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Abstract—In this paper, the sum-rate maximization problem
is studied for wireless networks that use downlink rate splitting
multiple access (RSMA). In the considered model, the base station
(BS) divides the messages that can be transmitted to its users
into a “private” part and a “common” part. Here, the common
message is a message that multiple users want to receive and the
private message is a message that is dedicated to only a specific
user. The RSMA mechanism enables a BS to adjust the split of
common and private messages so as to control the interference by
decoding and treating interference as noise and, thus optimizing
the data rate of users. To maximize the users’ sum-rate, the
network can determine the rate allocation for the common
message to meet the rate demand, and adjust the transmit
power for the private message to reduce the interference. This
problem is formulated as an optimization problem whose goal is
to maximize the sum-rate of all users. To solve this nonconvex
maximization problem with a single-antenna BS, the optimal
power used for transmitting the private message to the users
is first obtained in closed form for a given rate allocation and
common message power. Based on the optimal private message
transmit power, the optimal rate allocation is then derived
under a fixed common message transmit power. Subsequently, an
iterative algorithm is proposed to obtain a suboptimal solution
of common message transmit power. To solve this nonconvex
maximization problem with a multiple-antenna BS, a successive
convex approximation method is utilized. Simulation results show
that the RSMA can achieve up to 15.6% and 21.5% gains in terms
of data rate compared to non-orthogonal multiple access (NOMA)
and orthogonal frequency-division multiple access (OFDMA),
respectively.

Index Terms—Rate splitting multiple access, sum-rate maxi-
mization, rate allocation, power control.

I. INTRODUCTION

Driven by the rapid development of advanced multimedia
applications such as virtual reality [2], [3], next-generation
wireless networks [4] must support high spectral efficiency
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and massive connectivity. By splitting users in the power
domain, non-orthogonal multiple access (NOMA) can simul-
taneously serve multiple users at the same frequency or time
resource [5]–[10]. Consequently, NOMA-based access scheme
can achieve higher spectral efficiency than conventional or-
thogonal multiple access (OMA) [11]–[13]. However, using
NOMA, the users must decode all of the interference as they
receive the messages [12], which significantly increases the
computational complexity needed for signal processing. To
solve this problem, the idea of rate splitting multiple access
(RSMA) was proposed in [14]–[16]. In RSMA, the message
transmitted to the users is divided into a common message and
a private message. The common message is a message decoded
by multiple users and the private message is a message that
only a specific intended user wishes to receive. To receive the
common message, the users first decode the interference from
other users. In contrast, to receive the private message, the
users only consider the interference from other users’ private
messages which can be treated as noise. Therefore, adjusting
the split of common and private messages can control the com-
putational complexity and the data rate achieved by RSMA.
However, implementing RSMA in wireless networks also face
several challenges [16] such as the split of common and private
message, resource management for effective private message
transmission, and synchronization of message transmission.

A. Related Works

Recently, a number of existing works such as in [16]–[26]
studied important problems related to RSMA. The work in [16]
introduced the challenges and opportunities of using RSMA
for multiple input multiple output (MIMO) wireless networks.
In [17], the authors proposed a distributed rate splitting method
to maximize the data rates of the users. The authors in [18]
evaluated the performance of RSMA, NOMA, and space-
division multiple access (SDMA) and showed that RSMA
achieves better performance than NOMA and SDMA. The
authors in [19] investigated the use of linearly-precoded rate-
splitting method for simultaneous wireless information and
power transfer networks. In [20], the authors used RSMA to
maximize the rate of all users in downlink multi-user multiple
input single output (MISO) systems under imperfect channel
state information at the transmitter.

The energy efficiency problem for RSMA was studied in
[21]. The authors in [22] investigated the rate performance
of RSMA at millimeter wave. Based on [21] and [22], the
work in [23] studied the energy efficiency of the RSMA and
NOMA schemes in a millimeter wave downlink transmission
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scenario. The use of RSMA is investigated in [24] for a
downlink multiuser MISO system with bounded errors in the
channel state information at the transmitter. The authors in
[25] analyzed the data rate of using RSMA for two-receiver
MISO broadcast channel with finite rate feedback. In [26], the
spectral and energy efficiency were investigated for RSMA to
non-orthogonal unicast and multicast transmissions.

Most of the existing works such as in [16]–[26] find the
local optimal power control solutions for RSMA in different
wireless systems such as MIMO and MISO. Note that succes-
sive interference cancelation (SIC) is also considered in both
RSMA and NOMA. Due to SIC, the signal which is decoded
first should be allocated more power as shown in [27, Eq. (5)],
[28, Eq. (2)], [29, Eq. (4)], [30, Eq. (8)], and [31, Sec. II-B].
In RSMA, the common messages is decoded first and then
the private message is decoded with SIC. To provide better
overall performance, the additional power constraint needs to
be considered to ensure that the common message is a stronger
signal than the private message, and this power constraint is
called the SIC constraint hereinafter. However, none of these
prior works [16]–[26] considers a SIC constraint for power
allocation in RSMA.

B. Contributions

To our best knowledge, this is the first work that investigates
the use of RSMA under an explicit SIC constraint. Our key
contributions include:

• We formulate the rate allocation and power control
problem as an optimization problem whose goal is to
maximize the network sum-rate under both rate and SIC
constraints in SISO systems. To solve this problem, we
first derive a closed-form expression for the optimal
transmit power of the private message. Our fundamental
analysis shows that, with the exception of one of the
users, all users are allocated with the minimum power
to maintain the minimum rate demand. Then, we obtain
the optimal rate allocation given the transmit power of
the common message.

• Given the equal data rate requirement, we provide a
closed-form solution for the optimum common message
transmission power. For the general unequal data rate
requirement, we have proposed an iterative algorithm to
find a suboptimal solution with low complexity.

• We formulate the sum-rate maximization problem for
MISO RSMA with both rate and SIC constraints. To solve
this nonconvex problem, a successive convex approxima-
tion (SCA) based algorithm is proposed to obtain a local
optimal solution.

• Simulation results show that the optimized RSMA al-
gorithm can achieve up to 15.6% and 21.5% gains in
terms of data rate compared to NOMA and orthogonal
frequency-division multiple access (OFDMA).

In our conference version [1], we only studied the sum-rate
maximization for RSMA in single-input single-output (SISO)
systems.

The rest of this paper is organized as follows. The system
model and problem formulation are described in Section II.

The solutions for SISO RSMA and MISO RSMA are present-
ed in Sections III and IV, respectively. Simulation results are
analyzed in Section V. Conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
Consider a downlink single-cell network that consists of

one BS servicing a set K of K users using RSMA. In RSMA,
the message Wk intended for user k is split into a common
part Wc,k and a private part Wp,k [32]. The common parts
Wc,1, · · · , Wc,K of all users are combined into the common
message Wc, which is encoded into the common stream s0
using a codebook shared by all users. Hence, s0 is a common
stream required to be decoded by all users. The private part
Wp,k, containing the remaining part of the message Wk, is
encoded into the private stream sk for use k.

The transmitted signal x of the BS is expressed as:

x =
√
p0s0 +

K∑
k=1

√
pksk, (1)

where p0 is the transmit power of the common stream s0 (i.e.,
the common message Wc) and pk is the transmit power of the
private stream sk (i.e., the private message Wp,k) transmitted
to user k.

The total received signal at user k can be given by:

yk =
√
hkx+ nk =

√
hkp0s0 +

K∑
j=1

√
hkpjsj + nk, (2)

where hk represents the channel gain between user k and the
BS and nk is the additive white Gaussian noise with variance
σ2. The achievable rate of user k decoding common stream
s0 can be expressed as:

ck = B log2

(
1 +

hkp0

hk

∑K
j=1 pj + σ2

)
, (3)

where B is the bandwidth of the BS. Without loss of gen-
erality, the channel gains are sorted in ascending order, i.e.,
h1 ≤ h2 ≤ · · · ≤ hK . To ensure that all users can successfully
decode common stream s0, the rate of common stream should
be chosen as [18]:

min
k∈K

ck = min
k∈K

B log2

(
1 +

p0∑K
j=1 pj +

σ2

hk

)

= B log2

(
1 +

p0∑K
j=1 pj +

σ2

mink∈K hk

)
(a)
= B log2

(
1 +

p0∑K
j=1 pj +

σ2

h1

)
= c1, (4)

where equality (a) follows from the fact that h1 ≤ h2 ≤ · · · ≤
hK .

To successfully implement SIC operation at the receiver,
the transmit power of each user must satisfy the following
constraint [27]:

hkp0 − hk

K∑
j=1

pj − σ2 ≥ θ, ∀k ∈ K, (5)
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where θ is the minimum difference between the decoding
signal power and the undecoded inter-user interference sig-
nal power plus noise power [28]. In (5), hkp0 means the
received common message power at user k, while the term
hk

∑K
j=1 pj+σ2 is the power of non-decoded private message

of all users (plus noise). According to [33], in order to satisfy
SIC in an RSMA-based system, each user should have that the
received signal to interference plus noise ratio (SINR) of the
common stream signal is larger than its received SINR of the
private stream, i.e., the common message is a stronger signal
than the private message, as shown in the SIC constraint (5).
The SIC constraint (5) is more suitable than the SIC constraint
in [33] since our SIC constraint is a linear expression with
respect to the transmission power and our SIC constraint can
also capture the fact that the received SINR of the common
stream signal is larger than the received SINR of the private
stream. This minimum difference is required to distinguish
the common message to be decoded and the remaining non-
decoded private message of all users (plus noise). Based on
the channel condition h1 ≤ h2 ≤ · · · ≤ hK , constraint (5) can
be simplified as:

p0 −
K∑
j=1

pj ≥
θ + σ2

h1
. (6)

Given the common stream rate c1 and the rate ak allocated
to user k, the constraint of each user k’s data rate of receiving
common stream is given by:

K∑
k=1

ak ≤ c1, (7)

which indicates that the total data rates of all users receiving
common stream must be less than the rate c1 of common
stream.

According to (4) and (7), the rate constraint can be further
expressed as

h1p0 −
(
2

∑K
k=1 ak

B − 1

)h1

K∑
j=1

pj + σ2

 ≥ 0. (8)

Although both rate constraint (8) and SIC constraint (5) are
linear with respect to the transmission power, constraint (8)
cannot be equivalently transformed to constraint (5).

After having decoded the common stream s0, each user
can decode its private stream, the achievable rate of user k
decoding its private stream sk is given by:

rk = B log2

(
1 +

hkpk

hk

∑K
j=1,j ̸=k pj + σ2

)
. (9)

Given the common stream rate ak and achievable private
stream rate rk, the total transmission rate of user k in RSMA
is:

rtot
k = ak + rk = ak +B log2

(
1 +

hkpk

hk

∑K
j=1,j ̸=k pj + σ2

)
.

(10)

B. Problem Formulation

Given the considered system model, our objective is to
optimize the rate allocation and power control so as to
maximize the sum-rate under a total power constraint and
individual minimum rate requirements. Mathematically, the
sum-rate maximization problem for RSMA can be formulated
as:

max
a,p

K∑
k=1

(
ak +B log2

(
1 +

hkpk

hk

∑K
j=1,j ̸=k pj + σ2

))
,

(11)

s.t.
K∑

k=1

ak ≤ B log2

(
1 +

h1p0

h1

∑K
j=1 pj + σ2

)
, (11a)

ak +B log2

(
1 +

hkpk

hk

∑K
j=1,j ̸=k pj + σ2

)
≥ Rk,

∀k ∈ K (11b)

p0 −
K∑
j=1

pj ≥
θ + σ2

h1
, (11c)

K∑
k=0

pk ≤ P, (11d)

ak, p0, pk ≥ 0, ∀k ∈ K, (11e)

where a = [a1, a2, · · · , aK ]T , p = [p0, p1, p2, · · · , pK ]T ,
Rk is the minimum rate demand of user k, and P is the
maximum transmit power of the BS. Constraint (11a) ensures
that each user can decode the common message. The minimum
rate constraints for all users are given in (11b). Constraint
(11c) shows the successful SIC power requirement, and (11d)
presents the maximum power constraint.

When the rate demand
∑K

k=1 ak is small, we cannot obtain
that the common message is a stronger signal than the private
message from (11a) [18], [20], [34], [35]. Thus, the SIC
constraint (11c) needs to be considered to ensure better overall
performance. There is no contradiction between this setting
and the flexibility of the RS system. We can first solve two
problems: the resource allocation problem with SIC constraint
(11c) and the resource allocation problem without a common
message. Then, we compare the objective values of these two
problems and select the higher objective value.

Since the objective function is not concave, the sum-rate
maximization problem (11) is nonconvex. Moreover, the rate
and power vectors are coupled in the objective function and
constraints, and hence, it is generally hard to solve problem
(11).

III. JOINT RATE ALLOCATION AND POWER CONTROL

In this section, we first provide the optimal conditions
of problem (11). Then, based on these optimal conditions,
the optimal private message transmission power is obtained
in closed form under a given rate allocation and common
message transmission power. Substituting the optimal private
message transmission power in problem (11), the optimal
closed-form rate allocation is then derived under a fixed
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common message transmission power. Finally, an iterative
algorithm is proposed to solve problem (11)

A. Optimal Conditions
Before solving problem (11), we provide some optimal

conditions, which will be used to simplify problem (11).
Lemma 1: At the optimal solution (a∗,p∗) of problem

(11), the common message constraint (11b) holds with equal-

ity, i.e.,
∑K

k=1 a
∗
k = log2

(
1 +

h1p
∗
0

h1

∑K
j=1 p∗

j+σ2

)
.

Lemma 1 can be easily proved by contradiction.
Lemma 2: At the optimal solution (a∗,p∗) of problem

(11), the maximum power constraint (11d) holds with equality,
i.e.,

∑K
k=0 p

∗
k = P .

Proof: See Appendix A. �
Applying Lemma 1 and substituting

∑K
j=1,j ̸=k pj = P −

p0 − pk from Lemma 2 to (11), we can then observe that
problem (11) is equivalent to the following problem:

max
a,p

K∑
k=1

ak +

K∑
k=1

B log2

(
hk(P − p0) + σ2

hk(P − p0 − pk) + σ2

)
,

(12)

s.t.
K∑

k=1

ak = B log2

(
h1P + σ2

h1(P − p0) + σ2

)
, (12a)

ak +B log2

(
hk(P − p0) + σ2

hk(P − p0 − pk) + σ2

)
≥ Rk,∀k ∈ K,

(12b)
K∑

k=0

pk = P, (12c)

p0 ≥ P

2
+

θ + σ2

2h1
, (12d)

ak, pk ≥ 0, ∀k ∈ K. (12e)

To solve problem (12), we can show that it is further equiv-
alent to another optimization problem, which admits a closed-
form solution for the optimal private message transmission
power.

Lemma 3: The optimal solution of problem (12) is equiv-
alent to the following problem:

max
a,p

B log2

(
h1P + σ2

h1(P − p0) + σ2

)
+

K∑
k=1

B log2

(
hk(P − p0) + σ2

hk(P − p0 − pk) + σ2

)
, (13)

s.t.
K∑

k=1

ak ≤ B log2

(
h1P + σ2

h1(P − p0) + σ2

)
, (13a)

ak +B log2

(
hk(P − p0) + σ2

hk(P − p0 − pk) + σ2

)
≥ Rk,∀k ∈ K,

(13b)
K∑

k=0

pk = P, (13c)

p0 ≥ P

2
+

θ + σ2

2h1
, (13d)

pk ≥ 0, 0 ≤ ak ≤ Rk, ∀k ∈ K. (13e)

Proof: See Appendix B. �
Note that the maximum rate limitation 0 ≤ ak ≤ Rk is

added in constraint (13e), which will prove to be helpful in
obtaining the optimal private message transmission power in
closed form.

B. Optimal Private Message Transmission Power

Given the simplified problem in (13), next, we find the
optimal private message transmission power. Given rate al-
location a and common message power control p0, problem
(13) becomes

max
p̄

K∑
k=1

B log2

(
hk(P − p0) + σ2

hk(P − p0 − pk) + σ2

)
, (14)

s.t.
K∑

k=1

pk = P − p0, (14a)

pk ≥ pmin
k , ∀k ∈ K, (14b)

where p̄ = [p1, p2, · · · , pK ] is a vector of power that is
allocated to each user for receiving private message and

pmin
k =

(
1− 2

ak−Rk
B

)(
P − p0 +

σ2

hk

)
. (15)

Due to constraint (13e), pmin
k is always non-negative.

Note that the fist term in objective function (13) is a constant
with given common message power control p0, thus the fist
term in objective function (13) is omitted in problem (14).
In (14b), pmin

k is used to meet the minimum rate constraint in
(13b), and problem (14) is feasible if and only if

∑K
k=1 p

min
k ≤

P − p0, which can be given as:

K∑
k=1

(
1− 2

ak−Rk
B

)(
P − p0 +

σ2

hk

)
≤ P − p0. (16)

Since objective function is convex, we can infer that the
maximization problem (14) is nonconvex. To effectively solve
problem (14), the following theorem is presented.

Theorem 1: For the optimal solution p̄∗ of problem (14),
there exists one k such that p∗k = P − p0 −

∑K
j=1,j ̸=k p

min
j

and p∗j = pmin
j , ∀j ∈ K, j ̸= k.

Proof: See Appendix C. �
From Theorem 1, the structure of the optimal solution of

problem (14) is revealed. Although problem (14) is nonconvex,
the optimal solution can be obtained in closed form, which can
be given by the following theorem.

Theorem 2: For nonconvex problem (14), the optimal
power allocation p̄∗ is

p∗k = P−p0−
K∑

j=1,j ̸=k

(
1− 2

aj−Rj
B

)(
P − p0 +

σ2

hj

)
, (17)

p∗j =
(
1− 2

aj−Rj
B

)(
P − p0 +

σ2

hj

)
, ∀j ∈ K, j ̸= k,

(18)
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and the optimal sum-rate of private message is

B log2

 P − p0 +
σ2

hk∑K
j=1,j ̸=k

(
1− 2

aj−Rj
B

)(
P − p0 +

σ2

hj

)
+ σ2

hk


+

K∑
j=1,j ̸=k

(Rj − aj), (19)

where

k = argmin
j∈K

2
aj−Rj

B

(
P − p0 +

σ2

hj

)
. (20)

Proof: See Appendix D. �
Theorem 2 states that it is optimal for the BS to allocate

more power to the user that can maximize the sum-rate while
allocating the minimum transmit power that can meet the data
rate requirement for all other users.

For the special case with aj = Rj , ∀j ∈ K, we can obtain
pmin
j = 0 and k = argminj∈K

σ2

hj
= K according to (20), i.e.,

all the power should be allocated to the user with the highest
channel gain. This observation is trivial since allocating the
maximum power to the user with the highest channel gain
will always improve the rate.

For the special case in which a = 0, i.e., the broadcast
channel without SIC, we have the following corollary that
follows from Theorem 2.

Corollary 1: For the downlink nonconvex sum-rate max-
imization problem in broadcast channel, which is given by:

max
p

K∑
k=1

B log2

(
1 +

hkpk

hk

∑K
j=1,j ̸=k pj + σ2

)
, (21)

s.t. B log2

(
1 +

hkpk

hk

∑K
j=1,j ̸=k pj + σ2

)
≥ Rk, ∀k ∈ K,

(21a)
K∑

k=1

pk ≤ P, (21b)

pk ≥ 0, ∀k ∈ K, (21c)

the maximization problem in (21) is feasible if and only if

K∑
j=1

(
1− 2

−Rj
B

)(
P − p0 +

σ2

hj

)
≤ P − p0, (22)

and the optimal power allocation p∗ is to meet the minimum
rate requirements of all users except one user, i.e.,

p∗k = P −
K∑

j=1,j ̸=k

(
1− 2

−Rj
B

)(
P +

σ2

hj

)
, (23)

p∗j =
(
1− 2

−Rj
B

)(
P +

σ2

hj

)
, ∀j ∈ K, j ̸= k, (24)

and the optimal objective value is

B log2

 P + σ2

hk∑K
j=1,j ̸=k

(
1− 2

−Rj
B

)(
P + σ2

hj

)
+ σ2

hk


+

K∑
j=1,j ̸=k

Rj , (25)

where
k = argmin

j∈K
2

−Rj
B

(
P +

σ2

hj

)
. (26)

Corollary 1 provides the optimal power allocation that max-
imizes the downlink sum-rate of the broadcast channel. From
this result, we can see that more power should be allocated to
one of the users compared to allocating the minimum transmit
power to all other users. The user that should be allocated
more power is jointly determined by the channel gain and the
minimum rate demand, as shown in (26).

C. Optimal Rate Allocation

In the previous subsection, the optimal power allocation
vector p̄ can be obtained as a function of the rate allocation
vector a and common message power p0. Thus, substituting
the optimal power allocation vector p̄ given in (17) and (18)
in Theorem 2, the original problem in (13) can be simplified
as:

max
a,p0

B log2

(
h1P + σ2

h1(P − p0) + σ2

)
+

K∑
j=1,j ̸=k

(Rj − aj)

+B log2

 P − p0 +
σ2

hk∑K
j=1,j ̸=k

(
1− 2

aj−Rj
B

)(
P − p0 +

σ2

hj

)
+ σ2

hk

 ,

(27)

s.t.
K∑
j=1

aj ≤ B log2

(
h1P + σ2

h1(P − p0) + σ2

)
, (27a)

k = argmin
j∈K

2
aj−Rj

B

(
P − p0 +

σ2

hj

)
, (27b)

K∑
j=1

(
1− 2

aj−Rj
B

)(
P − p0 +

σ2

hj

)
≤ P − p0,

(27c)

p0 ≥ P

2
+

θ + σ2

2h1
, (27d)

0 ≤ aj ≤ Rj , ∀j ∈ K, (27e)

where constraint (27b) is added since more power should be
allocated to user k to maximize the sum-rate while other users
are allocated the minimum power to ensure the minimum rate
constraint. Constraint (27c) follows from (16), which ensures
that the private message power control problem is feasible.

Due to objective function and constraints (27a)-(27c), prob-
lem (27) is nonconvex and, hence, it is generally hard to direct-
ly optimize rate allocation a and private power p0. To solve
problem (27), we first fix the private message transmission
power and derive the optimal rate allocation. Given common
message transmission power p0, problem (27) becomes
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max
a

K∑
j=1,j ̸=k

(Rj − aj)

+B log2

 P − p0 +
σ2

hk∑K
j=1,j ̸=k

(
1− 2

aj−Rj
B

)(
P − p0 +

σ2

hj

)
+ σ2

hk

 ,

(28)

s.t.
K∑
j=1

aj ≤ c1, (28a)

k = argmin
j∈K

2
aj−Rj

B

(
P − p0 +

σ2

hj

)
, (28b)

K∑
j=1

(
1− 2

aj−Rj
B

)(
P − p0 +

σ2

hj

)
≤ P − p0,

(28c)
0 ≤ aj ≤ Rj , ∀j ∈ K. (28d)

Despite the nonconvexity of (28), the optimal solution of
problem (28) can be precisely formulated in the following
theorem. Before presenting the theorem, rearrange users in
the descending order π1, π2, · · · , πK of 2

−Rj
B

(
P − p0 +

σ2

hj

)
,

i.e.,

2
−Rπj

B

(
P − p0 +

σ2

hπj

)
≥ 2

−Rπl
B

(
P − p0 +

σ2

hπl

)
, ∀j < l.

(29)
Theorem 3: The optimal solution a∗ of problem (28) is:
i) if c1 ≤

∑K
j=1 Rj ,

a∗πj
=


Rπj , if j < l,

c1 −
∑j−1

m=1 Rπm , if j = l,
0, otherwise,

(30)

where l satisfies
∑l−1

j=1 Rj ≤ c1 <
∑l

j=1 Rj .
ii) if c1 ≥

∑K
j=1 Rj ,

a∗πj
= R, ∀j ∈ K. (31)

Proof: See Appendix E. �
Theorem 3 provides the optimal rate allocation of problem

(28) in closed form. According to Theorem 3, we can deter-
mine the user that the BS will allocate additional power using
the following lemma.

Lemma 4: It is optimal to allocate the additional power to
user πK , i.e.,

k = argmin
j∈K

2
aj−R

B

(
P − p0 +

σ2

hj

)
= argmin

j∈K
2

−Rπj
B

(
P − p0 +

σ2

hπj

)
= πK . (32)

D. Power Control Optimization

With the optimal rate allocation given in Theorem 3, it
remains to optimize common message transmission power p0
of problem (27).

Theorem 4: Given the equal data rate requirement, i.e.,
R1 = · · · = RK = R, the optimal common message
transmission power p∗0 of problem (27) satisfies:

p∗0 ∈
{
P

2
+

θ + σ2

2h1
,
(
1− 2−R

)(
P +

σ2

h1

)
, · · · ,

(
1− 2−KR

)(
P +

σ2

h1

)
, P1, · · · , PK

}
, (33)

where Pk satisfies(
h1(P − Pk) + σ2 − (h1P + σ2)2

−R
B

)(
P − Pk +

σ2

hk

)
+
(
1− 2

−R
B

) K∑
j=k

(h1(P − Pk) + σ2)

(
P − p∗0 +

σ2

hj

)
= (P − p∗0)(h1(P − Pk) + σ2). (34)

Proof: See Appendix F. �
Theorem 4 indicates that the optimal common message

transmission power p∗0 lies in a finite space of potential
candidates. The optimal solution p∗0 of problem (27) will be
one of the solutions with the highest objective value. Since
equation (34) is a quadratic equation, which can be effectively
solved via the quadratic root formula.

For the general unequal data rate requirement, it is hard
to obtain the optimal rate allocation and power control of
problem (27). To obtain a suboptimal solution of problem
(27), we propose an iterative algorithm through obtaining the
optimal rate allocation with given transmission power and
updating the optimal transmission power with optimized rate
allocation, as shown in Algorithm 1.

Theorem 5: Given rate allocation a, the optimal common
message transmission power p∗0 of problem (27) satisfies:

p∗0 ∈
{
P

2
+

θ + σ2

2h1
,
(
1− 2−

∑K
k=1 ak

)(
P +

σ2

h1

)
, P0

}
,

(35)

where P0 is the unique solution to
K∑
j=1

(
1− 2

aj−Rj
B

)(
P − P0 +

σ2

hj

)
= P − P0. (36)

Proof: See Appendix G. �
In each step of Algorithm 1, the main complexity lies in

solving (28) given p0. The complexity of solving the problem
in (28) is O(K) according to Theorem 3 and the complexity
of Algorithm 1 is O(LK), where L denotes the number of
iterations.

Algorithm 1 Iterative Rate Allocation and Power Control

1: Initialize a(0), p(0)0 , and iteration number t = 1.
2: repeat
3: Given p

(t−1)
0 , obtain the optimal a(t) of problem (27)

according to Theorem 3.
4: Given a(t), obtain the optimal p

(t)
0 of problem (27)

according to Theorem 5.
5: Set t = t+ 1.
6: until the objective value (27) converges.
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IV. DOWNLINK SUM-RATE MAXIMIZATION FOR MISO
RSMA

A. Problem Formulation

We consider the case in which the BS is equipped with N
antennas. Let the common message of all users be s0 and the
private message of each user k be sk. The transmitted signal
x of the BS is expressed as:

x = w0s0 +
K∑

k=1

wksk, (37)

where w0 is the beamforming vector of the common message
s0 and wk is the beamforming vector of the private message
sk transmitted to user k.

The total received message at user k can be given by:

yk = hH
k x+ nk = hH

k w0s0 +
K∑
j=1

hH
k wjsj + nk, (38)

where hk represents the channel coefficients between user k
and the BS. The achievable rate of user k decoding common
message s0 can be expressed as:

ck = B log2

(
1 +

|hH
k w0|2∑K

j=1 |hH
k wj |2 + σ2

)
. (39)

To ensure that all users can successfully decode common
message s0, the rate of common message should be chosen as
[18] mink∈K ck.

To successfully implement the SIC operation at the receiver,
the transmit power of each user must satisfy the following
constraint [27]:

|hH
k w0|2 −

K∑
j=1

|hH
k wj |2 − σ2 ≥ θ, ∀k ∈ K. (40)

Given the common message rate mink∈K ck and the rate ak
allocated to user k, the constraint of each user k’s data rate
of receiving common message is given by:

K∑
k=1

ak ≤ ck, ∀k ∈ K. (41)

After having decoded the common message s0, each user
can decode its private message, the achievable rate of user k
decoding its private message sk is given by:

rk = B log2

(
1 +

|hH
k wk|2∑K

j=1,j ̸=k |hH
k wj |2 + σ2

)
. (42)

Mathematically, the sum-rate maximization problem for

RSMA can be formulated as:

max
a,w

K∑
k=1

(
ak +B log2

(
1 +

|hH
k wk|2∑K

j=1,j ̸=k |hH
k wj |2 + σ2

))
,

(43)

s.t.
K∑

k=1

ak ≤ B log2

(
1 +

|hH
k w0|2∑K

j=1 |hH
k wj |2 + σ2

)
, ∀k ∈ K,

(43a)

ak +B log2

(
1 +

|hH
k wk|2∑K

j=1,j ̸=k |hH
k wj |2 + σ2

)
≥ Rk,

∀k ∈ K, (43b)

|hH
k w0|2 −

K∑
j=1

|hH
k wj |2 − σ2 ≥ θ, ∀k ∈ K, (43c)

K∑
k=0

wH
k wk ≤ P, (43d)

ak ≥ 0, ∀k ∈ K, (43e)

where w = [w0;w1; · · · ;wK ].
Problem (43) is hard to be solved due to nonconvex ob-

jective function and nonconvex constraints. To handle this
hardness, we use the SCA approach.

B. Algorithm Design

By introducing slack variables γk and ηk, problem (43) can
be reformulated as the following optimization problem:

max
a,w,γ,η

K∑
k=1

(ak +B log2 (1 + γk)), (44)

s.t.
K∑

k=1

ak ≤ B log2 (1 + ηk) , ∀k ∈ K, (44a)

ak +B log2 (1 + γk) ≥ Rk, ∀k ∈ K, (44b)
|hH

k wk|2∑K
j=1,j ̸=k |hH

k wj |2 + σ2
≥ γk, ∀k ∈ K, (44c)

|hH
k w0|2∑K

j=1 |hH
k wj |2 + σ2

≥ ηk, ∀k ∈ K, (44d)

(43c)− (43e) (44e)

where γ = [γ1, · · · , γK ]T and η = [η1, · · · , ηK ]T . For the
equivalent problem (44), the objective function is concave.
Problem (44) is nonconvex only due to constraints (44c),
(44d), and (43c). To handle the nonconvexity of constraint
(44c), we introduce new nonnegative slack variable αk and
reformulate constraints (44c) into the following equivalent
constraints:

|hH
k wk|2 ≥ γkαk, (45)

K∑
j=1,j ̸=k

|hH
k wj |2 + σ2 ≤ αk. (46)

Without loss of generality, the term hH
k wk in constraint (45)

can be expressed as a real number through an arbitrary rotation
to the phase beamforming wk. As a result, constraint (45) can
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be equivalent to R(hH
k wk) ≥ √

γkαk, where R(x) means
the real part of the complex variable x. Replacing concave
function

√
γkαk with the first-order Taylor series, constraint

(45) becomes:

R(hH
k wk) ≥

√
γ
(n−1)
k α

(n−1)
k +

1

2

√√√√γ
(n−1)
k

α
(n−1)
k

(αk − α
(n−1)
k )

+
1

2

√√√√α
(n−1)
k

γ
(n−1)
k

(γk − γ
(n−1)
k ), (47)

where superscript (n − 1) means the value of the variable at
the (n− 1)-th iteration.

Introducing new variable βk, we can reformulate constraint
(44c) as:

|hH
k w0|2 ≥ βkηk =

1

4
((βk + ηk)

2 − (βk − ηk)
2), (48)

K∑
j=1

|hH
k wj |2 + σ2 ≤ βk. (49)

Since there are K inequality constraints in (48), we cannot
let the term hH

k w0 be a real number for all k through an
arbitrary rotation to the phase beamforming w0. To handle
the nonconvexity of (48), we adopt the difference of two
convex function (DC) approximation and constraint (48) can
be approximated by:

2R(hH
k w

(n−1)
0 hH

k w0)− |hH
k w

(n−1)
0 |2

≥ 1

4
((βk + ηk)

2 − (β
(n−1)
k − η

(n−1)
k )(βk − ηk)

+ (β
(n−1)
k − η

(n−1)
k )2), (50)

where the left hand side is the first-order Taylor series of
|hH

k w0|2.
By using the DC approximation, constraint (43c) can be

reformulated as:

2R(hH
k w

(n−1)
0 hH

k w0)− |hH
k w

(n−1)
0 |2 −

K∑
j=1

|hH
k wj |2 − σ2 ≥ θ.

(51)

With the above approximations, the nonconvex problem
(44) can be formulated in the following approximated convex
problem:

max
a,w,γ,η,α,β

K∑
k=1

(ak +B log2 (1 + γk)), (52)

s.t. (44a), (44b), (43d), (43e), (46), (47), (49)− (51),
(52a)

αk ≥ 0, βk ≥ 0, ζk ≥ 0, ∀k ∈ K, (52b)

which can be effectively solved via the dual method [36].

Algorithm 2 Sum-Rate Maximization with SCA

1: Initialize a(0),w(0),γ(0),η(0),α(0),β(0). Set iteration
number n = 1.

2: repeat
3: Solve convex problem (52).
4: Denote the optimal solution of (52) by

(a(n),w(n),γ(n),η(n),α(n),β(n), ζ(n)).
5: Set n = n+ 1.
6: until the objective value (44) converges.

C. Convergence and Complexity Analysis

The SCA algorithm for solving problem (44) is summarized
in Algorithm 2. Although the use of SCA and the first-order
Taylor series to deal with the optimization problem is not
new, we use SCA to joint optimize the beamforming and rate
allocation while the works in [20]–[22] only optimized the
beamforming for MISO RSMA with fixed rate allocation. The
convergence of Algorithm 2 can be shown by the following
lemma.

Lemma 5: The total sum-rate obtained in Algorith-
m 2 is monotonically non-decreasing, and the sequence
(a(n),w(n),γ(n),η(n)) converges to a point fulfilling the
KKT optimal conditions of the original non-convex problem
(44).

Since Lemma 5 directly follows from [37, Proposition 3],
the proof of Lemma 5 is omitted. According to Algorithm 2,
problem (44) is solved by using the SCA approach, where
the approximated convex problem (52) is solved in each
iteration. Since there are (6K + 1) constraints in problem
(44), the number of iterations that are required for Algorithm
2 is O(

√
6K + 1 log2(1/ϵ)) [38], where ϵ is the algorithm

accuracy. At each iteration, the complexity of solving the
second-order cone programme problem (52) is (L2

1L2), where
L1 = (5 + N)K is the total number of variables and L2 =
8K + 1 is the total number of constraints [39]. As a result,
the total complexity of Algorithm 2 is O(N2K3.5 log2(1/ϵ)).

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
optimal rate allocation and power control algorithm. There are
K users uniformly distributed in a square area of size 300 m ×
300 m. The path loss model is 128.1+37.6 log10 d (d is in km)
[40] and the standard deviation of shadow fading is 4 dB. In
addition, the bandwidth of the BS is B = 1 MHz and the noise
power is σ2 = −104 dBm [41]. Unless specified otherwise,
the system parameters are set as maximum transmit power
P = 30 dBm, equal rate demand R1 = R2 = · · · = RK =
R = 0.5 Mbits/s and SIC detection threshold is set as θ =
−94 dBm1. The main system parameters are listed in Table I.
We present the results for both SISO and MISO cases. All
simulation results are averaged over 100 Monte Carlo channel
realizations.

1The value of θ is selected to ensure that the error rate of decoding the
common message is below a preferred requirement. A typical value of θ is
set as θ = −94 dBm (i.e., θ/σ2 =10 dB and σ2 = −104 dBm is the noise
power) in [Table 3, 26] and [Table I, 27].
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TABLE I
SYSTEM PARAMETERS

Parameter Value
Bandwidth of the BS B 1 MHz

Noise power σ2 -104 dBm
Maximum transmit power P 30 dBm

Minimal rate demand R 1 Mbits/s
SIC detection threshold θ -94 dBm

30 31 32 33 34 35

Maximum transmit power of the BS (dBm)
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RSMA, Algorithm 1
RSMA, Algorithm 2
NOMA
OFDMA

Fig. 1. Sum-rate versus maximum transmit power of the BS (K = 3 users,
R1 = 1.5 Mbits/s, R2 = 0.5 Mbits/s, and R3 = 1 Mbits/s).

A. SISO RSMA

In the SISO case, we do not consider the SDMA. The
proposed optimal rate allocation and power control algorithm
for rate maximization of RSMA is labeled as ‘RSMA’. We
compare with the proposed algorithm with the optimal power
control of NOMA for rate maximization [42], which is labeled
as ‘NOMA’. To compare conventional OMA, we use a OFD-
MA system [43] as a baseline, which is labeled as ‘OFDMA’.

Fig. 1 shows the sum-rate sum-rate versus maximum trans-
mit power of the BS with unequal rate demand for three users.
From this figure, we can see that RSMA always achieves the
best performance among all schemes. This is due to the fact
that the number of SIC in RSMA is once, while the number
of SIC in NOMA can be twice, which results in high power
allocation to the users with low channel gain according to the
successful SIC power requirement [28, Eq. (3)] and leads to a
low sum-rate. This figure also shows that RSMA outperforms
NOMA particularly for low maximum BS transmit power.
Compared to OFDMA, RSMA is better due to the fact that
all users can be served with the whole bandwidth of the BS.
According to Fig. 1, we can observe that Algorithm 1 has a
similar sum-rate performance as Algorithm 2 in the SISO case.
This is because both Algorithms 1 and 2 lead to suboptimal
solutions to the original problem, and we set the same initial
solution in these two algorithms for fair comparison. Based
on the complexity analysis in Sections II-D and IV-C, we can
see that the complexity of Algorithm 1 is much lower than
Algorithm 2 since a closed-form solution is obtained at each
step in Algorithm 1.

Fig. 2 shows the sum-rate versus minimum rate demand.
From this figure, RSMA always achieves a better performance
than NOMA and OFDMA. For RSMA scheme without SIC
constraint, the power of the common message can be smaller
than the power of the private message for some cases since
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Minimum rate demand of user 1 (Mbits/s)
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RSMA with SIC Constraint
RSMA without SIC Constraint
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Fig. 2. Sum-rate versus minimum rate demand (K = 3 users, R2 = 0.5 M
bits/s, and R3 = 1 M bits/s).
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Fig. 3. Sum-rate versus SIC detection threshold (K = 3 users, R1 = 1.5
Mbits/s, R2 = 0.5 Mbits/s, and R3 = 1 Mbits/s)).

there is no SIC constraint. In these cases, the common message
cannot be successfully decoded first and the sum-rate of
RSMA scheme without SIC constraint is set as zero in the
simulations. It is found that the RSMA with SIC constraint
achieves a higher sum-rate than RSMA without SIC constraint.
This is because some users cannot successfully decode the
common message in RSMA without SIC constraint, which
decreases the sum-rate. From Fig. 2, we can observe that the
sum-rate decreases slightly when minimum rate demand is
low. However, for a high minimum rate demand, the sum-
rate decreases rapidly. This is because a high minimum rate
demand requires the BS to allocate more power to the users
with worse channel gains, which consequently degrades the
sum-rate performance. Fig. 2 also demonstrates that, as the
minimum rate demand increases, the sum-rates of OFDMA
and NOMA decrease faster than RSMA. In particular, RSMA
can achieve up to 15.6% and 21.5% gains in terms of data rate
compared to NOMA and OFDMA, respectively. This is due
to the fact that RSMA exhibits a better spectrum efficiency
compared to OFDMA and NOMA, and OFDMA and NOMA
are more sensitive to high minimum rate demand than RSMA.

Fig. 3 shows the sum-rate versus SIC detection threshold
θ. For both RSMA and NOMA, we find that the sum-rate
decreases as the SIC detection threshold increases. This is
due to the fact that, as the SIC detection threshold increases,
the BS must allocate more power to the common message
in RSMA and the user with worse channel gain in NOMA.
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Fig. 4. CDF of the sum-rate resulting from RSMA, NOMA, and OFDMA
for a network with K = 3 users.
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Fig. 5. Sum-rate versus number of users.

For OFDMA, naturally, the sum-rate remains the same when
the SIC detection threshold increases. The proposed RSMA
algorithm outperforms the NOMA in terms of sum-rate, partic-
ularly for cases with a high SIC detection threshold. Moreover,
the sum-rate decreases faster for NOMA than RSMA as the
SIC detection threshold increases, which implies that RSMA
is more suitable for high SIC detection threshold.

Fig. 4 shows the cumulative distribution function (CDF) of
the sum-rate resulting from RSMA, NOMA, and OFDMA for
a network with K = 3 users. From Fig. 4, we observe that
the CDFs for RSMA and NOMA all improve significantly
compared to OFDMA, particularly for the high sum-rate
region, which shows that both RSMA and NOMA are suitable
for transmissions with high data rates. Moreover, we can find
that RSMA outperforms NOMA at regions with moderate data
rates, i.e., 5 –15 Mbits/s. This is because RSMA can adjust
the split between the common and private messages so as to
control the interference decoding and thus optimize the sum-
rate of users.

The sum-rate versus number of users is given in Fig. 5.
Clearly, the proposed RSMA is always better than NOMA
and OFDMA especially when the number of users is large.
When the number of users is large, the multiuser gain is more
apparent by the proposed RSMA compared to conventional
NOMA and OFDMA. This is because RSMA can effectively
determine the rate of each user receiving common message
to meet its specific rate demand, while the SIC time of each
user is high for NOMA and the allocated bandwidth of each
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Fig. 6. Sum-rate versus maximum transmit power of the BS (K = 3 users
and N = 2 antennas).
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Fig. 7. Sum-rate versus minimum rate demand of each user (K = 3 users
and N = 2 antennas).

user is low for OFDMA when the number of users is large.
RSMA achieves better performance than NOMA and OFDMA
at the cost of additional computational complexity according
to Section III-D.

B. MISO RSMA

Figs. 6 and 7 respectively show how the sum-rate changes
as the maximum transmit power of the BS and the minimum
rate demand of each user vary for a network having three
users and two antennas. From Fig. 6, we can see that the
sum-rate linearly increases with the logarithmic maximum
transmit power of the BS. Fig. 7 shows that the sum-rate
decreases with the minimum rate demand and the decrease rate
of SDMA is higher than both RSMA and NOMA. Figs. 6 and
7 show that RSMA achieves better performance than NOMA
in terms of sum-rate, particularly for low maximum transmit
power and high maximum rate demand. This is because RSMA
dynamically allocates the rate of the common message to
multiple users to meet the rate demand, while the rate decoded
in NOMA is allocated to only one specific user. From Figs. 6
and 7, we observe that both RSMA and NOMA significantly
outperform conventional SDMA. This is because both RSMA
and NOMA use SIC to mitigate the multi-user interference,
while in SDMA, each user experiences the interference from
all other users.
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VI. CONCLUSIONS

In this paper, we have investigated the allocation of data
rate of common message transmission and the transmit power
used for common and private message transmission in an
RSMA system. We have formulated the problem as a sum-rate
maximization problem. To solve this problem, we have derived
the optimal transmit power of private message in closed form.
Then, we have characterized the finite solution space for the
optimal rate allocation. Simulation results show that RSMA
achieves higher sum-rate than NOMA and OFDMA especially
for low maximum transmit power of the BS, high minimum
rate demand of users, high SIC detection threshold, and large
number of users.

APPENDIX A
PROOF OF LEMMA 2

We assume that the optimal solution (a∗,p∗) of problem
(11) satisfies

∑K
k=0 p

∗
k < P . We construct new power alloca-

tion by scaling power p∗, i.e.,

p′k =
P∑K

j=0 p
∗
j

p∗k > p∗k, ∀k = 0, 1, · · · ,K. (A.1)

Given new power allocation vector p′ = [p′0, p
′
1, · · · , p′K ], we

have

B log2

(
1 +

h1p
′
0

h1

∑K
j=1 p

′
j + σ2

)

> B log2

1 +
h1p

∗
0

h1

∑K
j=1 p

∗
j +

σ2
∑K

j=0 p∗
j

P

 , (A.2)

B log2

(
1 +

hkp
′
k

hk

∑K
j=1,j ̸=k p

′
k + σ2

)

> B log2

1 +
hkp

∗
k

h1

∑K
j=1,j ̸=k p

∗
j +

σ2
∑K

j=0 p∗
j

P

 , (A.3)

and

p′0 −
K∑
j=1

p′j =
P∑K

j=0 p
∗
j

p∗0 −
K∑
j=1

p∗j

 > p∗0 −
K∑
j=1

p∗j ≥ θ +
σ2

h1
,

(A.4)

where the first inequalities in (A.2)-(A.4) follow from the fact
that P∑K

j=0 p∗
j

> 1.
According to (A.2)-(A.4), we can see that new solution

(a∗,p′) is feasible and the objective value (11) of new solution
is better than that of solution (a∗,p∗), which contradicts the
fact that (a∗,p∗) is the optimal solution. Lemma 2 is proved.

APPENDIX B
PROOF OF LEMMA 3

If the pair (a,p) is feasible in problem (13), then the pair
(a,p) is also feasible in problem (12) with the same objective
value. It follows from the fact that the optimal value of (13)
is less than or equal to the optimal value of (12).

Conversely, if the pair (a,p) is feasible in (12), we can
construct a new pair (a′,p), where

a′k = min{ak, Rk}, ∀k ∈ K. (B.1)

It can be shown that solution (a′,p) is feasible in problem
(13). Moreover, the objective value of problem (12) is the
same as problem (13). Thus, we conclude that the optimal
value of (13) is greater than or equal to the optimal value of
(12). Hence, problem (13) is equivalent to (12).

APPENDIX C
PROOF OF THEOREM 1

Assume that there exist m and n such that p∗m > pmin
m and

p∗n > pmin
n for the optimal solution p̄∗. Next, we can show

that there always exist feasible power p′m and p′n with better
objective value (14a).

To construct such p′m and p′n, we substitute pj = p∗j , j ∈ K,
j ̸= m,n, into problem (14), which yields

max
pm,pn

B log2

(
hm(P − p0) + σ2

hm(P − p0 − pm) + σ2

)
+B log2

(
hn(P − p0) + σ2

hn(P − p0 − pn) + σ2

)
, (C.1)

s.t. pm + pn = P − p0 −
K∑

j=1,j ̸=m,n

p∗j , (C.1a)

pm ≥ pmin
m , pn ≥ pmin

n . (C.1b)

According to (C.1a), we have

pm = P − p0 −
K∑

j=1,j ̸=m,n

p∗j − pn. (C.2)

Combining (C.1b) and (C.2), we have

pmin
n ≤ pn ≤ P − p0 −

K∑
j=1,j ̸=m,n

p∗j − pmin
m . (C.3)

From (C.2) and (C.3), we can see that problem (C.1) can
be simplified as

max
pn

−B log2

hm

 K∑
j=1,j ̸=m,n

p∗j + pn

+ σ2


−B log2(hn(P − p0 − pn) + σ2), (C.4)

s.t. pmin
n ≤ pn ≤ P − p0 −

K∑
j=1,j ̸=m,n

p∗j − pmin
m . (C.4a)

Due to the convexity of function − log(x), the objective
function (C.4) is convex. Since the maximization of a convex
function always lies in the boundary of the feasible solution,
i.e., the optimal solution p′n of problem (C.4) satisfies

p′n ∈

pmin
n , P − p0 −

K∑
j=1,j ̸=m,n

p∗j − pmin
m

 . (C.5)

Further considering (C.2), we can construct

p′m = P − p0 −
K∑

j=1,j ̸=m,n

p∗j − p′n. (C.6)
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Based on the equivalence of problem (C.1) and problem
(C.4), (p′m, p′n) is the optimal solution of problem (C.1).
According to (C.5) and (C.6), p′m = pmin

m or p′n = pmin
n is

always satisfied.
Since (p′m, p′n) is the optimal solution of problem (C.1) and

(p′m, p′n) ̸= (p∗m, p∗n), we can claim that solution

(p∗1, · · · , p∗m−1, p
′
m, p∗m+1, · · · , p∗n−1, p

′
n, p

∗
n+1, · · · , p∗K)

(C.7)
is feasible with better objective value than solution p̄∗, which
contradicts the fact that p̄∗ is the optimal solution of problem
(14).

As a result, the proof of Theorem 1 is complete.

APPENDIX D
PROOF OF THEOREM 2

Substituting the optimal power allocation p∗k = P − p0 −∑K
j=1,j ̸=k p

min
j and p∗j = pmin

j , ∀j ∈ K, j ̸= k to problem (14)
according to Theorem 1, we can obtain the objective value
(14a) as

K∑
j=1,j ̸=k

B log2

(
hj(P − p0) + σ2

hj(P − p0 − pmin
j ) + σ2

)

+B log2

(
hk(P − p0) + σ2

hk

∑K
j=1,j ̸=k p

min
j + σ2

)
. (D.1)

To maximize sum-rate (D.1), the optimal k should be chosen
as

k = argmax
m∈K

K∑
j=1

B log2

(
hj(P − p0) + σ2

hj(P − p0 − pmin
j ) + σ2

)

−B log2

(
hm(P − p0) + σ2

hm(P − p0 − pmin
m ) + σ2

)
+B log2

(
hm(P − p0) + σ2

hm

∑K
j=1,j ̸=m pmin

j + σ2

)
= argmax

m∈K
B log2(hm(P − p0 − pmin

m ) + σ2)

−B log2

hm

K∑
j=1,j ̸=m

pmin
j + σ2


= argmax

m∈K

hm(P − p0 − pmin
m ) + σ2

hm

∑K
j=1,j ̸=m pmin

j + σ2
− 1

= argmax
m∈K

P − p0 −
∑K

j=1 p
min
j∑K

j=1 p
min
j + σ2

hm
− pmin

m

= arg min
m∈K

σ2

hm
− pmin

m . (D.2)

Substituting (15) to (D.2), we have

k = argmin
j∈K

σ2

hj
−
(
1− 2

aj−Rj
B

)(
P − p0 +

σ2

hj

)
= argmin

j∈K
2

aj−Rj
B

(
P − p0 +

σ2

hj

)
. (D.3)

This completes the proof of Theorem 2.

APPENDIX E
PROOF OF THEOREM 3

We first show that a∗πm
≥ a∗πn

for all m < n for the
optimal solution a∗ of problem (28). This can be proved
by the contradiction method. If there exists m < n such
that a∗πm

< a∗πn
, we can construct a new solution a′ with

a′πm
= a∗πn

, a′πn
= a∗πm

, a′j = a∗j for j ̸= m,n. Then, we
have:

K∑
j=1

(
1− 2

a′
πj

−Rπj

B

)(
P − p0 +

σ2

hπj

)

=
K∑
j=1

(
1− 2

a∗
πj

−Rπj

B

)(
P − p0 +

σ2

hπj

)
+

(
2

a∗
m
B − 2
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n
B

)(
2

−Rπm
B

(
P − p0 +

σ2

hπm

)
− 2

−Rπn
B

(
P − p0 +

σ2

hπn

))
≤

K∑
j=1

(
1− 2

a∗
πj

−Rπj

B

)(
P − p0 +

σ2

hπj

)
, (E.1)

where the inequality follows from (29). Based on (E.1), we
can claim that the new solution a′ is feasible with better or
equal objective value than solution a∗.

Then, we show that the objective function (28) monoton-
ically increases with aj for j ̸= k. To show this, the first
derivative of the objective function (28) with respect to aj
can be given by:

∂f(a)

∂aj
= −1 +

2
aj−Rj

B

(
P − p0 +

σ2

hj

)
∑K

j=1,j ̸=k

(
1− 2

aj−Rj
B

)(
P − p0 +

σ2

hj

)
+ σ2

hk

≥ −1 +
2

ak−Rk
B

(
P − p0 +

σ2

hk

)
∑K

j=1,j ̸=k

(
1− 2

aj−Rj
B

)(
P − p0 +

σ2

hj

)
+ σ2

hk

=
P − p0 −

∑K
j=1

(
1− 2

aj−Rj
B

)(
P − p0 +

σ2

hj

)
− σ2

hk∑K
j=1,j ̸=k

(
1− 2

aj−Rj
B

)(
P − p0 +

σ2

hj

)
+ σ2

hk

≥ 0,

(E.2)

where f(a) denotes the objective function (28). The first
inequality in (E.2) follows from constraint (28b), and the
second inequality in (E.2) follows from constraint (28c).

Based on (E.2), the objective function (28) increases with
each rate aj , while (E.1) shows that it is optimal to allocate
more rate to the user that has the lower channel gain. As a
result, the optimal rate allocation can be given in (30) and
(31). This completes the proof of Theorem 3.

APPENDIX F
PROOF OF THEOREM 4

For equal data rate requirement R1 = · · · = RK = R,
constraint (29) becomes:

2
−R
B

(
P − p0 +

σ2

hπj

)
≥ 2

−R
B

(
P − p0 +

σ2

hπl

)
, ∀j < l,

(F.1)
i.e., hπj ≤ hπl

for all j < l. Since h1 ≤ · · · ≤ hK , we have
πj = j.
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If c1 ∈ [(l − 1)R, lR) with 0 ≤ l < K, i.e.,

p0 ∈
[(

1− 2−(l−1)R
)(

P +
σ2

h1

)
,
(
1− 2−l)R

)(
P +

σ2

h1

))
.

(F.2)
According to Theorem 3, the optimal rate allocation is:

a∗j =

R, if j < l,
c1 − (l − 1)R, if j = l,
0, otherwise.

(F.3)

Substituting (F.3) and (32) into problem (27) yields:

max
p0

B log2

 P − p0 +
σ2

hk∑K−1
j=1

(
1− 2

a∗
j
−R

B

)(
P − p0 +

σ2

hj

)
+ σ2

hk

 ,

(F.4)

s.t.
(
1− h1P + σ2

h1(P − p0) + σ2
2

−R
B

)(
P − p0 +

σ2

hj

)
+

K∑
j=l

(
1− 2

−R
B

)(
P − p0 +

σ2

hj

)
≤ P − p0,

(F.4a)

p0 ≥ P

2
+

θ + σ2

2h1
, (F.4b)

p0 ∈
[(
1− 2−KR

)(
P +

σ2

h1

)
,(

1− 2−(l−1)R
)(

P +
σ2

h1

))
. (F.4c)

Through calculating the first-order derivative of objective func-
tion (F.4), the objective function (F.4) is always monotonically
increasing/decreasing with any given a∗j . As a result, the
optimal p∗0 always lies in the corner points of feasible set
(F.4a)-(F.4c), as shown in Theorem 4.

If c1 ≥ KR, we have p0 ≥
(
1− 2−KR

) (
P + σ2

h1

)
. The

optimal rate allocation is a∗j = R, ∀j ∈ K, according to
Theorem 3. Applying a∗j = R to problem (27) yields:

max
p0

B log2

(
P − p0 +

σ2

hk

σ2

hk

)
, (F.5)

s.t. p0 ≥ P

2
+

θ + σ2

2h1
, (F.5a)

p0 ≥
(
1− 2−KR

)(
P +

σ2

h1

)
. (F.5b)

Since the objective function (F.5) monotonically decreases
with p0, the optimal p∗0 lies in case 1 of Theorem 4. This
completes the proof of Theorem 4.

APPENDIX G
PROOF OF THEOREM 5

According to Lemma 1, problem (27) with given rate
allocation a becomes:

max
p0

B log2

 P − p0 +
σ2

hk∑K
j=1,j ̸=k

(
1− 2

aj−Rj
B

)(
P − p0 +

σ2

hj

)
+ σ2

hk

 ,

(G.1)

s.t.
K∑
j=1

aj ≤ B log2

(
h1P + σ2

h1(P − p0) + σ2

)
, (G.1a)

K∑
j=1

(
1− 2

aj−Rj
B

)(
P − p0 +

σ2

hj

)
≤ P − p0,

(G.1b)

p0 ≥ P

2
+

θ + σ2

2h1
. (G.1c)

Since the objective function (G.1) is always monotonically
increasing/decreasing, the optimal p∗0 always lies in the corner
points of feasible set (G.1a)-(G.1c), as shown in Theorem 5.
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