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Abstract 

Transcription plays a central role in defining the identity and functionalities of cells, as well as in 

their responses to changes in the cellular environment. The Gene Ontology (GO) provides a 

rigorously defined set of concepts that describe the functions of gene products. A GO 

annotation is a statement about the function of a particular gene product, represented as an 

association between a gene product and the biological concept a GO term defines. Critically, 
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each GO annotation is based on traceable scientific evidence. Here, we describe the different 

GO terms that are associated with proteins involved in transcription and its regulation, focusing 

on the standard of evidence required to support these associations. This article is intended to 

help users of GO annotations understand how to interpret the annotations and can contribute 

to the consistency of GO annotations. We distinguish between three classes of activities 

involved in transcription or directly regulating it - general transcription factors, DNA-binding 

transcription factors, and transcription co-regulators.  

Introduction 

The Gene Ontology (GO) develops a computational model of biological systems, ranging from 

the molecular to the organism level, across all species in the tree of life. GO aims to provide a 

comprehensive representation of the current scientific knowledge about the functions of gene 

products, namely, proteins and non-coding RNA molecules (1)(2). GO is organized in three 

aspects. GO Molecular Functions (MF) describe activities that occur at the molecular level, such 

as “DNA binding transcription factor activity” or “histone deacetylase activity”. Biological 

Processes (BP) represent the larger processes or ‘biological programs’ accomplished by multiple 

molecular activities. Examples of broad biological process terms are "transcription" or "signal 

transduction". Cellular Components (CC) are the cellular structures in which a gene product 

performs a function, either cellular compartments (e.g., "nucleus" or "chromatin"), or stable 

macromolecular complexes of which they are parts (e.g., "RNA polymerase II"). Together, 

annotations of a gene to terms from each of those aspects describe what specific function a 

gene product plays in a process and where this activity occurs in the cell. Ideally every gene 

product should have an annotation from each of the three aspects of GO.  

 

The specific genes expressed in a given cell define the identity and functionalities of that cell. 

Regulation of transcription is highly complex and leads to differential gene expression in 

specific cells or under specific conditions. In human cells, it has been estimated that several 

thousand proteins participate in gene expression and its regulation, directly or indirectly 

(3)(Velthuijs, in preparation). This includes the general transcription machinery, the factors that 
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make the chromatin more or less accessible, specific DNA-binding transcription factors, and the 

signaling molecules that regulate the activity of all those proteins. This complexity is difficult to 

accurately represent in ontological form. Tripathi et al. (4) redesigned that part of the ontology 

in 2013 to define precise molecular functions for the various proteins involved in transcription 

and its regulation. Nearly 10 years after its implementation, we had to acknowledge that this 

framework was too complex and difficult to navigate, leading to inconsistent annotations and 

thus poorly serving the user community. The work described here was also motivated by the 

GREEKC consortium, whose goals include curation tools development, reengineering of 

ontologies, development of curation guidelines and text mining tools, developing platforms to 

analyze and render the molecular logic of transcription regulatory networks for which a robust 

infrastructure is needed. Therefore, we thoroughly reviewed the Gene Ontology representation 

of molecular activities relevant to transcription, with a simpler and more pragmatic approach, 

more aligned with available experimental data. 

 

We have revised the GO MF terms representing the activities of proteins involved in 

transcription, with the input from domain experts. In addition to RNA polymerase, we defined 

three different types of activities that take place on the DNA to mediate or regulate 

transcription: general transcription factors (GTFs), DNA-binding transcription factors (dbTFs), 

and transcription coregulators (coTFs).  

 

Here we present the annotation approach recommended by the GO consortium (5), applied to 

the recent refactoring of the transcription domain of GO. This approach aims to 1) help 

biocurators – annotation producers - interpret published data and correctly assign the MFs 

terms for GTF, dbTF, or coTF to a protein, and 2) help users understand how the data is 

generated and how to interpret them. The annotation of factors involved in transcription and 

its regulation is challenging for multiple reasons. Contrary to other molecular functions, for 

example enzymes, where one protein or a well-defined complex catalyses a precise reaction, 

the measurable output of transcription activities is the result of multiple nearly simultaneous 

activities of GTF, dbTF, coTF, as well as RNA polymerase, hence, individual activities can be hard 
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to distinguish experimentally. Moreover, these factors often form large complexes, such that 

the level of resolution of the experimental setup is essential to determine the precise activity of 

any given protein. Older experimental methods often did not provide enough details, leading to 

inaccurate classifications of certain proteins. In addition, researchers use "transcription factor" 

loosely, at times meaning GTF, dbTF, or coTF. This complicates the annotation process and 

necessitates solid expertise for correct interpretation of the data. The experimental data itself 

is difficult to parse for unambiguous assignment of a function to a protein: typically, a single 

experiment is insufficient for accurately determining the function of these proteins, thus, 

interpretation of experimental results that investigate dbTFs must rely on pre-existing 

knowledge. Also, many proteins presumed to function as dbTFs have never been 

experimentally demonstrated to bind DNA, but their role is indirectly inferred by the presence 

of known specific DNA-binding domains and in some cases, evidence of an effect on the 

transcription of putative direct target genes. To add to the complexity, the presence of a DNA-

binding domain in a protein does not always imply that the protein functions as a dbTF (6). 

GO description of molecular functions relevant for transcription  

We distinguish between three types of activities involved in transcription or directly regulating 

it: general transcription factors (GO:0140223), DNA-binding transcription factors (GO:0003700), 

and transcription co-regulators (GO:0003712). The general transcription initiation factor 

activity term and its descendants describe the activities of general transcription initiation 

factors for RNA polymerase I, II and III, which play a direct role in the biological process of 

transcription at the core promoter (Sant et al. in preparation). In contrast, the GO:0140110 

transcription regulator activity branch describes the activities of transcription regulators: dbTF 

and coTFs, that act at any type of cis-regulatory module (Figure 1). DNA-binding transcription 

factors are adaptors that bind chromatin at specific genomic addresses to coordinately regulate 

the expression of genes sets. This is encoded in the ontology via links between the DNA-binding 

transcription factor activity term and its descendants and to their counterpart branch of the MF 

ontology describing DNA binding. The GO:0000976 transcription regulatory region sequence-

specific DNA-binding sub-tree of GO includes terms describing specific regulatory regions, such 
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as the core promoter (including the TATA box and the transcription start site), cis-regulatory 

regions (bound by dbTFs), and specific types of cis-regulatory motifs (such as E-box and N-box). 

An overview of the GO structure for DNA binding activities is shown in Figure 2. The definitions 

and placement of GO terms in the ontology can be viewed in the AmiGO (7)(8); 

http://amigo.geneontology.org/amigo, and QuickGO (9); https://www.ebi.ac.uk/QuickGO/ 

browsers. 
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(a) 

 
 

(b) 

 
 

 

Figure 1. Transcription regulator activity branches of the Gene Ontology. (a) Graphical representation of the 

placement of the parent terms for transcription regulator molecular functions. Black headers correspond to MF 

and cyan headers to BP terms. (b) Transcription regulators are dbTF and coTFs. The general transcription initiation 

factors play a direct role in transcription. Top-level terms of each branch are highlighted in blue. 
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(a) 
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Figure 2. DNA binding branch of the Gene Ontology. This part of the Molecular Function (MF) ontology describes 

DNA binding. (a) Graphical representation of the placement of the terms describing sequence-specific promoter 

binding. (b) Hierarchical view of the sequence-specific transcription regulatory region binding terms.  

 

Strategy for annotating transcription-associated activities  

GO terms are associated with gene products based on two general approaches: from 

experimental data and from sequence inferences (10). The GO database has a total of 8 million 

annotations, about 7% of which are to human gene products. For human, there are > 915,000 

annotations derived from experimental data (GO release 2020-10-10 obtained from 

http://amigo.geneontology.org). Sequence inference methods provide more than 106,000 

annotations for human proteins based on phylogenetic relationships (65,000 annotations) (11); 

protein domains (6,730 annotations) (12); and Ensembl orthology predictions (35,000 

annotations) (13). The next sections describe the annotation of the different types of proteins 

involved in transcription and its regulation.  

Transcription activity annotations supported by experimental data  

The following annotation approach follows the recommendations of the GO consortium. First 

and foremost, it is necessary to use as much information as possible, rather than annotating 

articles individually and out of the wider context. When extracting information, a gene-by-gene 

or pathway-by-pathway approach is considered best practice (5). Reviewing a range of articles 

ensures that the annotations closely reflect the current state of knowledge. Ideally, the corpus 

of annotations for a gene product should be based on multiple observations from different 

articles by independent research groups. Five steps used to determine whether a gene can be 

annotated as a transcriptional regulator are outlined in Figure 3. Appendix 1 provides examples 

of each of those different activities.  
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Figure 3. Five steps to transcription activity annotation. The five key steps to associating a transcription MF term 

with a protein starts with identifying the starting hypothesis, to confirm that the authors are characterizing a GTF, 

dbTF or coTF. Secondly, considering whether the knowledge from specific protein domains or characterized 

orthologs support the hypothesis. Thirdly, checking whether existing annotations from GO, UniProt and Model 

Organism databases are consistent with the hypothesis. Fourthly, reviewing other published experimental data to 

ensure no contradictory findings have been reported. Finally, creating new GO annotations, if the experimental 

results are consistent with the identified hypothesis. 

 

 

1. Identify the starting hypothesis: are the authors characterizing a transcription 

regulator? Scientific models are built by adding new data to the existing corpus of 

evidence. New data can either support or contradict existing models. The introduction 

section of research articles can be used to understand what prior knowledge the article 

builds on, and which aspect of the existing model or what new model the authors are 

assessing. The hypothesis tested by the authors is essential to choose a GO term, with 

the caveat that inconsistent terminology has been used in transcription research articles 

and therefore may not always be aligned with the GO term categories.  

 

2. Determine whether knowledge from specific protein domains or characterized 

orthologs support the hypothesis. The presence of specific domains and the existence of 
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well-characterized orthologs can provide useful support for interpreting experimental 

data. Note that this data should be used with caution. For instance, ARID-, AT hook-, and 

some HMG-, GATA-, zinc finger domain-containing proteins and proteins binding 

structural features such as the DNA minor groove rarely bind DNA in a sequence-specific 

manner; some of them merely function to increase the avidity or stability of a 

transcription factor complex and its associated co-factors and do not - in their own 

capacity - provide the specific genomic address to guide transcription to specified target 

genes. Such proteins are not considered dbTFs in GO. 

 

To support the association of a gene with a GO term from homologous sequences from 

other species, only closely related orthologs whose function have been unambiguously 

characterized can be used if those are consistent with the experimental data presented in 

the article.  

 

- GTFs function as the molecular machine that assembles with the RNA polymerase at the 

promoter to form the pre-initiation complex (PIC). GTFs have been characterized in 

several organisms, from archaea to yeast and mammalian cells (14)(15), and therefore 

orthology should provide strong support for the decision to associate these proteins 

with a child specific for RNA polymerase I, II or III of the MF term "GO:0140223 general 

transcription initiation factor activity". In addition, the naming of GTFs is well 

established across human and model organism nomenclature groups and can be used to 

help guide these decisions. Thus, for human GTFs the HUGO Gene Nomenclature 

Committee (HGNC, www.genenames.org) provide the gene symbol TAF#, for TATA-box 

binding protein associated factors, and GTF2#s and GTF3#s, for general transcription 

factor II and III subunits respectively.  

 

- dbTFs are specific double-stranded DNA-binding transcription factors that provide 

genomic addresses and respond to the conditions under which specific genes are 

expressed. Central to dbTF function is their binding to specific double-stranded DNA 
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sequences that are often named transcription factor binding sites (TFBS). Gene products 

associated with the GO term "GO:0003700 DNA-binding transcription factor activity" 

have the ability to bind DNA and this binding regulates the expression of a specific set of 

target genes. The direct target gene(s) can also be included in the annotation using the 

"has input relation". A human dbTF catalog developed by the GREEKC project ((6); also 

accessible from https://www.ebi.ac.uk/QuickGO/targetset/dbTF) may be consulted to 

check whether a specific human protein is annotated to dbTF function with 

experimental or phylogenetic evidence. When considering proteins that belong to 

families of well characterized transcription factors, such as those that contain bHLH, 

bZIP, homeobox, ETS, Forkhead, etc. domains and proteins with a one-to-one ortholog 

already demonstrated to be a dbTF, then weaker evidence of DNA binding, such as ChIP 

experiments is sufficient. In contrast, special care must be taken to annotate proteins 

bearing domains that are not exclusively found in transcription factors, such as RING, 

MYND and PhD zinc fingers. Similarly, for proteins with enzymatic activity: while there 

are rare cases of dbTFs with enzymatic activities, such as ENO1, dbTF and enzymatic 

activity are usually mutually exclusive. For proteins not in the dbTF catalog, clear 

experimental or phylogenetic evidence of sequence-specific DNA binding and gene 

transcription regulation via cognate DNA motifs located in gene-associated cis-

regulatory modules is required for the protein to be classified with high confidence as a 

dbTF.  

 

- coTFs: Transcription coregulators (also known as transcription cofactors; GO:0003712) 

represent a group of different functions that take place at cis-regulatory regions to 

make transcription of specific gene sets either more (coactivators) or less (corepressors) 

efficient. Coregulators can modify chromatin structure through covalent modification of 

histones, ATP-dependent chromatin remodelling, and modulate dbTF interactions with 

other transcription coregulators. We classify the Mediator Complex, which bridges 

dbTFs and the RNA polymerase, as a transcription coactivator (16)(17)(18). Many coTFs 

have enzymatic activity and normally exert their function independent of high affinity 
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binding to specific DNA sequences. CoTFs that do bind DNA typically recognize very 

short DNA sequences that are not sufficiently unique in the genome to enable 

regulation of a limited set of genes in a discrete environmental or developmental stage. 

One example of this is CPF1, that binds the CpG dinucleotide and helps most CpG islands 

gain epigenomic marking (19)(20)(21). 

 

It is important to keep in mind that DNA binding proteins that regulate transcription are 

not necessarily dbTFs. Key points that help distinguish between the three activities 

discussed above are that (i) dbTFs bind DNA in a sequence-specific manner, and regulate 

precise sets of genes; (ii) coTFs usually do not directly bind DNA, and when they do they 

don't exhibit strong sequence-specificity (iii) coTFs often have catalytic activities (such as 

histone methyltransferase, protein kinase, or ubiquitin ligase), which is highly unusual in 

dbTFs; (iv) GTFs are required for core promoter activity and are considered to act at 

each promoter to promote transcription initiation (14)(22), although the exact subunit 

composition at individual promoters may vary.  

 

3. Confirm that existing annotations are consistent with the hypothesis. New annotations 

need to be consistent with existing annotations, unless the existing annotations are 

believed to be wrong or out of date. Annotations made to a term as well as a more 

specific descendant reflect differences in granularity of annotation, and are not generally 

considered inconsistent. When the new annotation uses a term in a different branch 

than existing annotations, a review of the evidence supporting the existing annotations is 

undertaken and, if necessary, annotations that appear to be incorrect are disputed (see 

section "Ensuring a coherent set of annotations").  

 

4. Check that other published experimental results do not contradict the hypothesis. 

The application of the gene-by-gene or pathway-by-pathway annotation approach 

ensures that results from other research articles are taken into account and that all 

annotations are in line with the current state of knowledge. Again, if inconsistencies are 
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noticed, great care is taken to confirm correct interpretation of the data, this is 

particularly important if there is evidence for multiple, distinct transcription activity 

functions.  

 

5. Validate that the experimental results are consistent with the hypothesis. If the results 

presented in the curated article are consistent with the hypothesis presented by the 

authors, then the appropriate transcription activity GO term(s) are associated with the 

gene product. 

 

Proteins that are involved in transcription and its regulation have historically been studied 

through small-scale, focused experimental approaches. For some examples of the small-scale 

experiments that do provide evidence for DNA binding transcription factor activity the 

biocurator can use Tables 3 and 4 of Tripathi et al., 2013, (4) and in Santos-Zavaleta et al., 2019, 

(23). Recent advances in high-throughput methodologies now provide robust data that, when 

interpreted with sufficient care, support the assignment of a function role to many proteins, 

including transcription regulators. This includes HT-SELEX (24)(25), Protein Binding Microarrays 

(26), ChIP (27), one- and two-hybrid experiments (28)(29). For these experiments, the data 

quality and the false positive rate must be evaluated before annotations are created. For 

example, human HT-SELEX data will have more false positives if native dbTFs are assayed in 

nuclear extracts or over-expressed in eukaryotic cells, compared with heterologous proteins 

purified from prokaryotic cells, as the latter reduces the probability of indirect interactions with 

endogenous factors. For high-throughput transcription data, only articles with low rates of false 

positives, are curated. Those various techniques provide multiple independent lines of 

evidence, strengthening the confidence in the annotation when they converge on a single motif 

or molecular function. The GO recommendations on curation of high-throughput experimental 

data should be applied when such data is annotated (30).  
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Annotations based on non-experimental evidence  

There are only about 500 human dbTFs for which there is experimental evidence satisfying the 

criteria presented here. Across all areas of biology several reliable methods infer protein 

function from available experimental data. Indeed, there are approximately 1,000 human 

proteins annotated as dbTFs by non-experimental methods (Lovering et al. same BBA issue, 

prepublication available at (6)). Phylogenetic annotations are assigned by a group of 

biocurators with expertise in evolutionary biology, and require experimental evidence for at 

least one member of a clade of evolutionarily related proteins (11). The GO knowledgebase also 

contains GO terms assigned by automated pipelines based on protein domain (InterPro2GO) 

and orthology (Ensembl). InterPro2GO (12) is based primarily on local (partial) homology: 

protein domains are mapped to specific GO terms, and any protein with one of these domains 

will be annotated to the appropriate GO term(s). Ensembl Compara (13) generates groups of 

one-to-one orthologs among closely related species and propagates all experimental 

annotations to each members of the group. While manual annotations based on these methods 

are allowed, the GO consortium recommends using the automated pipelines that are 

maintained centrally and ensure a consistent annotation corpus across all annotated species.  

Ensuring a coherent set of annotations  

During the process of annotation other relevant annotations associated with the gene are 

reviewed. If there are conflicting annotations, the supporting data should be reassessed to 

determine whether the annotations are inconsistent with the data, in which case the 

annotations must be fixed (5).  

 

In cases where the primary data is conflicting across different articles (for example a protein is 

sometimes described as a transcription factor, and sometimes as a coregulator), then the 

literature will be reviewed carefully to decide whether the annotation is incorrect (bad choice 

of term, wrong protein annotated), whether the knowledge has evolved, if the protein plays 

multiple roles under different conditions (i.e., acts as a DNA-binding transcription factor in 
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certain contexts and as a cofactor in others). If no activity has yet been established, no MF 

annotation will be made.  

 

Note that individual DNA-binding transcription factors can act as both activators or repressors 

dependent on the context, hence association of both activator and repressor terms with a 

single protein is not considered inconsistent. The specific conditions under which this happens, 

such as relevant signaling pathways, cell type, as well as specific target genes, etc., may be 

further specified through additional context details ((31); see an example in Figure 4).  

 

 

 
Figure 4. Representation of biological context of dbTF activity. The level of cyclin-dependent kinase inhibitor p21 

(CDKN1A) is regulated by the transcription factor p53 (TP53) upon DNA damage, signaling cell cycle arrest to the 

cell (http://noctua.berkeleybop.org/editor/graph/gomodel:5fa76ad400000000). 

 

Pitfalls in annotating transcription regulators  

During the review of dbTF GO annotations (6), in which over 3,000 GO annotations were 

reviewed, a variety of common errors in data interpretation were identified. One of the most 

common errors was caused by the difficulty in distinguishing a dbTF from a coTF, as the 

evidence for those two functions can be quite similar. To prevent this error, biocurators ensure 

that the protein has a sequence-specific double-stranded DNA-binding domain and conduct an 
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exhaustive review of the literature, including articles associated with the protein’s close 

orthologs. Furthermore, the literature supporting the dbTF activity of a protein that also has 

evidence for another function, in particular, RNA binding, will be carefully checked before 

assigning a dbTF activity. The work on the human dbTF catalogue added a GO ‘DNA-binding 

transcription factor activity’ annotation to 583 proteins, and removed erronous assignments for 

256 proteins. 

 

Transcription regulators most often act as members of complexes, some of which also contain 

proteins with other activities. In some cases, only some subunits of a complex interact with 

DNA: for instance, while the RFX complex contains three members: RFX5, RFXAP and RFXANK, 

only RFX5 binds DNA directly. But the DNA-binding ability of the complex is facilitated by all 

three subunits so RFXAP and RFXANK are not coTFs (32). In this case, RFXAP and RFXANK are 

annotated using the "contributes to" qualifier, to indicate that they participate in, but are not 

directly responsible for the activity. 

 

Another activity that can easily be confused for a coTF is a dbTF inhibitor. These proteins 

interact with a dbTF, but not at the DNA, to prevent the dbTF from reaching its target genes. 

Well characterized examples are the I-SMADs, SMAD6 and SMAD7 (33), that act by competing 

with active SMADs at receptors, thus blocking further intracellular signalling, and should be 

annotated to "GO:0140416 transcription regulator inhibitor activity". 

 

It must be noted that these approaches to avoid errors in dbTF activity assignment are not 

unequivocal, as some proteins do have multiple functions. For example, the glucocorticoid 

receptor (NR3C1), which is a canonical dbTF, has recently been shown to bind double-stranded 

RNA motifs (34); ATF2 (activating transcription factor 2) and CLOCK are dbTFs that have been 

reported to also exhibit histone acetyltransferase activity (35)(36)(37)(38); some dbTFs, such as 

NFIB (nuclear factor I B), also function as dbTF inhibitors (39). Finally, general and sequence-

specific effects can be difficult to separate, as has been established for the MYC dbTF (40). 
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Conclusion 

The annotation approach presented here is designed to help biocurators annotate factors 

involved in transcription and its regulation, as well as for users of GO annotations to 

understand their meaning and the evidence behind them. This work complements the redesign 

of this part of the GO to significantly simplify the ontology structure. The new ontology 

structure and the present standards were applied to the review of human proteins associated 

with GO terms describing dbTF activity (6). We anticipate that adoption of this annotation 

approach by all groups who produce GO associations will increase annotation consistency 

across all species, for transcription and also more widely across all areas represented by GO. 
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Highlights 
x The Gene Ontology (GO) provides a rigorously defined set of concepts that describe the 

functions of gene products 
x GO annotations link a gene product and a GO concept, and are supported by scientific 

evidence 
x Transcription, which plays a central role in defining the identity and functionalities of 

cells, is mediated by large complexes, and delineating the function of individual gene 
product can be challenging 

x To improve consistency of the GO data, we present recommendations elaborated by the 
GO consortium and GREEKC members 
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