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Abstract. Differential cryptanalysis is one of the oldest attacks on block ci-
phers. Can anything new be discovered on this topic? A related question is that
of backdoors and hidden properties. There is substantial amount of research on
how Boolean functions affect the security of ciphers, and comparatively, little
research, on how block cipher wiring can be very special or abnormal. In this
article we show a strong type of anomaly: where the complexity of a differen-
tial attack does not grow exponentially as the number of rounds increases. It will
grow initially, and later will be lower bounded by a constant. At the end of the
day the vulnerability is an ordinary single differential attack on the full state. It
occurs due to the existence of a hidden polynomial invariant. We conjecture that
this type of anomaly is not easily detectable if the attacker has limited resources.
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1 Introduction
Differential Cryptanalysis (DC) is a well-known basic attack on block ciphers [4, 32]
and it may seem that what remains to study are just some fine details, cf. [28]. In order
to improve DC, researchers have considered various ways to aggregate a larger number
of differences [31], for example with truncated differentials of Knudsen [40]. We can
hardly just combine two truncated differentials and expect that the propagation proba-
bilities would just be multiplied [9, 29, 30]. There is a hidden complexity and a lot of
non-uniformity: probabilities of individual differentials may differ very substantially.
However we do not expect anything special to happen with just old ordinary DC with
single differentials. In fact we do: it is the well-known question of Markov ciphers [42].
In this paper we study cases where this property is violated, and DC does not work as
expected because relevant events are not independent. What is interesting is showing
that this can advantage the attacker in a substantial way.

This paper is also about backdooring and hidden properties. Here we will have a
hidden polynomial equation in a similar way as in certain public key cryptosystems. It
is not apparent for the attacker, even if the attacker knows another, related set of poly-
nomials, which they use for encryption. Our hidden property is going to be a non-linear
invariant property, a topic which has attracted considerable attention in recent years
[12–19, 43, 51]. A wider fundamental open problem is the very existence of new attacks
on block ciphers, of any sort, such that their complexity would not grow exponentially
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with the number of rounds. Even though such attacks exist, they seem extremely com-
plex. Surely this would not be possible with good old differential cryptanalysis? In this
paper we show that this is actually possible. A similar result for a truncated differential
attack was presented at Crypto 2011, cf. Section 3 of [43]. This earlier result worked
only for some weak keys. Our attack works with a single differential, which is harder, as
probabilities are lower. It is uniform and works for all 2240 keys without any exception.
It also works in spite of the presence of round constants in T-310.

In this article these considerations come together. We show how to design an anoma-
lous differential attack. The only thing that the attacker observes, will be that a certain
differential propagates with a probability which will be bounded by a constant for any
number of rounds. This is quite surprising and hides the existence of a hidden poly-
nomial invariant property, the existence of which the attacker could potentially ignore
forever; even if they know about the (derived) differential property. Sometimes, dif-
ferential cryptanalysis does not work as predicted by a “naive” theory and the events
in different rounds are not independent. However, this is not just an annoying discrep-
ancy; a bug which was typically ignored by researchers until now. We discover that an
anomaly of this sort conceals another strong property extremely useful for the attacker.

This article is organised as follows. In Section 2 we explain the philosophy of what
we do. In Section 3 we study the T-310 cipher. In Section 4 we present some older
examples of invariant attacks on T-310. In Section 5 we describe our attack with one
main theorem and 3 technical lemmas. In Section 6 we show what happens in practice.
In Section 7 we discuss several future cryptanalysis research ideas and we wonder if
some sort of converse result could be true. Then comes the Conclusion. In Appendix
A we look at vulnerability of Boolean functions against our attacks. In Appendix B we
consider how invariant properties we study can be used for key recovery.

2 Background: Markov Ciphers and Nonlinear Invariants

The notion of Markov ciphers was introduced at Eurocrypt 1991 by Lai, Massey, and
Murphy, see [42]. Probably these questions were already studied earlier, in the Eastern
Bloc, cf. [23, 24, 41]. In short, we have a Markov cipher when the probability that a cer-
tain output difference is obtained, does not depend on the input value (but depends on
the input difference), when the round key is chosen random. This formulation ignores
the question of how the probability depends also on the key, and therefore, our current
understanding is yet greatly simplified (we refer to [28, 41] to see why this matters). In
short, in [42] it is simply assumed that the keys are chosen uniformly at random, sim-
ilar to averaging probabilities over all possible keys. Many known ciphers are Markov
ciphers, for example DES, FEAL, LOKI and IDEA, [42]. Other ciphers such as GOST
behave as Markov ciphers with some degree of approximation [9, 28].

The importance of Markov ciphers is explained in page 24 of [42]: in a Markov ci-
pher “every differential will be roughly equally likely” after sufficiently many rounds,
cf. also [47]. The main goal of the present article is to show that there exists a block ci-
pher violating this exact long-term derived property of Markov ciphers in an extremely
strong way. Here all differentials will vanish progressively, with probability being zero
in practical terms, except with very few special differentials. These differences are able
to survive for an arbitrarily large number of rounds. If so, not being a Markov cipher
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degrades the security of our cipher in a very substantial way. Compared to earlier results
in [43], our attack cf. Thm. 5.1.1 works for any key, 100 % of keys. Moreover, it works
with round constants in T-310. Eliminating the round constants and the key bits alike
are hard problems in non-linear cryptanalysis. Many known attacks only work for some
keys, not all, see [43, 51], or only for some round constants, see Section 7.4 in [14].

What we study in this paper is very much like a backdoor, a hidden unexpected
property leading to a strong attack. We emphasise the fact that events of this kind can
be easily overlooked. There is an exponential number of differences to study and spe-
cific events are detectable only if we have sufficient computing power and a sufficient
number of Plaintext/Ciphertext (P/C) pairs. They could also be detected if a specific
difference with abnormal propagation is already known, or we are able to characterize
some specific input states on n bits where the propagation behaves in an unusual way.
Researchers who study this on the experimental side might also discard this result as an
outlier. We found it very hard to believe that this is real. Therefore, it is important that
in the present article we establish our result through rigourous mathematical proof, see
Thm. 5.1.1 page 9. It is also confirmed by computer simulations in Section 6.

2.1 Weak Keys and Weak Components - Long Term Key
There is a substantial amount of research on how non-linear components (Boolean func-
tions and S-boxes) affect the security of ciphers and comparatively little research, on
how the block cipher wiring can be special or weak, for example with DES P-box, see
[5] or the long-term key LZS in T-310 [21]. In cryptanalysis, we always look for spe-
cial or even abnormal cases, for example, the block cipher KeeLoq can be broken in
an extremely short time of type only 223 for 15 % of keys, cf. [2]. A fair assessment
of weakness requires the assumption that weak keys occur at random, with their “nat-
ural” probability; see the “multiple random key scenario” in Section 29 in [10]. Here
we study the probability for a Boolean function that a certain product of polynomials
is zero, see Appendix A. An essential observation is that in the ring of Boolean poly-
nomials, factorization is not unique and there are typically numerous solutions to such
problems, see [15], and one may eventually lead to an attack [17, 19].

2.2 Nonlinear Cryptanalysis and Higher Order Nonlinear Cryptanalysis
In recent years many authors show how to construct attacks where a certain non-linear
polynomial is invariant [12–19, 43, 51]. Following ICISC 2019, a good way to study
these attacks is a white box method [19]. We formulate our attacks using Boolean poly-
nomial arithmetic. As such, the whole attack could potentially apply to another cipher
modulo renaming of variables and we do not use the full specification of the cipher,
see [19] and [14]. If a cipher satisfies a certain number of initial conditions on some
basic polynomials, then our attack works for an arbitrarily large number of rounds. If a
property involves just one encryption, we say it is a property of order 1. The invariants
in [16, 19, 17] and a majority of other recent works on non-linear invariants are of order
one (for one single encryption). In this paper a property of order 1 will be used to alter
the behaviour of a differential attack. Overall we get an invariant property of order 2.

An important family of invariant attacks are product attacks: the invariant is a prod-
uct of polynomials. Constructing a non-linear invariant attack is a difficult combina-
torial problem. At Eurocrypt’96 Knudsen and Robshaw claimed that this cannot work
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for Feistel ciphers [44]. Initially, attempts to find a non-linear invariant attack on DES
have failed, or produced a tiny improvement compared to Matsui’s Linear Cryptanaly-
sis (LC), cf. Crypto 2004 in [20]. Certain block ciphers such as T-310 use only very few
key bits in each round, cf. [23], and are particularly vulnerable to this type of attack.
Consequently, we have a plethora of attacks of this type [51, 14, 12] with increasing
degrees [13, 16, 19], which is expected to make the attack increasingly powerful. More
general attacks can work with sums of two or more products. For T-310 this is shown in
[18], with an example of type AC+BD which we reproduce below in Section 4.3. An
example with DES is found in Remark 2 in Section 10 of [19].

2.3 On Success Probability and Annihilation Degree in Previous Attacks
In ICISC 2019 the best attack on T-310 was such that if our Boolean function is such that
(Z + e)(a+b)(c+d) = 0 then a certain product of 8 linear polynomials is an invariant
working for any number of rounds, any key, and any choice of round constants. A
Boolean function with this type of annihilation with 2 factors is called 4-weakly-normal,
where 4 = 6−2, cf. Appendix A and [7]. This notion was earlier studied by Dobbertin
[34]. It is easy to see that a Boolean function Z chosen at random will be 4-weakly-
normal with very high probability of 2−0.68, cf. Table 4. A yet stronger or more realistic
attack which would only require that Z is 3-normal with Z(a+d)(b+e)(c+ f ) = 0 was
described in [16], and a similar attack will be studied inside this paper as a technical
Lemma 5.3.1 page 12. The degree of freedom for the attacker increases at last. 100 % of
all Boolean functions on 6 bits are 3-normal, see Section 5 in [19] and [35]. Moreover,
several methods to annihilate with a product of 3 factors exist typically. A recent paper
shows that a similar attack with 3 factors exists also with the original Boolean function
used during the Cold War to protect government communications [17].

3 Short Description of T-310
We recall the definition of T-310 block cipher from [50]. T-310 operates on 36 bit blocks
and a secret key on 240 bits. Each round involves two key bits K,L and one round
constant bit F , which is derived from a fixed IV of 61 bits which is transmitted in clear
text. The secret key of 240 bits is stored on a paper punch card and is reused after every
120 rounds. The actual encryption is done in a peculiar stream cipher mode which we
will ignore here. We refer to [50] and [21] for more details. In this paper we only study
the underlying block cipher (a keyed permutation on 36 bits).

The wiring or the long term key in T-310, is the equivalent of the P-box in DES,
and it is known under the name of LZS or Langzeitschlüssel, which means a long-
term key. It is changed once per year typically. Formally the LZS wiring is defined by
two functions: D : {1 . . .9}→ {0 . . .36}, P : {1 . . .27}→ {1 . . .36} which are typically
injective. We need to specify which input state bits are connected to contacts named
D1-D9 and v1-v27 in Fig. 2. For example D(5) = 36 is about what happens inside the
small square box with letter D in Fig. 1. D(5) = 36 means that input bit x36 is connected
to the wire called D5 in Fig. 2 which then becomes U5 = y17 after XOR with bit g4.
Then P(1) = 25 refers the content of the square box with letter P in Fig. 1. It means that
input x25 is connected to v1 or the 2nd input of Z1 in Fig. 2.
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Fig. 1. High-level overview of one round of T-310.

In each round only 2 key bits K,L are used. The secret key is defined as s1...120,1...2 ∈
{0,1}240 which is 240 bits. The same 2 bits are repeated after 120 rounds with

K = sm,1 and L = sm,2

In addition each round has a round constant called F , which is derived from the
public IV value. In all, for any F,K,L ∈ {0,1}3 one round of this block cipher is a
permutation on 36 bits. This requirement is not obvious and it requires some complex
technical conditions on the cipher wiring, see [22].

Fig. 2. The internal structure of one round of T-310 block cipher.
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In Fig. 3 we give a set of closed formulas to compute the output bits y1−36 in each
round from the input bits x1−36. These formulas are self contained, i.e. everything can
be derived just from these formulas. In one round 9 new bits are created and 36−9= 27
bits are shifted by one position. The cipher uses 4 identical Boolean functions of 6 bits
which are denoted by Z1,Z2,Z3,Z4 on Fig. 2. A common convention is to rename these 4
Boolean functions and use 1-letter notations Z(),Y (),X(),W () respectively (backwards
naming convention).

yi+1 = xi for any i �= 4k ( with 1 ≤ i ≤ 36) (r0)
y33 = F + xD(9) (r1)

Z1
de f
=Z(L,xP(1),. . . ,xP(5)) (z1)

y29 = F +Z1 + xD(8) (r2)

y25 = F +Z1 + xP(6) + xD(7) (r3)

Z2
de f
= Y (xP(7), . . . ,xP(12)) (z2)

y21 = F +Z1 + xP(6) +Z2+ xD(6) (r4)

y17 = F +Z1 + xP(6) +Z2+ xP(13) + xD(5) (r5)

Z3
de f
= X(xP(14), . . . ,xP(19)) (z3)

y13 = F +Z1 + xP(6) +Z2+ xP(13) +L+Z3 + xD(4) (r6)

y9 = F +Z1 + xP(6) +Z2+ xP(13) +L+Z3 + xP(20) + xD(3) (r7)

Z4
de f
= W (xP(21), . . . ,xP(26)) (z4)

y5 = F +Z1 + xP(6) +Z2+ xP(13) +L+Z3 + xP(20)+Z4+xD(2) (r8)

y1 = F +Z1 + xP(6) +Z2+ xP(13) +L+Z3 + xP(20)+Z4+xP(27)+xD(1) (r9)

x0
de f
= K (s1)

F ∈ {0,1} is a round constant depending on a (public) IV ( f 1)
K = sm mod 120, 1 (in encryption round m = 0,1,2, . . .) (k1)
L = sm mod 120, 2 (in encryption round m = 0,1,2, . . .) (k2)

Fig. 3. The specification of one round of T-310.

Notation. When we work on invariant attack, we use more compact notations. and the
36 bits x1, . . . ,x36 are replaced by single letters, cf. Fig. 4.

Fig. 4. Variable naming conventions.

We work on invariants, and variables y1 and x1 will be treated likewise and denoted
by the same letter (!). Letters were chosen to avoid certain letters like F or W used for
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a different purpose. Traditionally, if we want to avoid ambiguity, we will distinguish
between the variable a at input denoted by ai and the same variable at output denoted
by ao. Moreover later inside this paper we study two distinct encryptions, in which case
we can distinguish the two instances of a by a1 or a2 added in the exponent.

4 Some Early Attacks on T-310 and Related Questions
The T-310 block cipher is a good target for cryptanalysis with non-linear invariants. The
key reason for this is that extremely few key bits and other round constants are used in
each round. This is a crucial property, which distinguishes block ciphers made in the
West, typically stronger, and weaker block ciphers made in the Eastern Bloc, a question
which was discussed in [23, 24]. For this reason, DES is substantially more secure than
T-310, even though apart from this property, both ciphers are extremely similar, and can
be attacked in the same way. The difference is mainly quantitative: many more key bits
are involved in each round of DES. Consequently, attacks on DES typically only work
for a small fraction of the key space. This was shown very clearly in ICISC 2019 [19]
where two ciphers are studied side-by-side, and earlier in [16].

In Section 7 of [27] the authors propose to look for a non-linear invariant property
for T-310, yet at the time no such property was known. For many decades researchers
knew about this type of attack [38, 20], and yet failed to find convincing examples,
except for contrived ciphers [25]. More recently, only with T-310 we get powerful in-
variants working for any number of rounds, any key, and any choice of round constants.

4.1 Linear and Non-Linear Invariants and Phase Transitions

A good way to study such attacks, is the so called “white box” algebraic approach [14,
19]. We operate in the cipher specification space and we characterise exactly in which
cases the attack works by formal polynomial algebra. The goal of the attacker is to find
an invariant and eliminate all the internal state bits, this including the key bits and round
constants. As a toy example, we consider the cipher wiring known as 847 in [12].

847: P=32,22,26,14,21,36,30,17,15,29,27,13,4,23,1,8,35,20,

5,16,24,9,10,6,7,28,12 D=24,12,8,16,36,4,20,28,32

We consider two cycles shown in Fig. 5, which show the group action of one encryption
round, cf. Fig. 3, instantiated with wiring 847 above, on some very basic polynomials:

Fig. 5. Transitions between polynomials in an older attack from [12].

Let polynomial P be the addition of all polynomials of degree 1 and 2 in Fig. 5,
excluding those with W , which represents the Boolean function. Here g2 depends on
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the cipher state and the key in a complex way, see Fig. 2, and yet all terms with g2
appear an even number of times modulo 2 and are cancelled. Then, it is easy to see that
this P will be a degree 2 polynomial invariant for our cipher, IF the Boolean function
W satisfies the following equation:

W (1+M+Q) = 0
This is known in general as the Fundamental Equation (FE). Terms W , WM and WQ

are eliminated when we add them, not individually. This was not a very good attack.
Extremely few Boolean functions satisfy this equation, cf. Table 3 in Appendix A, and
our Boolean function cannot be balanced, cf. Theorem 6.4 in [19].

4.2 Phase Transitions or How Impossible Becomes Possible
Here the crucial question is the one of phase transition, cf. Section 2.4 in [16]. This
is how ciphers with stronger components can eventually be attacked. The idea is that
a spectacular improvement can occur as the degree of the invariant polynomial grows.
The paper [14] contains a large body of examples with growing degree and effectively
demonstrates this. This leads to the methodology of attack “hopping” or/and attack “lift-
ing”. Sometimes the cipher can be modified and fundamental equation does not change.
In [18] the attacker modifies a cycle and adds additional polynomials to it. Finally, we
also can add one more cycle to our attack, while avoiding our invariant polynomial be-
coming zero, cf. [19]. We can then hope to obtain a Fundamental Equation which has
more roots, or to find an attack which will work for a larger set of Boolean functions,
or even find an attack in a real-life setting, cf. Section 3 in [15] and [17].

4.3 Invariant Hopping and Attack Lifting - Example
A short self-contained introduction which shows this process at work can be found in
[18]. For example in Section 7.1. and Thm. 7.3. in [18], we find that for a certain cipher
wiring known as 551, if we have

(Z(a,b,c,d,e, f )+ f )(d + e) = 0
then the polynomial

P = (e+m) · (g+o)+( f +n) · (h+ p)

is an invariant for our cipher where e = x32 etc, which is different than input e of Z
above, following the cipher state variable naming convention of Fig. 4.

In contrast a better product invariant attack of degree 4 can be constructed with

P = (e+m)( f +n)(g+o)(h+ p)

which invariant works for a substantially larger proportion of Boolean functions. In this
case it was shown in [18] that we only need something like:

(Z + f )(d + e)(a+b)(c+ f ) = 0

and this happens for any Boolean function with large probability of 2−8, cf. Appendix
A or Appendix C in [16]. In general as the degree grows, it becomes easier to find a
Boolean function where our polynomial invariant actually works. At this stage, if for a
particular function our cipher is still not broken, this is rather accidental than deliberate.
Eventually it can also be made to work with a real-life Boolean function, see [17].

Note. All the attacks above were invariant attacks of order 1, dealing with just one
encryption. In this paper we will construct an invariant attack of order 2.
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5 Constructing An Anomalous Differential Invariant Attack

We define the following 8 basic polynomials:


A
de f
= (m+ i) which is bits 24,28 cf. Fig. 4.

B
de f
= (n+ j) which is bits 23,27

C
de f
= (o+ k) which is bits 22,26

D
de f
= (p+ l) which is bits 21,25

E
de f
= (O+ y) which is bits 8,12

F
de f
= (P+ z) which is bits 7,11

G
de f
= (Q+M) which is bits 6,10

H
de f
= (R+N) which is bits 5,9.

These polynomials allow to greatly simplify our attack. We start by observing that
we have the following incomplete cycle, or pseudo-cycle, also shown in later Fig. 7:

H → G → F → E →? D →C → B → A →? H

Here six transitions are completely trivial for example H → G and due to the inter-
nal wiring: these bits are just shifted inside this cipher. Two other transitions, namely
E →? D and A →? H are in contrast just impossible. They would be true only if certain
complex Boolean functions namely W () and Y () were equal to zero for every input,
which is not the case and will not be the case. However certain multiples of these poly-
nomials will be annihilated (i.e. 0 for every input, and formally 0 as a polynomial). For
example, the attacker discovers that under certain conditions a certain polynomial such
as P = ABCD or AC+BD will be invariant, and its value will not change cf. [14–19].

5.1 Our Main Theorem - An Order Two Invariant Property
Theorem 5.1.1 (An Anomalous Differential Attack).
Given the eight basic polynomials A−H defined as above and reproduced also in Fig.
7, AND for each cipher wiring for T-310 s.t.{

{D(2),D(3)}= {6 ·4,7 ·4}
{D(6),D(7)}= {2 ·4,3 ·4}

AND and if these four multiples of four being 8,12,24,28 are absent from the set of
27 inputs in {P(1) . . .P(27)}, where P : {1 . . .27}→ {1 . . .36} is an injective wiring,
AND for any1 Boolean function2 which is such, that we have:

Z(a+d)(b+ e)(c+ f ) = 0

AND if the 6 inputs of W () defined by integers P(21), . . . ,P(26), are mapped to any
3 out of 6 polynomials B,C,D,F,G,H, in a way which preserves3 the partitioning in
three sets or pairs in (a+d)(b+e)(c+f), for example the inputs of W can be 5,22,7,9,26,11

1 This happens with probability at least 2−8 for any Boolean function, see Appendix A.
2 This function is used twice as W and as Y for 2 disjoints sets of 6 inputs.
3 For example if one input A is b the other must be e.
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AND the 6 inputs of Y () defined by integers P(7), . . . ,P(12) are the mapped to remain-
ing 3 out of 6 polynomials B,C,D,F,G,H, while also preserving a partitioning in 3 sets
of pairs in (a+d)(b+e)(c+f), for example in order 25,10,27,21,6,23,

THEN for any short term key of 240 bits, and for any initial state on 36 bits, and for
any IV, the input difference [7,11] corresponding to F , i.e. we flip both bits 7 and 11,
will be preserved at the output after any number of rounds being a multiple of 8 with
probability of at least 2−8.

Remark. This theorem can be transposed by considering arbitrary permutations of
6 inputs a,b,c,d,e, f . These do not need to be applied consistently at both W () and
Y (), for example inputs 5 and 9 could be exchanged. However, we need to get the same
partitioning of 6 inputs into 3 sets of 2 which needs to be consistent in W , in Y and with
the partitioning which actually annihilates our Boolean function. We can also consider
an arbitrary choice of 3 out of 6 polynomials in BCDFGH to split between W and Y . In
our example D,G,B are 3x2 inputs of W () and the remaining 3 go to Y (), but it could
be any choice of 3 out of 6. For the sake of simplicity and to make our theorem and its
proof shorter and easier to follow, we work with a fixed mapping of these 12 variables.

Fig. 6. For both W and Y we divide inputs in 3 sets of 2 variables in a consistent way.

5.2 A Concrete Example

This is for example achieved for the following full cipher wiring:

268: P=1,20,33,34,15,13,25,10,27,21,6,23,16,14,2,4,3,19,

35,29,5,22,7,9,26,11,17 D=16,28,24,20,32,8,12,4,36

and the following Boolean function Z(a,b,c,d,e, f ) = 1+a+b+bc+d+

abd+cd+acd+bcd+e+ae+abe+ce+ace+de+ade+abde+a f +b f +ab f +ac f +d f+

bd f +abd f + cd f +bcd f + e f +abe f +bce f +ade f +abde f +acde f +abcde f

In Table 1 page 15 we show what happens as the number of round grows. This
choice of Boolean function is in no way special: any Boolean function chosen at random
will work with high probability of at least 2−8, see Appendix A, or Appendix C in [16].

5.3 Proof of Thm. 5.1.1

We will show that a certain polynomial expression is invariant for any number of
rounds. This for each of two encryptions we consider. The difference we study, [7,11],
is the same as flipping both bits active in our polynomial F . If we have A1 = cA,B1 =
cB, . . .H1 = cH for the first encryption, for some constants cA, . . .cH ∈ {0,1}8, then we
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Fig. 7. A cycle on 8 basic polynomials used in our attack with LZS 268 which conceals the
existence of a hidden polynomial invariant with P = ABCDEFGH.

also have A2 = cA,B2 = cB, . . .H2 = cH for the second encryption. Since our hidden
polynomial is built from A,B,C,D, . . . flipping bits [7,11] will also preserve this invari-
ant, see Lemma 5.3.1 below. Two invariants will remain linked together for any number
of rounds.

The fact that we have two invariants propagating for any number of rounds, which
remains yet to be shown, makes that the difference (a bitwise XOR) between both
encryptions is mapped to zero, through the linear application ψ : {0,1}36 → {0,1}8.
Here ψ is defined precisely by the set of 8 linear polynomials A . . .H we defined ear-
lier. This polynomial invariant attack is yet a weak constraint in itself. The fact that
P = ABCDEFGH is an invariant in both encryptions makes that the output difference
∆ after any number of rounds can take only 228 possible values with ψ(∆) = 08, on
8 bits. It remains therefore quite surprising that one of these values, namely exactly
F = [7,11] on 28+8 bits, is reproduced after any multiple of 8 rounds. This is 28 bits
more than expected. Additional things must happen here for our theorem to be true.
There is limited diffusion for a few rounds, and these is a finite number of possible
output differences ∆ which can at all be obtained from the initial difference F = [7,11].
Since the image of the difference ψ(∆), is fixed and strongly constrained, we expect
that ∆ takes fewer values than expected. In fact will show that ∆ is fixed, only one value
is possible. A rigourous proof with some technical lemmas is given below.
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Fig. 8. Internal structure of one round of T-310 block cipher with focus on W and Y in our attack.

We will first prove that P = ABCDEFGH an invariant in both/any encryption.

Lemma 5.3.1. The polynomial P = ABCDEFGH is a non-zero polynomial and under
conditions of Thm. 5.1.1 it is invariant after 1 round of encryption ∀F,K,L ∈ {0,1}3.
Proof: We distinguish input and output-side polynomials by an index in the exponent
such as Ao vs. Ai. We try to eliminate all output-side variables and express everything
in input-side polynomials only. Later when there is no ambiguity we will just write A
again instead of Ai.

By following the (shortest) path from output 9 to 5 in Fig. 8, or by XORing together
the equations (r7) and (r8) in Fig. 3 we get:

Ho = y9 + y5 = xD(3) +W (.)+ xD(2) =W (.)+ x6·4 + x7·4 =W (.)+Ai

then following the path from output 25 to 21 in Fig. 8, or by XORing together the
equations (r3) and (r4) in Fig. 3 we get:

Do = y25 + y21 = xD(7) +Y (.)+ xD(6) = Y (.)+ x2·4 + x3·4 = Y (.)+Ei

At the input side P is equal to P i = ABCDEFGH and at the output of our cipher

Po = AoBoCoDoEoFoGoHo = BiCiDi(Y (.)+Ei)FiGiHi(W (.)+Ai) =

at this moment only input variables are left and we can drop the exponents i and we
have:

Po = BCD(Y (.)+E)FGH(W (.)+A) =

Now we observe that the inputs of W () are 5,22,7,9,26,11, and our assumption
Z(a+d)(b+ e)(c+ f ) = 0 translated to W (H)(C)(F) = 0. Since HCF is a factor of
BCDFGH here, we can simply erase W () as it is annihilated, and we get:

Po = BCD(Y (.)+E)FGH(A) =
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Likewise, inputs of Y () are 25,10,27,21,6,23, and therefore Z(a+d)(b+ e)(c+ f )=
0 translates to Y (D)(G)(B) = 0. Therefore we can also erase Y () and we get:

Po = ABCDEFGH

which is the same as P i and hence P is an invariant after 1 round of encryption. which
ends the proof the our invariant work for any input and any F,K,L and any number of
rounds. We have a formal equality of two polynomials. ��

Fig. 9. We map inputs of W and Y to 3 sets with 2 variables in a way consistent with our annihi-
lation property. In some sense we get two annihilations for the price of one (amplification).

This was just a proof of our lemma. We need yet to show that F = [7,11] propagates
in a certain way which implies our Thm. 5.1.1. In order to lower bound the propagation
probability in general, we need to show that the propagation is special in some cases,
so that the invariant F = [7,11] will be reproduced after 8 rounds, and we can ignore all
other cases. It is easy to see that we have for any input I on 36 bits:

P(I) = ∏8
i=1(ψ(I))i

which simply means that P is the same as applying a single 8-ary multiplication ∏
to the 8 outputs of ψ . More precisely we are going to show that:

Lemma 5.3.2. If for 2 different encryptions with I1 ⊕ I2 = [8,12] of E we have

P(I1) = 1

then we have O1 ⊕O2 = [21,25] a.k.a. D after one round of encryption.
Proof: If I1 ⊕ I2 = [8,12] and P(I1) = 1 then we also have P(I2) = 1 due to the fact
that flipping both bits of F = [8,12] preserves all the values of ψ() including the E
coordinate, which is also unchanged due to double negation. We can then apply Lemma
5.3.1 and we obtain that P(O1) = 1 and P(O2) = 1 after one round for each respective
encryption. If ∆ = O1 ⊕O2 we already know that ψ(∆) = 0. However ∆ has 36 bits,
not only 8.

We now observe that flipping 8,12 changes nothing else from the equations (r3) and
(r4) in Fig. 3 we have

y25 = F +Z()+ xP(6) + xD(7)

y21 = F +Z()+ xP(6) +Y ()+ xD(6)

and that outputs of (r5) and all further equations in Fig. 3 are unchanged because,
actually all the gi in Fig. 8 are the same in both encryptions and the inputs 8,12 are used
only once with D(6) and D(7), due to the fact that in Thm. 5.1.1 we assume that 8,12
are absent from the set of 27 outputs {P(1) . . .P(27)}. Thus the only effect of flipping
bits E = 8,12 and is to flip bits D = 21,25 in the next round. Similarly we have:
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Lemma 5.3.3. If for 2 different encryptions with I1 ⊕ I2 = [24,28] from A we have

P(I1) = 1

then we have O1 ⊕O2 = [5,9] a.k.a. H after one round of encryption.
Proof: If I1 ⊕ I2 = [24,28] and P(I1) = 1 then we also have P(I2) = 1 due to the
fact that flipping both bits of F = [24,28] preserves all the values of ψ() including
the A coordinate. We now observe that flipping 24,28 changes nothing else from the
equations (r7) and (r8) in Fig. 3 we have

y9 = F +Z()+ xP(6) +Y ()+ xP(13) +L+X()+ xP(20) + xD(3)

y5 = F +Z()+ xP(6) +Y ()+ xP(13) +L+X()+ xP(20) +W ()+ xD(2)

and that outputs of all other equations in Fig. 3 are unchanged because and all inter-
nal values in Fig. 8 are the same in both encryptions except y9 and y5. This is because
inputs 24,28 are used only once with D(2) and D(3), due to the fact that in Thm. 5.1.1
we assumed that 24,28 are absent from the set of 27 outputs {P(1) . . .P(27)}. Thus the
only effect of flipping bits of A = 24,28 is to flip just bits of H = 5,9 in the next round.

So far, Lemmas 5.3.2 and 5.3.3 only cover 2 transitions out of 6 for 8 rounds. What
if both bits of F = [7,11] are flipped? Do they flip only E = [8,12] inside the next
round? This is not so obvious as these bits are inputs c, f of W and the output of W
could change if we flip both. Now we have twice Z(a+d)(b+ e)(c+ f ) = 0 in each
encryption, which was already shown to imply W (H)(C)(F) = 0 and Y (D)(G)(B) = 0.
in each encryption. Now if at the input side all the polynomials ABCDEFGH are at
1, due to ABCDEFGH = 1, we conclude that outputs of W and Y must be zero. This
carries on forever, again assuming P(I1) = 1 for the beginning round input. This also
implies P(I2) = 1, as already seen in Lemma 5.3.2. If the value of W is zero in both
encryptions, flipping two bits of F = [7,11] has no effect on both Boolean functions
W,Y .

Likewise, flipping bits [21,25] has no effect, and likewise, for all the 6 possibilities
corresponding to B,C,D and F,G,H knowing that cases of E = [8,12] and A = [24,28]
were already covered by Lemmas 5.3.2 and 5.3.3 respectively. Overall we see that we
can do a full circle, exactly as in Fig. 7), and the difference F = [7,11] will after 8 round
will become F = [7,11] again, and all this because the polynomial invariant propagates
and remains valid at each round input. More precisely we have in order

F → E → D →C → B → A → H → G → F
This ends the proof that the difference [7,11] propagates with probability at least 2−8.

��

Linear Spaces. It is easy to see that the same result holds for any linear combination
of 8 basic differences A = [24,28] to H = [5,9] shown in Fig. 7. The set of anomalous
differentials forms a linear space of dimension 8.
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6 Computer Simulations and the Choice of the Boolean Function

Is our Thm. 5.1.1 confirmed by computer simulations? The question is really whether
our cipher behaves like a typical Markov cipher (in approximation) outside of the pro-
portion of 2−8 anomalous input states with P = 1. The answer is yes as it seems. We
show two “typical” cases, essentially chosen at random. Our first table is obtained with
the exact Boolean function listed as an example after Thm. 5.1.1 in page 9.

Table 1. Probabilities observed with our Boolean function as the number of rounds grows.

rounds 8 16 24 32 40 48 56 64
proba 2−2.40 2−4.82 2−6.74 2−7.71 2−7.95 2−7.99 2−8.00 2−8.00

We see very clearly that, at the beginning, the probability grows exponentially,
2−4.82 is almost exactly the square of 2−2.40. Then, however, for 24 rounds there is al-
ready a substantial deviation: we would predict 2−3·2.40 = 2−7.20 and we obtain 2−6.74,
a substantially lower result. The results vary very substantially for other Boolean func-
tions which satisfy Z(a+d)(b+ e)(c+ f ) = 0. For example, it is easy to see that if we
add (a+d+1)b to our Boolean function which works, we also obtain a function which
works. In this case, the cipher is stronger and our differential property less visible, see
Table 2.

Table 2. Probabilities observed with a stronger Boolean function.

rounds 8 16 24 32 40 48 56 64
proba 2−4.53 2−7.51 2−7.98 2−8.00 2−8.00 2−8.00 2−8.00 2−8.00

6.1 On Hiding Differentials

We conjecture that this sort of anomaly is not detectable if we have limited computing
power or a limited number of samples. There are countless works about backdoors in
block ciphers. In 1990s, authors typically concluded that this was infeasible and “hiding
differentials” was claimed particularly difficult, Section 3.4. in [48]. The main idea in
our work is that we do not need to hide high probability events. We hide low probability
differentials, the probability of which can be as low as we want, if our invariant polyno-
mial P had more than 8 factors. Therefore, it appears that we have discovered a valid
method of concealing an attack inside a block cipher so that it is not easily detected.
In our 2 examples above, we also see that the number of rounds where the propagation
will stop decaying exponentially, and the anomaly becomes visible, is not constant and
depends on the exact Boolean function used.
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7 The Reciprocal Question, Nash Postulate, and Future Research

In this article, we show that with a well-chosen invariant property we can have a strong
anomaly in the propagation of ordinary differentials in Differential Cryptanalysis (DC).
The key observation is that the complexity of our attack does NOT tend to zero and
remains constant for any number of rounds. The probability success first decreases,
but eventually it becomes constant. In contrast, with ordinary DC, typically and in the
“regular” Markov cipher case, we expect that the complexity will grow exponentially
and eventually every differential will be “roughly equally likely” following [42]. An
interesting question is whether intermediate cases are possible: where the probability of
a single differential in a block cipher is not constant but grows polynomially or sub-
exponentially with the number of rounds. This would violate the postulate of exponen-
tial complexity proposed by John Nash in his letter from 1955 exposed at NSA crypto
museum, cf. [46]. More precisely Nash postulated that “For almost all sufficiently com-
plex types of enciphering” where “different portions of the key interact complexly with
each other in the determination of their ultimate effects” the computation cost should
increase “exponentially with the length of the key”. The words of Nash from 1955 are
substantially older than modern block ciphers which were invented in 1970s, cf. [36, 27,
32, 24]. However, very clearly these words are what block cipher designers have been
aiming at ever since. John Nash also had an intuition that this sort of strong or absolute
security claim or result cannot be taken for granted, nor it can be proven in mathemat-
ics (today most security results are relative). He wrote: “The nature of this conjecture
is such that I cannot prove it, even for a special type of ciphers. Nor do I expect it to be
proven.” In this article, we suggest that the Nash and many cipher designers were very
optimistic and their security will sometimes increase at a slower rate than expected.

7.1 Some Conjectures - Differential Anomalies vs. Invariants

Moreover, we conjecture that there exists a third possibility, e.g. sub-exponential curve.
In present work we show that sometimes, the success probability of a plain ordinary
differential attack, does not decrease exponentially, when the number of rounds tends
to infinity. The main reason for this is that there is more than just one property. A non-
linear invariant property is present, and is acting behind the scenes distorting the input
probability distribution forever, each time the differential property propagates. We can
then wonder if some sort of reciprocal result exists. Maybe each time when a differential
propagates with a probability which does not depend on the number of rounds, some
sort of a non-linear invariant would be always present.

This conjecture seems quite strong. However, we do not see any other reason why
differential cryptanalysis would behave in such a strongly anomalous way. The space
of non-linear invariant attacks is in fact extremely large, and in this way maybe we
can efficiently discover further new invariant attacks such as P in present article and
possibly attacks more complex than just product attacks.

There is abundant literature about differential cryptanalysis, and it may seem that
this topic is well understood. In this article, we show that this topic is not yet well under-
stood and some major questions regarding how the attack could behave asymptotically,
when the number of rounds grows, and why this happens, remain actually widely open.
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7.2 Related Research - Special Contrived Ciphers
In [26] a toy cipher is presented which is not secure for as many as 2n rounds, yet it
is provably secure if we further increase the number of rounds. We generate the group
of all possible permutations on n bits, cf. Appendix A and B in the extended version
of [25]. In contrast, in our Thm. 5.1.1 the differential never vanishes, the cipher is not
secure no matter how large is the number of rounds.

7.3 Weak is Beautiful - the World of Periodic Attacks and Weak Keys
It is a major misconception in cryptography research that the interesting attacks to study
are those which work for every key. We claim that the special cases are the most inter-
esting ones. Sometimes, they lead to spectacular improvements w.r.t. best attack known
in the general case. In addition all differential and polynomial invariant properties we
study here are periodic (with a period of 8).

This is particularly interesting in the context of block ciphers when the key schedul-
ing is also periodic. In this (very common) case the key question is to exploit this peri-
odicity and show that in some cases a large number of rounds can be broken for the price
of breaking fewer rounds. In this precise sense, a periodic key schedule is a tremendous
weakness with T-310, KeeLoq in [1, 2], in GOST, but not in DES. The best known sin-
gle key attack on GOST with truncated differentials has a running time of 2179 in [29].
Now, if we study anomalous events with data encrypted with multiple random keys,
the (imperfect) periodic structure of GOST is exploited better, and there exists an at-
tack with total running time of 2101 in [33]. A wider comprehensive picture is shown in
Section 29 in [10]. We see a near-continuous space with various attacks, improving as
the proportion of weak keys goes down. Many of these attacks involve differentials. In
T-310 the period in the key scheduling is 120, cf. Fig. 3, and our differential property of
Thm. 5.1.1 has a period of 8 which divides 120. Unhappily keystream for encryption is
extracted in T-310 with a different prime period, cf. Section 3 in [15] and key recovery
could be difficult, see Appendix B. Interestingly, previous research has not exhibited
differential anomalies as strong as in the present paper for ordinary single differentials.
Overall, it appears that the question of weak keys in periodic block ciphers, and in par-
ticular the question of anomalous choice of constants (a weak long term key question),
has yet not received sufficient attention.

8 Conclusion
In this paper we have demonstrated that the propagation of differentials inside a block
cipher can in some cases be truly pathological. This is to the point that the complexity of
the attack does not grow exponentially with the number of rounds, and that an arbitrarily
large number of rounds can be attacked. After an initial period of quasi-exponential
growth, which does not at all look unusual, cf. Table 1, the anomaly begins.

We see that block ciphers can become extremely weak due to a weaker cipher
wiring. Interestingly, such modifications are officially allowed, in the sense of being
100 % compatible with the original T-310 encryption hardware. The long term key in
T-310 took the form of a printed board, and was changed roughly once per year [21].
This result is particularly significant for T-310, a government encryption system, the
hardware implementation cost of which is very large; thousands of times larger than
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with modern ciphers such as DES or AES, see [23]. However, increasing the number
of rounds does not help if the complexity of an attack is constant and it works for an
arbitrarily large number of rounds.

This paper is a proof of concept in just one case. We make the unthinkable happen,
and show that this works beyond any doubt with a mathematical proof. We conjecture
that this sort of anomaly is not detectable, if we have limited computing power or a
limited quantity of encrypted data. We conjecture that this kind of Non-Markovian vul-
nerability exists also in other ciphers. If the hidden polynomial has a higher degree, it
will become very hard to know if such a property is present or not, in any given cipher.

In comparison to an earlier result of this type presented at Crypto 2011, see [43],
our Thm. 5.1.1 works with ordinary single differentials, for any key, and in spite of
the presence of round constants in T-310. The vulnerability is principally a question of
cipher wiring, which is without doubt very special. In contrast, no Boolean function
should be considered to be resistant to our attack. Our vulnerability works with any
Boolean function chosen at random with a probability of 2−8, which is not at all small.
Several works such as [16] and [17] show, that 100 % of Boolean functions are vulnera-
ble against polynomial invariant attacks. Now we also have a similar result for ordinary
differential cryptanalysis. The security of the whole block cipher cannot be taken for
granted, cf. [47], just on the basis of avoiding high probability iterative differentials.
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Caen, 2001.

36. H. Feistel, W.A. Notz, J.L. Smith, Cryptographic Techniques for Machine to Machine Data
Communications, Dec. 27, 1971, Report RC-3663, IBM T.J.Watson Research.

37. Jovan Golic, Cryptanalytic Attacks on MIFARE Classic Protocol, In CT-RSA 2013, LNCS
7779, pp. 239–258, Springer, 2013.

38. C. Harpes, G. Kramer, and J. Massey: A Generalization of Linear Cryptanalysis and the
Applicability of Matsui’s Piling-up Lemma, Eurocrypt’95, LNCS 921, Springer, pp. 24–38.

39. C. Harpes, J. L. Massey: Partitioning cryptanalysis, in FSE 97, LNCS 1267, pp. 13–27, 1997.
40. Lars R. Knudsen: Truncated and Higher Order Differentials, In FSE 1994, pp. 196-211,

LNCS 1008, Springer.
41. L.V. Kovalchuk: Generalized Markov ciphers: evaluation of practical security against differ-

ential cryptanalysis, in: Proc. 5th All-Russian Sci. Conf. MaBIT-06, 25-27 Oct. 2006, MGU,
Moscow, pp. 595-599, 2006 [in Russian].

42. X. Lai, J. Massey, and S. Murphy: Markov Ciphers and Differential Cryptanalysis, In Euro-
crypt 1991, LNCS 547, pp. 17-38, 1991.

43. G. Leander, M.A. Abdelraheem, H. AlKhzaimi, E. Zenner: A cryptanalysis of PRINTcipher:
The invariant subspace attack, In Crypto 2011, LNCS 6841, pp. 206–221, 2011.

44. Lars R. Knudsen, Matthew J. B. Robshaw: Non-Linear Characteristics in Linear Cryptoanal-
ysis, Eurocrypt’96, LNCS 1070, Springer, pp. 224–236, 1996.

45. James A. Maiorana: A classification of the cosets of the Reed-Muller code R(1,6), In Math-
ematics of Computation, 57(195):403–414, 1991.

46. John Nash, handwritten letters and documents relating to their evaluation, avail-
able at NSA crypto museum, at cryptologicfoundation.org and https:

//www.nsa.gov/news-features/declassified-documents/nash-letters/

assets/files/nash_letters1.pdf, January-March 1955, declassified in 2012.
47. Kaisa Nyberg, Lars Ramkilde Knudsen: Provable Security Against Differential Cryptanaly-

sis, In Crypto’92, pp 566–574, LNCS 740, Springer 1992.
48. Thomas Peyrin and Haoyang Wang: The MALICIOUS Framework: Embedding Backdoors

into Tweakable Block Ciphers, In Crypto 2020, pp 249-278, LNCS 12172, Springer.
49. Referat 11: Kryptologische Analyse des Chiffriergerätes T-310/50. Central Cipher Organ,
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A On Boolean Function Vulnerability

It is possible to see that a Boolean function chosen at random will satisfy our exact
property Z(a+d)(b+ e)(c+ f ) = 0 with probability 2−8, cf. Section 5 in [13] and/or
Appendix C in [16]. The result is the same as long as we have three linear factors which
are linearly independent. In general, Boolean functions which are constant over large
affine spaces are not an exception, it is systematic. 100% of Boolean functions in 6
variables are 3-normal and can be annihilated by a product of 3 affine polynomials.
cf. Section 5 in [19] and [35]. We use another method to obtain the same result. It is
sufficient to check all the 150357 classes of Boolean functions based on a database of
Boolean functions of [6] based on earlier work by Maiorana [45].

Moreover, our experience shows that typically (when the Boolean function is bal-
anced) both Z or Z+1 will admit numerous solutions of this type, some of which could
work with an attack such as described in this paper.

Table 3. Classes of Boolean Functions with 6 Variables w.r.t. k-normality

total ↓ (any k)
k value →

150357
100%

k-normal Boolean functions
6 ≥ 5 ≥ 4 ≥ 3
1 205 47446 150357

2−17.2 2−9.52 2−1.66 2−0.0

Table 4. Classes of Boolean Functions with 6 Variables w.r.t. k-weak-normality

total ↓ (any k)
k value →

150357
100%

k-weakly-normal B. functions
6 ≥ 5 ≥ 4 ≥ 3
1 205 93760 150357

2−17.2 2−9.52 2−0.68 2−0.0

No Boolean function whatsoever should be assumed to be secure against the attacks
such as described in this paper. For example with the original Boolean function used in
T-310 we have Zc(b+d) f = 0 and Z(a+b)c(1+e) = 0 and many other relations of this
type. From here it is possible to construct a product invariant attack on demand, using
exactly one single relation like this, see [17]. In other words, just one such annihilation
equation, which was not chosen by the attacker, can lead to an attack on T-310 working
for any number of rounds. This is already for an invariant attack at order 1. Properties
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which involve two encryptions like in our Thm. 5.1.1 and the existence of multiple ways
to annihilate polynomials further increase the freedom for the attacker.

B The Key Recovery Question
There exists multiple ways in which non-linear invariant attacks can be exploited in
cryptanalysis in order to decrypt actual encrypted communications. This question was
already studied in Section 9 in [16] and Section 6 in [12] and Section 6 in [13] and there
are several distinct ways to approach this problem. Some invariants (not all) introduce
pervasive biases made of higher order correlation properties which do not degrade as
the number of rounds increases. Other invariants do directly involve some key bits. In
some sense we expect that most invariants are NOT suitable for actual attacks, in the
sense that other invariants are more suitable for various technical reasons.

B.1 New Ways to Exploit Polynomial Invariants

In this paper we discover a possibility to convert a non-linear invariant attack into a
differential attack. This opens new possibilities for key recovery in 3 steps as follows.
First, we guess some key bits, then, determine some internal values, finally, confirm
through a statistical distinguisher. It is important to note that the question of which key
bits should be guessed and which ones are determined, is a major practical combina-
torial optimization problem in cryptanalysis. It leads to interesting security “metric”
notions such as SAT immunity and UNSAT immunity, cf. [11].

B.2 Multiple Simultaneous Differentials and Cube Attacks
A more advanced method to enable key recovery would be to explore the rich world of
cube attacks which is a form of a higher order differential attack. This type of discrete
differential properties is much older than it is usually assumed, it was studied since
at least 1976, cf. [24], and there are many flavours of cube attacks [52, 53]. It is quite
rare that several differential properties can work simultaneously and that the overall
combined probability remains very high. One example of this is with MiFare classic
in [8, 37], and it happens again here. Our attack has 8 differences which form a linear
space and could be used simultaneously in a variety of combined differential, invariant
or/and cube attacks. An interesting question is then how quickly the complexity of such
attacks increases as the number of rounds grows. Here we need to look at a new type
of conditional cube attack: when a certain product of polynomials is at 1. We need to
focus on cube properties which involve key bits, which cannot be taken for granted in
general, cf. Section 4.1. in [3]. The space of possible attacks is enormous and we leave
this for future research.
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