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Performance and limits of feedback cooling methods for levitated oscillators: A direct comparison
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Cooling the center-of-mass motion is an important tool for levitated optomechanical systems, but it is often not
clear which method can practically reach lower temperatures for a particular experiment. We directly compare
the parametric and velocity feedback damping methods, which are used extensively for cooling the motion
of single trapped particles in a range of traps. By performing experiments on the same particle, and with the
same detection system, we demonstrate that velocity damping cools the oscillator to a temperature an order
of magnitude lower and is more resilient to imperfect experimental conditions. We show that these results are
consistent with analytical limits as well as numerical simulations that include experimental noise.
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I. INTRODUCTION

Levitated nanoparticles in high vacuum are thermally and
mechanically well isolated from the environment. Due to this
they are increasingly seen as ideal candidates for tests of
fundamental physics with proposed experiments to investigate
quantum mechanics [1-6], gravitational waves [7], and short-
range forces [8§—10] and recent experiments exploring physics
beyond the standard model [11,12]. Many of these schemes
require cooling of the center-of-mass (CoM) motion of the
nanoparticle to either prevent particle loss in high vacuum
[13,14] or improve impulse force sensitivity [15,16] or as
an important step of the measurement scheme [1-9]. To this
end, controlling the motion of levitated nanoparticles has seen
much interest in the last decade, particularly in cooling the
CoM temperature towards the ground state, which is seen as
a milestone in gaining full quantum control of macroscopic
objects [17-19].

Levitated nanoparticles have been passively cooled us-
ing an external cavity utilizing direct trapping in the cavity
[20] and hybrid traps [21]. More recently, coherent scattering
from an optically trapped nanoparticle into a cavity mode has
achieved ground state cooling [22]. Active feedback cooling,
based on measurements of the particle motion, has also been
explored with several experiments reaching the ground state
or low phonon occupancy [23-26]. Modulating the trapping
potential at twice the particle frequency (parametric feedback)
[27,28] or applying a linear force proportional to the particle’s
velocity (velocity damping) [29,30] are two techniques that
have been used extensively. Average phonon occupancies of
62.5 phonons [28] and 0.56 phonons [24] have been achieved
respectively in optical tweezer setups.

As both techniques are commonly used, it is natural to
ask which is likely to achieve lower temperatures from both
a theoretical and an experimental perspective. In this paper
we directly compare parametric feedback cooling and velocity
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damping for a particle confined in a Paul trap. Parametric
feedback is implemented by tracking the instantaneous phase
of a trapped particle using a phase-locked loop (PLL) and
modulating the trapping potential with a frequency-doubled
signal phase locked to the particle motion with an appropriate
phase shift. This implementation is commonly used in op-
tical traps [28,31]. Although parametric feedback has been
implemented in Paul traps before [32,33], here it is realized
using a PLL. The feedback signal for velocity damping is
generated by estimating the velocity of the particle from a
position measurement. We have taken common concepts from
PLL theory and applied these to the optomechanical system
to set bounds on the minimum temperatures achievable with
parametric cooling using a PLL. Both cases of cooling are
simulated and experimentally demonstrated on the same par-
ticle under identical experimental conditions. We consider the
minimum achievable temperature of each method and discuss
the implications of experimental imprecision. Finally, we ex-
amine the energy distributions of the cooled oscillator.

II. FEEDBACK COOLING SCHEMES

A levitated nanoparticle can be considered a thermal oscil-
lator in a 3D harmonic potential. The motion in each direction
x;, where i = {x, y, z}, obeys an equation of motion which is
given by

Fni + Fopa,i + Fom,i
m 9

X+ voki + ofx; = (D
where y is the gas damping, w; is the frequency of os-
cillation, m is the mass of the trapped particle, and Fy,;
is a random Langevin force that satisfies (Fy, ;(t)Fn j(t)) =
2myokpTod(t —t')8; ; where kg is the Boltzmann constant
and Ty is the temperature of the surrounding thermal bath,
Fypq,i 18 the quantum back-action from measurement, and Fo, ;
includes all other stochastic forces such as voltage noise. As-
suming the equipartition theorem holds, the CoM temperature
of the particle can be estimated using the variance of the
motion, Teom = ma)l2 (xiz) /kg. With no additional forces being
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applied to the particle it is equal to the temperature of the sur-
rounding thermal bath: Teom = 293 K. Quantum back-action
and other stochastic forces will be neglected throughout the
rest of this article as they are much smaller than the thermal
force noise at the pressures considered here. For example,
the thermal force is of the order 10720 N \/E compared to
10~22 N +/Hz for both the voltage noise and quantum back-
action. At ultrahigh vacuum (~10~'° mbar) they will become
relevant and heat the particle CoM motion. The additional
heating will affect the particle independently of the cooling
method; therefore for a comparison of techniques they need
not be considered.

Without loss of generality the equations of motion can be
considered in one dimension with similar equations applying
to all directions. The effects of the interactions between modes
are considered in Sec. VI. Velocity damping cools an oscilla-
tor by applying a force proportional to the velocity to increase
the damping. However, any noise in the detection will also
be fed back to the oscillator. Equation (1) can be modified to
include these effects such that [34]

. . 2 Eh . .
X+ yox + wyx = i Yrp(x 4 6X), )

where y/), is the damping due to feedback, wy = wy, and 8x is
a stochastic, additive noise in the feedback signal.

Parametric feedback cools a trapped particle by modulating
the trapping potential at twice the frequency of the particle
motion such that as the particle moves away from the trap
center the potential is stiffened (removing energy from the
oscillator) and then relaxed as the particle moves toward the
trap center (preventing the oscillator from recovering the en-
ergy). This was originally implemented using a modulation
proportional to the product of the current position and ve-
locity of the particle, x(¢)x(¢) [27]. However, this scheme is
often implemented using a digital PLL to lock a numerically
controlled oscillator (NCO) to the frequency and phase of
the particle. A frequency-doubled output from the NCO can
then be used as the feedback signal (after an appropriate
phase shift) [28]. This is the implementation we will focus on
in this paper. Although both implementations are considered
parametric feedback, they produce different particle dynam-
ics [35,36]. Throughout this article any parametric feedback
refers to the second case (with a PLL) unless stated otherwise.
The equation of motion of the oscillator under PLL parametric
feedback is

. . . 2 Eh

X+ yox + {1 — Gsin[2(wot + 6,)]} wyx = P 3)
where G is the modulation depth and 6 is a time-dependent
phase set by the PLL. Figure 1 shows a schematic of a digital
PLL with a breakdown of the phase detector to show how it
is implemented in the simulation and experiment. Generally,
PLLs consist of a local oscillator with an input to control the
oscillator frequency (the NCO), a phase detector to measure
the difference in phase between the local oscillator, phase 6,,,
and the external oscillator (the trapped particle), phase 6;, and
a loop controller, with transfer function F'(s), to generate a
control signal for the local oscillator input. The phase detector
outputs a signal proportional to the phase difference of the
two oscillators with constant of proportionality K;. The loop
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FIG. 1. A basic digital PLL loop consists of a NCO that tracks
the oscillator phase through an input that alters the frequency. A
phase detector takes both the oscillator and NCO signals as inputs
and produces an output proportional to the phase difference. In both
the simulation and experiment the phase detector mixes the signals
to produce X and Y quadratures of the oscillator signal. Low-pass
filters are used to remove noise and the 2w, component. The X and
Y quadratures can then be used to calculate the phase difference
between the NCO and oscillator. The digitally implemented loop
controller, with an equivalent analog transfer function F(s), is ad-
justed such that the NCO tracks the phase of the oscillator. The NCO
acts as an integrator and must be considered when analyzing the loop.

controller then modifies this signal to produce a control signal,
v.. The frequency of the NCO is determined by the input;
therefore the control signal will regulate the rate of change of
the phase with a proportionality constant, K,. By tuning F'(s)
the loop controller can be made to produce a control signal
such that the local oscillator accurately tracks the phase of
the external oscillator by minimizing the phase difference. For
example, in its simplest form the loop controller could simply
apply a gain to the phase difference. In this case, 6, would
increase if it was less than 6; and decrease if it was more than
0;. More advanced loop controllers can be used to improve
tracking and phase noise [37]. Section III has more details on
how the loop controller and phase detector are implemented
in the simulations and experiment. Despite being digitally
implemented we will consider all transfer functions in their
analog equivalent form for the purposes of analysis. This is
valid provided any features in the transfer function are well
below the Nyquist frequency of the digital system as they are
here.

II1. SIMULATION

The simulations were implemented using the energy-
conserving (symplectic) leapfrog method [38]. Equation (1),
with an additional feedback force, is rewritten as a system of
two first-order equations:

x=v, “4)

. 1
b= —yov — 00X + —(F + Fpp), 5)
and each variable is progressed one half-time step out of sync:
Xnt1 = Xp + U, 1 AL, (6)

v =V, 1 + v, At, (7)

n+%
where At is the time-step size in the simulation. Thermal
force noise and measurement noise are simulated using a
string of Gaussian distributed random numbers with zero
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mean and variances given by (2mkpTyyy)/(At) and S,/ At,
respectively, where S,,, is the detection noise spectral density,
which is assumed to be uncorrelated and white. The gas
damping is pressure dependent obeying the equation yy =
1+ %)4_7”1‘%;2” where M is the gas molecular mass, N is
the pressure-dependent gas particle density, R is the sphere

8k Ty

radius, and vy = |/ =5 is the average thermal velocity of the

air molecules [39].

The feedback signal in velocity damping is proportional to
the velocity of the particle. In the simulation we have direct
access to this variable, but to accurately reflect the experiment
we must estimate the particle velocity based on a noisy mea-
surement of the position. In the absence of detection noise,
differentiating the measurement of position would calculate
the velocity of the particle. However, with a noisy measure-
ment Wiener filtering [40,41] provides the optimum way of
estimating the velocity. Details of how to calculate Wiener
filters can be found in Appendix A, but here we just state that
the optimum filter is given by [42,43]

—iw

W(w) = ®)

Sun@) ’
L+

where S,.(w) is the true spectral density of the particle mo-
tion. This is essentially the product of two filters: one that
differentiates the signal to estimate the velocity and one that
filters out the parts of the signal that have a low signal-to-
noise ratio (SNR). The filter generated from Eq. (8) does not
produce a stable causal filter. Therefore, in the simulations
we approximate the Wiener filter using a differentiator mul-
tiplied by a low-pass filter with a cutoff frequency of 8 kHz.
Alternatively, the velocity can be predicted by delaying the
measured position signal by 2”70 seconds. This method is
valid under the high-Q approximation, where w =~ wy over
the width of the transfer function. Physically this results from
the damping being so low that it takes many oscillations to
affect the frequency of the particle; therefore position and
velocity can be approximated by sinusoidal motion. Explic-
itly, if x(t) = Rcos(wpt) where R is the amplitude of the
motion, then v(t) = woR sin(wot) = —wox(t — 5,-). The es-
timated velocity from either method can then be multiplied by
a gain and used as the feedback signal.

For parametric feedback, a digital PLL was implemented
in the simulation. A sinusoidal function with direct access
to the phase is used as the NCO. At each time step the PLL
calculates a new phase for the NCO to try and minimize the
phase difference between the PLL and the simulated thermal
oscillator. A breakdown of the phase detector used in the
simulation can be seen in Fig. 1. The signal from the thermal
oscillator (position with noise) is multiplied with an in-phase
and an out-of-phase signal from the NCO (i.e., two signals
with a phase difference of 7). The two resulting signals are
then low pass filtered using second-order exponential smooth-
ing, with a bandwidth Bgy,q, to remove the 2wy component of
the signal producing estimates of the X and Y quadratures of
the particle motion. The phase difference can then be directly
calculated using 6; — 6, = — arctan (Y/X ). This method pro-
duces a phase detector output with K; = 1. To generate a
control signal in the simulation we use a loop controller with

a transfer function of

F(s) = —(3+i>, ©)

T1 IR

where 7, and 1, are the two time constants of the controller.
This is one of the most widely employed loop controllers in
PLLs and provides a balance between narrow bandwidth and
loop stability [37]. Since the control signal provided by the
loop controller is designed to control the frequency of the
NCO it must be integrated to calculate the new phase for
the NCO. The total open-loop transfer function is given by
G(s) = —@ [K, = —1 to account for the phase reversal of
F (s)]. Implementing a digital filter of the open-loop transfer
functions allows a new phase for the NCO to be calculated
from the phase detector output. It is useful to note that the
closed-loop transfer function becomes [37]

6

4 ang“s + (.()5
0;

:H = =,
(<) $2 + 2w,0s + 2

(10)

where w, = KT—{(’ and ¢ =2 /K"T—{(‘/ are the natural fre-

2

quency and the damping factor of the PLL. From H (s) we can
define the PLL bandwidth as the 3 dB cutoff of the closed-loop
transfer function [37]:

Baag = w202 + 14+ V@22 F 12+ 112, (11)

This determines the rate of change of the oscillator phase
that can be tracked by the PLL.

IV. THEORETICAL ANALYSIS

The equation of motion for a particle with velocity damp-
ing [Eq. (2)] can be solved to find the variance of the
oscillators position (see Appendix B for more details). As-
suming the equiparition theorem, the CoM temperature of the
oscillator can be calculated as [34]

Yo 1ma)(2) ngb
vo+tvm 2 kg vot v

where the second term gives the contribution from the
detection noise. Physically this results from noise in the mea-
surement being fed into the motion of the particle, which
causes heating. This also leads to a phenomenon known as
noise squashing where correlations between detection noise
and particle motion make the power spectral density (PSD) of
the particle motion from the detector being used to generate
the feedback signal (in-loop detector) appear as if it is being
cooled below the noise floor [34,44]. In the limit, y;;, > vy,
the optimum feedback gain is given by

Snns (12)

Tcom = To

2yoksTy
Sunmaw}

Vip = (13)

with a minimum temperature of

28,mmw vo T,
Teow = | —— 222 (14)
kg

The equipartition theorem only holds for a cooled oscillator,
while the high-Q approximation is still valid. This can be
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challenging for low-frequency oscillators where wy < 2w X
1000 Hz. As the oscillator approaches yy + ¥y, = w the en-
ergy from the momentum of the particle begins to increase
and the CoM temperature must be calculated using both the
variance in position and momentum (see Appendix B for more
details).

In contrast to velocity damping, a theoretical analysis of
the PLL is extremely difficult when adding noise into the
closed loop due to the nonlinear nature of the PLL. A limited
analysis can be done using a simplified loop controller with
only proportional control, F'(s) = P where P is a constant, and
the assumption of small phase error, sin(6; —6,) =6, — 6,
[35,45] (see Appendix C for more details). In this regime the
temperature of the oscillator is still decoupled from fluctu-
ations in the phase error, and we cannot predict the effect
of detection noise on the oscillator temperature. However,
it can be shown that the bandwidth of the PLL limits the
modulation depth that can be applied while still maintaining
phase tracking according to

2B34p

Giim = . (15)
wo

In the simulation there are four independent variables: ¢,
Wy, Bgquag, and G. Using simulations it can be shown they
can be reduced to two variables similar to the simpler case
presented above. In Fig. 2(a) we show the temperature of a
simulated oscillator being cooled parametrically for a range
of damping factor, ¢, and natural frequency, w,, values at a
fixed modulation depth. To reflect the experimental conditions
in our setup, a particle radius of R = 193.5 nm and density
o = 1850 kg m~ is used. The oscillator frequency is set to be
wy = 2 x 277 Hz with a pressure of P = 2.3 x 10~° mbar
giving an intrinsic linewidth of yy = 27 x 780 pnHz. The de-
tection noise spectral density is S,, = 1.5 x 1077 m> Hz~!.
The quadrature filter bandwidth, Bguag, is fixed at 2w x
400 Hz for all parameter values so that it is much larger than
any Bjyp values used and does not interfere with the PLL loop
controller.

Provided ¢ is large enough, there is an optimum value
of Bsgp = 2m x 104 Hz that is unaffected by individual ¢
and w, values. The large ¢ limit is the equivalent of large
DC loop gain being required for good tracking [37]. From
now on we can just consider the PLL to contain three pa-
rameters Bquad, Bigp, and G. The quadrature filter bandwidth
must be large enough so that it does not interfere with the
loop controller, but it must be sufficiently small to eliminate
the 2wy component in the demodulated signal. We find that
keeping Byuaa = 5B3gp is sufficient. For larger bandwidths this
makes it impossible to completely remove the 2wy component
from the demodulated signal; however, the PLL still tracks
and cools the oscillator. This leaves only two independent
parameters to adjust, G and B3gp.

We show in Fig. 2(b) the temperature of a cooled oscillator
as the modulation depth is adjusted for several different PLL
bandwidths. It can be seen that for each bandwidth there is
an optimum gain that increases as the bandwidth is increased
as predicted by Eq. (15). Heuristically, this results from the
linewidth of the oscillator increasing as it is cooled. Once
the linewidth is larger than the PLL bandwidth the particle
phase can no longer be tracked consistently, so the phase error
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FIG. 2. (a) Heatmap showing the CoM temperature for paramet-
ric cooling with different w, and ¢ parameters. The white line shows
a constant bandwidth of 104 Hz along which the temperature is at
a minimum. The inset shows the temperature variation along the
white line. (b) The temperature of a parametrically cooled oscillator
against modulation depth for several different PLL bandwidths. (c)
The linewidth of the cooled oscillator at the optimum gain against
the bandwidth. The orange line shows a straight line fit to the first
four data points with a gradient of 0.6.

increases and the particle is cooled less effectively. This is
confirmed in Fig. 2(c), which shows the linewidth of a cooled
oscillator at optimum gain for several PLL bandwidths. A
straight line fit to the first four points gives a gradient of 0.6
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suggesting the PLL struggles to track the oscillator even when
the linewidth is less than Bs;p due to the more complex loop
controller and large phase error. Similar trends to those in
Fig. 2 are seen for alternative pressures, oscillator frequen-
cies, and particle masses. Using Eq. (15) we can calculate an
achievable temperature at any particular bandwidth, which is
given by (see Appendix C for full derivation)

2
o _qp (16)

Tiim1 = To
Glimwo *Bsas’

These simulations show the modulation depth is not limited
to 1.5% as previously reported for optical traps [46]. We
found the modulation depths were also not limited by this
value in the experiment where modulation depths of up to
5% were used. Figure 2(b) shows that the bandwidth cannot
be indefinitely increased without incurring a penalty on the
effectiveness of the PLL. For a sinusoidal input into the PLL
with amplitude Vi, the loop signal-to-noise ratio (SNR) can

be defined as SNR; = 2‘; 2 [37] where By is the noise band-
width of the loop (in hertzb) For the loop controller used in this
numerical simulation B; = 2w,,(§ + 4;) If the SNR drops
below ~1, then the loop will completely lose lock and require
the SNR to increase several decibels before the loop can lock
again [37]. If we redefine the SNR for a thermal oscillator

by naively replacing the numerator with the position variance,
then it becomes SNR; = 23 s . We can then define the lower

bound the temperature of the ‘oscillator can reach before the
PLL unlocks as

ma)(z)
]iimZ = 2'BLSmr (17)
kg

These two limits allow us to bound the smallest achiev-
able temperature of the oscillator during parametric feedback
cooling. Note that unlike Eq. (12) they are not a complete ana-
lytical expression for the temperature but bounds on what can
be achieved since they do not include the effect of phase noise
on the temperature, i.e., the model does not include the back-
action of the feedback scheme. Furthermore, in the derivation
of Eq. (17) we have exchanged a constant amplitude signal
for a signal with a varying amplitude and considered only
the average. In reality, the PLL often tracks the signal on a
much shorter timescale than the evolution of the oscillator
amplitude. If at any point during the measurement the in-
stantaneous loop SNR drops below 1, the PLL will unlock
and the oscillator temperature will increase. This means that
in practice the oscillator will never reach the temperature
given by Eq. (17); however, it can never be significantly lower
than this. We can use these bounds to predict a bandwidth at
which the minimum temperature will occur. Using the relation
Bigp ~ 87 By (valid in the limit 2 >> 1) we find the optimum
bandwidth for cooling is

47 yokp T
Bup= [ T0EL (18)
Spnmawj

Using Eq. (16) the minimum achievable temperature is there-
fore

Teom = | == > 19)

which is lower than the minimum temperature that can be
achieved with velocity damping. This is because the model
for velocity damping includes back-action due to noise in the
feedback from measurement imprecision, whereas the model
for the parametric feedback does not. Measurement noise will
cause fluctuations in the phase of the NCO leading to less ef-
fective cooling from the parametric feedback. This is contrary
to the model of parametric feedback we present where the
phase of the NCO is perfectly locked to the trapped particle
motion. Simulations must be used to fully include the effects
of noise from the PLL on the particle motion as shown in
Sec. VL.

V. EXPERIMENT

Paul traps utilize an alternating electric field to trap charged
particles since Gauss’ law forbids a minimum for three-
dimensional static electric fields in free space. For a linear
Paul trap the potential is [47]

2 2
K xX°+
(D(x’y9z’t):U0_2<_ Y +ZZ>
% 2

2
= +1>, (20)

0

Vi 2
+ ?0 COS(wrft)(nx

where U is the DC voltage applied to the endcap electrodes,
Vo is the AC voltage applied to the rod electrodes at angular
frequency w,r, and the parabolic coefficients ry, zo, k, and
n are determined by the geometry of the trap. In the case
of no damping the particle motion in one dimension can be
approximated by [48]

xi(t) = 2AC cos(a)it)|:1 — %cos(a),ft)i|, 21

where A is determined by the initial conditions of the par-
ticle, Cyp is a function of particle and trap parameters, w; ~

2\ ai+ %‘ is the “secular frequency,” and a; and ¢; are

known as the stability parameters of the trap. The stability
2gVon

parameters are given by g, = —¢q, = ot 2 = Oand a, =
7o
= —0.5a, = —%. For this approximation to hold the
rf<0

conditions |a;], ‘152 <« 1 must be met. Equation (21) describes
a harmonic “secular” motion with frequency w; and a smaller,
driven “micromotion” at higher frequencies, w,; £ w; [48].
The Paul trap used in this experiment consisted of four
parallel rods held by printed circuit board (PCB) similar to
the trap in reference [49]. The PCB allowed for easy elec-
trical connections to the rods and had two ring electrodes
etched into the surface as endcaps to confine the particle along
the trap axis. The PCB was gold coated to minimize charge
buildup causing stray fields around the trap. For this trap the
geometric factors are rp = 1.1 mm, zp = 3.5 mm, « = 0.071,
and n = 0.82. Typical voltages and trap frequencies used were
Vo = 100400 V, Uy = 50-150 V, and w,y = 27 x 4-8 kHz.
Silica nanoparticles were loaded into the trap at approxi-
mately 7 x 1072 mbar using the electrospray technique with
a quadrapolar guide [49] and can be pumped down to low
pressures without feedback. Individual nanospheres could be
easily charged to approximately 1500 elementary charges
with this method. Trapped particles were detected visually on

023502-5



T. W. PENNY, A. PONTIN, AND P. F. BARKER

PHYSICAL REVIEW A 104, 023502 (2021)

(a) = (b)
Thorlabs CMOS %
Camera -
N
< 10-1
E
[a]
n
Q.
1014
(c)
. : % 10-3
! Paul Trap Axial View i
; : N
i i T 10-5
O O x | 7 osonm  E10
| 1 >
i ° z ' <
i ( i o
00 View g 107

0 100 200 300 400 500
Frequency (Hz)
z
X
y
100 200 300 400 500

Frequency (Hz)

FIG. 3. (a) A simplified experimental setup. A focused 1030 nm laser illuminates the particle. The scattered light from the particle is
collected by a lens and focused onto a CMOS camera to track the motion. The forward scattered and unscattered light is also collected
and focused onto balanced photodiodes to generate the signal used for feedback. (b) The PSD of the particle used in this experiment with
. = 27 x 223 Hz taken with CMOS camera at 1.9 x 10~! mbar with fit (pink line). The variance of the PSD gives a particle mass of
5.340.3 x 1077 kg. (c) The spectrum measured on the balanced detection at 2.2 x 10~* mbar showing all three modes of motion during
cooling. The modes have frequencies w, = 2w x 482 Hz, wy, = 2 x 450 Hz, and w, = 27 x 229 Hz. The spectrum is left uncalibrated since

each mode requires a separate calibration.

a CMOS camera using scattered light from a 1030 nm diode
laser.

The radius of the trapped particle could be determined
using the CMOS camera to track the motion of the particle
[49,50]. Figure 3(b) shows a PSD of the particle motion in
the z-direction at a pressure of 1.9 x 10~! mbar. Assuming
a CoM temperature of 293 K and density of 1850 kg m~3,
a radius of 190 +£4 nm was determined. This agrees with
the expected 193.5 nm radius of the silica particles that were
nominally being trapped. This particle has a charge-to-mass
ratio of ~1.2 C kg~! corresponding to ~421 charges.

Real-time detection of the particle motion is done using a
balanced photodiode as shown in Fig. 3(a). All three modes of
motion have a projection perpendicular to the laser beam, and
therefore motion along all axes can be detected using a single
balanced detector [spectra shown in Fig. 3(c)]. The signal
from the balanced photodiodes can be sent directly to either
a PLL or FGPA to generate the feedback signal. To measure
the temperature of the particle a time trace was taken by
tracking the particle in a set of images recorded on the CMOS
camera [49,50]. The recorded time traces are calibrated by
mounting the camera on a translation stage and moving the
camera by a known amount. By measuring the mean position
of the particle image at several camera displacements a direct
pixel-to-position calibration can be calculated. The calibration
remains constant at all pressures unlike calibration by assum-
ing thermal equilibrium at a high pressure [51]. Furthermore,
the camera acts as an out-of-loop detector when measuring an
oscillator cooled by velocity damping. For balanced detection
the laser was typically focused onto the particle with an in-
tensity of 1.27 x 10’ W m~2. Increasing the laser intensity by
a factor of 3 was found to have no effect on the frequency or
position of the particle; therefore at these intensities any effect
on the particle motion can be considered negligible.

A Red Pitaya FGPA was used to generate the feedback
signal for the velocity damping scheme using the IQ module
in the PyRPL software package. A signal proportional to the
measured motion of the particle with an arbitrary delay and
gain could be produced. Other modes in the feedback signal
were found to couple to the particle motion and cause heat-
ing. To prevent this the input signal was filtered around the
appropriate spectral peak. The x- and y-modes were cooled
by adding a signal to an appropriate rod of the Paul trap such
that the force opposes the particle motion. The z-mode was
cooled by applying the feedback to one of the endcaps using
electronics built in-house.

A Zurich Instruments, HF2LI, lock-in amplifier was used
as a PLL to generate the feedback signal for parametric feed-
back cooling. The loop controller parameters of the PLL were
automatically generated by the lock-in amplifier based on a
user-defined bandwidth. The signal from a frequency-doubled
NCO with continuously tunable phase could be output as the
modulation signal. The z-mode was cooled by modulating
both endcaps using electronics built in-house with a maximum
modulation depth of 5%.

Although we consider only the temperature of the z-mode,
the x- and y-motion of the particle was cooled using veloc-
ity damping throughout the experiment. This minimizes the
cross-coupling between modes and improves the noise floor
of the CMOS camera detection. The feedback on the z-mode
could easily be switched between parametric cooling and ve-
locity damping without losing the trapped particle.

VI. COOLING

Figure 4(a) shows the CoM temperature against feed-
back gain for velocity damping in both the experiment and
simulations alongside the analytical results. Experimentally,
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FIG. 4. Plots of the analytical solutions, simulation, and ex-
perimental results of cooling the axial motion of the particle.
Experimentally both cooling schemes were done on the same particle
with the same detection parameters. The frequency of motion was
277 Hz. (a) Cooling with velocity damping. Green triangles are
experimental data, black circles are simulation using a filter to predict
the velocity, and magenta squares are simulation where a delayed po-
sition signal predicts the velocity. The dashed red and dashed-dotted
cyan lines show the first and second terms in Eq. (12), respectively,
and the solid dark blue line shows the total. (b) Cooling with para-
metric feedback via a PLL. Green triangles are experimental data,
black circles are the ideal simulation, and magenta squares are the
improved model simulation. The red dashed line represents Eq. (16),
and the cyan dashed-dotted line represents Eq. (17). The shaded
region shows when the PLL begins to unlock from the oscillator in
the experiment. For both parametric feedback and velocity damping
the modulation was experimentally increased to the maximum gain.

cooling was performed on the z-mode of the oscillator with
a frequency of w, =2m x 277 Hz at a pressure of P =
2.3 x 10~° mbar with an expected intrinsic linewidth of y, =
2w x 780 wHz. The simulations were performed with the
same parameters using the experimentally measured detection
noise spectral density of S,, = 1.5 x 107 m?> Hz™' and
nominal particle radius and density of R = 193.5 nm and
o = 1850 kg m~3. The black circles show the simulation
results where a differentiator and low-pass filter are used to
estimate the velocity based on a measurement of the particle
position that includes detection noise. These results agree with

the analytical results (dark blue line) up until a feedback gain
of ~50 Hz. Above this feedback gain the simulation begins to
diverge from the analytic solution as the equipartition theorem
breaks down, and the momentum must also be considered
when calculating the temperature. The result of using a de-
layed position signal as a feedback signal in the simulation
is shown by the purple circles. Using an additional bandpass
filter to remove detection noise in the feedback signal similar
to the experiment makes no difference to the CoM temper-
atures. For low feedback gains the simulation temperatures
agree with the analytical results. As the effective damping
increases the assumption of high Q is no longer valid. In this
regime, the phase of the oscillator changes over the time taken
to delay the position measurement, and the cooling becomes
less effective. The temperatures at high feedback gains are
lower than when using a filter since the noise being fed back
into the oscillator is white, whereas the filter creates noise with
an »’ dependence (Appendix B). The experimental results
(green circles) agree well with the simulation and analytical
prediction at all feedback gains with a minimum temperature
of 26 + 6 mK attained. By reducing the pressure further we
predict temperatures comparable to those shown in previous
experiments using velocity damping on a nanoparticle levi-
tated in a Paul trap [52].

CoM temperature against PLL. bandwidth for parametric
cooling of the oscillator are shown in Fig. 4(b) for the experi-
ment, simulation, and analytical bounds. Parametric feedback
was performed on the same trapped particle with identical ex-
perimental parameters as velocity damping. The black circles
show the results of the simulations using the model described
previously where only one dimension is considered with white
detection noise. For low bandwidths the simulation cannot
cool as low as the analytical bound (red line). This is due to the
more complicated loop controller and phase noise preventing
the PLL tracking the oscillator up to the PLL bandwidth.
However, the temperature is still inversely proportional to
Bs4p as predicted. The simulation deviates from this trend as
Bs,p increases due to greater phase noise in the NCO arising
from the smaller detection SNR at lower temperatures. It can
be seen that the temperature begins to increase for higher
bandwidths as the PLL begins to unlock and heat the particle
due to low SNR; . The CoM temperature never goes below the
bound defined by Eq. (17) (cyan line). The experiment (green
circles) shows higher temperatures than the simulation for all
bandwidths with a minimum temperature of 280 20 mK.
This is lower than previously achieved by parametric feedback
in a Paul trap [32,33]. Once the bandwidth increases above
100 Hz [the gray region in Fig. 4(b)] the PLL begins to lose
lock, and the oscillator becomes unstable. In the experiment
a quadrature bandwidth of Bgyaq = 5B3gp was used based on
the simulation results.

To understand what limited the final temperature of the
experiment an improved model was designed to more real-
istically simulate the experiment. Due to instabilities in the
amplitude and frequency of the trap potential, the frequency
of the particle experiences a smooth drift [53]. This was ap-
proximated in the model by a slow sinusoidal modulation of
the oscillator frequency and increases the CoM temperature
for low bandwidths where the modulation is bigger than or
comparable to Bsyp. As seen in Fig. 3(c), other modes of
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motion appear in the detection signal which the PLL can
lock to at high bandwidths causing modulation at the wrong
frequency and less efficient cooling of the particle. These were
added to the simulation along with second-order harmonics
to match experimental spectra. In the experiment, the particle
equilibrium position can be pushed away from the geometric
center of the trap due to stray fields. This introduces heat-
ing when parametric feedback is turned on due to a shifting
equilibrium position [54,55]. This was implemented in the
simulation by introducing a constant force on the particle.
The lock-in amplifier used has a “range” feature that was
included in the improved model. This limits the frequency
difference between the NCO and the oscillator. Finally, the
modulation depth was capped at 5% to match the experimental
limit. The purple circles in Fig. 4(b) show the results of this
improved model. Much better agreement is now seen between
the simulation and experiment below 100 Hz. Once Bjgp is
increased above this in the simulation the CoM temperature is
unlikely to match the experimental results since the oscillator
becomes unstable similar to the experiment.

The lowest experimentally achieved temperature was an or-
der of magnitude lower for velocity damping than parametric
cooling. Our simulations show that this is partly due to other
modes in the detection signal, a drift of the central frequency
of the oscillator, and the particle being offset from the center
of the trap, which do not affect the velocity damping scheme.
Velocity damping acts on the particle from one direction;
therefore any changes in position can be compensated for by
a change in the feedback gain. In addition, any changes to the
central frequency are automatically tracked since the position
measurement is used as the feedback signal and other frequen-
cies in the detection signal do not couple to the z-mode. Even
in the case with only one mode and white detection noise,
the simulation shows the back-action on the particle due to
measurement noise is larger for parametric feedback than for
velocity damping. Similar trends are seen at other pressures,
particle radii, and oscillator frequencies.

VII. ENERGY DISTRIBUTIONS

A trapped nanoparticle obeying Eq. (1) is expected to have
an energy distribution given by the Boltzmann-Gibbs (ther-
mal) distribution:

1 _ &
— kg1,
P(E) = Zae o, (22)
where Z, is the normalization constant such that
f0°° P(E)dE = 1. By adding feedback to the oscillator
we can expect to alter the dynamics and change the energy
distribution of the particle.

In the case of velocity damping and PLL parametric feed-
back we can use the Stratonovitch-Kaminskii Limit theorem
to write a Fokker-Plank equation and calculate the probability
density functions (PDFs) [35,57,58]:

_ 2E(vo+vsp)
mwz nn 2
PEY = —ge S0, (23)
o
__E_ Gog
PEYM = e an o), (24)
o
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FIG. 5. Energy distribution calculated from the experimental
data. (a) Distributions from a parametrically cooled oscillator at two
different temperatures (markers) with expected analytical distribu-
tions (lines). The distributions agree with the analytical prediction.
(b) Oscillator cooled with velocity damping. These experimental
results also agree with the analytical prediction. All experimental
distributions and analytical predictions include a contribution from
detection noise [56].

where Z'¢ and ZP'L are the normalization constants. Detec-
tion noise in the feedback signal has been included in the
derivation of P(E)"“. (Appendixes C and D show derivations
of these in detail.) Both PDFs still describe a Boltzmann-
Gibbs distribution in contrast to an oscillator being cooled
parametrically without a PLL, which produces a highly
nonthermal distribution [36]. Figure 5 shows the energy distri-
bution for both velocity damping and parametric feedback at
different temperatures. These confirm that experimentally the
oscillator is still characterized by a Boltzmann-Gibbs distri-
bution when cooled parametrically or with velocity damping.
Due to the small SNR at low oscillator temperatures the dis-
tributions include some detection noise which manifests as
an exponential distribution for white uncorrelated noise. Also
shown are the expected distributions based on the measured
temperature and detection noise. Our simulations suggest that
as the SNR of the PLL becomes low the distribution will begin
to deviate from the analytic result. This is because the phase
error will be larger for small SNR, which is proportional to the
oscillator energy, and the PLL will not track the phase as ac-
curately. This will lead to larger energies experiencing greater
damping similar to the case of parametric feedback without
a PLL [36]. However, detection noise in the experiment will
make this deviation hard to measure.

VIII. CONCLUSIONS

We have shown velocity damping is a more effective
cooling scheme than parametric feedback using a PLL
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under identical experimental conditions. Our simulations
have shown that this is fundamentally a result of the larger
back-action from noise in the feedback signal in paramet-
ric feedback. However, additional signals due to the x- and
y-modes and higher order harmonics, an off-center particle
equilibrium position, and modulation of the particle frequency
due to instabilities in the trap potential were also shown to
heat the particle during parametric feedback. These have no
effect on the temperature from velocity damping since any
additional signals from the x- and y-modes do not couple to
the z-mode. The feedback force is applied in only one direc-
tion, and therefore it is independent of position. Additionally,
any modulation of the central frequency is automatically
expressed in the feedback signal. Furthermore, it was demon-
strated that for low-Q oscillators the delayed position method
for velocity damping will cool to lower CoM tempratures than
the differential filter. Practically, parametric feedback is easier
to implement in optical traps since it requires modulation of
only the trapping beam. Additionally, as the trapped parti-
cle will always be centered in the x-y plane of the optical
potential, it is not affected by heating due to off-center trap-
ping in these directions. In a Paul trap, additional electrodes
are required to cancel stray electric fields; therefore velocity
damping can be easily implemented by applying the feedback
signal to these electrodes. Kalman filtering could be used
for both parametric feedback and velocity damping to more
accurately predict the state of the particle. However, previous
studies have shown this is unlikely to make a large improve-
ment on the minimum achievable temperature of the particle
[24,46]. Last, unlike standard parametric cooling which leads
to nonthermal energy distributions, both schemes studied here
produce cold thermal distributions.
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APPENDIX A: WIENER FILTERING

Wiener filtering [40,41] provides the optimal method for
estimating one variable based on a noisy measurement of a re-
lated variable. If two variables x and y are related in frequency
space by Sy = |R(a))|2Syy and a measurement of x gives the
estimated variable ¥ = x +n where n is the measurement
noise then the filter that will best estimate y from % is [42,43]

W(w) = R*(w) 1 1

= Su(@) — S (@) *
R@)P + 48 R@) 1 + 32

(AL)

This filter can be thought of as containing two parts.
The first part estimates the value of y based on the known
relationship between x and y. The second bandpass filters
the measurement X to remove the measurement noise from
the signal. For predicting velocity from position we have
R(w) = —% giving Eq. (8). A caveat is that Wiener filtering
works only for stationary processes, which is not strictly true

when cooling a harmonic oscillator, since the transfer func-
tion is altered by the cooling process. However, the process
is nonstationary only during the transient period of initial
cooling; therefore the transfer function of the steady state can
be calculated using the applied feedback gain and used when
computing the Wiener filter. By applying the Wiener filter to
a time-dependent position measurement the velocity can be
estimated. This can be well approximated for most systems
using a differentiator. Although this will not predict the ve-
locity as well, it will cool to a similar temperature since the
particle response will filter out any noise signals outside the
linewidth. Additionally, a low-pass filter is required to prevent
the momentum variance from diverging (see Appendix B) in
the case of low-Q oscillators.

APPENDIX B: TEMPERATURE OF A VELOCITY
DAMPED PARTICLE

Starting from the equation of motion for an oscillator being
velocity damped [Eq. (2)] we transform into frequency space
using the Fourier transform:

[—aﬂ —iw(yo + ¥r) + a)g]x(a)) = % + iwypdx(w),

(B1)
where x(w) is the frequency dependent position response,
6x(w) is the measurement error fed back to the par-
ticle in frequency space and Fj, is now the thermal
noise in frequency space characterized by its spectral
density Sff = lim,%w(|17}h,w|2) = 2myokyTy where Eh,w =
\/L? fot F,,e” dt. Rewriting in terms of the mechanical sus-
ceptibility (the particle response to an external force), x,, =
{mlw} — @ — io(yo + yp)]) ™", we find

xX(@) = YmlFinw + imoypdx(w)]. (B2)
The spectral density is then given by S, =
00 iw
f_oo(x(t)x(O))e’ " dt so that
Ser = 1xml*[Syr + (moyss)* Sl (B3)

where S, = [ (8x(1)8x(0))e" dt is the detection noise
spectral density. Using the Wiener-Khinchin theorem the par-
ticle variance is then calculated to be

(x2)=/+oos d_CU
— xx:ft

B /-+oo Str 4 (mwyss)*Sm dw
= : @@
~oo m(w} — ?)” + [w(yo + yp)> 27

T

1
= —[Ss7 + (mwoysp) Syl ————————
2 ! (Yo + vrp)m?w}

kT w Y7o
mag vo+ v 2000+ b

Using the equipartition theorem then leads to Eq. (12).

The equipartition theorem is only valid in the high-Q
regime when applying velocity damping. This becomes less
applicable to the oscillator used here as yy, increases. As
¥sb + Yo approaches wy both (x?) and (p*) must be used when
calculated the CoM temperature. The momentum spectral

Snn- (B4)

023502-9



T. W. PENNY, A. PONTIN, AND P. F. BARKER

PHYSICAL REVIEW A 104, 023502 (2021)

density of the oscillator is given by

Spp = M | Xl [Sss + Moy’ Sl (BS)
In the high-Q limit S, = mza)(z)Sxx and the variance of mo-
mentum is easily found to be

2
N 4 mzwéLS,m. (B6)
Yo+ V1o 2000 + vsp)
From this is can be shown that the equipartition theorem
holds with mw} (x?) = (p*)/m. However, outside this limit the
second term in Eq. (B5) is given by

(p*) = kyTm

m2w4y]§bS,m
(03 — @) + (Yo + vpp)*0?
This term causes the integral to diverge when calculating
(p*) = [ Sppdw/2m. Practically, the feedback electronics
will contain a cutoff frequency, either by design or due to the
components used, preventing the momentum variance from
diverging. Reference [59] contains more in-depth discussion

and derivations for working with oscillators outside of the
high-Q regime.

(B7)

APPENDIX C: TEMPERATURE LIMIT AND ENERGY
DISTRIBUTIONS UNDER PARAMETRIC FEEDBACK
WITH A PLL

Calculating the effect of cooling with PLL parametric feed-
back is more complicated than for velocity damping. This
work follows closely derivations from Refs. [35,45]. Here we
will use the Stratonovitch-Kaminskii limit theorem to produce
two Fokker-Planck equations describing the evolution of the
PDFs of the slowly varying amplitude of the oscillator and
phase error of the PLL. First, we will assume the particle
motion to be sinusoidal and R(#) and ¢(¢) (the amplitude
and phase) vary on timescales much slower than the particle
motion such that R(r) < R(r) and ¢ (1) < wy. This leaves us
with the equations

x(t) = R(t) cos[wot + ¢(1)], (ChH
x(t) = —R(t)wo sin[wot + ¢(1)]. (€2)
We can transform these variables into R(¢) and ¢(¢) using

\2

R() =[x + (—) , (©3)
o
af X
¢(t) = —tan (—) — wot. (C4)
woX

Using these substitutions the equations of motion can be recast
in the form

R(t) = yo[—R sin*(wot + ¢)] — G sin{2[wot + 6p(t)]}woR

F
x cos(wot + @) sin(wot + ) — —2— sin(wot + @),
naw

(Cs)
$(t) = yol— sin(wot + ¢)] cos(wot + ¢)
— G sin{2[wot + Oo(t)]}wo cos® (wot + @)
Fth
— cos(wot + ¢). (C6)
Rmaw

The Stratonovitch-Kaminskii limit theorem now allows us
to average out the oscillations and look at just the slowly
varying dynamics [57]:

B Yo GwoR kpToyo 1
Rit)= LR 2 —te  (CT
== 3 cos@n+ ma? R € €N
. G(I)Q . 1
)= 22 Gn@v) + —x. c8
o) 1 sin(2v) + RX (C8)

where the substitution for the phase error, v(¢) = ¢(t) — 6y(2),
has been used and €, and x are two zero mean stochastic pro-
cesses where (e(1)e(r') = (x (1)x (1) = (Fuu()Fy(1")) /2masg.

We are more interested in the phase error than the particle
phase when considering the PLL dynamics. To calculate v we
must consider the PLL. In order to do this a simplifed PLL
and phase detector is considered where the loop control con-
tains only a proportional component and the phase detector is
implemented as a mixer.

A mixer acts by simply multiplying the two signals
together and excluding the high-frequency components to cal-
culate the phase. The signal comes from the noisy position
measurement of the particle defined as X(t) = R(t) cos[wot +
¢()] + n(t) where n(t) is uncorrelated white noise from
the detection, which we split into two quadratures n(t) =
ny(t) sin(wpt) + na(t) cos(wpt ). The signal from the local os-
cillator has the form xzo(t) = cos[wot + 6p(t)]. Setting the
local oscillator frequency to wrp = wy we find the product:

R
Xxp0 = E[sin(2w0t + 0o + @) + sin(¢p — 6y)]
n
+ 7‘[— cosawot + 6y) + cos(—6p)]

+ %[Sin(Zwot + 6) + sin(—6p)]. (C9)

After filtering the output of the mixer to remove the high-
frequency terms and applying a gain, K;, we are left with the
DC output of the phase detector known as the error signal:

R . ny ny .
e(t) =Ky |:5 sin(¢p — 6p) + > cos(—6p) + > sm(—@o)].
(C10)

With no measurement noise and in the limit of small phase
difference this is approximately proportional to the phase
difference between the local oscillator and the particle. Practi-
cally this is implemented digitally using quadratures such that
the phase difference is calculated accurately for large phase
difference as well. For a loop controller with only proportional
control we have F(s) = P. Therefore, the NCO phase will
obey the equation

. R . ny npy .
6y = K,PK, 5 sin(¢ — 6p) + > cos(—6y) + > sin(—0y)

:K|:sin(qb—90)+%n/:|, (C11)

where n' = % cos(—6p) + 7 sin(—6p) and K = KOPKd§ is
the total gain of the loop. For a first-order loop like this B35 =
K [37]. Note that here Bs;p is dependent on R; therefore as
the particle amplitude changes so will the bandwidth. This

is not true in the experiment or simulation where the phase
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detector output is independent of input amplitude. Finally, we
can define v as

. 1

V(t) = ¢ — Bagp [sin(u) + 1—Qni| (C12)

Substituting this into Eq. (C8) and assuming a small phase

error such that cos(2v) ~ 1, sin(2v) &~ 2v, and sin(v) = v

gives the equations for the slowly varying evolution of the
amplitude and phase error:

Y0 GawoR

R(t) = —?R 7

kpToyo 1

— C13
i BT €

. Gw,
() = TOv — Bapv + E(—Bgdgn +x).  (Cl4)

First, since Eq. (C13) is independent of the phase error in the
PLL we can directly write a Fokker-Planck equation describ-
ing the evolution of the probability density function (PDF),
P(R, t), of the particle amplitude. This is given by [58]

dP(R, 1) I[DVPR, )]  [DPP(R, 1)]
=— +
ot ot or?

. (C15)

where the first two Kramers-Moyal coefficients, D" and D®,
define the drift and diffusion respectively. We define these as

GwgR  kyTyyy 1
DOR) = —Lp - Z20T | 2200 (C16)
2 4 2mag R
k, Tt
DOR) = i)/zo. (C17)
2mwyg

The steady-state solution to the Fokker-Planck equation is
given by

R
P (R) = Nexp[th)/ D(l)(R/)dR/:I

Zma)o o  Guwy
kb T() Yo 4 8

= Nexp[— )R2 + ln(R)i| (C18)
with A being a normalization constant. Transforming
Eq. (C18) to be in terms of energy, E = imaw}R?, gives
Eq. (24):

P(E) = Ne a5, (C19)
where N’ is a new normalization constant. Note that
P(E)dE = P(R)dAR/2R when calculating the normalization
constant in the energy PDF. This PDF is the Boltzmann-Gibbs
distribution with an effective temperature given by

1 2y0

Teff=T01 %%To ,

2yo

(C20)

where the approximation is given in the limit G > %’, which
is true for the pressures we consider in this paper

Second, we consider Eq. (C14). Because n’ and y are zero-
mean, uncorrelated processes we can consider the dynamics
of the problem by averaging the terms out. In this case the
phase error evolves according to [35]

(C21)

with the solution

u(t) = e~ Bun= 500 (C22)

From this it can be seen that the solution will be stable only if

Ga)()
N < B3gp.

Therefore, the gain of the PLL for stable operation is lim-
ited by

(C23)

2B34p
(O] ’
which is Egs. (15). Combining Eqs. (C20) and (C24) we can

show that the temperature of the oscillator is limited by the
bandwidth of the PLL:

Giim = (C24)

Yo
Tim1 = To——,

(C25)
B3yp

which is Eq. (16).

APPENDIX D: ENERGY DISTRIBUTIONS
FOR UNCOOLED PARTICLES AND VELOCITY
DAMPED PARTICLES

Similar to Appendix C, energy distributions for an un-
cooled oscillator and a velocity damped oscillator can be
calculated using stochastic averaging and a Fokker-Planck
equation. For the thermal oscillator the procedure is identical
to that for a PLL except G = 0, the particle phase ¢ is kept as
the second variable and v is no longer a variable to consider.
Thus, the slowly varying dynamics are described by

. T
R(z)=—2R+];b°V2°R+e, (D1)
o) = I_?X' (D2)

Since R is again independent of ¢ we can solve the 1D
Fokker-Planck equation with Kramers-Moyal coefficients:

DY(R) = —%R—l—%;—e, (D3)
DOR) = kv Toyo (D4)
2mw}
to get the steady-state solution in terms of energy:
P(E) = N'e am, (D5)

which is the Boltzmann-Gibbs distribution.

For the case of a velocity damped oscillator, by transform-
ing Eq. (2) into a pair of coupled equations of the variables
R(t) and ¢(¢), then applying the Stratonovitch-Kaminskii
limit theorem leads to the slowly varying equations:

; Yo+ Vrb kpToyo 1 Vberm 1
R(t) = — :
® 2 mA R4 RTCTM
(D6)
o
o) = I_Q(X +n2), (D7)

where n; and n, are white noise Gaussian processes and
(m (O (1)) = (ma(t)na (1)) = y7,Sumd(t’ — 1)/2. Once again
R is independent of ¢, so we can solve the 1D Fokker-Planck
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equation with Kramers-Moyal coefficients:

keTovo | VipSun\ 1
DY(R) = _V0+Vbe b 0)/20 fb —. (D)
2 2may; 4 R
k T )/2 Snil
DAR) = 2 4 (DY)
2mawyg 4

giving the steady-state solution:

_ Yot Yib o
D(2>(R)< 2 R ) —Hn(R)]. (D10)

Again changing this to energy brings us to Eq. (23), given here
as

Poo(R) = Nexp|:

2E(yo+vfp)

PEY! = N'e it (D11)

which is is a Boltzmann-Gibbs distribution with an effective
temperature given by Eq. (12).
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