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Abstract 

Several approaches have been used in the past to model heterogeneity in bacterial cell populations, with 
each approach focusing on different sources of heterogeneity. However, a holistic approach that 
integrates all the major sources into a generic framework applicable to cell populations is still lacking. 
We present here the mathematical formulation of a Master Equation for a cell population that considers 
the major sources of heterogeneity, namely stochasticity in reaction, division, and DNA duplication. 
The formulation also considers cell growth and accounts for the discrete nature of the molecular 
contents. We further develop a Monte Carlo algorithm for the simulation of the stochastic processes 
considered here. Using this approach, we finally demonstrate the effect of each source of heterogeneity 
on the overall phenotypic variability for the two-promoter system used by Elowitz et al. (2002) to 
experimentally quantify intrinsic versus extrinsic noise. 
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Until the 1990’s, the biological paradigms and many state-
of-the-art modeling frameworks neglected cell population 
heterogeneity. The fundamental assumption of such 
theoretical investigations was that all cells behave like the 
average cell and, thus, their behavior can be described by 
continuum models consisting of Ordinary Differential 
Equations (ODEs). This is not what is observed in vivo, 
however, since cell populations are inherently 
heterogeneous (Davidson and Surette 2008). More 
importantly, even if one is interested only in the average 
dynamics, it turns out that use of continuum models 
(Fredrickson 1976) that neglect heterogeneity will result in 
incorrect predictions (McAdams and Arkin 1998). Hence, 
one has to use models that explicitly account for the 
heterogeneous nature of the cell population. 

None of the earlier studies, however, has adopted a 
holistic approach that integrates all the major sources of 
heterogeneity into a general cell population model. The 
population balance framework introduced by Fredrickson 
et al. (1967) to model cell population dynamics takes into 
account stochasticity in division times and potentially 
unequal partitioning. However, this approach treats 
intracellular reaction events deterministically, does not 
consider intrinsic noise and only involves protein levels, 
since it does not treat DNA species. The Chemical Master 
Equation simulated by the Gillespie algorithm (Gillespie 
1976) takes into account intrinsic noise, and some variants 
of this algorithm also incorporate deterministic growth and 
stochastic partitioning (Lu et al. 2004). However, these 
algorithms do not consider variability in division or DNA 
duplication times and can only describe single cells, not 



  
 
cell populations. The ensemble methods (Domach and 
Shuler 1984; Henson 2003) simulate populations in which 
variability is attributed to different initial conditions or 
kinetic rates. These methods do not follow the dynamics 
of the cell population and do not account for intrinsic 
noise. Finally, an algorithm proposed recently by 
Mantzaris (2007) takes into account intrinsic noise at the 
cell population level as well as stochastic partitioning. But, 
it models intrinsic noise using Stochastic Differential 
Equations (SDEs) that are only valid at limiting cases of 
large systems. Furthermore, this approach does not 
explicitly treat DNA species.  

This study presents a framework that accounts for all 
the major sources of heterogeneity, namely stochasticity in 
reaction, division, and DNA duplication. The 
mathematical formulation applies to the cell population 
level, takes into account cell growth, and respects the 
discrete nature of the molecular contents and cell numbers. 

Mathematical Formulation 

We assume that each cell can be completely described 
by a state vector that contains information about the 
chemical content of the cell and its morphometric 
characteristics such as length, membrane area or volume. 
This study will consider only one morphometric 
characteristic: volume. Thus, the state vector of the cell 
has length n+1, with n components corresponding to the 
species copy numbers and one component for the volume. 

We further assume that reaction dynamics can be 
captured by a reaction network of the generic form: 
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where n is the number of non-chromosomal DNA species 
and d the number of chromosomal DNA species. The 
necessity for discriminating between chromosomal and 
non-chromosomal species comes from the fact that, upon 
division, chromosomal DNA species are partitioned 
equally in the two daughters. This is not generally true, 
however, for the other species. Furthermore, each of the 
DNA species i = 1,…,d may exist in si states. For example 
an operator may exist in three states: the free state O, the 
repressed state with one repressor molecule bound RO, or 
the repressed state with two repressor molecules bound 
R2O. Thus for this case, s1 = 3 and (Sn+1, Sn+2, Sn+3) = (O, 
RO, R2O). 

During duplication the chromosomal DNA species are 
doubled. We assume that the newly produced 

chromosomal DNA species i exists in a basal state ηi. For 
example, in the aforementioned example of the operator 
existing in the free and the two bounded states, the basal 
state will be the free state. Then the production of the new 
DNA will schematically be: 
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Single cell growth is modeled as a deterministic 
process: 

( ),dV g V
dt

= X  (4) 

At the cell population level, consider a population that 
has ν cells existing in states (X1, V1), …, (Xν, Vν). Xi is a 
vector with the number of molecules per species and Vi is 
the volume of the cell. Then the dynamics of the 
probability of finding such a population at time t, will be 
governed by the following Master Equation: 
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where aj and vj are respectively the propensity function for 
reaction j and the vector of change, as and vs are the 
analogous quantities for DNA duplication (synthesis), g is 
the single cell growth rate, ad is the division propensity 
and h(x|y) is the partitioning probability density function 
giving the probability of obtaining a daughter cell of state 
x after division of a mother with state y. Furthermore: 

( ) ( ) ( )( )1, ,..., , ,..., , ;iJ J V V V t= 1 i νX X Xν ν ν  (6) 

and we have made use of the step operator defined as 
follows (van Kampen 1992): 
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Simulation Algorithm 

We will now outline a computational algorithm that 
can simulate stochastic paths of Eq. (5) given a reaction 
network, single cell growth rate, DNA duplication and 
division propensities, and a partitioning mechanism. 

• For every cell in the population create random times for 
reaction division, duplication. 

• For t < tmax 

 Determine the next event and the affected cell. 

 Simulate the first event in the appropriate cell 
(additional samplings may be necessary). 

 Update X, V of all cells and time t. 

 For the affected cell(s), update or create random 
times for reaction division and duplication. 

Two-Promoter System 

We will now use this algorithm to simulate a genetic 
network consists of two genes under the influence of two 
identical repressible promoters. Such a genetic network 
was used by Elowitz et. al (2002) to decompose the 
extrinsic and intrinsic contributions of noise to the overall 
single cell noise. In particular, two GFP variants, a yellow 
(YFP) and a cyan (CFP), were cloned into the E. coli 
chromosome. Expression of both proteins is driven from 
identical Lac repressible promoters and the fluorescence 
intensity of both variants is approximately the same.  

Thus, measurements of the fluorescence of the cells in 
the yellow and cyan channels can reveal the effects of 
intrinsic and the extrinsic noise. Specifically, differences 
in the fluorescence intensity of the same cell measured by 
the two channels originate from intrinsic noise, while 
differences between distinct cells are the result of extrinsic 
noise. This decomposition of noise to extrinsic and 
intrinsic components is rather phenomenological and 
based on how the protein contents of identical genes 
correlate.  

Using our framework, however, we can identify the 
contribution of fundamental biological mechanisms on the 
extrinsic or the intrinsic noise components. This paper will 
focus on the non-repressed system. 

All Sources of Heterogeneity Present 

Figure 1a shows the normalized Yfp content versus 
the normalized Cfp content in a plot similar to that used by 
Elowitz et al. (2002). Each point in the plot corresponds to 
one cell of the population. 

 
 
 

 
Table 1. Chemical Species Notation 

Symbol Species denoted 
RP RNA polymerase 
RB ribosome 
OYfp free operator of yfp gene 
RYfp yfp mRNA 
Yfp Yfp protein molecule 
OCfp free operator of cfp gene 
RCfp cfp mRNA 
Cfp Cfp protein molecule 
∅ Generic source or sink 

Table 2. Chemical Reactions and Propensities 

(i) 1
k RP∅ ⎯⎯→  1 A

k V N
E.coli

⋅ ⋅  

(ii) 2
k RB∅ ⎯⎯→  2 A

k V N
E.coli

⋅ ⋅  

(iii) 3
kO RP O RP R

yfp yfp yfp
+ + +⎯⎯→  3

A

k
O RP

V N
yfp

E.coli

⋅ ⋅
⋅

 

(iv) 4
kR RB R RB Yfp

yfp yfp
+ + +⎯⎯→  4

A

k
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V N
yfp

E.coli

⋅ ⋅
⋅

 

(v) 5
kO RP O RP R

cfp cfp cfp
+ + +⎯⎯→  5

A

k
O RP

V N
cfp

E.coli

⋅ ⋅
⋅

 

(vi) 6
kR RB R RB Cfp

cfp cfp
+ + +⎯⎯→  6

A

k
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V N cfp
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⋅ ⋅
⋅

 

(vii) 7
kRP ∅⎯⎯→  7

k RB⋅  

(viii) 8
kRB ∅⎯⎯→  8

k RP⋅  

(ix) 9
kR

yfp
∅⎯⎯→  9

k R
yfp

⋅  

(x) 10
kYfp ∅⎯⎯→  10

k Yfp⋅  

(xi) 11
kR

cfp
∅⎯⎯→  11

k R
cfp

⋅  

(xii) 12
kCfp ∅⎯⎯→  12

k Cfp⋅  

 
The observed scatter of the points results from 

stochasticity, which generates heterogeneity at the 
population level. For this simulation, all sources of noise 
that can be captured with our model are present.  

More specifically, transcriptional and translational 
stochasticity is significant due to the low copy numbers of 
mRNA and protein. These are the intrinsic noise sources 
and contribute to the spread of points far from the diagonal 
Cfp = Yfp. 

Furthermore, the stochasticity in DNA duplication 
and division, as well as the fluctuations in the contents of 
RNA polymerase and ribosomes constitute the extrinsic 
noise sources and contribute to the elongation of the 
ellipsoid along the diagonal Cfp = Yfp. 
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Figure 1: scatter-plots for the Yfp and Cfp: (a) 
all noise sources present; (b) no heterogeneity; 

(c) intrinsic noise; (d) extrinsic noise. 

Homogeneous Cell Populations 

When the population in homogeneous, all cells will 
behave identically which means that (i) the fluctuations of 
the species copy numbers due to reactions must be 
infinitesimally small; (ii) duplication and division events 
must occur in synchrony; and (iii) the cells must divide in 
a way that the two daughter cells have equal volumes and 
contents. Figure 1b shows such a case: all cells express the 
same amount of proteins and, thus, all the points in the 
scatter-plot are concentrated to the mean expression levels. 

Only Extrinsic or Only Intrinsic Noise 

Figure 1c shows the scatter plot graph for the case 
where only intrinsic noise is present. Stochasticity in the 
biomolecular reactions is significant, but DNA duplication 
and symmetric division events occur in synchrony. In this 
case, the points in the plot form a circular pattern, showing 
that the variability in the Cfp and Yfp content of a single 
cell is equal to the variability of Cfp (or Yfp) content 
between different cells of the cell population. 

On the other hand, Figure 1d pertains to a case where 
only extrinsic noise is present. The latter is brought about 
by fluctuations in the RNA polymerase. Division is still 
symmetric in this case, and the duplication and division 
are synchronized. Moreover, intrinsic noise is negligible 
because the transcriptional rates of cfp and yfp are high, 
keeping mRNA and protein contents high. In this case, the 
points in the Cfp and Yfp graph are arranged along the 
line Cfp = Yfp, showing that in any single cell the Cfp and 
Yfp contents are identical, but there exists variability 
between different cells of the cell population. 

Conclusions 

We developed a mathematical and computational 
framework that can predict the phenotypic distributions 
observed in cell populations. The framework can be used 
to systematically study the contribution of fundamental 
biological mechanisms on the extrinsic and intrinsic noise 
components that give rise to highly heterogeneous 
bacterial populations. Therefore, computational studies 
using this approach can complement experiments in which 
a fundamental decomposition of noise sources is 
impossible. 
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