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ABSTRACT
Content Hypergiants deliver the vast majority of Internet traffic to
end users. In recent years, some have invested heavily in deploying
services and servers inside end-user networks. With several dozen
Hypergiants and thousands of servers deployed inside networks,
these off-net (meaning outside the Hypergiant networks) deploy-
ments change the structure of the Internet. Previous efforts to study
them have relied on proprietary data or specialized per-Hypergiant
measurement techniques that neither scale nor generalize, provid-
ing a limited view of content delivery on today’s Internet.

In this paper, we develop a generic and easy to implementmethod-
ology to measure the expansion of Hypergiants’ off-nets. Our key
observation is that Hypergiants increasingly encrypt their traffic
to protect their customers’ privacy. Thus, we can analyze publicly
available Internet-wide scans of port 443 and retrieve TLS certifi-
cates to discover which IP addresses host Hypergiant certificates in
order to infer the networks hosting off-nets for the corresponding
Hypergiants. Our results show that the number of networks hosting
Hypergiant off-nets has tripled from 2013 to 2021, reaching 4.5k
networks. The largest Hypergiants dominate these deployments,
with almost all of these networks hosting an off-net for at least
one – and increasingly two or more – of Google, Netflix, Facebook,
or Akamai. These four Hypergiants have off-nets within networks
that provide access to a significant fraction of end user population.

CCS CONCEPTS
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1 INTRODUCTION
The vast majority of traffic to Internet users comes from a small
number of content providers, cloud providers, and content delivery
networks that are heavy traffic outbound, including Google, Netflix,
Facebook, and Akamai. These providers, dubbed Hypergiants (HGs)
by Labovitz et. al [64], deliver content to billions of users around
the world. In 2019, more than half of Internet traffic originated from
only 5 HGs [32, 85, 104], a significant consolidation of traffic since
2009, when it took the largest 150 ASes to contribute half the traffic,
and 2007, when it took thousands of ASes [64].

To deliver high quality user experience in the face of ever increas-
ing demand for content, HGs invest heavily in their infrastructure.
They construct datacenters [54, 96] and roll out fiber to build their
backbone [10, 16, 62]. They peer at colocation facilities and Internet
Exchange Points (IXPs) worldwide [48, 90, 113]. They also peer
directly with eyeball networks, bypassing transit providers to im-
prove user performance and cut costs [10, 11, 28, 40, 64, 69, 81]. For
example, Google peers with more than 7.5k networks [11] (ca. 2020),
by establishing peerings at more than 100 colocation facilities and
150 IXPs [50].

HG’s Off-net Footprint. HGs operate their own networks and
datacenters, with servers assigned IP addresses from their ownASes.
Some HGs also install servers inside eyeball or other networks, to
serve users in those networks or their customers [53, 69, 79, 81].
These servers are assigned IP addresses of the hosting network.
Since 2000, Akamai has deployed their servers in hundreds of net-
works around the globe [69, 81]. We refer to these servers as off-nets
because they are outside (off) the HG’s own network, in contrast to
the on-nets that a HG hosts on its own network (see Fig. 1). More
recently, other HGs have followed this model, e.g., Google launched
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the Google Global Cache [53], Netflix has Open Connect [79], and
Facebook [89] and Alibaba [7] operate their own CDNs.

Despite the dominant role that HGs play in delivering Internet
content, the research community has lacked general and scalable
methods to track their growth and impact on the Internet topology.

Why measure Hypergiant Off-nets? Being able to track the
expansion of the Hypergiants inside other networks, especially
eyeball networks, has implications on the modeling of Internet
structure and Internet traffic flow. By deploying off-nets, HG’s
content is localized within the hosting network, with less traffic
crossing network boundaries. This view challenges the research
community’s mental model of the value of peering and exchanged
traffic between networks and can impact the scope and consid-
erations of net neutrality regulation. It has also implications on
network performance, as crossing network boundaries comes at
a cost [28, 44, 69]. Moreover, operating servers within a network
improves the strategic position of Hypergiants as they are able to
control both the origin server within their network as well as the
servers within other networks and, thus, optimize content deliv-
ery to end users. Looking forward, it is important to understand if
major Hypergiants, responsible for 90% of the traffic consumed by
end-users, have already taken steps towards delivering services in
emerging networks (e.g., 5G) that require close proximity to mo-
bile users and performance guarantees. The research community
lacks a good understanding of the global expansion strategies of
major Hypergiants and how much of the Internet population can
be served locally. Such insights can inform studies in other fields,
including economics, political science, and regulation. Section 8
revisits some of these topics in light of our results uncovering the
off-net footprints of major Hypergiants.

Challenges and Previous Work. Off-net servers of large HGs
(e.g., Google, Netflix, Facebook, Akamai, and many others) typically
use IP addresses announced by the hosting network (by ISPs rather
than by the HG), making it impossible to identify the server as
belonging to the HG using traditional techniques such as inspecting
BGP feeds. Alternate approaches have been used, but they either
require access to distributed vantage points and so have limited
coverage, or they are tailored to a particular HG, so lack generality
and are fragile to changes that the HG might make.

The first category of earlier approaches relies on issuing DNS
queries from many locations since HGs can direct users to a partic-
ular server by resolving DNS queries to the server’s IP addresses.
These approaches either use a distributedmeasurement platform [88,
102], open recursive resolvers that (generally mistakenly) will re-
spond to queries from arbitrary hosts [55, 105], or crowd sourced
requests [3, 74]. Approaches to study YouTube’s infrastructure have
used 5 vantage points in different networks [103] and a combination
of open DNS resolvers and PlanetLab [2]. However, none of these
techniques has resulted in truly global coverage, which becomes
more of a problem as HGs expand their footprints and use any-
cast [23], and studies that (ab)use open resolvers also raise ethical
concerns.

The second category of earlier approaches get around the need
for distributed vantage points via DNS-based techniques tailored
to individual HGs. Studies have emulated issuing DNS queries
from around the world by using the DNS Extension Client-Subnet
(ECS), which allows a DNS query to include the client’s IP prefix,

allowing researchers to issue queries to a HG that appear to come
from arbitrary locations/prefixes [22, 101]. However, many HGs
do not support ECS, and even ones that do may reply only to ECS
queries from whitelisted resolvers [26]. Further, even Google, the
subject of earlier ECS-based mapping, now only responds to DNS
queries for domains such as www.google.com with IP addresses
of on-net servers, and so ECS-based mapping efforts no longer
uncover Google off-nets. Other studies have mapped Facebook [13–
15] and Netflix [17] off-nets by exploiting patterns in the naming
scheme for off-net DNS records, then exhaustively trying queries
based on those patterns. This approach is fragile and tedious, as
hostname patterns may change, requires tailored patterns per HG
so can be difficult to scale, and is not general, as some HGs do not
have exploitable naming conventions.

OurApproach.Wepresent the first approach for identifying off-
nets that is both general, working across Hypergiants, and complete,
achieving global coverage of their off-net footprints. Additionally,
our approach is amenable to using existing public datasets, enabling
us to apply it in a longitudinal study uncovering the growth in off-
net deployments.

Our approach relies on two key observations. First, a Hyper-
giant’s off-net servers host the Hypergiant’s Transport Layer Se-
curity (TLS) certificate(s) and must provide the certificate(s) in re-
sponse to queries. Recent years have seen a dramatic increase in
use of Transport Layer Security (TLS), such that the majority of
Internet traffic today is encrypted [32]. Adoption of encryption has
been particularly high among HGs, with the percentage of Google
traffic that is encrypted increasing from from 50% in 2014 to 95% in
2020 [51].

A TLS certificate validates the identity of a service run in a server,
and so a server possessing a Hypergiant’s certificate indicates it is
a server for the Hypergiant. If a server outside the Hypergiant’s
network has the certificate, it is an off-net for the Hypergiant, an
observation we validate later in the paper. Because TLS certificates
andmessage exchanges are standardized, TLS scans of the IP address
space provide an approach to identify off-nets that will work for any
Hypergiant (that uses TLS) and can cover all publicly-addressable
servers.

Second, because the approach relies on standard TLS scans, we
can use existing certificate corpuses to perform historical and longi-
tudinal analysis. Such corpuses are readily available for commercial
and research use, e.g., from Rapid7 [87] and Censys [36].

In combination, thewide adoption of TLS and the available certifi-
cate datasets provide an opportunity to infer the off-net footprints
of all HGs and to greatly enhance the community’s understanding
of Internet content delivery.
Our Contributions:

• We develop a generic methodology to infer all HGs’ off-net foot-
prints by analyzing corpuses of scanned certificates. We augment
our methodology with analysis of HTTP(S) header corpuses to
differentiate a HG service hosted on third party platforms (e.g.,
Netflix web servers running in AWS) from a HG service running
on its own servers (e.g., Netflix Open Connect video caches).

• By applying our methodology on certificate corpuses that span
more than seven years (2013-2021), we find that the number of
ASes that host HG off-net installations has tripled, reaching 4.5k
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in April 2021. We validate our results by surveying HG operators.
Those that replied indicated that we correctly uncovered 89-95%
of ASes hosting their off-nets.

• Of networks that host any HG off-nets, our analysis reveals that
the largemajority host at least one of the four largest HGs (Google,
Netflix, Facebook, and Akamai, the four largest in terms of num-
ber of networks in which they have off-nets).

• ASes that already host at least one HG tend to host more over
time. Most off-nets are in small and medium ASes, which is not
surprising since most ASes in general are small, but a dispropor-
tionate share of large ASes host them as well.

• Hypergiants have rapidly expanded their off-net footprints in
Europe, Asia, and Latin America, the last seeing exponential
growth.

• As a result of this expansion, a significant fraction of the end user
population can be potentially served by the off-net deployments
of Google, Netflix, Facebook, and Akamai.

• Our analysis unveils different strategies by HGs. While a number
of Hypergiants have expanded significantly, we also observe
shrinking of deployments, most notably in the case of Akamai.

Artifacts. To support future research, we make our software and
results publicly accessible to the research community through our
project website [45]:
https://github.com/pgigis/sigcomm2021-hypergiants-offnets

What this paper is not about: As we do not know in detail the
business strategies, deployment planning, peering arrangements,
and the performance and cost goals of individual HGs, our study is
not a head-to-head comparison of different HGs. It is possible that
a HG with a smaller off-net footprint can still serve more users or
provide better performance. Performance evaluation of different
HG off-net footprints is out of the scope of this work.

2 BACKGROUND
In HTTPS, HTTP traffic is encrypted using the cryptographic proto-
col Transport Layer Security (TLS), which secures communication
using public certificates that are exchanged and verified. The stan-
dard format of public key certificates is X.509 [33]. The certificates
contain several fields [33, 91]. As we will explain in more detail in
Section 4, we use the following fields and properties to establish
which organization and site(s) a certificate belongs to and whether
the certificate is valid:
Subject Name. This field identifies the entity associated with
the certificate via a number of (sub)fields. This paper uses the
Organization entry, naming the organization associated with the
certificate (e.g., Google LLC).
dNSName. The DNS name dNSName extension lists the domains that
this certificate certifies (e.g., *.google.com,
*.google.com.br, *.googlevideo.com, . . . ).
Server Name Indication (SNI). SNI is a TLS protocol extension
that allows a server to serve multiple certificates for different host-
names, all under a single IP address [35]. During the TLS handshake
phase, the client provides the hostname that it wants to reach, and
the server replies back with the corresponding certificate. If a client
does not include this extension, the server replies with its default
certificate.

Validity Period. This uses the NotBefore and NotAfter fields
to define the time window within which a certificate should be
considered as valid. The values depend on the policy of the owner
(e.g., Netflix used short-lived ones [84]).
Certificate Authority. It indicates whether the certificate is a
Certificate Authority (CA) or an end entity one.
Certificate chains and verification. To reflect the hierarchical
chain(s) of trust fromCAs down to certificate-owning organizations,
certificates are typically organized in chained lists. A certificate
chain is essentially an ordered list of certificates, containing a TLS
Certificate and CA Certificates, that enable the receiver to verify
that both the sender and all involved CAs are trustworthy. The chain
begins with the end entity (EE) certificate, and each certificate in
the chain is signed by the entity identified by the next certificate in
the chain. Any certificate that sits between the EE Certificate and
the Root Certificate is called an Intermediate Certificate. The first
Intermediate Certificate is the signer/issuer of the EE Certificate.
The Root CA Certificate is the signer/issuer of the penultimate
Intermediate Certificate and is a CA-signed certificate (typically
pre-installed client-side) that terminates the chain. The signatures
of all certificates in the chain must be verified up to the Root CA
Certificate.

3 CHALLENGES
At first glance, it may seem that scanning for TLS certificates imme-
diately solves the problem of locating all off-nets – if an IP address
outside of a Hypergiant has “the” Hypergiant’s certificate, it is an
off-net server for that Hypergiant; if it does not, it is not. How-
ever, a number of challenges arise, mainly due to the complex and
heterogeneous deployment strategies of different Hypergiants:
It is not trivial to determine which certificates to look for, as
there is not necessarily one certificate that definitively identifies
eachHypergiant. In fact, different Hypergiants deploy very different
certificate management strategies (see Appendix A.3). Further, serv-
ing infrastructure can reflect relics of business history. For example,
LinkedIn and Github have been acquired by Microsoft but might
use different serving infrastructure, either their own or third-party.
We want our technique to be general enough to accommodate these
strategies without requiring significant per-Hypergiant tuning or
compromising coverage (uncovering the HG off-net footprint) or
accuracy (confidence on the ownership of the server).
The presence of a Hypergiant certificate on a server outside
that Hypergiant does not guarantee the server is an off-net
content server of the Hypergiant. A number of deployment
models can lead to other servers having the certificate:

• Some Hypergiants use their own infrastructure for some ser-
vices and third-party CDNs for others (e.g., Twitter images come
from Akamai and Verizon, but some other content comes from
their own infrastructure, and Netflix uses Amazon for web front-
ends but its own CDN for video). Some Hypergiants (e.g., Apple
and Microsoft [95]) have their own infrastructure but also use
third-party CDN servers for resilience, capacity, and/or to extend
their footprint. These servers may have certificates from a Hy-
pergiant (possibly in addition to certificates from the CDN) and
provide the Hypergiant’s services, even though they are not part
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of the Hypergiant’s off-net footprint in terms of the underlying
hardware.

• A certificate for a Hypergiant may exist on a server that is not
serving infrastructure for the Hypergiant. Cloud providers offer
on-premise versions of products such as AWS Outposts, Azure
Stack, and Google GKE, which are managed by the cloud provider
but do not host public services for it. However, these servers
may host a certificate for the cloud provider on a management
interface. Similarly, HG certificates may exist on servers used
for aspects of their business other than content serving, such as
payroll.

• Some Hypergiants like CloudFlare issue TLS certificates to cus-
tomers of their proxy services, and so a customer server offering a
CloudFlare-issued certificate could be mistaken for a CloudFlare
off-net.

A simple scan of the non-Hypergiant IP address space may
not uncover all off-nets. For Hypergiants serving content over
anycast [23], the user-facing IP address for on-net and off-net
servers is the same, complicating differentiating one from another,
and queries to that interface will reach a particular anycast instance
based on the source of the query. Therefore, simply scanning the IP
address space from one or a few locations is not enough to uncover
every instance of the anycast IP address [30], potentially leaving
some of the HG footprint uncovered.

4 METHODOLOGY
We develop a methodology that uses TLS certificate scans as a
building block, supplementing them with techniques we develop
to address the challenges mentioned in Section 3. First, we learn a
Hypergiant’s TLS fingerprints by scanning its on-nets (§4.2). Second,
we search for the TLS fingerprint in scans of off-net IP addresses to
identify candidates (§4.3). Third, we learn the Hypergiant’s HTTP(S)
header fingerprint by again scanning on-nets (§4.4). Fourth, we
confirm the off-net candidates by scanning them for the HTTP(S)
header fingerprints (§4.5). Our approaches address most of the
challenges, but we discuss their remaining limitations in Section 7.

4.1 Validating Certificates
Throughout, we only use valid certificates. As recommended in
prior studies [24, 29], we verify the intermediate/root certificates
of each certificate chain against a list of well-trusted root and in-
termediate certificates which form the WebPKI (extracted from the
Common CA Database [77]). We discard any certificates that (at
the time they were gathered) were expired, based on the NotAfter
and NotBefore fields. We also discard all self-signed end-entity
certificates as they can be issued by anyone to mimic valid HG
certificates. During the period of our study, more than one third of
the hosts returned invalid certificates that we excluded.

4.2 Learning Hypergiant TLS Fingerprints
A Hypergiant may not have a single defining TLS certificate, for
example if it operates different services with different certificates,
and so we first learn the fingerprints that identify a particular
Hypergiant, in order to later apply the fingerprints to Internet-wide
scans. The input to this step is the name of a Hypergiant (e.g.,
“google”) and TLS scans of all IP addresses announced by that

Hypergiant (Section 4.6 provides details on the scans we use in this
paper). The intuition is that servers in this IP space with end entity
(EE) certificates matching the Hypergiant name are extremely likely
to be on-net servers of the Hypergiant and so provide a reliable
fingerprint for the Hypergiant’s serving infrastructure. We are
interested in the EE certificates, as they include information for
the server owner, while intermediate/root certificates can contain
third-party organization information.

From the EE certificates found in the Hypergiant’s address space,
we identify Hypergiant’s on-net servers by performing a case in-
sensitive search of the Hypergiant’s name in the TLS Organiza-
tion field of the Subject Name, as organizations tend to use their
primary organization name to prove the identity and validity of
their certificates [34]. Any organization can potentially obtain a
Domain-Validated (DV) [1] certificate with, e.g., “google” in the
Organization field of the Subject Name, as the field is not vali-
dated or authoritative, and so the Organization on its own is not
a reliable fingerprint. To supplement it, we extract the list of DNS
names (the TLS dNSName field, which is authenticated) from the
end-entity certificates of the on-net servers, creating a set of DNS
names served by the Hypergiant.

4.3 Using Fingerprints to Identify Candidate
Off-nets

We then use the fingerprint – specifically the set of DNS names –
to search for the presence of certificates from the Hypergiant on IP
addresses outside the Hypergiant, as these are its candidate off-nets.
We again search for the name of a Hypergiant, e.g., “google”, in the
TLS Organization field of the Subject Name. For each matching
certificate, we check whether all of the DNS names in the certifi-
cate’s dNSNames field are in the Hypergiant’s set of DNS names
from on-net certificates we found in the previous step. If they are,
the IP address providing the TLS certificate is a candidate off-net.
By requiring that all DNS names in the certificate be present in
on-net certificates, we filter out cases where the HG is a certificate
provider (e.g., Cloudflare) and also cases where the Hypergiant
shares a certificate with another organization.

4.4 Learning Hypergiant HTTP(S) Fingerprints
We identify fingerprints in Hypergiant HTTP(S) headers as a ba-
sis for excluding off-net candidates that have a certificate from
the Hypergiant but are not in fact among its off-net servers (§3).
Large content providers and CDNs often use HTTP response head-
ers for debugging purposes, and we inspect these headers to cre-
ate a per-Hypergiant fingerprint, using responses from on-net
servers in Rapid7 HTTP and HTTPS scans from September 2020.
We filtered out common standard headers (e.g., Cache-Control
and Content-Length). Since the servers of a particular Hypergiant
are likely to share debugging headers, we identified the 50 most
frequent header name-value pairs and the most frequent header
names for each Hypergiant’s on-net servers.

Next, we performed manual classification and validation to find
header fingerprints that identify the Hypergiant’s web servers.
There is a small number of Hypergiants, so we found that exam-
ination on a per-case basis was suitable for our work. We leave

519



Seven Years in the Life of Hypergiants’ Off-Nets SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Hypergiant Header Name Header Value Documented
Akamai Server AkamaiGHost Yes [5]
Cloudflare CF-Request-Id Yes [31]
Google Server gws* Disclosed [49, 59]
Facebook X-FB-Debug Yes [39]

Table 1: Examples of headers used to identify HG servers. Empty
header values indicate that only the header name is used to match.
Entries ending with * indicate a prefix match.

automation of this step for future work. For most frequently occur-
ring headers, HG-specific headers were easily identifiable either
from a unique header name or value containing an abbreviated
name of the Hypergiant. For nearly 80% of cases, we found public
documentation or disclosure confirming the use of these headers
by HGs. Table 1 shows several examples, and Appendix A.5 pro-
vides the full list. We also verified the presence of the headers with
independent tests on content (e.g., google.com) for each HG. An
interesting case is Netflix, as we discovered that a fraction of its
servers responded with the default ngnix header. For our analysis,
we consider a server with a Netflix certificate and the default ngnix
HTTP(S) header as a Netflix off-net.

4.5 Confirming Candidates Using HTTP(S)
We apply these HTTP(S) header fingerprints to the off-net candi-
dates from Section 4.3 and classify as off-nets any that match the
Hypergiant’s fingerprint. To assign an IP to an AS we use standard
IP-to-AS mapping techniques described in Appendix A.1. We also
annotate HGs’ on-nets and off-nets as described in Appendix A.2.

4.6 Datasets
Certificate datasets. Rapid7 collects X.509 certificates observed
in IPv4-wide scans on port 443 [67]. We use datasets from once
every three months from Oct. 2013 to Apr. 2021, which include
127,812,006 unique certificates. We supplement with port 443 scans
from Censys [36] from Nov. 2019 to Apr. 2021. We exclude cer-
tificates that we cannot translate to the X.509 format and those
missing critical information.
HTTP(S) headers. We use the corpus of available HTTP(S) head-
ers from Rapid7 from Oct. 2013 to Apr. 2021.
List of hypergiants. We compile a list of HGs using previously
published surveys [18, 19, 32, 64, 112], then select the 23 that claim
on their website to have a CDN and for which we were able to iden-
tify a certificate with a matching Organization. Examined HGs:
Akamai, Alibaba, Amazon, Apple, Bamtech, Highwinds, CDN77,
Cachefly, Cdnetworks, Chinacache, Cloudflare, Disney, Facebook,
Fastly, Google, Hulu, Incapsula, Limelight, Microsoft, Netflix, Twit-
ter, Verizon and Yahoo.

5 VALIDATION
We find that our scans and measurement techniques are accurate,
then validate our results against information from Hypergiants
and results from earlier approaches, finding that our results are
trustworthy.
Comparison of Scanning Corpuses. Most results in our paper
rely on Rapid7 scans, and so we first evaluate its completeness
compared to Censys and an active scan we conducted (Nov. 21-25,

2019) of the entire publicly-routable non-bogon IPv4 address space
for SSL/TLS certificates on port 443. We use a modified version
of the certigo tool [97] to perform TLS handshakes with servers
to fetch their certificates. Our scan fetches 13,156,080 unique end-
entity certificates.

Table 2 compares our scan and Rapid7 and Censys scans from
November 2019. The number of IP addresses with certificates in
Rapid7 and Censys is very similar. However, our certigo scan
found around 20%more addresses, which we attribute to two causes.
First, both Rapid7 and Censys have to respond to complaints and
remove IP addresses from their scans [12, 29, 110]. As both scans
have run for years, more address space is excluded over time. A
second reason for this difference is that our scan took almost four
days to execute, which may trigger less rate limiting than the other,
faster scans.

However, when we turn our attention to the total number of
ASes that host at least one HG (column 6), the numbers across all
three datasets are very similar, as they are for the four Hypergiants
with the largest footprints (Google, Netflix, Facebook, and Akamai)
reported in the last four columns. Another observation is that the
number of IP addresses per HG is not relevant to the size or the
distribution of the corresponding HGs’ off-nets, as each HG has a
different strategy on how to assigns IP to servers [42]). We have
confirmed that some HGs have only a few front-end IP addresses
for multiple servers, and others have multiple IP addresses for one
server. For instance, in our active scan (Nov. 2019) we collected
Facebook certificates from 33,769 IP addresses in 1,708 off-net ASes.
At the same campaign, we collected Akamai certificates from many
more IP addresses (105,686) although Akamai’s off-net footprint is
smaller, with 1,194 off-net ASes. Thus, for the rest of the paper, we
will focus on the off-net AS footprint of each Hypergiant.
Ethical Considerations. In our scan, we remain “good Internet
citizens” by following best practices [37] to avoid triggering any
kind of alarm. We maintain a blacklist and use clients with appro-
priate rDNS names, websites, and abuse contacts. Therefore, this
work does not raise any ethical issues.
Active Measurement Validation.We provide additional valida-
tion of our inferences using active measurements. To accomplish
this we use the ZGrab2 [115] tool which provides rapid capture
of HTTP(S) banners including HTTP headers and TLS certificate
validation. We provide an input list of (IP address, domain) pairs
and ZGrab2 correctly sets the HTTP Host header and TLS SNI field
while performing a GET request for the default document.

In this analysis, we assert that, if we correctly infer a server to be
an off-net for a particular Hypergiant, it should not serve requests
for domains which the Hypergiant does not host (i.e. TLS validation
should fail). To test this, for each IP address that we inferred as an
off-net for a particular Hypergiant, we randomly select 10 other
Hypergiants and, for each, scan the IP address requesting one of
the 50 most popular domains served by the other Hypergiant. Sur-
prisingly, we found that only 89.7% of the inferred off-nets did not
validate for the randomly selected domains. Of the 10.3% that cor-
rectly validated requests, we inferred 97% as belonging to Akamai,
and the request domains (LinkedIn, KDDI, Disney) were for ones
known to be also served by third-party CDNs such as Akamai. This
result highlights a challenge in understanding the content delivery
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Scan Date #IPv4 IPs #ASes #ASes # ASes w/ Hypergiant Certificates
(abbreviation) w/ certs w cert unique any Google Netflix Facebook Akamai

Rapid7 (R7) Nov. 18, 2019 35,009,714 57,769 84 3,788 3,137 1,760 1,737 1,235
Censys (CS) Nov. 19, 2019 34,235,590 58,183 211 3,974 3,355 1,689 1,746 1,248
Certigo (AC) Nov. 21-25, 2019 41,357,388 59,178 519 3,802 3,149 1,715 1,762 1,236

Table 2: Statistics for the three scan corpuses of certificates in our study in November 2019.

ecosystem: Large content providers may select a combination of
self-hosted and external CDNs for redundancy and additional ca-
pacity (§3). Nevertheless, Akamai is the exception in our analysis,
as it does not create its own content or have its own users, and its
platform delivers the content of other companies, very much like a
“cloud provider” for delivery of content.

In this analysis, we assert that servers outside of HG address
space should not serve HG domains unless we inferred them to
be off-nets. Using the November 2020 Rapid7 and Censys datasets,
we selected a random 25% sample out of 57 million IP addresses
with responsive web servers that we did not infer to be Hypergiant
on-nets. Then for each selected IP address, we select 10 random HG
domains as described in the previous analysis. From our random
sample, we found 0.1% (17,029) IP addresses in 844 ASes with valid
TLS responses. Of those, 98% were servers we had correctly inferred
as HG off-nets. We believe the remaining 2% are customer origins
of CDN-hosted sites.
Validation from Hypergiants. We surveyed HG operators fol-
lowing a similar approach to earlier work on mapping ISPs [98].
The survey questions are presented in Appendix A.4. Four HGs
replied to our request for validation, including some of the four
largest. All four agreed that the estimation of the off-net footprint is
very good. One HG operator indicated that 6% of ASes we identified
as hosting the HG’s off-nets were not on the HG’s list, and 11%
from the HG’s list were not uncovered by our technique (while
also indicating that the HG’s list may not be 100% correct). For
the other three HGs, we underestimated the HG footprint by 5%
(one HG) or around 10% (two HGs). Our technique may miss or
misidentify ASes hosting HG off-nets because of errors in IP-to-AS
mapping, because of ASes that have opted out of TLS scans (e.g.,
Table 2 shows that different scans reveal different coverage), or
because of churn between when we measure and when validation
was done. The off-nets we missed were in a mix of different types
of networks. Our results are in-line with Akamai’s public reports
for the duration of our study [4].
Comparison to Earlier Results. Our technique works over ex-
isting datasets, which enables the comparison of our results with
prior studies using different methodologies.
Google:We compare our results with the latest results from a pre-
viously published approach to uncovering Google off-nets [22],
which reported 1445 ASes hosting Google off-nets in April 2016.
Of the 1445 ASes, our approach identified 1421 (98%), while also
identifying an additional 283 (68 of which the earlier technique
identified prior to April 2016).
Facebook: To the best of our knowledge, the only previous work
which reports numbers for Facebook’s CDN belongs to a team
that participated in a hackathon [13] in March 2018 and posted
updated results in August 2018, in November 2019 [14], and in April
2021 [15]. The team mapped Facebook servers globally by guessing

Hyper-Giant Name Number of ASes with HG off-nets
2013/10 Max 2021/04

(only certs) [Snapshot] (only certs)

1. Google 1044 (1105) 3810 [2021/04] 3810 (3835)
2. Facebook 0 (8) 2214 [2021/04] 2214 (2229)
3. Netflix 47 (143) 2115 [2021/04] 2115 (2288)
4. Akamai 978 (1013) 1463 [2018/04] 1094 (1107)
5. Alibaba 0 (0) 184 [2018/01] 136 (301)
6. Cloudflare 0 (2) 110* [2021/01] 110* (137)
7. Amazon 0 (147) 112 [2017/07] 62 (218)
8. Cdnetworks 0 (4) 51 [2019/01] 11 (31)
9. Limelight 0 (1) 42 [2020/04] 32 (32)
10. Apple 0 (113) 6 [2020/04] 0 (267)
11. Twitter 0 (101) 4 [2021/04] 4 (180)

Table 3: List of the examined HGs according to the Rapid7 dataset
(Oct. 2013-Apr. 2021), sorted by the max # ASes hosting the HG’s
off-nets (validated by both certificates and headers). (* See the last
paragraph of Section 6.1 for a discussion of Cloudflare.)

DNS names of off-nets based on Facebook naming conventions and
global airport codes. Our technique uncovered 1153 of the 1201
ASes (96%) in the team’s 2018 data, 1599 of the 1704 ASes (94%) in
the 2019 data, and 2068 of the 2187 ASes (95%) in the 2021 data. We
have applied the same IP-to-AS mapping in both datasets.
Netflix: A previous study [18] reported that on May 15 2017, 743
ASes hosted Netflix Open Connect servers. In April 2017, we report
769 ASes.

6 HGS’ OFF-NET FOOTPRINTS & GROWTH
This section discusses the footprint and growth of HGs’ off-net
deployments. We characterize their growth by type of network,
region, and coverage of Internet users. We also comment on the
network providers’ hosting strategies for HGs.

6.1 Hypergiant Statistics
We first consider the Rapid7 certificate dataset. In Figure 2 we
show the number of IP addresses with a certificate during the
period of our study, from Oct. 2013 to Apr. 2021. We report the
number directly from the raw Rapid7 data, i.e., before validating
the certificate. Then, we apply our methodology from §4.1-§4.3 to
infer the IP addresses that use certificates associated with any of
the HGs we study. In Figure 2 (refer to the right y-axis) we plot the
percentage of IP addresses we infer serving any of the HGs, either
hosted in each HG (dashed line) or in a non-HG AS (dotted line).
At the start of 2021, only around 3.8% of the IP addresses seen with
valid certificates in Rapid7 are associated with any of the HGs we
study, either hosted in one of HGs’ ASes or in a non-HG AS and,
thus, can potentially be HG off-nets.

Table 3 reports the number of ASes that host eachHG off-net foot-
print at the beginning of our study period (Oct. 2013) and at the end
of the study period (Apr. 2021) after validation with headers (§4.5).
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Figure 2: # IP addresses (millions) hosting TLS certificates in raw
Rapid7 dataset files (left y-axis). Of those, % that host a HG certifi-
cate, broken down by whether the IP address belongs to a HG AS or
not (right y-axis).

The middle columns of the table gives the maximum number of
ASes observed hosting off-nets for a HG and the timestamp when
that maximum deployment occurred. The table ranks HGs based on
their maximum AS footprint. For half of the HGs (Microsoft, Hulu,
Disney, Yahoo!, Chinacache, Fastly, Cachefly, Incapsula, CDN77,
Bamtech, and Highwinds), our methodology inferred no off-net
footprint during the period of our study, and so the table excludes
them.

The deployment strategies of HGs differ. In Section 5, we ex-
plained that the absolute number of IP addresses is a good compar-
ison metric. The percentage of IP addresses with certificates (of the
top-4 HGs, see Table 3) that were hosted in non-HGs ASes is very
high for some HGs, e.g., Google, Netflix, Facebook, and very low
for others e.g., Amazon. However, the total number of IP addresses
is only a small percent of the dataset of IP addresses with certifi-
cates. We also notice that there are two distinct HG groups. First,
there are the four largest HGs, namely Google, Netflix, Facebook,
and Akamai, which have off-nets in more than 1,000 ASes at the
beginning of 2021. For some of HGs, e.g., Google and Akamai, the
size of the off-net footprint with server installations (after the vali-
dation with headers) is very close to the size of the service-present
off-net footprint (as inferred by the certificates alone; see values in
parentheses). In some other HGs, e.g., Alibaba, this is not the case,
as they run services by relying on servers operated by other HGs
or datacenter providers. CloudFlare poses an interesting case, since
our manual investigation reveals that it does not have an off-net
footprint, but, because it issues and installs certificates in clients
that operate in other networks (and to support its DNS service
1.1.1.1), Cloudflare is misidentified as having off-nets.

6.2 Longitudinal Growth
Figure 3 plots the off-net footprint growth (after the validation with
HTTP(S) headers) of the top-4 HGs (Google, Netflix, Facebook, and
Akamai) based on our analysis of the Rapid7 certificate dataset. The
off-net footprint of these HGs is growing substantially, with the
exception of Akamai. Facebook has shown rapid growth since it
launched its own CDN in the summer of 2016 [61].

The case of Netflix is the most complex one, requiring manual
investigation. Although Netflix’s off-net footprint grew constantly
after 2015 (we conjecture this may be due to peering disputes with
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Figure 3: Off-net footprint growth for top-4 HGs over time.

ISPs [72] and the strategic decision to launch Open Connect), we
observed a significant fraction of IP addresses responding with an
expired certificate after April 2017. This is visible in Figure 3 (solid).
When we ignore the expiration date of this certificate, we can
restore the activity of Netflix as shown by the Netflix dashed line.
In Oct. 2019 the default certificate of these IP addresses changed
back to a valid one. We also validate this by using PTR records
which at that time contained information about Netflix’s footprint.
We also observed that 26.8% of the IP addresses serving a certificate
for Netflix before April 2017 and after July 2019 stopped responding
to HTTPS requests on port 443.

To further investigate, we downloaded and studied the responses
to HTTPS GET (port 443) and HTTP GET (port 80) requests from
Rapid7. We found that these IP addresses were in fact active dur-
ing this period, but on HTTP instead of HTTPS. We conjecture that
Netflix moved from HTTPS to HTTP to cope with high demand as
encryption requires additional resources, a challenge Netflix has
admitted [99]. However, the Netflix SNI policy might also have
changed. By restoring these IP addresses as well, we plot (dotted
line) the number of ASes that hosted Netflix off-nets between Oct.
2017–Nov. 2019. For the rest of the paper, we will use the envelope
of these two lines (solid, dotted) to refer to the ASes that form the
Netflix off-net footprint.

We want to study the impact of using only the certificate datasets
in the number of ASes we identify as off-nets, compared to using
certificates plus HTTP and/or HTTPS headers, as discussed in Sec-
tion 4. As shown in Figure 4, the differences are minimal, as all
straight and dotted lines seem to converge. Rapid7 offers HTTPS
data since July 2016, and we have Censys data since October 2019.
However, in the case of Google, using the Censys dataset we are able
to identify more ASes, possibly because Censys employs sophisti-
cated scanning techniques. This fact is also apparent in Table 2.

6.3 Growth by Network Type
We are also interested in understanding the “demographics” of ASes
that host HGs. To this end, we label ASes that host HGs following a
similar approach to the one from previous related work [22], i.e., by
characterizing the ASes based on their AS customer cone size. To
do this, we employed the CAIDA AS Relationships Dataset, specif-
ically the provider-peer customer cone inferred for each AS [21].
We obtain more than 7 years of monthly snapshots of the dataset
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Figure 4: Comparison of Rapid7 (R7) and Censys (CS) datasets (certification and headers) for Google, Facebook, and Akamai, across time.
Recall, the HTTPS headers are available only after Summer 2016. (note: y-axis scales differ)
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Figure 5: Growth of top-4 HGs’ off-net footprints grouped by AS customer cone size. (note: y-axis scales differ)

matching our study timeline. We consider 5 categories of ASes,
separated by an order of magnitude in terms of their customer cone
size. Stub ASes have no customer cone (other than themselves),
Small ASes have customer cones ≤ 10 ASes, Medium ASes have
customer cones ≤ 100 ASes, Large ASes ≤ 1000 ASes, and XLarge
ASes > 1000 ASes.

In Figure 5 we plot the top-4 HGs’ off-net footprint in the form
of stacked bars. Each bar refers to one of the AS categories: Stub,
Small, Medium, Large, and XLarge. Smaller ASes, namely, Stub,
Small, and Medium ASes contribute most (between 93-96%) to the
growth of Google, Netflix, and Facebook. For Akamai’s off-net
footprint, the contribution of Stub ASes declines since 2018, while
the contribution of Small and Medium ASes remains the same.
However, the sum of the 3 categories also remains high, reaching
84%. To better understand the dynamics and how the numbers we
see might be biased by the pre-existing ratios of every category, we
compute the number of ASes in the entire CAIDA dataset for all
categories from 2013-2021. Even though the number of active ASes
has substantially increased, from around 45k in 2013 to more than
71k in 2021, the percentage of ASes in each of the aforementioned
categories is surprisingly stable. Specifically, Stub ASes are by far
the most numerous, with around 85% of all ASes being Stubs. Small
ASes are also common, around 12% of all ASes. The rest of the
categories are smaller. Medium ASes have a share of 2.6%, Large
ASes less than 0.5%, and XLarge ASes less than 0.1%. These are
striking differences compared with the percentages reported in
Figure 5a, 5b, and 5c for Google’s, Netflix’s, and Facebook’s off-net
footprint, respectively. Indeed, the percentage of Stub ASes ranges

from 27% to 31%, the percentage of Small ASes is between 41% to
44%, and for Medium ASes it ranges from 22% to 24%. Thus, the
demographics of ASes that host the top HGs do not agree with
the overall demographics of ASes in the Internet. In the case of
Akamai’s off-net footprint, the percentage of Stub ASes is even
smaller, 13%. Although the share of Large and XLarge ASes in the
Internet is a bit more than 0.5%, more than 5% of the ASes that
host HGs belong to this category (over 16% in the case of Akamai).
Deploying in these large ASes can help HGs serve many users, a
subject we elaborate on in Section 6.5.

6.4 Regional Growth
To investigate the HGs’ off-net footprint growth in different re-
gions, we assign each AS to one country. We are aware that this
may be misleading, especially for XLarge and Large ASes, as they
may operate in multiple countries. However, studying a snapshot
of the APNIC dataset [65] (see Section 6.5 for more information on
this dataset), we observe that 95% of the 26K ASes that are included
in this dataset have only one country of operation. To map ASes
to countries, we used CAIDA’s AS Organizations Dataset [20] (Ap-
pendix A.2), resulting in an AS-to-country dataset that spans 7
years and covers 99.9% for the ASes of our study. We compare our
AS-to-country dataset with the APNIC dataset [65] and find they
agree for 97% of overlapping ASes. However, the APNIC dataset
includes many fewer ASes.

The mapping of ASes to countries/regions may be influenced by
geopolitics. For example, Hong Kong may appear as part of China
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Figure 6: Growth of top-4 HGs per continent over time.

or as a separate region, depending on the source. For these cases,
we manually investigate the geographical origin of prefixes, e.g., by
utilizing BGP geo-tagged communities [47]. In Figure 6 we plot the
growth per continent for the top-4 HGs. In Figures 6a, 6b, and 6c,
we present the regions with the highest growth, Asia, Europe, and
SouthAmerica. In 2013, Google had already established a substantial
off-net footprint [22], so its growth is linear in both Europe and Asia.
Nevertheless, it expands its footprint by 400-600 ASes in each region
between 2013 and 2021. Netflix’s off-net footprint growth alignswell
with the offer of Netflix streaming services in the various regions.
Facebook has an aggressive expansion in all regions since the launch
of it’s CDN. Akamai seems to increase its off-net foorprint in all
three regions at similar paces between 2013-2017, before contracting
somewhat starting around 2018.

What is really striking is the exponential growth of Google,
Netflix, and Facebook in South America. These HGs expand their
off-net footprints in more than 800 (and in the case of Google 1,200)
ASes from 2013 to 2021. The growth of the other HGs is slower,

with the exception of Alibaba that has strong regional growth in
Asia. After its launch in late 2014, Alibaba’s footprint gradually
increases to more than 100 ASes in Asia. A closer investigation by
analyzing HTTP(S) headers shows that Alibaba deploys its own
hardware servers mainly in Asia and relies on other HGs in other
regions.

In Figures 6d, 6e, and 6f, we present areas with lower growth, i.e.,
North America, Africa, and Oceania. The off-net footprint growth
of Google, Netflix, and Facebook is between 200 and 400 ASes in
North America, 60-150 ASes in Africa, and 20-30 ASes in Oceania.
We attribute this to consolidation in the network market in North
America and the relatively small network market in Africa and
Oceania. Nevertheless, both Google’s and Facebook’s off-net foot-
prints include many ASes in Africa. Appendix A.7 investigates the
growth of off-net footprints per network type in different regions.

We also noticed a slowdown during the COVID-19 pandemic,
but growth continued when the economy opened again in Summer
2020 and especially in the first months of 2021. Anecdotal evidence
confirms that additional capacity was allocated in peerings during
the pandemic (e.g., for Facebook [63]), as it was more difficult to
increase capacity at off-nets inside eyeball networks which can
require sending engineers in the field during the lockdown.

6.5 Internet User Population Coverage
Next, we estimate the coverage of Internet user population in a
country that can access HGs services located inside their network
provider. To estimate this, we need to assign to each AS that hosts
at least one of the top-4 HGs its market share in the country where
it operates. For this, we use the APNIC dataset [65] that has been
used in past studies [46, 60] to characterize ASes based on their
Internet user population market share.

APNIC conducts measurement campaigns [66] and publishes
the related results on a daily basis. These datasets can be used to
estimate the Internet user population percentages per AS, both IPv4
and IPv6, at a country level. We download daily snapshots and we
keep only the ASes that have been present in the dataset for at
least 25% of each month (one week) to avoid mis-inferences. This
filtering reduces the total number of ASes in the dataset from 26k to
almost 9k, reducing the coverage of the ASes present in our study
to less than 80%. However, by applying such filters we choose to err
on the side of accuracy, considering our results as lower bounds of
user population percentages. We store monthly snapshots of these
data since October 2017.

To estimate the Internet user population coverage that has access
to HG servers hosted in its network provider, we add the market
share of all the ASes that host HGs and operate in the country
and we assign it as a percentage for this country. Figure 7 plots
the Internet user percentage per country that has access to off-net
HG servers for Google, Netflix, and Akamai in April 2021 using
the Rapid7 dataset. For these top HGs, the Internet user coverage
per country has not changed dramatically from 2017 to 2021. A
closer investigation shows that, in all three cases, the HGs were
already hosted by large eyeball networks and by other network
providers with high market share in 2017. These observations are
inline with our analysis in Section 6.3 regarding the demographics
of off-net footprint growth. Although the number of ASes that host
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Figure 7: Percentage of a country’s Internet users in ASes hosting off-net servers of a HG (April 2021).
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users within the customer cones of ASes host-
ing Google off-net servers (April 2021).
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Figure 9: Percentage of a country’s Internet users in ASes hosting Facebook’s off-net servers,
10/2017 vs. 04/2021.

Akamai declines, its Internet population coverage does not seem to
be affected, as Akamai is still present in networks with large end
user population. The top HGs’ Internet population coverage varies
across regions. For example, Google has strong presence in Africa,
and Akamai has high Internet population coverage in Asia. We also
verified that the number of countries in which Google claims to
have edge caches [52] agrees with our results.

A HG can potentially serve even more of the Internet population
by using an off-net to serve not just the users within the AS hosting
an off-net but also the users within the customer cone of the AS.
Previous studies show that this is the case for Google [22, 28]. In
Figure 8 we plot the potential Internet user coverage of Google’s off-
net footprint, if customer cone users are served by Google servers
hosted by their providers. In this case, Google covers more than
50% of the user population in 201 countries, as worldwide coverage
increase from 57.8% to 68.2%. User coverage in Europe increases
from 58.8% to 77.5%, i.e., an increase of 31.8%, and North America
increases by 43.9%, from 49% to 70.6%. Countries with the highest
increase are Turkey (from 39.1% to 99%), Colombia (from 48.9% to
98.2%) and Russia (from 54.7% to 94.7%). For Facebook, Netflix and
Akamai refer to Appendix A.6.

The Internet population coverage of Facebook’s off-net footprint
increased significantly between 2017-2021. Figure 9 plots its cover-
age per country in Oct. 2017 and in Apr. 2021. Facebook’s off-net
footprint has expanded aggressively to large, medium and small
ASes around the globe. As we discussed in Section 6.4, Facebook’s
footprint growth in absolute number of ASes was especially appar-
ent in South America, Asia, and Africa. Smaller increases are also
visible in Europe and Asia.

Due to the varying landscape of the telecommunications sector
across the world, the growth of Facebook’s off-net footprint in
various regions yields different increases in the percent of users
that can be served. For example, in Africa an increase of the off-net
footprint by about 99 ASes yields an increase of more than 115%

in user population coverage, from 34.7% to 74.8%. In Europe the
increase of the off-net footprint of 206 ASes yields an increase of
user population coverage of 136%, from 16.9% to 39.8%. In contrast,
in South America, the increase in user coverage was only 32% (from
51.6% to 68%), although the increase of the Facebook’s off-net foot-
print was more than 739 ASes. Facebook has also announced that
it had plans to expand in Africa and other developing regions [92].
Our results show that, indeed, there is a significant expansion of
Facebook there. The increased coverage by Facebook is also related
to the expansion strategy of its CDN in the last two years, discussed
in Section 6.4.

Our results show that some regions remain under-covered, al-
though the specifics vary across HGs. The reasons may vary, includ-
ing politics and business, and we prefer not to speculate on the root
causes. However, our analysis can provide insights on the potential
increase of user population coverage. For example, Facebook could
significantly increase coverage in the US from 33.9% to 61.8%, by de-
ploying off-net servers in only following 5 ASes (AS7018, AS21928,
AS20115, AS20057, and AS22394).

6.6 Network Providers’ Hosting Strategies
We next turn our attention to the network providers’ strategies for
hosting HGs. Our results show that, in terms of which networks
host HG off-nets, the footprints of HGs overlap, especially those
of the four largest HGs. We also demonstrate that a network that
already hosts one large HG is likely to later host more.

For all ASes that are part of at least one of the four largest off-net
footprints, those of Google, Netflix, Facebook, and Akamai, Fig-
ure 10b plots the distribution (across time) of the number of those
four HGs that they hosted. The number of such ASes has almost
tripled between 2013 and 2020. A striking observation is that the
majority of the ASes that host HGs (more than 97%, see percentages
in the plot), host at least one of the top-4 HGs. Thus, there is only a
tiny percentage of ASes that host only HGs outside the top-4. The
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Figure 10: # ASes that host at least one top-4 HGs (Google, Netflix,
Facebook, Akamai) in (a) every snapshot and (b) more than one
snapshot.

top-4 HGs have increasingly similar footprints, being present in
the same networks. In 2020, more than 70% of ASes that host an
off-net host 2-4 top-4 HGs, compared to less than 30% of these ASes
in 2013.

We also investigate if networks that have already hosted top-4
HGs arewilling to hostmore.We focus on networks that throughout
2013-2021 hosted at least one top-4 HGs. In total, there are 1,002
such networks. In Figure 10a we plot the distribution of top-4 HGs
these networks host. In 2013, there were only 450 ASes that hosted
2 or more top-4 HGs. In 2021, this number increased to more than
800. Moreover, although none of these networks hosted all top-4
HGs in 2013, more than 250 of them host all top-4 HGs in 2021. We
provide additional results for networks that start hosting HGs later
than 2013 in Appendix A.8, but the conclusions are consistent with
these observations. We conclude that networks that host top-4 HGs
are, typically, willing to host more as time passes.

7 LIMITATIONS
SNI. The main dataset (Rapid7) that we use for our longitudinal
study reports only the default certificate of an IP address running on
port 443 using the HTTPS protocol. A server may host multiple sites
on the same IP, but it reports only the default certificate if no SNI
value is present in client requests. This practice is widely adopted
and used by HGs to provide service to their customers [42, 80].
Certificates in IPv6 addresses. The corpuses of available certifi-
cate datasets are for the IPv4 address space, but there are a very
small number of IPv6-onlymobile operators for which our approach
will not work. We plan to investigate this as part of future work.
While our inference approach is IP protocol-agnostic, we lack IPv6
data to conduct longitudinal analysis, and achieving broad coverage
in scans of the enormous IPv6 space brings new challenges.
HGs’Operational Practices.Although ourmethodology is generic,
there are some unusual operational practices by someHGs that com-
plicate our approach. For example, CloudFlare offers a proxy service
in front of customers and issues a certificate that enables secure com-
munication between the customer server and CloudFlare’s middle-
ware [75].When these certificates are hosted by customers’ backend

servers in different networks, it appears like CloudFlare has off-nets
there. To mitigate this issue, we have to manually identify and re-
move these certificates in our study. We noticed that CloudFlare in-
cludes an additional entry in the TLS dNSNames field of their free cus-
tomer certificates (matching (ssl|sni)[0-9]*.cloudflaressl.com),
enabling us to filter on it. Although this process filters out the vast
majority of Cloudflare customer certificates, additional manual
investigation is required, as CloudFlare offers a paid service for
dedicated certificates, and it also allows enterprise and business
Tier customers to upload their own custom TLS certificates.
Anycast. In the case of IP anycast, the same IP address (belonging to
the HG AS) is used to serve content from all sites. From discussions
with two operators, we learned that their anycast deployments
include off-nets, which additionally use the BGP no-export com-
munity to keep the announcement local. The use of this same IP
address will make all sites appear to belong to the HG’s AS. How-
ever, we learned it is common also assign each off-net a unicast
IP address belonging to the hosting AS, to help with debugging.
While these IP addresses are generally not given out by the HG’s
authoritative DNS to serve production traffic, they do respond in
the same way as the production anycast IP. Our approach will dis-
cover these unicast IP addresses correctly, but there is no guarantee
that operators will configure their networks in this way.
Reverse Proxies and Cache Misses. There are instances in our
HTTP(S) scans dataset where the edge site terminating the client’s
TCP connection belongs to a third-party HG but the request gets
forwarded to a backend server in a different HG. This forwarding
behavior is usually the result of a CDN cache miss going to the
origin or split TCP [27, 83] to an application server. In these cases,
the response received by the client will include both the origin HG
and edge HG headers. This can confuse our inference confirmation
with headers, but in practice we observe this only in 4% of mea-
surements. Of these, 99% are Akamai (64%) and Cloudflare (35%)
edges with origins primarily deployed in Amazon S3. This insight
allows us to prioritize third-party CDN headers, like Akamai and
Cloudflare, as the edge site in the presence of a conflict.
Missing Headers. Some networks, such as Netflix and Hulu, only
include debug or headers when serving logged-in users. These are
missing from our input datasets and prevent us from performing
header confirmation for these HGs.
In-Rotation Servers. Because our datasets “skip” the DNS control-
plane of HG content delivery, we cannot currently distinguish if a
particular IP address is actively in-use by the HG for serving content.
A given IP may be drained [9] but responsive or may belong to a
testing environment that always responds when queried.

8 DISCUSSION
An Increasingly Private Internet. Our study shows that many
HGs have already installed substantial serving infrastructure deep
inside networks, especially eyeball networks. This can be a blessing
if these installations can improve end user performance. For exam-
ple, it has been reported that round trip times between end-users
and these servers can be even less than a millisecond [86, 104]. Such
low delays are a step towards addressing the future requirements
and a way for Hypergiants like Google and Facebook to play an
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important role in future services, including 5G. The extended serv-
ing infrastructure can also better deal with increased traffic, e.g.,
during the COVID-19 pandemic [43], as was reported recently by
Google [56] and Akamai [70]. At the same time, these deployments
mean that a substantial fraction of traffic demand can be served
locally without crossing inter-domain links or private interconnec-
tions [81, 86, 90, 111, 113, 114]. This “zero AS-hop” Internet has
regulatory implications. Servers which are located inside a network
to exclusively serve users of that network, e.g., IPTV, “private” CDN
clusters, can be considered specialized services [68]. In this setting,
it is debatable if network neutrality regulations apply [100], since
exceptions may be granted for such specialized services.

When ISPs allow the deployment of servers within their net-
work, they can lose negotiation power in peering agreements with
HGs, because the servers reduce the amount of traffic traversing
peering interconnections [69, 73, 107]. Smaller networks may see
an opportunity to host such servers and reduce their upstream or
downstream traffic, thus improving the service they offer to their
customers and reducing upstream provider cost and reliance (in-
creasingly bypassing the public Internet) [40, 64, 68]. Nevertheless,
HGs and ISPs have to negotiate who will cover the operational cost
of hosting content servers (power, bandwidth, maintenance), that
can be another source of dispute.
Unintended Consequences. Widespread adoption of TLS– in-
tended to protect users’ privacy and support secure protocols – had
the unintended consequence of providing the basis for revealing
HGs’ footprints. Our study shows that it is feasible to infer HGs’
off-net footprint, using only publicly available data. We view this
outcome as important to understand the dynamics that underpin
the phenomenal growth of network traffic and shape the Inter-
net’s topology, but this information may have other uses – some
less benign. First, knowledge of the network locations and IP ad-
dresses of HG servers makes it easier for attackers to be effective.
They can use this information to better orchestrate DDoS attacks
or target specific servers that deal with critical services or have
high financial interest for them. Servers that are deployed outside
HG networks may be more vulnerable to attacks, as the security
measures and available capacity may not meet the standards of
HG datacenters. Authoritarian regimes can also collect intelligence
about deployments in their countries or in other countries for their
benefit, such as for surveillance purposes. Second, knowledge of
HGs’ off-net footprints can be utilized for business intelligence by
competitors. Knowing where servers are deployed is considered a
business secret, as competitors may decide to place their servers in
the same location or not to achieve their own strategic objectives.
It also allows for inference of deployment and expansion strategies
of HGs over time, which could inform investment decisions and
planning of competitors. It can also provide the opportunity to new
cloud providers to expand and prioritize their server deployment
in a more optimized way.
Hide-and-Seek. HGs may want to hide their footprints from our
detection methodology for confidentiality and security reasons.
There are a number of possible approaches:

(1) Increasing the bar for deployment identification is rather
simple: the default certificate should not disclose information, e.g.,
by setting a null certificate, and the certificate should be presented

only when there is a TLS-SNI request for specific domains. These
changes would make existing datasets (e.g., Rapid7) less suitable to
our methodology, but they are surmountable at the cost of increased
measurement overhead with global scans for fully qualified SNI
domains. In our study, we noticed two cases where the null default
certificates hamper our detection methodology. One is the case
of Netflix between 2017-04 and 2019-10, when a large number of
Netflix servers identifiable by certificate due to use of HTTP (not
HTTPS). The second case are on-net servers of Google, which
only answer TLS-SNI requests for specific first-party domains (e.g.
www.google.com).

(2)HGs could instruct off-net servers to respond only to requests
originated by the customer cone of the hosting network, although
the risk of blackholing legitimate traffic may not be worthwhile.

(3) HGs can modify their certificate content by altering fields
that we currently use to infer ownership and to extract fingerprints.
For example, remove the Organization entry from the Subject
Name of the EE certificate or use unique domain names per off-net
deployment.

(4) Anonymizing headers or using bot-detection to exclude head-
ers also helps in hiding the identity of HGs’ off-nets, as it blinds
our validation technique. However, headers are commonly used for
debugging, so removing them may increase diagnostic complexity
for operators.

(5) IPv6-only HG servers would be invisible to IPv4 global In-
ternet scans used by Censys and Rapid7 but increases the risk of
outages for IPv4-only clients.

Our methodology relies on the fact that HGs include company
information in their TLS certificates to help establish their identifies
to users. Despite these possible approaches, we expect that the
central idea behind our methodology will continue to work, as HGs
will always need to provide organizational information to prove
their identity.

9 CONCLUSION
Hypergiants are responsible for a significant fraction of the traffic
delivered to end users, and they contributed to the notable consoli-
dation and privatization of Internet infrastructure. HGs have been
expanding their infrastructures towards and into eyeball networks,
including via off-net servers inside those networks, to be as close
as possible to the end users. However, as these Hypergiants grew
in importance, their serving infrastructures become less and less
visible to traditional measurement techniques, and mapping their
expansions was an unmet challenge. In this work, we developed a
generic methodology to measure their expansion, leveraging more
than 7 years (2013-2021) worth of information extracted from cor-
puses of TLS certificate scans and other active measurements. We
observe that the number of ASes hosting HGs’ off-nets has more
than doubled during this period, with the vast majority of them
hosting at least one of the top-4 HG (Google, Netflix, Facebook, and
Akamai), and tending to host more of them over time. Recently,
growth has been particularly fast in Europe, Asia, and, especially,
Latin America. Consequently, these large Hypergiants can serve
large fractions of the world’s Internet users directly from within the
users’ networks. Our study opens interesting research directions
on Internet privatization, content delivery, and security practices.
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A APPENDICES
Appendices are supportingmaterial that has not been peer-reviewed.

A.1 IP-to-AS Mapping
To address the challenge of mapping IP addresses to ASes with high
accuracy and coverage, we combine data from two well-known pub-
licly available datasets, namely RIPE RIS [78] and RouteViews [82].
These datasets contain control-plane information of BGP announce-
ments (BGP RIBs and updates), enabling the mapping of an AS (or
more than one ASes in Multi-Origin/MOAS cases) to the IP prefixes
that they announce in BGP. In compliance with the timeline of
our study, we obtain more than 7 years (October 2013 - April 2021)
of daily data from each dataset. We aggregate them in monthly
snapshots and we filter out reserved IP prefixes [57] and ASes [58].
Moreover, since some of the information (such as the origin AS
of the prefix) seen in BGP might be “tainted”, e.g., due to BGP
hijacks [93] or route leaks [94], we preserve only the IP-to-AS map-
pings that consistently appeared for more than 25% of the total time
per monthly snapshot (i.e., more than a week – less than 2% of BGP
hijacks last longer than a week according to [109]). We then merge
the two datasets. In case they contain conflicting information on
the AS mapping for the same prefix, we consider all associated ASes
as valid mappings and treat the case as BGP MOAS. This process
results in a coverage of 75.8% of the publicly routable IPv4 address
space, on average across time.

A.2 On-Net Hypergiant Footprint
To identify the AS(es) of each HG, i.e., the on-net HG footptint,
throughout the 7-year duration of our study, we use the CAIDA
AS Organizations dataset [20]. CAIDA uses WHOIS information
available from Regional and National Internet Registries to infer
mappings of ASes to the organizational entities that operate them.
AS-to-organization mappings are available every quarter from Oct.
2009 onwards, fully covering our study timeline. In order to extract
the HG ASes across time, we are interested in the reverse mapping
(organization-to-AS(es)), since we only know the HG’s organization
name. We track organization IDs (which may change across time)
by parsing corresponding organization name literals, which we
manually filter. We treat ASes that do not belong to the HG organi-
zation but host IP addresses that serve its associated certificates as
hosts of its off-net footprint (§4).

A.3 Characteristics of HG Certificates
We present indicative interesting characteristics of HG-served cer-
tificates.
Certificate Numbers and IP Groups. The total number of cer-
tificates differs among HGs, from a few 100s (Google, 2021) to many
1000s (Facebook, 2021). The number tends to increase over time,
albeit at different rates per HG. Each certificate can be served by
multiple IP addresses. Figure 11 shows the coverage of the top ten
IP groups (each serving the same certificate) for Google and Face-
book over time. The top ten groups include over 90% of Google’s
certificate-serving IP addresses, with over 50% of them serving
the certificate that certifies *.googlevideo.com among other DNS
names for Google’s off-net services. Facebook started with heavy

aggregation in 2014 and ended up with a disaggregated pattern in
2021.
Expiration Times. The validity period for HG TLS certificates
vary from weeks to years, varying both across HGs and across time.
For example, Microsoft’s certificates have a median duration of 1
year (2013-2016), between 1 and 2 years (2016-2017) or 2 years (2018-
2019). Google generally uses certificates with median duration of 3
months. Netflix’s median expiry times oscillate between 8 months
and 2 years. However, median Netflix expiry times dropped within
2019, reaching 35 days, corresponding to its strategic shift towards
short-lived certificates, first announced in 2016 [84].

A.4 Survey Questions
The survey was for the analysis of data on November 30, 2020. The
questions are as follows:

1. Overall, how do you rate the estimation of the off-net footprint of
your HG?:

• Excellent
• Very good
• Good
• Poor

2. Do we overestimate or underestimate the off-net footprint of your
HG?

• Overestimate
• Underestimate
• Estimation is quite accurate

3. What is our estimation error of the off-net footprint?
• 1%
• 5%
• 10%
• 20%+

4. Do we miss any AS when we report the off-net footprint of your
HG? If yes, what type of ASes do we miss?

• Only a few ASes are missing
• Datacenter ASes
• Eyeball ASes
• Transit ASes
• free text – report the type(s) of ASes

A.5 List of Keywords and Headers
In Table 4 we present the keywords and headers we used in our
study to identify HGs and validate the installation of their servers
in off-nets (see Section 4.4). In addition to the HGs listed in Table 4,
we used the following Hypergiant keywords: Bamtech, CDN77,
Cachefly, Chinacache, Disney, Highwinds, and Yahoo. For the latter
list of HGs, we were not able to identify unique HTTP(S) headers
to extract fingerprints.

A.6 User Population Coverage based on
Customer Cone

Section 6.5 examined how much of the Internet user population
can be served from Google’s off-nets, if they serve users within
the hosting networks and their customer cones. Figure 12 plots
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Figure 11: Coverage of top-10 IP groups serving the same certificate for Google and Facebook; the coverage of a group is the percentage of
associated IPs over the total IP population of the HG for the corresponding snapshot.
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Figure 12: Percentage of a country’s Internet users within the customer cones of ASes hosting Facebook/Netflix/Akamai off-net servers (April
2021)

Hypergiant &
Keyword

Header Name:Value Pairs Documentation

Akamai Server:AkamaiGhost, Server:AkamaiNetStorage, Server:Ghost (only in China) Yes [5]
Alibaba Server:tengine*, Eagleid:, Server:AliyunOSS* Yes [6]
Amazon x-amz-id2:, x-amz-request-id:, Server:AmazonS3, Server:awselb*, X-Amz-Cf-Id:, X-Amz-Cf-Pop:,

X-Cache:Hit from cloudfront, x-amzn-RequestId:
Yes [8]

Apple CDNUUID: No
Cdnetworks Server:PWS/* Yes [25]
Cloudflare Server:Cloudflare, cf-cache-status:, cf-ray:, cf-request-id: Yes [31]
Facebook Server:proxygen*, X-FB-Debug:, X-FB-TRIP-ID: Yes [38, 39]
Fastly X-Served-By:cache-* Yes [41]
Google Server:gws, Server:gvs*, X-Google-Security-Signals: X_FW_Edge:, X_FW_Cache: Disclosed[49, 59]
Hulu X-Hulu-Request-Id:, X-HULU-NGINX: No
Incapsula X-CDN:Incapsula No
Limelight Server:EdgePrism*, X-LLID: Yes [71]
Microsoft X-MSEdge-Ref: Yes [76]
Netflix X-Netflix.*:, X-TCP-Info:, Access-Control-Expose-Headers:X-TCP-Info No
Twitter Server:tsa_a Yes [106]
Verizon Server:ECacc* Yes [108]

Table 4: List of keywords and headers used to verify HGs’ server installation in our study. Empty header values indicate that only the header
name is used to match. Entries ending with * indicate a prefix match.

the equivalent user coverage for Facebook, Netflix, and Akamai.
Serving into the customer cone (rather than just serving the host-
ing networks) noticeably expands Facebooks coverage in parts of
Africa, Asia, Europe, and South America (Figure 12a compared to

Figure 9b), expanding service from 49.9% to 63.2%, i.e, a 26.8% in-
crease of Internet users. For Netflix, serving within customer cones
slightly increases population coverage for countries in South Amer-
ica, North America, and Africa (Figure 12b compared to Figure 7b),
that increase the user population coverage from 16.3% to 26%, i.e.,
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(i) Google Medium ASes
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(m) Google Large ASes
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Figure 13: Growth of the top-4 HG per continent and per network type over time.
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59.4% increase. The coverage for Akamai increases significantly for
countries located in Asia, Europe, and South America (Figure 12c
compared to Figure 7c), resulting in a 49.1% increase, from 51.7% to
77%. The dramatic increase in Akamai’s coverage when considering
users within the customer cones of ASes hosting Akamai off-nets
makes sense given Akamai’s observed strategy of shrinkings its
footprint within small ASes in favor of large ASes (§6.3).

A.7 Off-Net Growth per Network Type and per
Region

Combining Sections 6.3 and 6.4, in order to get insights on the
growth per network type (Stub, Small, Medium, Large) in the dif-
ferent regions, we plot in Figure 13 the number of different net-
work types that host off-net Google, Netflix, Facebook, and Akamai
servers. Our results indicate that the expansion of HG off-nets into
more stub ASes slows down in all regions and for all top-4 HGs
until early 2020, at the beginning of the COVID-19 pandemic. Af-
ter the summer of 2020, expansion picks up across all HGs and
regions, with the exception of Akamai. The fraction of stub ASes
with Akamai off-nets shrinks by around 80% in North America, but
doubles in Asia, suggesting that large CDNs can flexibly rearrange
their off-net footprint within a few years to better achieve their
objectives (potentially choosing not to replace servers as they age
out).

The aggressive growth of Google, Netflix, and Facebook is also
visible in South America, as well as in Asia by Facebook and Akamai.
Akamai’s off-net footprint decreases by more than 50% in small
ASes over the years. We observe similar growth for the top-4 HGs in
Medium ASes as we observe in Small ASes. A noticeable exception
is Akamai, which has expanded its footprint in Medium ASes in
Asia and South America. Overall, our results suggest that Akamai is
shifting its s off-net footprint away from Stub and Small networks
towards Medium and larger networks in Asia and North America.

A.8 Willingness by Networks to Host HGs
We further investigate how the symbiosis of HGs and networks
(see Section 6.6) evolves, especially for the four Hypergiants with
the largest footprints. In Figures 14a and 14b we present the total
number of ASes that host at least one top-4 HG in at least 25%
and at least 50% of the dataset snapshots respectively, and what
percentage they represent of the total ASes that host ≥1 of the top-
11 HGs in at least one data snapshot (percentages as shown at the
end of sub-bars). Both figures show that the majority of ASes chose
to host only one top-4 HG until late 2019, where we see a shift, as
more and more ASes select to host up to all the top-4 HGs. A steady
rise of the number of ASes with >2 HGs takes place again until late
2019, when we notice ASes are starting to host more and more HGs
outside of the big 4. This trend coincides with the beginning of the
COVID-19 pandemic, as the content providers are adjusting their
deployment strategies in order to meet the suddenly increased user
traffic demand. In addition, even if the percentage of ASes (for the
same timestamp between Fig. 14a and Fig. 14b) that hosts one to
four top-4 HGs across years varies between 10% and 20%, we notice
a similar trend with respect to the symbiosis of HGs. That is, until
2016, we constantly observe that more ASes are willing to host
more HGs servers with a peak between 2017 and 2018. After that
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(a) # ASes that host ≥1 HG in 25% of the snapshots.
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Figure 14: Total number of ASes that host at least one of the top-4
HGs (Google, Netflix, Facebook, Akamai).

period, they reach a plateau in terms of the number of ASes with
a slight decline in 14b. Last but not least, our analysis shows that
about 5% of the total number of ASes, on average, in each snapshot,
are newcomers, i.e., ASes never seen in past snapshots. Overall,
there is a clear symbiotic pattern due to the fact that along with
newcomers there are ASes which strategically decide to host more
HG servers over the years. Nevertheless, there are a few other ASes
that stop appearing as HG hosts.
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