is not enough. Even when a bug is covered the
error might fail to propagate to the observation point [46].
This phenomenon, known as failed error propagation, is
a consequence of coincidental correctness of the program
observation, and it is covered in several papers in the
literature [46], [47], [48], [49], [50].

From a system testing perspective, fuzzing is becoming
a predominant area because of the fuzzers’ abilities to dis-
cover new bugs and crashes in systems in a timely way.
There are several kinds of fuzzers, where the predominant
are either purely black box [15], modifying a set of inputs
called seeds to generate new ones, or greybox [17], which
also instrument the program to select the next input from
those that have discovered new paths or properties during
their execution. Although fuzzers are powerful as testing
tools, they need to deal with particular problems such as the
selection of initial seeds, the search process that is guiding
them and the mutation operations applied to the inputs [13].

There are several fuzzers currently available. From the
pure black testing side, the most famous are zzuf [15] and
Radamsa [16]. Some of the instrumentation-based fuzzers
–or greybox ones– that are famous are AFL [17], AFLFast
[18], FairFuzz [19], LibFuzzer [20] and VUzzer [51]. Fuzzers
such as AFLFast and FairFuzz are based on AFL and they
try to improve the fuzzer quality solving problems such
as seed prioritization in the case of AFLFast and heuristic
selection in the case of FairFuzz. New fuzzers like QSYM
[5] or Eclipser [52] apply concolic execution to detect inputs
that can traverse difficult branches. Fuzzers like SLF [53]
aim to solve the problem of invalid seeds, while others, like
directed greybox fuzz [14], focuses the fuzzing process on
specific areas of the program.

Modern approaches to fuzzing aim to perform specific
tasks that are challenging for automatic test generation
methods. Some examples are the work of Liang et al. [54]
applying directed greybox fuzz to cover different sequences
of programs, Nilizadeh et al. who apply differential fuzzing
for side-channel analysis [55], Cerebro [56] that fuzzes the
program’s context to detect vulnerabilities, ContractFuzzer
[57] that detects vulnerabilities on smart contracts or Dee-
pHunter [58] and SeqFuzzer [59] that fuzz deep learning
algorithms.

Fuzzing evaluation and comparison requires a proper
setup. To unify the criteria of fuzzing evaluation, Klees et
al. [13] provided some suggestions for a fair experimental
comparison methodology. We used these suggestions to
prepare our experimental set up as described in Section 4.
To the authors’ knowledge, our work is the first approach
that combines universal hashing and fuzzers.

8 CONCLUSIONS

This work presents HashFuzz a novel, semantics invariant,
testability transformation on programs based on r-wise in-
dependent hash functions. HashFuzz improves the diversity
of test sets produced by mutational, instrumented fuzzers
that use branch coverage feedback. The transformation uses
the XOR hash family to constrain the fuzzer to find inputs
from different regions of the input space. These regions

are defined uniformly at random by the hashing selection
process which is embedded after the program’s input by
the transformation.

We demonstrate experimentally that transforming pro-
grams with HashFuzz strongly improves the diversity of
the test sets that fuzzers produce when run on them. The
coverage scores of the test sets are maintained or improved
upon for the transformed programs. Although the effect is
small on average, 4.8%, it is significant as large gains in
coverage are difficult to achieve.

More significant is the large improvement for some pro-
grams in detection of unique crashes. Improvements are be-
tween 28% to 97% after the transformation, providing strong
evidence for the utility of combining input sampling diver-
sity with syntax coverage based search when constructing
test sets. An interesting question is whether HashFuzz could
easily be extendable to other coverage based automated test
set generation tools and methodologies.

Future work will centre on using the testability trans-
formation to provide other forms of diversity, e.g. output
diversity, following the work of Alshahwan and Harman
[35] on output uniqueness, and improving grammar-based
fuzzers such as BlendFuzz [60] where the grammar restruc-
tures provided inputs. Another possibility is to use the
transformation to diversify a test set produced by a focused
test generation process [14].

ACKNOWLEDGMENTS

This work has been supported by the InfoTestSS
EP/P005888/1 research project from EPSRC. We gratefully
acknowledge the support of NVIDIA Corporation with the
donation of the Titan V GPU used for this research. Many
thanks to Robert Feldt for useful discussion on how to find
a language to explain and present the novelty in this work.

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

[2] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter:
Quantifying the diversity of sets of test cases,” in IEEE International
Conference on Software Testing, Verification and Validation (ICST).
IEEE, 2016, pp. 223–233.

[3] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real
faults in a financial application,” in Proceedings of the 39th Inter-
national Conference on Software Engineering: Software Engineering in
Practice Track. IEEE Press, 2017, pp. 263–272.

[4] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. Tse, “Adaptive random
testing: The art of test case diversity,” Journal of Systems and
Software, vol. 83, no. 1, pp. 60–66, 2010.

[5] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “{QSYM}: A practical
concolic execution engine tailored for hybrid fuzzing,” in 27th
{USENIX} Security Symposium ({USENIX} Security 18), 2018, pp.
745–761.

[6] S. Chakraborty, K. S. Meel, and M. Y. Vardi, “A scalable approx-
imate model counter,” in International Conference on Principles and
Practice of Constraint Programming. Springer, 2013, pp. 200–216.

[7] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y.
Vardi, “On parallel scalable uniform sat witness generation.” in
TACAS, 2015, pp. 304–319.

[8] Q. Plazar, M. Acher, G. Perrouin, X. Devroey, and M. Cordy,
“Uniform sampling of sat solutions for configurable systems: Are
we there yet?” in 2019 12th IEEE Conference on Software Testing,
Validation and Verification (ICST). IEEE, 2019, pp. 240–251.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX XX 13

[9] S. Krishnamoorthy, M. S. Hsiao, and L. Lingappan, “Tackling
the path explosion problem in symbolic execution-driven test
generation for programs,” in 2010 19th IEEE Asian Test Symposium.
IEEE, 2010, pp. 59–64.

[10] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel,
and M. Roper, “Testability transformation,” IEEE Transactions on
Software Engineering, vol. 30, no. 1, pp. 3–16, Jan. 2004.

[11] Google, “Google’s fuzzer test suite,” 2019. [Online]. Available:
https://github.com/google/fuzzer-test-suite

[12] I. Diakonikolas, T. Gouleakis, J. Peebles, and E. Price, “Collision-
based testers are optimal for uniformity and closeness,” arXiv
preprint arXiv:1611.03579, 2016.

[13] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 2123–2138.

[14] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Di-
rected greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 2329–2344.

[15] S. Hocevar, “zzuf—multi-purpose fuzzer,” 2011.
[16] A. Helin, “Radamsa fuzzer,” 2006.
[17] M. Zalewski, “American fuzzy lop,” 2019. [Online]. Available:

http://lcamtuf.coredump.cx/afl/
[18] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based

greybox fuzzing as markov chain,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’16. New York, NY, USA: ACM, 2016, pp. 1032–1043.
[Online]. Available: http://doi.acm.org/10.1145/2976749.2978428

[19] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 475–485.

[20] K. Serebryany, “libfuzzer a library for coverage-guided fuzz test-
ing,” LLVM project, 2015.

[21] T. Guo, P. Zhang, X. Wang, and Q. Wei, “Gramfuzz: Fuzzing
testing of web browsers based on grammar analysis and structural
mutation,” in 2013 Second International Conference on Informatics &
Applications (ICIA). IEEE, 2013, pp. 212–215.

[22] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: grammar-aware
greybox fuzzing,” in Proceedings of the 41st International Conference
on Software Engineering. IEEE Press, 2019, pp. 724–735.

[23] C. P. Gomes, A. Sabharwal, and B. Selman, “Near-uniform sam-
pling of combinatorial spaces using xor constraints,” in Advances
In Neural Information Processing Systems, 2007, pp. 481–488.

[24] A. Vargha and H. D. Delaney, “A critique and improvement of the
cl common language effect size statistics of mcgraw and wong,”
Journal of Educational and Behavioral Statistics, vol. 25, no. 2, pp.
101–132, 2000.

[25] M. Böhme, V. J. Manès, and S. K. Cha, “Boosting fuzzer efficiency:
An information theoretic perspective,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2020, pp. 678–
689.

[26] M. Böhme, “Stads: Software testing as species discovery,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 27, no. 2, pp. 1–52, 2018.

[27] H. D. Menéndez, “Software testing or the bugs’ nightmare,” Open
Journal of Software Engineering, vol. 1, no. 1, pp. 1–21, 2021.

[28] G. Gay, “The fitness function for the job: search-based generation
of test suites that detect real faults,” in Software Testing, Verification
and Validation (ICST), 2017 IEEE International Conference on. IEEE,
2017, pp. 345–355.

[29] S. Poulding and R. Feldt, “Generating structured test data with
specific properties using nested monte-carlo search,” in Proceedings
of the 2014 Annual Conference on Genetic and Evolutionary Computa-
tion. ACM, 2014, pp. 1279–1286.

[30] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
Transactions on Software Engineering, vol. 39, no. 2, pp. 276–291,
Feb 2013.

[31] S. Chakraborty, K. S. Meel, R. Mistry, and M. Y. Vardi, “Approx-
imate probabilistic inference via word-level counting.” in AAAI,
vol. 16, 2016, pp. 3218–3224.

[32] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching for
cognitively diverse tests: Towards universal test diversity
metrics,” in First International Conference on Software Testing
Verification and Validation, ICST 2008, Lillehammer, Norway, April

9-11, 2008, Workshops Proceedings, 2008, pp. 178–186. [Online].
Available: https://doi.org/10.1109/ICSTW.2008.36

[33] Q. Shi, Z. Chen, C. Fang, Y. Feng, and B. Xu, “Measuring the
diversity of a test set with distance entropy,” IEEE Transactions
on Reliability, vol. 65, no. 1, pp. 19–27, March 2016.

[34] N. Alshahwan and M. Harman, “Augmenting test suites
effectiveness by increasing output diversity,” in Proceedings of the
34th International Conference on Software Engineering, ser. ICSE ’12.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 1345–1348. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337414

[35] ——, “Coverage and fault detection of the output-uniqueness test
selection criteria,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis. ACM, 2014, pp. 181–192.

[36] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Auto-
mated test suite generation for time-continuous simulink models,”
in Proceedings of the 38th international conference on software engineer-
ing. ACM, 2016, pp. 595–606.

[37] Y. Marhuenda, D. Morales, and M. Pardo, “A comparison of
uniformity tests,” Statistics, vol. 39, no. 4, pp. 315–327, 2005.

[38] H. Menendez, M. Boreale, D. Gorla, and D. Clark, “Output sam-
pling for output diversity in automatic unit test generation,” IEEE
Transactions on Software Engineering, 2020.

[39] H. D. Menéndez, G. Jahangirova, F. Sarro, P. Tonella, and D. Clark,
“Diversifying focused testing for unit testing,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 30, no. 4,
pp. 1–24, 2021.

[40] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, P. Mcminn et al., “An
orchestrated survey of methodologies for automated software test
case generation,” Journal of Systems and Software, vol. 86, no. 8, pp.
1978–2001, 2013.

[41] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and
A. Arcuri, “Do automatically generated unit tests find real faults?
an empirical study of effectiveness and challenges,” in 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2015, pp. 201–211.

[42] G. Fraser and A. Arcuri, “Evolutionary generation of whole test
suites,” in 11th International Conference on Quality Software (QSIC),
M. Núñez, R. M. Hierons, and M. G. Merayo, Eds. Madrid, Spain:
IEEE Computer Society, July 2011, pp. 31–40.

[43] ——, “EvoSuite: automatic test suite generation for object-oriented
software,” in 8th European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE ’11). ACM, September 5th - 9th 2011, pp. 416–419.

[44] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed
random testing for java,” in Companion to the 22Nd ACM
SIGPLAN Conference on Object-oriented Programming Systems and
Applications Companion, ser. OOPSLA ’07. New York, NY,
USA: ACM, 2007, pp. 815–816. [Online]. Available: http:
//doi.acm.org/10.1145/1297846.1297902

[45] “Agitar, [Online]. Available: https://www.agitar.com, [Accessed:
06-Mar-2018].”

[46] K. Androutsopoulos, D. Clark, H. Dan, R. M. Hierons,
and M. Harman, “An analysis of the relationship
between conditional entropy and failed error propagation
in software testing,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New York,
NY, USA: ACM, 2014, pp. 573–583. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568314

[47] W. Masri, R. Abou-Assi, M. El-Ghali, and N. Al-Fatairi, “An empir-
ical study of the factors that reduce the effectiveness of coverage-
based fault localization,” in Proceedings of the 2nd International
Workshop on Defects in Large Software Systems: Held in conjunction
with the ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2009). ACM, 2009, pp. 1–5.

[48] W. Masri and R. A. Assi, “Cleansing test suites from coincidental
correctness to enhance fault-localization,” in Software Testing, Veri-
fication and Validation (ICST), 2010 Third International Conference on.
IEEE, 2010, pp. 165–174.

[49] ——, “Prevalence of coincidental correctness and mitigation of its
impact on fault localization,” ACM Trans. Softw. Eng. Methodol.,
vol. 23, no. 1, pp. 8:1–8:28, 2014.

[50] X. Wang, S. Cheung, W. K. Chan, and Z. Zhang, “Taming coinci-
dental correctness: Coverage refinement with context patterns to
improve fault localization,” in 31st International Conference on Soft-
ware Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Proceedings, 2009, pp. 45–55.

https://github.com/google/fuzzer-test-suite
http://lcamtuf.coredump.cx/afl/
http://doi.acm.org/10.1145/2976749.2978428
https://doi.org/10.1109/ICSTW.2008.36
http://dl.acm.org/citation.cfm?id=2337223.2337414
http://doi.acm.org/10.1145/1297846.1297902
http://doi.acm.org/10.1145/1297846.1297902
https://www.agitar.com
http://doi.acm.org/10.1145/2568225.2568314

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, XX XX 14

[51] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and
H. Bos, “Vuzzer: Application-aware evolutionary fuzzing.” in
NDSS, vol. 17, 2017, pp. 1–14.

[52] J. Choi, J. Jang, C. Han, and S. K. Cha, “Grey-box concolic testing
on binary code,” in Proceedings of the 41st International Conference
on Software Engineering. IEEE Press, 2019, pp. 736–747.

[53] W. You, X. Liu, S. Ma, D. Perry, X. Zhang, and B. Liang, “Slf:
fuzzing without valid seed inputs,” in Proceedings of the 41st
International Conference on Software Engineering. IEEE Press, 2019,
pp. 712–723.

[54] H. Liang, Y. Zhang, Y. Yu, Z. Xie, and L. Jiang, “Sequence coverage
directed greybox fuzzing,” in Proceedings of the 27th International
Conference on Program Comprehension. IEEE Press, 2019, pp. 249–
259.

[55] S. Nilizadeh, Y. Noller, and C. S. Păsăreanu, “Diffuzz: differential
fuzzing for side-channel analysis,” in Proceedings of the 41st Inter-
national Conference on Software Engineering. IEEE Press, 2019, pp.
176–187.

[56] Y. Li, Y. Xue, H. Chen, X. Wu, C. Zhang, X. Xie, H. Wang, and
Y. Liu, “Cerebro: context-aware adaptive fuzzing for effective
vulnerability detection,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ACM, 2019, pp. 533–
544.

[57] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart
contracts for vulnerability detection,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing. ACM, 2018, pp. 259–269.

[58] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: a coverage-guided fuzz
testing framework for deep neural networks,” in Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, 2019, pp. 146–157.

[59] H. Zhao, Z. Li, H. Wei, J. Shi, and Y. Huang, “Seqfuzzer: An indus-
trial protocol fuzzing framework from a deep learning perspec-
tive,” in 2019 12th IEEE Conference on Software Testing, Validation
and Verification (ICST). IEEE, 2019, pp. 59–67.

[60] D. Yang, Y. Zhang, and Q. Liu, “Blendfuzz: A model-based frame-
work for fuzz testing programs with grammatical inputs,” in 2012
IEEE 11th International Conference on Trust, Security and Privacy in
Computing and Communications. IEEE, 2012, pp. 1070–1076.

Héctor Menéndez is a Lecturer at Middlesex
University London, working on applications of
information theory to software testing. Originally,
he worked designing machine learning algo-
rithms based on graph structures and search
based optimization. He has applied these ideas
to several different fields, where the most rele-
vant are malware analysis, unmanned air vehi-
cles and, currently, software testing.

David Clark is a Reader in Software Engineer-
ing at University College London. His research
interests include Software testing, Application of
Information Theory to software analysis, Pro-
gram flow security, Slicing programs and soft-
ware models, Malware detection and classifi-
cation. David has published articles on a wide
range of topics, including disrupting android mal-
ware triage by forcing misclassification, quantify-
ing the diversity of sets of test cases, and test
oracle assessment and improvement.

