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Abstract—This paper considers machine learning for physi-
cal layer security design for communication in a challenging
wireless environment. The radio environment is assumed to be
programmable with the aid of a meta material-based intelligent
reflecting surface (IRS) allowing customisable path loss, multi-
path fading and interference effects. In particular, the fine-
grained reflections from the IRS elements are exploited to create
channel advantage for maximizing the secrecy rate at a legitimate
receiver. A deep learning (DL) technique has been developed to
tune the reflections of the IRS elements in real-time. Simulation
results demonstrate that the DL approach yields comparable
performance to the conventional approaches while significantly
reducing the computational complexity.

I. INTRODUCTION

Security has become a major concern for wireless communi-
cation systems with the emergence of high data rate and low
latency requirements which, due to inherent vulnerability in
their architecture, has limited ability to embed security in the
higher layers of communication. Thus physical layer security
(PLS) will become an integral part of future communication
systems beyond 5G [1]. Despite rapid progress in PLS tech-
niques, the effectiveness of PLS in real scenarios are in doubt
due to some major challenges including energy cost incurred
in relaying jamming signals and artificial noise as well as
computational complexity in beamforming design [2].

With the development of metamaterials technology, intel-
ligent reflecting surface (IRS) has emerged as a promising
technique for future wireless communications due its ability to
reconfigure the wireless propagation environment by exploit-
ing a large number of low-cost passive reflection units (thus
incurs no energy cost for reflecting the signals) which can
intelligently adjust the incident signal to improve the system
performance [3]. In particular, IRS has great potential in
enhancing physical layer security [4] by intelligently tailoring
the multipath propagation. By adjusting the phase shift of
reflection unit adaptively, the signal reflected by IRS can be
enhanced or weakened correspondingly at the receiver, thus
strengthening the desired signal and attenuating interference
signal [5]. The secrecy rate can be greatly improved by
jointly optimizing the beam-forming at the base station and
the phase shifts of IRS units. However, generating the optimal
phase shifts of IRS elements with acceptable computational
complexity remains as the most pressing challenge [3].

In [6], a two phase optimisation approach is adopted in
which closed form expression for beamforming design fol-
lowed by identification of appropriate phase shift in IRS reflec-
tor. In [7], secrecy rate maximisation algorithm was developed
and a closed form and semi-closed for expressions were
obtained for beamforming and phase shift of IRS respectively.
In [2], the algorithms of block coordinate descent (BCD) and
minorisation maximization (MM) are investigated for small-
scale IRSs and large-scale IRSs, respectively. Moreover, the
authors of [8] proposed an iterative path-following algorithm.
It was shown in [9] that a locally optimal solution can be
obtained by using second-order cone programming, which
achieves better performance than conventional semidefinite
programming (SDP) based algorithms. However, all the above
iterative algorithms involve heavily computation-demanding
matrix inversions, and their complexity increases exponentially
with the number of IRS reflection units. In addition, the
alternating optimization algorithms usually require long time
to find an apparently optimal solution, which makes the
solution less attractive for practical implementation.

Recently, machine learning (ML) and deep learning (DL)
techniques have attracted huge interest for addressing wire-
less communication problems due to their ability to improve
system performance and reduce the computational cost [10].
DL exploits the deep neural network (DNN), which completes
the training process offline and the trained DNN only includes
simple linear and non-linear transformation units. Although the
name suggests that IRSs are intelligent, existing works with
IRS-assisted communications do not implement any systematic
learning approach. While ML/DL has been widely investigated
in wireless communications, there is hardly any work that ex-
ploits DNN for IRS and to the best of the authors’ knowledge,
there is no such work that exploits ML for IRS-aided PLS.
In this work, DL is applied to design the optimal reflection
coefficients of the IRS elements for secure communication.
The main contributions of the paper include: (i) a deep learning
solution for designing truly intelligent reflecting surface for
the secrecy rate maximization problem, and (ii) rigorous per-
formance analysis and comparison with existing optimisation
algorithms. The proposed DNN approach provides us real-time
IRS reflections thus addressing the implementation challenges
of iterative IRS design.

Notations– In this paper, bold lower-case and upper-case



letters represent vectors and matrices, respectively, CM×N

denotes the space of M × N complex-valued matrices, HT

stands for the transpose of matrix H, while | · | and ‖·‖ denote
absolute value and the Euclidean norm, respectively. diag(g)
means a N ×N diagonal matrix with g , [g1, g2, · · · , gN ]
as the main diagonal and [·]+ denotes max(0, x).

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 illustrates the IRS-assisted wireless system model of
interest, which consists of an access point (AP), one legitimate
user, one eavesdropper and an IRS. The AP transmits signals
to the user in the presence of the eavesdropper. We assume that
the AP is equipped with M antennas, while the user and the
eavesdropper each with a single antenna. The IRS is deployed
in the network between the AP and the user to aid secure data
transmission to the user, with N reconfigurable reflecting units
programmed by an IRS controller.

Figure 1. An IRS-assisted wireless communication system.

The channel coefficients between AP and IRS, AP and user,
AP and eavesdropper, IRS and user and IRS and eavesdropper
are denoted by G ∈ CN×M , hau ∈ C1×M , hae ∈ C1×M ,
hiu ∈ C1×N , hie ∈ C1×N , respectively. Consider that all
channels in the system experience quasi-static flat-fading and
the global channel state information (CSI) is perfectly known
at both AP and the IRS controller. nU and nE denote the
additive Gaussian noises at the user and the eavesdropper with
zero mean and variance σ2

u and σ2
e , respectively.

The AP transmits confidential message s with mean value
0 and unit variance to the user through beamforming. The
beamforming vector is denoted by f ∈ CM×1 satisfying the
constraint

‖f‖2 ≤ Pt, (1)

where Pt is the maximum transmit power budget at AP.
The vector of the reflection coefficients by the IRS units is

denoted by ϕ , [ϕ1, ϕ2, . . . , ϕN ]T , where ϕn = βne
jθn . βn

and θn stand for the amplitude and the phase shift of the nth
reflection coefficient, respectively. For simplicity, we assume
ideal hardware configuration for the IRS, meaning that the
elements are designed for maximum reflection [5], i.e., βn = 1
and θn ∈ [0, 2π), for n = 1, . . . , N .

The achievable rates at the user and the eavesdropper are,
respectively, given by [11]

Ru = log2

(
1 +
|(hiuΦG + hau) f |2

σ2
u

)
, (2)

Re = log2

(
1 +
|(hieΦG + hae) f |2

σ2
e

)
, (3)

where Φ , diag(ϕ). With Ru and Re, the secrecy rate from
AP to the user is given by [11]

Rsec = [Ru −Re]
+
. (4)

The operator [·]+ will be omitted in the following expressions
since the optimal secrecy rate must be nonnegative.

Our objective is to find the optimal phase-shifts of reflectors
in the IRS and corresponding beamforming vector for max-
imizing the secrecy rate (4). Thus, the related optimization
problem is formulated as

max
f ,ϕ

log2

(
1 +
|(hiuΦG + hau) f |2

σ2
u

)

− log2

(
1 +
|(hieΦG + hae) f |2

σ2
e

)
,

(5a)

s.t. ‖f‖2 ≤ Pt, (5b)
|ϕn| = 1,∀n (5c)

Constraint (5b) limits the transmission power of the beam-
forming vector, whereas (5c) guarantees maximum reflection.
The objective (5a) is a non-convex function with regard to
f and ϕ. It is worth noting that the global optimal solution
of non-convex optimization problems with unit modulus con-
straints is usually hard to find. Therefore, [5] proposed an
iterative optimization method.

III. PROPOSED SOLUTION

In this section, we present both the traditional convex
optimization based algorithm and the proposed deep learning
method to find the optimal phase shifts of IRS units as well
as the transmit beamforming vector.

A. Conventional Approach

The basic process of alternating optimization is to find the
optimal solution for one variable while keeping the others
fixed. In this case, we firstly optimize f assuming that ϕ is
given and then optimize ϕ with given f iteratively.

1) Optimizing f with given ϕ: The optimization problem
(5) with given ϕ reduces to

max
f

1
σ2
u
|(hiuΦG + hau) f |2 + 1

1
σ2
e
|(hieΦG + hae) f |2 + 1

(9a)

s.t. ‖f‖2 ≤ Pt. (9b)



Introducing matrix variables A and B defined as

A =
1

σ2
u

(hiuΦG + hau)
H
(hiuΦG + hau) , (10)

B =
1

σ2
e

(hieΦG + hae)
H
(hieΦG + hae) , (11)

the optimization problem (9) can be rewritten as

max
f

fHAf + 1

fHBf + 1
(12a)

s.t. fHf ≤ Pt. (12b)

Assuming that emax is the normalized eigenvector correspond-
ing to the maximum eigenvalue of matrix C defined as

C =

(
B +

1

Pt
I

)−1(
A +

1

Pt
I

)
, (13)

where I is an identity matrix, the optimal solution for f is
given by [11]

fopt =
√
Ptemax. (14)

2) Optimizing ϕ with given f : From (5), the optimization
problem with given f can be expressed as:

max
ϕ

1
σ2
u
|(hiuΦG + hau) f |2 + 1

1
σ2
e
|(hieΦG + hae) f |2 + 1

(15a)

s.t. |ϕn| = 1,∀n. (15b)

It is known that

hiuΦG = ϕT diag (hiu)G, (16)

hieΦG = ϕT diag (hie)G. (17)

Let diag (hiu)G = Ku, and diag (hie)G = Ke, equations
above can be rewritten as

hiuΦG = ϕTKu, (18)

hieΦG = ϕTKe, (19)

Defining f∗fT , F, problem (15) is equivalent to

max
ϕ

f (ϕ) (20a)

s.t. |ϕn| = 1,∀n, (20b)

where f (ϕ) is defined in (21) (at the bottom of the page). Let
us now define the variables νU, νE, ΓU and ΓE as

νU =
hTauFh∗

au

σ2
u

, νE =
hTaeFh∗

ae

σ2
e

, (22)

ΓU =
1

σ2
u

[
KT

u FK∗
u KT

u Fh∗
au

hTauFK∗
u 0

]
, (23)

ΓE =
1

σ2
e

[
KT

e FKT
e KT

e Fh∗
ae

hTaeFK∗
e 0

]
. (24)

By substituting (22) - (24), (20) can be simplified as the
following equivalent problem

max
v

vHΓUv + νU + 1

vHΓEv + νE + 1
, (25a)

s.t. vHUnv = 1,∀n, (25b)

where v =
[
ϕT , 1

]T
and U is a three dimensional matrix,

with elements of Un given by

[Un]i,j =

{
1 i = j = n
0 otherwise . (26)

Note that problem (25) is still non-convex. Defining V , vvH

requires that rank(V) ≤ 1. Ignoring this rank constraint, the
semidefinite relaxation technique can be applied to address the
non-convex problem [12]. Thus the optimization problem can
be reformulated as

max
V�0

tr (ΓUV) + νU + 1

tr (ΓEV) + νE + 1
(27)

s.t. tr (UnV) = 1,∀n. (28)

Then, we can apply Charnes-Cooper transformation [13] to
transform it into a convex semidefinite programming (SDP)
problem by defining µ = 1/ [tr (ΓEV) + νE + 1]. The equiv-
alent optimization problem is given by

max
µ≥0,Z�0

tr (ΓUZ) + µ (νU + 1) (29)

s.t. tr (ΓEZ) + µ (νE + 1) = 1 (30)
tr (UnZ) = µ,∀n, (31)

where Z = µV. The problem is now convex and can be
efficiently solved by interior-point methods (e.g., CVX) [14].
Gaussian randomization method can be used to cope with the
rank constraint and obtain an approximate optimal solution.

B. Proposed Deep Learning Algorithm

While deep learning has played an important role in many
applications in recent years, there are a number of challenges
facing the design of a DL method for the secure communica-
tion scenario under consideration:

• It is difficult to model the input-output relationship of
DNN due to the large number of parameters involved in
the calculation of secrecy rate.

• Acquisition of training data set, in particular, supervised
learning not only needs a lot of channel samples, but also
the target outputs mapped with those samples.

• Excepting the transmit power and noise power, all the
other parameters are inherently complex; nevertheless,
most of the deep neural network technologies are based
on real-valued operation and representation.

f (ϕ) ,
1
σ2
u

(
ϕHK∗

uFKT
uϕ+ h∗

auFKT
uϕ+ϕHK∗

uFhTau + h∗
auFhTau

)
+ 1

1
σ2
e
(ϕHK∗

eFKT
e ϕ+ h∗

aeFKT
e ϕ+ϕHK∗

eFhTae + h∗
aeFhTae) + 1

(21)



Deep neural network (DNN) is a kind of mathematical
framework that realizes the mapping from input to output
through a series of data transformation layers. Supervised
learning and unsupervised learning are widely used algorithms
in machine learning. In this paper, we use supervised learning
to train the DNN.

The proposed DNN framework used to obtain the optimal
phase shifts of IRS reflection units is shown in Fig. 2, and
the beamforming vector f is computed according to (14). For
handling multiple inputs, we use Keras functional API model
in this work because of its flexibility in dealing with multi-
inputs problem. The proposed neural network includes three
modules: input processing module, phase shift calculation
module and output processing module.

Figure 2. Proposed DNN framework.

The input processing module has several parallel sets of
input lines to take channel coefficients as inputs. The complex
channel coefficients are divided into real part and imaginary
part since the neural network framework can only perform
real-valued operations. After each set of inputs passing through
batch normalization layer and flatten layer in turn, they will
be concatenated into one set of one-dimensional data that is
taken as the input to the phase shift calculation module. In the
input processing module, each layer is composed of a fixed
number of neurons which is determined by the number of
channel coefficients.

The phase shift calculation module includes several dense
layers and batch normalization layers. The number of neurons
in each dense layer is adjustable. The function of all these
dense layers is to establish the logical relationship between
the channel coefficients and the phase shifts of IRS units.

The output processing module is composed of one dense
layer and two Lambda layers. The dense layer outputs the
phase shifts of the IRS units in radians. In the first Lambda
layer, the Euler formula is used to convert the phase shift
θn into complex form ϕn, which also satisfies the constrains
defined in (5c), |ϕn| = 1; the second Lambda layer takes all
the channel coefficients, transmit power and ϕ as inputs to
obtain the secrecy rate.

Learning Policy: Fig. 3 shows how DNN based on super-
vised learning works. The input X will go through several
data transformation layers, and the predicted output Ỹ will be
generated. The loss function is generated by comparing the
output value Ỹ and actual target value Y . Then, the optimizer

will iteratively optimize the weight values in each layer based
on the loss value. For supervised learning, there are two dense
layers and one batch-normalization layer. We take Adam as the
optimizer and choose mean squared error (MSE) as the loss
function, given by

MSE =
1

n

n∑
i=1

(ỹi − ti)2 (32)

where ỹi is the output of the neural network, ti is the
corresponding training targets, i is the index of data. The
channel coefficients and target values are generated by com-
puter simulation using the alternating optimization algorithm
in Section III-A.

Figure 3. Supervised learning algorithm.

IV. NUMERICAL SIMULATIONS

In this section, we perform numerical simulations to demon-
strate the effectiveness of the proposed supervised learning
based secrecy rate maximization approach for the proposed
scenario of interest. We first demonstrate the learning accu-
racy of the proposed DL method to determine the optimal
hyper parameters for the proposed wiretapping scenario. We
then compare the performance of the trained DNN against
the alternating optimization algorithm in [5] and two other
benchmark schemes as defined below:

• Optimal AP without IRS: The optimal beamforming
vector f is computed according to (14) with ϕ = 0.

• AP MEV with IRS: Firstly, we set beamforming vector
f same as the ‘Optimal AP without IRS’ scheme, then
obtain optimal ϕ by using the method in section III-A2.

• Alternating Optimization: Based on the method in
Section III-A.

• Supervised Learning: Get training data from the sim-
ulation results of alternating optimization. The trained
DNN can output reflection phase shifts by taking channel
coefficients and transmit power as inputs.

For a fair comparison, we choose parameter settings as in [5]
wherever applicable. Accordingly, we set M = 4 and N = 25,
the noise variance at both the eavesdropper and the user are
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Figure 4. Model loss with 100 training sets.

0 50 100 150 200 250 300
epoch

2

4

6

8

10

12

M
SE

Training loss
Test loss

Figure 5. Model loss with 2700 training sets.
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Figure 6. Model loss with 9000 training sets.

set to σ2
u = σ2

e = −80dBm, unless otherwise specified.
The AP, eavesdropper and the user are located on the same
horizontal line. The distance between AP and eavesdropper,
AP and the user and eavesdropper and the user are denoted
by dae, dau and deu, respectively, and set as dae = 145m
and dau = 150m, thus deu = dau − dae = 5m. The IRS-
eavesdropper, IRS-user and AP-IRS link distances are set as
die = 5m, diu =

√(
die

2 + deu
2
)

and dai =
√(

dae
2 + die

2
)
,

respectively. Since the AP, eavesdropper and user lie on the
same horizontal line, the channels from AP to the user hau and
to the eavesdropper hae are assumed to experience spatially
correlated Rician fading, with Rician factors Kau = Kae = 1
and the spatial correlation matrix R, which is given by
[R]i,j = r where r = 0.95. The channel coefficients hau

and hae can be obtained as hau =

√
η0 (d0/dau)

ψaugau, and

hae =

√
η0 (d0/dae)

ψaegae, where η0 = −30dB is the path
loss with reference distance d0 = 1m, and ψau = ψae = 3 are
the corresponding path loss exponents. The other channels G,
hiu and hie are independent Rician fading with corresponding
path loss ψai = 2.2 and ψiu = ψie = 3.

A. Simulation Setup for the Deep Learning Model

For the proposed supervised learning approach, a total of
10, 000 data samples have been generated, of which 90%
is used for training and the remaining 10% for testing the
performance, unless otherwise specified. The proposed DNN
was trained in a GPU server with the following configuration:
- Intel Xeon Scalable Silver 4110 8Core 2.1GHz processor,
- 128 GB DDR4 2666 MHz ECC registered memory.

B. Overfitting Problem

Overfitting is a common problem in deep learning. It refers
to the state that only the training data can be well-fitted, but
not the data that is not included for training. For supervised
learning in particular, over-fitting problem is critical, so we
first focus on over-fitting phenomenon in supervised learning
and its solutions.

C. Methods to Suppress Overfitting

1) Increasing Training Data: In Fig. 4, we used 100 train-
ing sets and 100 test sets. To further improve the generalization

ability of DNN, the number of training sets is increased from
100 to 2700 in Fig. 5 and it is tested on 300 data sets. From
Fig. 5, it is observed that the training loss curve is smoother
and the test loss is slightly lower compared with Fig. 4.

Even though Fig. 5 has some improvement compared with
Fig. 4, it still has a large gap between training loss and test
loss. Thus, the number of training sets is further increased to
9000. After training it on 9000 data sets and testing it on 1000
data sets, the results are illustrated in Fig. 6. It can be observed
that the value of test loss decreased to below 8 and no longer
showed an upward trend.

2) Decreasing Hidden Layers: It is known that the DNN
architecture in Fig. 4, Fig. 5 and Fig. 6 has 4 hidden layers.
After reducing the number of hidden layers from 4 to 3 and 2,
the model loss is shown as Fig. 7 and Fig. 8, respectively. It
can be observed from Fig. 8 that 2 hidden layers greatly reduce
the model loss, thereby effectively suppressing overfitting.

3) Early Stopping: It can be observed that the overfitting
in Fig. 8 is slowly increasing with epoch. However, Fig. 9
illustrates the model loss with early stopping at 110 epochs.
We can observe from Fig. 9 that the test loss is no longer
increasing with epochs.

A comparison between the initial model loss in Fig. 4
and the final model loss in Fig. 9 reveals that overfitting
can be effectively suppressed by increasing training data set,
decreasing the number of hidden layers stopping early as
appropriate.

D. Secrecy Rate Result

Finally, we illustrate the achievable secrecy rate perfor-
mance of the conventional and supervised learning approaches.
All of the simulation results are averaged over 1000 channel
realizations.

Fig. 10 and Fig. 11 illustrate the PDF and the CDF,
respectively, of the secrecy rates obtained by the schemes. The
simulation results are obtained from 1, 000 samples with Pt
equal to 20dBm. Again, the alternating optimization yields the
best performance and the performance of the ’AP MEV with
IRS’ is slightly worse than this method. Both the ‘Optimal
AP without IRS’ and ’Supervised Learning’ are also compa-
rable. The marginal performance loss is due to insufficient
training data. Theoretically, even if supervised learning can
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Figure 7. Model loss with 3 hidden layers.
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Figure 8. Model loss with 2 hidden layers.

0 20 40 60 80 100
epoch

6

8

10

12

14

M
SE

Training loss
Test loss

Figure 9. Model loss with early stopping.

Figure 10. PDF of the achievable secrecy rate.
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Figure 11. CDF of the achievable secrecy rate.

obtain sufficient training data and time, its performance can
not surpass the alternating optimization algorithm. This is
because the result of the ‘alternating optimization’ scheme is
the benchmark for the supervised learning scheme. Although
the conventional optimization algorithms show higher secrecy
rates, these schemes are computationally expensive in practice.

V. CONCLUSION

The IRS is a cost-effective technology consisting of a large
number of low-cost reflection units, which can greatly improve
the performance of the physical layer without incurring the
high cost and power consumption required for multiple an-
tennas. We have introduced a truly intelligent reflecting sur-
face aided secure communication system. Simulation results
demonstrate that the proposed supervised learning approach
can achieve comparable performance with the alternating
optimization algorithm, and is simpler to implement, shorter
in operation time and offers greater flexibility.
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