
1. Introduction
Particles in the magnetosphere can be subject to acceleration or scattering processes resulting in particles 
being lost to the upper atmosphere. Particles precipitating into the upper atmosphere undergo collisions 
which result in a cascade of free electrons. These free electrons undergo further collisions, losing energy 
until they can eventually collisionally excite atmospheric atoms and ions. The resulting de-excitation emits 
a photon of radiation which we observe as aurora at altitudes of 100 km.

Forecasting the location and intensity of the aurora is of interest to many stakeholder industries such as the 
aviation, defense, and energy sectors (Cannon et al., 2013). The free electrons and excited molecules in the 
upper atmosphere are known to degrade long-range radio communications in ultra-high frequency (UHF) 
wavebands (Harang & Stroffregen, 1940; Jones et al., 2017; Moore, 1951). Radio wave scattering can cause 
radar backscatter, resulting in radar clutter (Elkins, 1980; Jones et al., 2017), and can also result in broad-
band noise in radio receivers (Benson & Desch, 1991; Jones et al., 2017). Increased electron precipitation in 
the upper atmosphere can also cause increased absorption of radio signals in the ionosphere (Greenberg & 
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predicting the location of the auroral oval, with a relative operating characteristic (ROC) score of 0.82. The 
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Plain Language Summary Enhanced auroral activity at Earth can cause disruption to long-
range radio communications and ground-induced currents making forecasting the location of the auroral 
oval and probability of the aurora occurring of interest to many sectors such as aviation, energy, and 
defense. The UK Met Office uses a version of the OVATION-Prime 2013 auroral forecast model to deliver 
a 30-min forecast of the location and probability of observing the aurora. In this study, we evaluate the 
performance of the auroral forecasts against satellite observations of the aurora, captured by the IMAGE 
satellite between 2000 and 2002. Our analysis shows that the auroral forecast model performs well at 
predicting the location of the auroral oval, under nominal space weather conditions, but the probabilities 
of aurora occurring forecast by the model tend to be underpredicted, in other words, the aurora occurs 
more frequently than the forecast model predicts.
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LaBelle, 2002; Jones et al., 2017). Ionospheric currents associated with enhanced auroral activity can induce 
currents in the ground which can damage ground-based infrastructure such as electricity supply networks 
(e.g., Cannon et al., 2013; Erinmez et al., 2002; Freeman et al., 2019; Smith et al., 2019). In addition, fore-
casting the occurrence of visible aurora is of importance for auroral tourism and is a key tool in promoting 
public awareness and engagement with space weather, through projects such as Aurorasaurus (MacDonald 
et al., 2015) and AuroraWatch UK (Case et al., 2017).

The auroral oval is highly dynamic with activity driven by factors both internal (e.g., geomagnetic sub-
storms) and external to the magnetosphere (e.g., the interaction with the solar wind). Prolonged periods of 
southward directed interplanetary magnetic field (IMF) can increase the open flux content of the magne-
tosphere which causes the auroral oval to expand to lower latitudes (Cowley & Lockwood, 1992). During 
substorms, the sudden onset of reconnection in the magnetotail leads to a rapid brightening and widening 
in the nightside auroral oval which spreads eastwards and westwards during the substorm expansion phase 
(e.g., Akasofu, 1964).

The OVATION auroral forecast model (Newell, Sotirelis, & Wing, 2010; Newell et al., 2002) is an empirical 
model which predicts the location of the auroral oval based on the upstream solar wind conditions. The most 
recent version, OVATION-Prime 2013 (OP-2013; Newell et al., 2014) uses average particle precipitation maps 
obtained from Defense Meteorological Space Program (DMSP) satellites (Hardy et al., 1984, 1985) spanning 
21 years between January 1, 1984 and December 31, 2005, UV auroral data from the Global Ultraviolet Imager 
(GUVI) instrument onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) 
satellite and real time solar wind conditions measured at the L1 point to produce maps of the predicted auro-
ral flux. A version of the OP-2013 auroral forecast model has been implemented in daily operations of leading 
space weather forecasting centers including the U.S. National Oceanic Atmospheric Administration (NOAA) 
Space Weather Prediction Center (SWPC), the U.S. Department of Defense, Space Weather Operations Cen-
tre (Jones et al., 2017), and the UK Met Office. The OP-2013 model was originally supplied to the Met Office 
by SWPC, however, the operational implementations at the Met Office and SWPC have since diverged.

Forecast evaluation is an important step in both the implementation and development of space weather 
forecast models. Model verification can provide information on the skill, accuracy, and reliability of mod-
els and also provides quantitative benchmarks to compare different forecast models. Previous verification 
studies have evaluated the performance of the earlier generation aurora forecast model, OVATION-Prime 
2010 (Kosar et al., 2018; Lane et al., 2015; Machol et al., 2012; Mitchell et al., 2013; Newell, Sotirelis, Liou, 
et al., 2010; Newell, Sotirelis, & Wing, 2010). Machol et al. (2012) and Newell, Sotirelis, Liou, et al. (2010) 
evaluated the auroral forecasts of OP-2010 against ultraviolet images of the aurora from the instruments 
onboard the Polar satellite. Newell, Sotirelis, Liou, et al. (2010) compared the instantaneous and hourly aver-
aged predicted auroral power to the observed power estimated from the Polar Ultraviolet Imager (UVI) data. 
The auroral power predicted by OP-2010 was found to be correlated with the observed auroral power from 
Polar UVI with a correlation coefficient 2 56%r   for the instantaneous power forecast and an 2 58%r   for 
the hourly averaged auroral power, demonstrating that just over half of the observed auroral power can be 
forecast by the OP-2010 model. Mitchell et al. (2013) found that OP-2010 described 47% of the variance in 
the Polar UVI nightside auroral power while a similar auroral model, OVATION-SuperMag (OVATION-SM) 
which uses averaged DMSP precipitation maps and ground magnetometer data from SuperMAG, described 
71% of the nightside variance. Machol et al. (2012) used binary event analysis to evaluate the forecasts from 
OP-2010 and the suitability of the model as a tool for forecasting visible nightside aurora. Machol et al. (2012) 
compared the nightside auroral forecast to the boundaries derived from a fixed brightness threshold of the 
nightside auroral emission in the Polar UVI data. The result of this verification study found that the OP-2010 
had a hit rate of 0.58 (the proportion of correct positive forecasts out of the total positive observations of au-
rora), a false alarm rate of 0.14 (the proportion of aurora forecasts which were not observed) and an overall 
accuracy of 0.86 (the proportion of correct positive and negative forecasts over the total number of forecasts). 
Lane et al.  (2015) performed a comparison study of the energy flux outputs forecast from three different 
models: OP-2010, the Kp-based auroral forecast model by Hardy et al. (1991), and a ring-current model from 
the Space Weather Modeling Framework (Fok et al., 2001; Tóth et al., 2005). Similarly to Machol et al. (2012), 
Lane et al. (2015) also used fixed thresholds to define the equatorward auroral boundary defined from parti-
cle precipitation measurements from the DMSP satellites. The authors presented the results in terms of the 
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prediction efficiency, which is the model's ability to describe the percentage variance in the observed data 
set. The prediction efficiencies of OP-2010 were found to be 0.55 and 0.58 for the threshold values of 0.4 

2 1erg cm s   and 0.6 2 1erg cm s  , respectively.

Verification is important in monitoring model performance and also acts as a benchmark against which 
proposed improvements to the model can be tested. Verification techniques that are routinely used in ter-
restrial weather forecasting are now being applied to space weather forecast models. Binary event analysis 
is a method of comparing model forecasts with a ground-truth observational data set and is widely used in 
many applications. The approach of using binary event analysis has been applied to evaluate nowcast and 
forecast models, for example, in the verification study of OP-2010 by Machol et al. (2012) and verification 
studies of other space weather models including predicting magnetopause crossings (Lopez et al., 2007; 
Welling & Ridley, 2010), radiation belt models (Forsyth et al., 2020; Ganushkina et al., 2015, 2019), tempo-
ral changes in the induced ground magnetic field ( / )dB dt  (Pulkkinen et al., 2013), and solar flare forecasts 
(Barnes et al., 2016; Kubo et al., 2017; Leka et al., 2019; Murray et al., 2017; Sharpe & Murray, 2017).

In this study, we present an evaluation of auroral forecasts from the version of OP-2013 that was being used 
operationally at the Met Office, until December 2020. We compare the auroral forecasts from the model 
against auroral boundaries derived by Longden et al. (2010) from global FUV images of the auroral oval 
obtained by the IMAGE satellite. In particular, and in contrast to Lane et al. (2015), Machol et al. (2012), and 
Newell, Sotirelis, Liou, et al. (2010), we examine the output auroral probabilities from the operational au-
roral forecast, rather than the physical quantities (the predicted auroral power, energy, or auroral flux) pro-
vided by the underlying OP-2013 model. We assess the model performance in predicting the location of the 
auroral oval using binary event analysis and present the results in relative operating characteristic (ROC) 
curves. We also assess the forecast probabilities of aurora occurring output by the model using reliability 
curves. Our results show that, overall, the model performs well at predicting the location of the auroral oval, 
but the forecast probabilities tend to underpredict auroral occurrence. Furthermore, we show that the mod-
el results are substantially less reliable on the dayside and during periods of enhanced geomagnetic activity.

2. Data and Evaluation Methods
2.1. Forecast Model: OP-2013

Both the OP-2010 and OP-2013 versions of the auroral forecast model (Newell, Sotirelis, & Wing, 2010; 
Newell et al., 2009, 2014) predict the precipitating electron and proton auroral flux based on upstream solar 
wind conditions, measured at L1. Newell et al. (2009) created averaged particle precipitation maps of the 
auroral oval collected by the Special Sensor J instruments onboard the DMSP satellites and categorized the 
DMSP particle precipitation energy spectra into four categories of aurora: mono-energetic, broadband and 
diffuse electron aurora and ion aurora. Newell et al. (2009) determined a linear scaling between the electron 
and proton flux from the DMSP data with an empirically derived solar wind coupling function (Newell 
et al., 2007). The upstream solar wind data required includes the zB  and yB  components of the IMF, the 
total magnetic field strength, the solar wind velocity, and the IMF clock angle. In each model grid point, the 
particle flux was calculated as a function of season and the type of aurora. For OP-2013, additional UV au-
roral data from the GUVI instrument onboard the TIMED satellite is included to improve the performance 
of the model at higher values of Kp, between Kp 5 and 8 (Newell et al., 2014). The resultant maps of linear 
scaling coefficients are then used to predict the precipitating electron and proton fluxes under all upstream 
conditions. Additional improvements to the model made in the upgrade from OP-2010 to OP-2013 include 
further noise reduction and a smoother data interpolation in the post-midnight magnetic local time (MLT) 
sectors (Newell et al., 2014). We direct the interested reader to Newell, Sotirelis, & Wing (2010) and Newell 
et al. (2007, 2009, 2014) for full details of the OP-2010 and 2013 models.

The Met Office operational implementation of the version of OP-2013 assessed in this study, assumes a fixed 
30-min propagation time for the solar wind measured at the L1 point to arrive at Earth. In this operational 
version, the combined precipitating particle flux from all types of aurora at each grid point is linearly scaled 
into an estimated probability of aurora occurring which is interpreted as the probability of an observer 
seeing the visible aurora. The linear conversion of auroral flux to probability implemented in the version of 
OP-2013 at the Met Office are as originally developed by SWPC and could be further refined. The forecast 
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probabilities were tuned by SWPC in response to citizen science observations under the assumption that the 
forecast probabilities of aurora occurring were mainly used by members of the public and may underpredict 
the probability of aurora occurring (Rodney Viereck, private communications). The results of this study 
could be used to tune the forecast probability to optimize the forecast reliability. Further details on the con-
version from the predicted auroral flux to the probability of aurora occurring is included in the supporting 
information. The operational implementation provides an auroral forecast for both the northern and south-
ern hemispheres 30 min ahead of the current time.

The original OP-2013 Interactive Data Language code was supplied to the Met Office by SWPC. In 2016, the Met 
Office converted the code to Python and returned the Python version of OP-2013 to SWPC. In October 2020, 
SWPC implemented an upgraded version of OVATION termed OVATION 2020 which, again, differs from the 
Met Office implementation. OVATION 2020 uses an improved geomagnetic field model to provide a more accu-
rate auroral location. In addition, OVATION 2020 provides the modeled energy flux in 2/ergs cm  as well as the 
scaled probability of seeing the aurora. SWPC have also implemented an estimate of the solar wind driving based 
on Kp data to use as an alternative to run the model when upstream solar wind data is unavailable. Details of the 
SWPC auroral forecast using OVATION 2020 can be found on the SWPC website.

The version of the OP-2013 model evaluated in this study was used operationally at the Met Office until 
December 2020. The Met Office currently use an alternative Kp-driven 3-day forecast version of the OP-2013 
model. We note that the Kp-driven version was developed at the Met Office independently of the SWPC 
Kp-driven model. The Met Office may return the 30-min forecast version of OP-2013 evaluated in this study 
to operational use in the future to operate in parallel with the Kp-driven 3-day forecast version. In this study, 
we refer to the 30-min auroral forecast as a nowcast to distinguish it from the alternative 3-day auroral fore-
cast which is currently in operation at the Met Office.

In this study, we produce hindcasts of the output from the 30-min nowcast version of OP-2013 used at the 
Met Office using historic solar wind data for the period between May 2000 and October 2002, not auroral 
forecasts that were issued in near real time by the Met Office. Figure 1a shows an example output of the 
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Figure 1. Panel (a) shows an example output forecast from OP-2013 showing the northern hemisphere auroral forecast 30 min ahead for 23:00 on the 
September 25, 2000, in geographic coordinates. The model output was produced using Advanced Composition Explorer (ACE) solar wind data. The color scale 
shows the probability of aurora occurring with green showing lower probability and red showing higher probabilities. The day/night terminator is indicated on 
the map as the line separating the dark and light faces of Earth and the estimated total hemispheric auroral power is shown in the top right hand corner. Panel 
(b) shows the OP-2013 forecast (color shading) for the same date and time as in panel (a) but plotted in magnetic coordinates (magnetic latitude by magnetic 
local time [MLT]). The black lines show the equatorial and poleward boundaries of the aurora from Longden et al. (2010) for the forecast date and time. 
We note that in panel (a), the central meridian is centered on 2300 local time and in panel (b) the central meridian is centered on 0000 local time and so the 
contours are effectively rotated by a 1-h MLT sector.
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OP-2013 northern hemisphere 30 min auroral forecast from September 25, 2000. The model output was 
produced using Advanced Composition Explorer (ACE) solar wind data. The auroral oval is plotted on geo-
graphic coordinates with the color scale showing the forecast probability of aurora occurring.

2.2. Observational Data: Auroral Boundaries Derived From IMAGE FUV Data

The NASA IMAGE satellite was in operation between 2000 and 2005 in a highly elliptical, precessing polar 
orbit which enabled it to capture images of the northern and southern polar regions. The orbit had an initial 
perigee of 1,000 km and an apogee of 44,000 km (∼7 Re; Mende, Heetderks, Frey, Lampton, Geller, Habrak-
en, et al., 2000). Between 2000 and 2002, the orbital apogee was situated over the northern hemisphere. 
IMAGE carried a far-ultraviolet (FUV) wideband imaging camera (WIC) sensitive to emission between 140 
and 190 nm (Mende, Heetderks, Frey, Lampton, Geller, Abiad, et al., 2000) which took images of the Earth 
approximately every 2 min, determined by the spin of the spacecraft (Burch, 2000).

Using IMAGE FUV data, Longden et al.  (2010) developed an automated technique to identify the pole-
ward and equatorward luminosity boundaries of the auroral oval. The IMAGE FUV data was converted 
from geomagnetic coordinates to altitude-adjusted corrected geomagnetic coordinates (AACGM; Baker & 
Wing,  1989). Longden et  al.  (2010) created a latitudinal intensity profile of auroral emission in each of 
the 24 magnetic local time (MLT) sectors and fitted these profiles with both single and double Gaussian 
profiles. The profile fits to the data were evaluated using the reduced  2 statistic and the best fit function 
retained. The poleward and equatorward auroral luminosity boundaries (PALBs and EALBs, respectively) 
are defined as the poleward and equatorward the points on the Gaussian curve where the auroral intensity 
drops to half the peak value (the full width half maximums [FWHMs]) of the best fitting Gaussian function, 
offset from the center of the Gaussian peak. We direct the interested reader to the full description of the 
method published in Longden et al. (2010). The boundaries determined by Longden et al. (2010) provide a 
single location of the poleward and equatorward boundaries of the auroral oval in each MLT sector, without 
any assumption of the global shape of the auroral oval. Auroral boundaries were identified for each global 
auroral image, with a cadence of 2 min.

In this study, we use the poleward and equatorward auroral luminosity boundaries determined from 
the IMAGE WIC data by Longden et al. (2010) as a ground-truth observational data set to compare with 
the model forecast probability maps output from OP-2013. The poleward boundary identifications from 
Longden et al. (2010) have been shown to be co-located with the poleward emission boundary measured 
from DMSP within 3° on average in all MLT sectors, making the boundaries a suitable observational data set 
to compare with the OP-2013 forecasts. The auroral boundary data available for the northern auroral oval 
spanned 30 months from May 2000 to October 2002 (Chisham, 2017). Figure 1b shows a comparison of the 
probability forecast maps from OP-2013 to the poleward and equatorward auroral boundaries determined 
by Longden et al. (2010) in MLT and magnetic latitude (MLAT) coordinates. The colors show the 30-min 
forecast of the probability of aurora occurring as output from OP-2013. Gray regions indicate a forecast 
probability of aurora occurring of less than 1%. The black lines show the corresponding observed bound-
aries. We note that, in this example, there is a lack of observed auroral boundaries in some dayside MLT 
sectors. While the method of Longden et al. (2010) aims to identify the poleward and equatorward auroral 
luminosity boundaries in each MLT sector, the number of successful boundary identifications in dayside 
sectors is much lower than on the nightside (Mooney et al., 2020). The dayside aurora tends to be dimmer 
and thinner (Carbary, 2005; Holzworth & Meng, 1975) and is more contaminated with dayglow making it 
more difficult to identify the dayside auroral boundaries. In this study, we only evaluate the model where 
there are corresponding observational auroral boundaries.

2.3. Verification Method

In this study, we have produced the OP-2013 auroral forecasts spanning the period of May 2000–October 
2002 (Marsh & Mooney,  2021), coinciding with the available observational auroral boundary data from 
Longden et al. (2010), using historic solar wind data measured by the ACE satellite, provided by the NOAA. 
Each forecast requires 4 h of input solar wind data, thus in order to ensure that the forecasts were inde-
pendent of one another, we down-sampled our forecast data set to four hour resolution. To match the model 
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forecast and the observational ground-truth auroral boundaries, we use the auroral boundaries that were 
closest in time and within 2.5 min of the 4-h separated forecast time. This resulted in 3,360 corresponding 
forecast and observation pairs. The MLAT range of the OP-2013 data spans 50°–89.5°and covers 24 h of 
MLT, with a grid resolution of 0.25 MLT by 0.5° MLAT.

In this evaluation study, we use two verification techniques that are widely used in terrestrial weather 
forecast verification. First, we apply binary event analysis to evaluate how well the OP-2013 model discrim-
inates between auroral and non-auroral regions via comparison with the Longden et al. (2010) boundaries. 
This evaluates how well the model performs as a deterministic forecast for predicting the location of the 
auroral oval. We test over a range of forecast probability levels, between 0% and 100% in 10% increments. At 
a particular level, for each available forecast and observation pair in each grid cell with a forecast probabil-
ity that exceeds the level, we determine whether or not the aurora was observed at that grid cell. We repeat 
this test to build up truth tables for different forecast probability thresholds. If the forecast probability of 
aurora occurring is equal to or greater than the set level and aurora was also observed, it counts as a hit in 
our truth table. If the forecast probability of aurora occurring is equal to or greater than the set level but 
aurora was not observed, it counts as a false alarm. If the forecast probability of aurora occurring is less 
than the set level and aurora was observed, it counts as a miss. If the forecast probability of aurora occur-
ring is less than the set level but aurora was not observed, it counts as a correct negative. From the truth 
tables for each level, we evaluate the hit rate (hits/[hits + misses]) and false alarm rate (false alarms/[false 
alarms + correct negative forecasts])). These hit rates and false alarm rates are combined and presented 
on ROC curves (Mason, 1982; Swets, 1988; Swets et al., 1955). ROC curves are obtained by plotting the 
calculated hit rate against the false alarm rate from the truth table, for each 10% probability level. A ROC 
score, calculated as the fractional area under the ROC curve, provides a quantitative summary of the model 
discrimination indicated by the ROC plot. A ROC score between 0.5 and 1 indicates that the hit rate exceeds 
the false alarm rate for most probability levels and that the model is skillful in discriminating events from 
non-events.

Second, we assess the validity of the forecast probabilities against the observed occurrence of the aurora 
using reliability (or attribute) diagrams (Hsu & Murphy, 1986; Jolliffe & Stephenson, 2012; Wilks, 2006). The 
forecast model would be completely reliable if, over all the occasions during the assessment period when 
the forecast probability was p, the aurora was observed p% of the time. However, if the forecast probabilities 
and observed frequencies of occurrence do not have a one-to-one correspondence, the reliability diagram 
provides information on whether the model is under forecasting or over forecasting the probabilities. This 
information can be used to re-calibrate the forecast probabilities by rescaling the probability of aurora oc-
curring against the observed occurrence of aurora. We provide suggestions of how the forecast probabilities 
of aurora occurring may be adjusted based on the results of this study in Section 4.2. Attribute diagrams are 
similar to reliability diagrams, showing the observed frequency of an event against the forecast probabilities 
but they include additional information such as the average, climatology value of the observations and fore-
casts which can be used to assess the forecast model in more detail. Further detail on ROC and reliability 
analysis is provided in the supporting information.

ROC and reliability analysis are standard methods used in forecast verification by the weather community 
(e.g., Dube et al., 2017). They have been used to evaluate flare forecasts from the Met Office Space Weather 
Operations Centre (MOSWOC) in studies by Murray et al. (2017) and Sharpe and Murray (2017), to evaluate 
the performance of a new radiation belt forecast model (Forsyth et al., 2020) and to assess a sudden storm 
commencement probabilistic forecast model (Smith et al., 2020).

The spherical geometry of the auroral forecasts means that the area of each grid cell is not uniform. This 
can influence how well the forecast is judged to perform. For example, near the pole, where aurora are not 
generally expected to occur, there is a greater concentration of grid cells than at 60°, where there is a great-
er likelihood of auroral activity. To account for this, the inputs into our ROC and reliability analysis were 
weighted by the cosine of the latitude of each grid cell (e.g., Young, 2010).
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3. Results
In the following section, we present the results of our evaluation of the 
OP-2013 model using the locations of the auroral boundaries derived 
from IMAGE WIC data. In Section 3.1, we present the results of the anal-
ysis of 2.5 years of data between May 2000 and October 2002 in all MLT 
sectors. In Sections 3.2 and 3.3, we present the results of the verification 
during the four seasons of 2001 and in different MLT sectors around the 
auroral oval to test for seasonal and spatial variations in the forecast per-
formance. In Section 3.4, we present the results of the verification during 
geomagnetically active times for different values of Kp.

3.1. Model Evaluation Between May 2000 and October 2002

Figure  2 shows the ROC curve from the comparison of 2.5  years of 
model forecast and observation pairs. The curve is constructed by set-
ting the probability threshold in 10% increments to calculate the hit rates 
and false alarm rates. The ROC curve shown in Figure 2 shows that, over 
the 2.5-year verification period, the model performs well and has a ROC 
score (fractional area under the curve) of 0.82. At each 10% probability 
increment the model hit rate is higher than the false alarm rate with a 
maximum difference between the hit rate and false alarm rate of 0.6 for 

probabilities exceeding 5%. Thus, the forecasts perform well at predicting the location of the aurora overall. 
The probability bin centered on 10% has the largest difference between the hit rate and the false alarm rate, 
also referred to as the Peirce Score (Peirce, 1884). This shows that a probability of between 5% and 15% is the 
threshold at which the OP-2013 model performs the best at discriminating between regions of aurora and 
no aurora, compared to the observed auroral boundaries.

Figure 3 shows the reliability diagram for the full 2.5 year verification 
period, plotting the occurrence rate from auroral observations for given 
forecast probability ranges. Figure  3 shows that the aurora are largely 
underpredicted, with occurrence frequencies greater than the forecast 
probabilities for probabilities up to 80%. The lowest non-zero probabil-
ities of 10% and 20% are underpredicted by a factor of 6 while the 80% 
probabilities are only underpredicted by a few percent. The 90% and 100% 
probability bins slightly overpredicted the probability of aurora occurring 
with the highest probability value of 100% overpredicting the occurrence 
by 20%, a factor of 1.25.

The dotted horizontal and vertical lines indicate the observed climatolog-
ical frequency of occurrence of aurora is 0.30, calculated as the fraction 
of positive auroral observations that the aurora did occur out of the total 
number of auroral observations. The histogram in Figure  3 shows the 
number of data points in each forecast probability bin. The histogram 
shows that the probabilities forecast by the OP-2013 model are distrib-
uted across all probability bins and are not clustered around the clima-
tology value. The lowest forecast probability bin contains all forecasts 
issued with a probability of 5% and lower and has the largest number 
of data points. This bin is dominated by the grid points where the main 
auroral oval is rarely or never predicted to occur, for example, at low and 
high MLATs. The large number of forecasts with a low probability of au-
rora occurring in this bin correspond to a large number of observations 
where the aurora was not observed to occur which reduces the overall 
observed climatology (mean occurrence). The solid pink diagonal line of 
no skill lies mid-way between the diagonal line of perfect reliability and 
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Figure 2. The result of the relative operating characteristic (ROC) 
analysis from the 2.5-years of model and observation comparisons. Each 
point on the ROC curve corresponds to the hit rate versus false alarm rate 
in each 10% threshold bin. The high ROC score of 0.82, defined by the 
fractional area under the ROC curve, shows that the model performs well 
at predicting the location of the auroral oval.

Figure 3. Reliability diagram showing the results from the comparison 
of 2.5 years of auroral forecasts against observations. The histogram 
shows the distribution of the forecast probabilities over the 2.5-year 
period. The gray diagonal line indicates the perfect reliability line of 
1:1 correspondence between the forecast probabilities and the observed 
aurora. Regions where the pink reliability line lies above/below the gray 
diagonal line indicate that the model is under forecasting/over forecasting 
the occurrence of aurora. The vertical and horizontal dashed lines 
show the observed climatology. The solid pink diagonal line of no skill 
delineating the shaded region, lies mid-way between the diagonal line of 
perfect reliability and the horizontal climatology line. Data points within 
the shaded region contribute positively to the Brier skill score.
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the horizontal climatology line. Points on the reliability curve which lie above/below the line of no skill, 
contribute positively/negatively to the Brier skill score. Pink shading indicates the region where the forecast 
is skillful compared with the in-sample climatology. The majority of the points on the reliability line lie in 
the shaded skill region except for probabilities of 10% and 20% which appear to be extremely underpredicted 
by the OP-2013 model. The Brier skill score (Brier, 1950; Murphy, 1973) of −0.03 indicates that overall, the 
OP-2013 model is not more skillful at predicting when the aurora occurs than simply always forecasting the 
within-sample climatology of 0.30. While the Brier skill score indicates that the OP-2013 model is not more 
skillful than using a climatological forecast, the attributes diagram shows that the majority of forecast prob-
abilities are skillful. The discrepancy in the conclusions drawn from these two analyses metrics highlights 
the increased understanding of the model performance that can be gained from using the full attributes 
diagram rather than only using value of the Brier skill score.

3.2. Seasonal Verification During 2001

Seasonal variations in ionospheric conductivity as a result of the solar zenith angle affects the auroral pre-
cipitation (Liou et al., 2001; Newell, Sotirelis, & Wing, 2010; Newell et al., 1996). The seasonal variation in 
the auroral emission was examined by Newell, Sotirelis, & Wing (2010) and implemented in the OP-2013 
model by calculating the the predicted auroral flux as a function of season. Here, we have evaluated the 
seasonal variability in the model performance. For the seasonal analysis we use data and forecasts from Feb-
ruary 5, 2001 into February 4, 2002 as this is the only complete year of WIC observational data including all 
seasons. The seasons were defined similarly to the those used by Newell, Sotirelis, & Wing (2010) as being 
90 days centered on the equinoxes and solstices. The start and end dates of each season were then adjusted 
slightly to include the six uncategorized days that fall between the seasons by this definition. The seasonal 
dates used in the analysis are as follows: spring is between February 5 and May 6; summer is between May 7 
and August 8; autumn is between August 9 and November 6; winter is between November 7 and February 4.

Figure 4a shows the ROC curves for each season in 2001–2002. There is some seasonal variation in the ROC 
scores in Figure 4a, with ROC scores ranging from 0.79 to 0.86 however these scores are similar and indicate 
that the model performs well in identifying the auroral oval in all seasons. The results of the ROC scores 
for each full season between May 2000 and October 2002 are provided in the supporting information. On 
average, the spring and winter ROC scores are consistently highest, with spring and winter seasons having 
mean ROC scores of 0.86, while the summer ROC scores were the lowest, with a mean of 0.77 across the 
three summer periods.
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Figure 4. (a) The results of the relative operating characteristic (ROC) analysis for each season in 2001. The high ROC scores for each season demonstrate that 
the OP-2013 model performs well all year round. (b) The results of the reliability analysis for each season in 2001. The histogram shows the proportion of data 
in each season, for each probability bin. In both panels, the results for spring, summer, autumn, and winter are shown by dotted pink, dot-dash green, dashed 
orange, and solid blue lines, respectively.
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The seasonal variation in the ROC score may be indicative of the model performance but it may also be due 
to the seasonal variations in the identification of the auroral boundaries. During the summer months, the 
increased UV contamination from reflected sunlight reduces the number of successfully identified auroral 
boundaries in the WIC data. We also note that the ROC scores of summer and autumn 2002 are reduced 
compared to the same season in previous years. In summer 2002, the IMAGE satellite suffered damage to 
the boom which affected the satellite pointing and resulting in an increased uncertainty in spacecraft point-
ing (Frey, 2010) and thus, increased uncertainty and thus in the location of the auroral boundaries.

Figure 4 shows the reliability diagram for each of the seasons in 2001. The seasonal reliability is consistent 
with the overall reliability shown in Figure 3. In all seasons, the occurrence frequency increases rapidly 
with probability, thus there is an underprediction of the auroral occurrence. For autumn and spring fore-
casts, the observed auroral occurrence plateaus at  0 8.  and  0 9. , respectively, for midrange forecast proba-
bilities between ∼20% and 70%, whereas the occurrence rate in summer and winter increases steadily with 
probability above a forecast probability of 20%. The autumn forecasts are overpredicted at the higher prob-
ability values of 70% and above. We note that there is no significant difference in the solar or geomagnetic 
activity between the seasons in 2001. Generally, there are a higher number of auroral boundary observations 
to compare with the OP-2013 model forecasts in winter, as indicated by the winter histogram in Figure 4, 
however, this is not expected to have a considerable effect on the verification results.

3.3. MLT Dependence

The shape of the auroral oval varies with MLT sector. Typically, the dayside auroral oval tends to be thinner 
and dimmer (Carbary, 2005; Holzworth & Meng, 1975) while the nightside aurora generally extends over 
a wider MLAT range and is more variable with enhanced auroral precipitation linked to magnetospheric 
activity such as substorms. Here, we evaluate the performance of the OP-2013 model in the noon, dawn, 
dusk, and midnight regions. Each region is defined as 3 h of MLT centered on MLT sectors 00, 12, 06, and 
18. The ROC curves of each 3-h MLT sector are shown in Figure 5 and show that the model performs well 
in the dawn, dusk and midnight sectors, with ROC scores of between 0.78 and 0.86. However, the ROC score 
from the noon region is considerably lower, at 0.59 showing that forecast model does not perform as well in 
this region. Using a probability threshold of 10% to indicate the presence of aurora only gives a hit rate of 
0.2, much lower than the hit rates of 0.6–0.85 seen in the other MLT sectors. The results in the truth table 
for the noon analysis are dominated by missed forecasts and correct rejections where the aurora is not fore-
cast by the model. The lack of forecast aurora in this region may be because of a data gap in the underlying 
DMSP particle precipitation data, due to the dawn-dusk orbit of the spacecraft. The midnight data gap was 
interpolated over in the upgrades between OP-2010 and OP-2013 (Newell, Sotirelis, & Wing, 2010), however, 
there are no details on whether the corresponding dayside data gap was interpolated.
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Figure 5. (a) A relative operating characteristic (ROC)analysis for four longitudinal regions of the auroral oval. (b) A reliability analysis for four longitudinal 
regions of the auroral oval, each spanning 3 h of magnetic local time (MLT). The MLT sectors for midnight (23–01), dawn (05–07), dusk (17–19), and noon 
(11–13) and are shown by dotted navy, solid orange, dot-dashed pink, and dashed light blue respectively.
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Figure 5b shows the reliability diagrams for each 3-h MLT region. The reliability curves for the dawn, dusk, 
and midnight sectors are similar to those of the 2.5-year verification shown in Figure 3 with forecast prob-
abilities below 70%–80% being largely underpredicted and greater than 80% being overpredicted. The reli-
ability diagram from the noon MLT sectors is quite different to the other MLT sectors. The reliability curve 
from the noon MLT sectors shows that the OP-2013 model tends to underpredict when forecasting aurora 
with probabilities less than 30% and overpredict when forecasting aurora with probabilities between 30% 
and 60%; whereas, aurora was not forecast with probabilities 70%.

3.4. Kp Dependence

In the following section, we evaluate the performance of the OP-2013 aurora forecast model under different 
levels of geomagnetic activity based on Kp. Kp levels of 5 and above are generally considered to be geomag-
netically active periods and so it is important to evaluate the performance of the OP-2013 model during 
these levels of geomagnetic activity which can have a real impact on daily services at Earth. The OP-2010 
model was known to break down at higher levels of geomagnetic activity of Kp  5 (Newell et al., 2014). 
This led to the inclusion of additional GUVI data at higher Kp levels (Kp 5–8) as part of the upgrade to the 
OP-2013 generation.

All corresponding forecast and observation pairs between May 2000 and October 2002 were divided into 
subsets based on the level of Kp measured at the time. The results of the ROC analysis, including all the 
ROC scores for each Kp level, are shown in Figure 6. The ROC scores generally decrease for increasing levels 
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Figure 6. (a) The results of the relative operating characteristic (ROC) analysis for the OP-2013 model during different levels of geomagnetic activity spanning 
Kp = 1–8. (b) The reliability diagram for the OP-2013 model during different levels of geomagnetic activity spanning Kp = 1–4. (c) The reliability diagram for 
the OP-2013 model during different levels of geomagnetic activity spanning Kp = 5–8.
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of Kp, with Kp = 1 having a ROC score of 0.83 and Kp = 8 having a ROC score of 0.55. The ROC scores for 
Kp = 1–6 are within 0.05 of each other, implying that the model performs relatively well at discriminating 
between auroral and non-auroral regions at these levels of activity. However, at the highest activity levels 
of Kp = 7 and Kp = 8, the ROC score drops to 0.7 and 0.55, respectively. While these ROC scores indicate 
that the forecast has some skill in identifying where the aurora will be, these forecasts are less skillful than 
at lower activity levels. The results for Kp = 8 show that the hit rates are lower and the false alarm rates 
are higher compared to the results for lower Kp levels, indicating that the model is predicting that aurora 
will occur but not always in the correct locations, compared to the observed auroral boundaries. It is not 
uncommon for models which perform well within a nominal range of average conditions to not perform as 
well during extreme events. Despite the improvements made to the OP-2013 model using GUVI data during 
higher levels of Kp, these observations are likely limited due to the rarity of periods of extremely high Kp. It 
would be informative to repeat this analysis with the predecessor OP-2010 model to quantify the improve-
ment made by including the GUVI data at high levels of Kp.

Figures 6b and 6c show the reliability diagrams for Kp levels of 1–8. The reliability curves for Kp levels 1–5 
plateau at an observed frequency of 0.8–0.9 for forecast probabilities of 30% and above. The reliability 
curves for Kp levels 6–7 plateau at a lower observed frequency of aurora of 0.7–0.8 for forecast probabil-
ities of 10% and above. Kp = 8 shows the reliability curve dropping with increasing probability such that 
the observed occurrence of high probabilities is much lower than the forecast probability indicating a more 
concerning overprediction. From the histogram, we note that Kp levels between 1 and 3 are the most com-
mon, with the highest number of points in these categories representing low geomagnetic activity. Kp levels 
of 7 and 8 are statistically much more rare events and have the lowest number of data points in the ROC 
and reliability analysis. The inclusion of more data in the analysis for this level of high geomagnetic activity 
would help to confirm this evaluation of the OP-2013 model at these high Kp levels.

4. Discussion
In this study, we have used auroral boundaries derived from global IMAGE FUV data between May 2000 
and October 2002 to evaluate the performance of the auroral forecasts made by the OP-2013 model, used 
operationally at the Met Office. Using a combination of ROC and reliability analysis, we find that overall, 
the OP-2013 model performs well at predicting the location of the aurora with a ROC scores of between 0.70 
and 0.86, although the forecast skill was notably lower around noon (ROC score of 0.59) and at higher Kp 
(ROC score of 0.55, for Kp = 8). The overall ROC score compares well with other space weather forecasts, 
such as M-class solar flare forecasts (Murray et al., 2017). The OP-2013 forecast probabilities tended to un-
derpredict the occurrence of the aurora, with the observation frequency of the aurora typically plateauing 
at 0.8 for forecast probabilities exceeding 20%.

4.1. Deterministic Auroral Forecasts

The results of the ROC analysis show that overall the model performs well as a deterministic model at dis-
criminating between regions of aurora and no aurora. In the seasonal analysis, while there is some seasonal 
variability in ROC scores, all ROC scores are greater than 0.74, indicating that the model performs well year 
round.

In the evaluation of OP-2013 by MLT sector, the model had a lower ROC score in the dayside MLT sectors 
centered on the noon MLT (11–13 MLT). The noon MLT sectors had a ROC score of 0.59 compared to the 
dusk (17–19 MLT), dawn (05–07 MLT), and midnight (23–01 MLT) sectors which had ROC scores between 
0.78 and 0.86. The higher ROC scores in the nightside MLT sectors indicate that the model performs better 
at predicting the location of the aurora in these regions.

The width of the auroral oval varies with local time sector. The nightside auroral oval is typically wider 
and more dynamic than the dayside. The nightside auroral dynamics are primarily driven by substorms 
which cause a rapid expansion and brightening of the auroral oval. The solar wind driven OP-2013 model is 
unable to forecast substorm activity and the 30-min resolution of the operational forecasts cannot capture 
substorm dynamics, however, the change in width of the auroral oval during substorms occurs within the 
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average predicted auroral oval location. Mooney et al. (2020) showed that during substorms, the poleward 
boundary of the auroral oval moves by up to 3° in the substorm onset MLT sectors. During substorms, the 
typical width of the auroral oval varies by 10°–17° (Walach et al., 2017). Compared to the width of the au-
roral oval, the 3° change in the poleward boundary represents a small change of 17%–30% of the total oval 
width. In addition, after the substorm activity has subsided, the auroral oval generally returns to the same 
size and width that it had prior to the substorm and so substorms have no lasting effect on the auroral oval. 
During a substorm, the relatively small expansion in the oval width in the substorm onset sectors near mid-
night would result in a slight increase in the number of missed forecasts but this does not have a big impact 
on the overall ROC score. While the OP-2013 model cannot forecast if or when a substorm may occur, the 
occurrence of a substorm has a relatively low impact on the performance of the OP-2013 model. In contrast, 
the lower ROC scores of the model in the noon sectors indicate that the model does not forecast the location 
of the dayside auroral oval particularly well. In the dayside MLT sectors, the auroral oval is generally much 
thinner and so any offset between the observed and forecast locations of the auroral oval will result in a 
bigger reduction in the overall ROC score.

In the final part of this study in Section 3.4, we focused on the performance of OP-2013 during periods of 
different levels of geomagnetic activity, defined by Kp level. Overall, the ROC scores decrease with increas-
ing Kp levels from 0.83 to 0.55 for Kp = 1 and Kp = 8, respectively. All ROC scores for Kp 1–7 are greater 
than 0.70. The relatively high ROC scores above 0.70 for geomagnetic activity up to Kp = 7 may indicate that 
the additional GUVI data is having a positive effect on the performance of OP-2013 at disturbance levels 
between Kp 5 and 7. It would be informative to repeat this analysis to evaluate the performance of OP-2010 
during high Kp levels to confirm and quantify the improvement made by including GUVI data. The low 
ROC score of 0.55 for Kp = 8 is likely due to the rarity of periods of extremely high Kp and thus, the model is 
less well constrained. This could suggest that the linear scaling of auroral flux with solar wind driving used 
by Newell et al. (2007) to construct the OP-2010 and OP-2013 models breaks down during more extreme and 
statistically more rare events of Kp  7.

4.2. Evaluating the Forecast Auroral Probabilities

The reliability diagrams show that the forecast probabilities of aurora occurring tend to be underpredicted, 
that is, that the aurora occurs more frequently than the model predicts, particularly for lower probability 
values of less than 80%. At the highest forecast probability values, greater than 80%, the model tends toward 
a slight overprediction of the probability of aurora occurring. This is observed in most cases from the sea-
sonal, MLT sector, and geomagnetic activity analysis.

The observed frequency of aurora does not increase linearly with the forecast probabilities but instead is rel-
atively constant between 0.8 and 0.9 for for all the forecast-observation pairs for forecast probabilities of 20% 
and above. This means that the lower forecast probabilities of 20% are underpredicted by a factor of 6. As 
the forecast probability of aurora occurring tends toward the observed frequency of aurora, the difference 
between the forecast probability and the observed frequency decreases and so the factor of how much the 
aurora is under or overpredicted also decreases.

The results of the reliability analysis show that the conversion from auroral flux to probability of aurora 
occurring is not particularly robust, however, this conversion is a non-trivial task. Using the results of the 
reliability analysis, a correction to re-calibrate the probabilities forecast by the model could be developed to 
improve the reliability OP-2013 auroral forecasts. The probabilities forecast by the OP-2013 model vary with 
season, MLT sector and geomagnetic activity (Kp level) which would need to be accounted for if a correction 
were to be developed. However, the results of the reliability analysis showed that for forecast probabilities 
of above 20%–30%, the observed occurrence of aurora is approximately constant at around 0.7–0.9, which 
would make it difficult to linearly re-scale the forecast probabilities. All forecast probabilities of ∼20% or 
above would be re-scaled to an ∼80% probability of aurora occurring, effectively producing a deterministic 
forecast.

Germany et al. (1998) found that the brightness of the UV electron aurora is proportional to the total elec-
tron energy flux with a conversion factor of approximately 0.12 R per 2 1erg cm s  . This conversion was 

MOONEY ET AL.

10.1029/2020SW002688

12 of 16



Space Weather

utilized by Case et al. (2017) and Machol et al. (2012) to define the poleward and equatorward boundaries 
from the Polar UVI images and OP-2010 output. The conversion of the total electron energy flux to bright-
ness could be used to derive a more robust method of converting the predicted auroral fluxes into a probabil-
ity of aurora occurring. However, given the difficulties of linearly scaling the auroral flux into a probability 
of aurora occurring, it may be preferable to develop a flux threshold system, using the conversion of Germa-
ny et al. (1998). For example, in regions where the predicted auroral flux is greater than zero indicates that 
there may be some auroral effects. In regions where the auroral flux exceeds a certain brightness threshold 
would indicate that the aurora should be visible and the brightest aurora would be predicted in the regions 
of maximum auroral flux.

4.3. Comparisons With Previous Auroral Forecast Evaluation Studies

Lane et  al.  (2015), Machol et  al.  (2012), and Newell, Sotirelis, Liou, et  al.  (2010) evaluated the auroral 
forecasts from OP-2010. From these three studies, the binary event analysis methods applied by Machol 
et al. (2012) are the most comparable to the analysis applied in this study. Machol et al. (2012) evaluated the 
use of the OP-2010 model as an operational forecast model for visible aurora by assessing the deterministic 
ability of the model to forecast the location of the aurora compared to UVI observations. We have similarly 
examined how well the OP-2013 model performs as a deterministic forecast of the location of the aurora, 
although using IMAGE FUV data as our ground truth and utilizing the ROC curves and scores to examine 
the performance of the model. Extending this, we have also examined the validity of the forecast probabil-
ities of aurora occurring as well as examining the performance of the model with season, local time and 
geomagnetic activity.

The most notable difference between the analysis presented in this study and the analysis of Machol 
et al.  (2012), other than the updated model in this study, is the determination of the ground-truth data. 
Machol et al. (2012) compared the locations of model predictions of electron fluxes exceeding 1 2 1erg cm s   
and auroral luminosities from Polar UVI exceeding 0.25 kR whereas we used auroral luminosity boundaries 
determined from IMAGE WIC data by Longden et al.  (2010). As such, a direct comparison between the 
results cannot be used to infer any change in performance between the OP-2010 and OP-2013 models, but 
may still be informative.

Table 1 shows the verification statistics calculated from the 10%, 50%, and 80% binary event analysis in this 
study with the results of Machol et al. (2012). In the study by Machol et al. (2012), the results were presented 
in terms of the false alarm ratio (as defined by Wilks, 2006). In Table 1, we present our results for the false 
alarm rate and the false alarm ratio, for comparison with the results of Machol et al. (2012). The equations 
for all the verification statistics in Table 1 are provided in the supporting information. Comparing the re-
sults of Machol et al. (2012) and the 10% bin from this analysis, all of the statistics are within 15%. Machol 
et al. (2012) found that by increasing the energy flux threshold used to define the location of the auroral 
boundaries, resulted in an increase in the number of false positives and a decrease in the number of false 
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Verification statistic
Results from Machol et al. (2012) analysis 

of OP-2010

Results from present analysis of OP-2013

10% 50% 80%

Hit rate 58% 73% 8% 2%

False alarm rate – 11% 0% 0%

False alarm ratio 14% 25% 11% 14%

Proportion of true positives 86% 75% 89% 86%

Proportion of false negatives 26% 12% 30% 31%

Accuracy 77% 84% 71% 69%

Table 1 
A Comparison of the Verification Statistics Derived From the Results of the 10%, 50%, and 80% Probability Thresholds 
From Current OP-2013 Evaluation Study Presented in This Study With Those From the OP-2010 Evaluation Study 
Carried out by Machol et al. (2012)
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negatives in the truth table. The binary event analysis presented here, similarly shows that as the probability 
threshold is increased, the number of false positives increases and the number of false negatives decreases.

Overall, the results of the verification statistics from both studies show a similar performance for both the 
OP-2010 and OP-2013 generations of the model. We caution that the results of these two studies cannot be 
directly compared to assess improvements made between the two generations of the model. Differences 
in the results between the two studies presented in Table 5.3 may reflect the upgrades made to the model 
between the OP-2010 and OP-2013 generations, however due to the differences in the observational da-
tasets and the definition of the observed auroral boundaries between this study and the study by Machol 
et al. (2012), the comparison of the two sets of results cannot be used to quantify the upgrades implemented 
in the model.

5. Conclusions
In this study, we have evaluated the performance of the version of OP-2013 that was used operationally by 
the Met Office in daily space weather forecasts by comparing the forecast outputs with the location of the 
auroral oval identified from IMAGE FUV data by Longden et al. (2010). We have applied forecast evaluation 
techniques which are routinely used in terrestrial weather forecast verification to assess both the determin-
istic and probabilistic nature of the auroral forecast model. Overall, the OP-2013 model performed well at 
predicting the location of the auroral oval, with ROC scores of between 0.70 and 0.86, although the forecast 
skill was notably lower around noon (ROC score of 0.59) and at higher Kp (ROC score of 0.55, for Kp = 8). 
The reliability analysis showed that the observed frequency of aurora is constant at 80%–90% for forecast 
probabilities of ∼20% and above and does not scale linearly with increasing forecast probability. This results 
in the lower forecast probabilities of 20% being significantly underpredicted, by a factor of 6, that is, the au-
rora occurs six times more frequently than the model predicts for a forecast probability of 20%. The highest 
forecast probabilities of ∼90%–100% are overpredicted by up to approximately 20%; that is, the aurora occurs 
up to 20% less frequently than the model predicts for these high forecast probability values. The majority of 
forecast probabilities are skillful with the exception of the 10% and 20% probabilities which are substantially 
underpredicted. The results of the reliability analysis from this study could be used to recalibrate the fore-
cast probabilities of aurora occurring and improve the Met Office auroral forecasts.

The ROC and reliability analysis presented in this study show a robust methodology that is widely used in 
terrestrial weather forecast verification that can also be applied to a wide range of space weather forecast 
models which have an appropriate set of observations to use in the analysis. These methods can be used 
to fairly compare forecasts from similar models or to quantify improvements made to space weather mod-
els during model development. The results presented in this analysis provide a performance benchmark 
against which upgrades to the OP-2013 auroral forecast model or alternative auroral forecast models can 
be fairly and quantitatively tested. Our analysis also highlights the further insight into the reliability of the 
forecast probabilities of aurora occurring output by the model from using attribute diagrams in addition to 
calculating the Brier skill score, compared to solely using the Brier skill score.

Data Availability Statement
The auroral hindcast data set produced from the Met Office operational implementation of the Ova-
tion-Prime 2013 nowcast model that was used in this study was provided by the Met Office and is available 
at http://doi.org/10.5281/zenodo.4653288. The Ovation-Prime 2013 code was provided to the Met Office by 
Rodney Viereck of the NOAA Space Weather Prediction Center and the original Ovation-Prime code was 
developed by Patrick Newell and colleagues at Johns Hopkins University. Historic solar wind data from 
the ACE satellite was provided by Douglas Biesecker at the National Oceanic Atmospheric Administra-
tion and are available at https://sohoftp.nascom.nasa.gov/sdb/goes/ace/monthly/. Auroral boundary data 
were derived and provided by the British Antarctic Survey based on IMAGE satellite data (https://www.
bas.ac.uk/project/image-auroral-boundary-data/). These boundary data are freely available from https://
doi.org/10.5285/75aa66c1-47b4-4344-ab5d-52ff2913a61e. The IMAGE FUV data were provided courtesy 
of the instrument PI Stephen Mende (University of California, Berkeley). IMAGE FUV data are archived 
at https://cdaweb.gsfc.nasa.gov/pub/data/image/fuv/. Kp index data were provided by ISGI GFZ Potsdam. 
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Archive Kp index data were available at https://spaceweather.gfz-potsdam.de/products-data/nowcasts/
nowcast-kp-index/downloads.
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