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Abstract—Near Real-Time (NRT) anomaly detection and fault
diagnostics for underwater gliders are challenging because satel-
lite connections with limited bandwidth allow only decimated
data to be sent back from the remote vehicle, whilst on-board
systems are constrained by power and computational limits.
Currently, anomaly detection and fault diagnostics for such
vehicles require intensive monitoring from the operating pilots,
which prohibits large scale deployments with multiple vehicles.
This paper presents a system with NRT anomaly detection
and fault diagnostics for multi-vehicle underwater glider fleets
based on Bidirectional Generative Adversarial Networks with
assistive hints. The unsupervised anomaly detection system is
applied to assist in annotating deployment datasets to train
a supervised fault diagnostics model. The results suggest that
the anomaly detection system has successfully detected different
types of anomalies, validated against model-based and rule-based
approaches. In addition, the supervised fault diagnostics system
has achieved high fault diagnostics accuracy on the test dataset.

Index Terms—underwater glider, anomaly detection, genera-
tive adversarial networks, fault diagnostics

I. INTRODUCTION

Underwater Gliders (UGs) (Fig. 1) are a type of Au-
tonomous Underwater Vehicle (AUV) that are being used
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extensively for long-term observation of key physical oceano-
graphic parameters [1]. They operate remotely at a low surge
speed of approximately 0.3 ms−1, with deployments of several
months [2]. However, developing Near Real-Time (NRT)
anomaly detection and fault diagnostics systems for such
vehicles remains challenging as decimated sensor data can
only be transmitted off-board periodically during operations
when the UG is on the surface.

As part of an ongoing collaboration, the authors have
previously developed anomaly detection systems for UGs via
different approaches. In [3], a simple but effective system
was developed to detect the wing loss using the roll angle.
In [4], system identification techniques were employed to
detect changes in model parameters which further successfully
deduced simulated and natural marine growth. Anderlini, et al.
[5] further conducted a field test to validate a marine growth
detection system for UGs using ensembles of regression trees.
In [6], the use of a range of deep learning techniques was
investigated to achieve over-the-horizon anomaly detection
for UGs. In [7], an anomaly detection system based on
an improved Bi-directional Generative Adversarial Network
(BiGAN) was prototyped to enable generic anomaly detection
for different types of anomalies.

For UGs operated over the horizon, some faults can only
be revealed when the faulty UGs are recovered. Also, it is
not clear when the faults developed. Some undetected faults
can lead to critical failures and the loss of vehicle and/or
data cargo. Therefore, it is essential to understand the actual
causes of high anomaly scores during remote monitoring to
allow operators to take appropriate mitigations to minimise



Fig. 1. Slocum G2 underwater glider with Ocean Microstructure.

subsequent risks and maximise the successful delivery of the
remainder of the deployment. This paper further compares
the results acquired in [7] with other baseline approaches.
In addition, a new supervised fault diagnostics method for
UGs is proposed. The BiGAN-based anomaly detection system
is applied to estimate when the faults are developed, such
that the training dataset for the supervised fault diagnostics
model can be accurately annotated. The results suggest that
the BiGAN-based anomaly detection system has successfully
detected different types of anomalies, in good agreement
with model-based and rule-based approaches. The supervised
fault diagnostics system has achieved high fault diagnostics
accuracy on the available test dataset.

II. METHOD

Figure 2 shows the workflow of the anomaly detection and
fault diagnostics for underwater gliders using deep learning.
This workflow comprises two parts, i.e. unsupervised anomaly
detection and supervised fault diagnostics. The unsupervised
anomaly detection system is developed to alert the oper-
ators about the occurrence of an abnormal vehicle status
that deviates from the normal baseline operating pattern. The
developed unsupervised anomaly detection system is applied
to assist in annotating the datasets with anomalies, as the
exact times when the anomalies developed are unknown. With
this approach, the training dataset for the supervised fault
diagnostics can be accurately annotated.

A. Anomaly detection using BiGAN
Figure 3 shows the structure of the BiGAN [8]. The

discriminator D, the generator G and encoder E are trained
concurrently such that D maximises the probability of assign-
ing the correct label to both tuples (x,E(x)) and (G(z), z).
To fool the discriminator, the encoder E and the generator
G must learn to invert one another. The encoder E maps
data x to its latent feature z. A trained BiGAN encoder E
can be a feature representation for related semantic tasks. For
instance, z can be a representation of data x. The discriminator
D discriminates (x,E(x)) and (G(z), z), which is different
from the standard GAN [9]. Readers may refer to [7] for more
details of the BiGAN-based anomaly detection system. The
training objective of the BiGAN is:

min
G,E

max
D

V (D,E,G) = Ex∼pdata(x) [logD (x,E(x))]

+ Ez∼pz(z) [log (1−D(G(z), z))] (1)
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Fig. 2. Workflow of the anomaly detection and fault diagnostics for under-
water gliders using deep learning.

In addition to the original BiGAN, assistive hints comprising
data reconstruction and neural network feature errors have
been added to guide the anomaly detection system training
[7].

To fool the discriminator D, the encoder E and generator
G must learn to invert one another [8]. The authors [7]
use the reconstruction error between the input sample x and
reconstructed data x̂ to assist the BiGAN training, i.e. using
the L2 norm between x and x̂ via E and G:

Lre =
1

nx
‖x− x̂‖2 (2)

where x̂ = G(E(x)) and nx is the number of input data
elements.

In addition, the discriminator’s layer output before its out-
put layer is extracted as an additional hint provided by the
discriminator:

Lfe =
1

nf
‖f(x, z′)− f(x̂, z′)‖2 (3)
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Fig. 3. Structure of the BiGAN [8].

where z′ = E(x) and nf is the feature layer’s number of
neurons.

Combining Lre and Lfe, the assistive hint loss function is
[7]:

Lhint =
κ

nx
‖x− x̂‖2 +

1

nf
‖f(x, z′)− f(x̂, z′)‖2 (4)

where κ is an adjustable hyperparameter. In this study, κ = 2.
It is worth noting that in the validation and test phases, the
residual of Lhint is the anomaly score that indicates the degree
of anomalies.

Figure 4 details the unsupervised workflow of the proposed
anomaly detection system using BiGAN for UGs. The model
is trained using full time-series datasets recovered from base-
line deployments with no anomalies. Synthetic sensor faults
are injected into the training data to validate the model. In
the test phase, decimated NRT data will be applied to test the
actual model performance for NRT condition monitoring. The
reconstructed sensor data and the original input query data
are compared. The system annotates the sensors with high
anomaly score contributions to alert the pilot. At time step j,
for the ith sensor’s reading, the reconstruction error δi,j is the
absolute value of the difference between the enquiry data xi,j
and the BiGAN reconstruction x̂i,j :

δi,j = |xi,j − x̂i,j | (5)

which will enable the visualisation of anomalies on sensor
readings.

B. Supervised fault diagnostics

The supervised fault diagnostics system aims to indicate
the UGs’ operating status when NRT data is transmitted via
satellite connection, i.e. whether the vehicles present normal
conditions or have developed a certain type of fault. Given a
training dataset {(xi, yi)}Ni=1 with N training samples such
that xi is the ith data patch (a × b matrix, where a is the
number of signals, b is the number of time steps in one data
patch) and yi is its corresponding label (i.e. fault class), the
supervised learning algorithm seeks a function g : X → Y
that predicts the unknown class y ∈ Y of an observation
x ∈ X , where X and Y are the input and output space of
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Fig. 4. Workflow of the BiGAN-based anomaly detection for UGs [7].

g, respectively. For training sample (xi, yi), a loss function
Ls (yi, ŷi) is minimised to find the function g, where ŷi is the
predicted label of xi.

The function g is modelled with a neural network, as
shown in Fig. 5. The original input x (a × b matrix) is
flattened as the input of the neural network. Three fully
connected layers (followed by their own batch normalization,
LeakyReLU activation and dropout layers) forward propagate
the features to a fully connected layer activated by SoftMax
to output the predicted class. A cross-entropy loss function is
applied to the output of the last fully connected layer.

III. DATASETS

Table I details the 11 Slocum G2 deployment datasets used
in this study [7], [10]. The first two datasets collected by units
345 and 397 are applied to train the BiGAN-based anomaly
detection system as those are normal deployments without any
anomalies. The other datasets used for testing include one
healthy deployment of unit 419, and eight deployments with
anomalies including biofouling, Ocean Microstructure Gliders
(OMG, which have a large sensor appendage mounted on the
exterior of the hull), angle of list, loss of wings and strong
disturbances. The detailed data processing procedures can be
found in [7].
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Fig. 5. Neural network configuration for the supervised learning.

TABLE I
THE DATASETS APPLIED FOR ANOMALY DETECTION SYSTEM TRAINING

AND TESTING.

Glider ID Glider status Anomaly detection
unit 345 Healthy Training
unit 397 Healthy Training
unit 419 Healthy Testing
unit 399 Biofouling Testing
unit 423 OMG Testing
unit 424 OMG Testing
unit 194 Angle of list Testing
unit 304 Loss of right wing Testing
unit 345 Strong disturbances Testing
unit 436 Loss of left wing Testing
unit 492 Simulated biofouling Testing

IV. RESULTS

In this section, the anomaly detection results will be pre-
sented in comparison with model-based and rule-based results
acquired in [6], [11]. The anomaly detection results will then
be applied to annotate the dive cycles of the deployments
to train a supervised learning model for fault diagnostics. It
should be noted that the supervised learning approach is an
attempt to classify faults with limited training datasets. The
limited dataset size and the bias towards healthy baseline con-
ditions could potentially lead to a biased supervised learning
model. To ensure generality, the training data would require
numerous additional raw datasets with increased diversity.

A. Anomaly detection

Figure 6 shows a sample of the validation process where
only the rudder angle signal is artificially manipulated to
its minimum value (−0.52 rad) and the anomaly detection
has successfully annotated this anomaly. After learning the
distribution x ∼ p(x) of the training dataset, the model can
output a high anomaly score that describes the degree of an
anomaly.

Figure 7 shows the anomaly detection results against the
model-based and rule-based ones. It is worth noting that only
seven deployments are compared here due to the availability of
baseline results for the remaining deployments. The BiGAN-
based anomaly detection system has correctly shown anomaly
score trends in good agreement with the model-based and
rule-based methods for the seven deployments. Note that for
some of the deployments (e.g. unit 436: wing loss), only one
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Fig. 6. A verification sample with the rudder angle signal manually set to its
minimum value while the other signals are unchanged. For the rudder angle
sensor, the signal reconstructed by the BiGAN is distributed around 0 and
matches the actual sensor reading, suggesting that the model has learned the
distribution of the training data.

baseline is presented, since the missing model-based method
did not correctly show the detection metric trend.
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Fig. 7. Anomaly detection results using BiGAN, compared with model-based and rule-based approaches.

B. Fault diagnostics

Table II details the representative cycles selected from the
datasets with the aid of the anomaly detection results. The
chosen dive cycles are applied to the training, validation and
test datasets for the supervised learning method. For each
deployment, 50% of the selected cycles are randomly sampled
to generate the training datasets, 25% of the cycles are applied
to generate the validation dataset, and the remaining 25% of
the cycles are applied to generate the test dataset. For each
dive cycle, 100 data patches with 64 time steps are randomly
sampled for both the training and test datasets. Note that there
are 15 signals included in the original datasets. Therefore,
the training, validation and test datasets include 179,200,
89,600 and 89,600 15×64 matrices with corresponding labels,
respectively.

The supervised fault diagnostics model is trained on the

TABLE II
DATASET ANNOTATION USING UNSUPERVISED ANOMALY DETECTION

RESULTS.

Glider ID Glider status Class label Selected cycles
unit 345 Healthy 0 [0, 400]
unit 397 Healthy 0 [0, 400]
unit 419 Healthy 0 [0, 120]
unit 399 Biofouling 1 [800, 1050]
unit 423 OMG 2 [0, 200]
unit 424 OMG 2 [0, 270]
unit 194 Angle of list 3 [0, 700]
unit 304 Loss of right wing 4 [550, 700]
unit 345 Strong disturbances 5 [0, 620]
unit 436 Loss of left wing 6 [250, 650]
unit 492 Biofouling (simulated) 1 [0, 75]

training dataset for 10 epochs, with the Adam optimiser and
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Fig. 8. Confusion matrix of the supervised fault diagnostics results on the
test dataset.

a learning rate of 1× 10−5. The fault diagnostics accuracy
on the validation dataset is 99.76%. Subsequently, the trained
neural network is applied to the test dataset to detect and
classify the anomalies. The overall accuracy of the model
is 99.67% on the test dataset. Figure 8 shows the confusion
matrix of the supervised fault diagnostics results on the test
dataset, suggesting the model has achieved high fault diagnos-
tics accuracy for the 6 types of faults considered, as well as
healthy operating status.

Although high fault diagnostics accuracy has been achieved
over the test dataset, the fault diagnostics model is trained
with datasets collected from only a few deployments. Training
the model with such a small dataset can lead to an overfitted
model. An overfitted model could memorise features specific
to an individual deployment or a particular vehicle, which
could lead to degraded fault diagnostics performance in real
applications. Due to limited data available, further investiga-
tions were not conducted. In future work, the training dataset
will be enriched. In addition, automatic segmentation methods
will be developed to annotate the deployment datasets.

V. CONCLUSIONS

This work has further extended the BiGAN-based anomaly
detection system developed in [7] to assist with the annotation
of UG deployment datasets. The performance of the BiGAN-
based anomaly detection system has been compared with rule-
based and model-based methods. The annotated deployment
datasets were applied to train a supervised learning fault
diagnostics model. With the limited availability of training
samples of the different anomalies, the supervised learning
model has achieved an accuracy of 99.67% in fault diagnostics.
In further work, supervised and semi-supervised models will
be developed based on larger datasets with better diversity.
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