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Abstract  
 

The Excitatory Amino Acid Transporter 2 (EAAT2) accounts for 80 % of brain glutamate clearance 

and is mainly expressed in astrocytic perisynaptic processes. EAAT2 function is finely regulated by 

endocytic events, recycling to the plasma membrane and degradation. Noteworthy, deficits in 

EAAT2 have been associated with neuronal excitotoxicity and neurodegeneration. In this study, we 

show that EAAT2 trafficking is impaired by the leucine-rich repeat kinase 2 (LRRK2) pathogenic 

variant G2019S, a common cause of late-onset familial Parkinson’s disease (PD). In LRRK2 

G2019S human brains and experimental animal models, EAAT2 protein levels are significantly 

decreased, which is associated with elevated gliosis. The decreased expression of the transporter 

correlates with its reduced functionality in mouse LRRK2 G2019S purified astrocytic terminals and 

in Xenopus laevis oocytes expressing human LRRK2 G2019S. In Lrrk2 G2019S knockin mouse 

brain, the correct surface localization of the endogenous transporter is impaired, resulting in its 

interaction with a plethora of endo-vesicular proteins. Mechanistically, we report that pathogenic 

LRRK2 kinase activity delays the recycling of the transporter to the plasma membrane, causing its 

intracellular relocalization and degradation. Taken together, our results demonstrate that pathogenic 

LRRK2 interferes with the physiology of EAAT2, pointing to extracellular glutamate overload as a 

possible contributor to neurodegeneration in PD. 
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Introduction 
 

The concentration of extracellular glutamate in the central nervous system is finely tuned by 

specific excitatory amino acid transporters (EAATs) [55, 85], which remove the neurotransmitter 

from the extracellular synaptic milieu and prevent the dramatic consequences of glutamate 

accumulation [8, 14, 23, 45, 50, 65, 70]. Impaired glutamate uptake entails neuropathological 

consequences such as alteration of synaptic neurotransmission, neuronal excitotoxicity as well as 

astro- and microgliosis and neurodegeneration [32, 35]. Among EAATs, EAAT2 (corresponding to 

glutamate transporter type 1, Glt-1 in rodents) is the predominant glutamate transporter in the adult 

mammalian brain and accounts for the removal of most of the extracellular glutamate [67, 78]. 

Approximately 80 to 90 % of EAAT2 is localized on astrocytes, and 5 to 10 % on the axonal 

terminal of neurons [8, 14, 23, 50, 65, 70]. 

 

Regulation of EAAT2 function occurs by protein expression and protein distribution. 

Indeed, both lateral diffusion and endocytic trafficking ensure a dynamic turnover of the receptor at 

the synaptic terminals that reflects the shuffling activity of neighboring cells [1, 45, 46, 56]. EAAT2 

is constitutively internalized into recycling endosomes via a clathrin-dependent pathway, which 

relies on the reversible ubiquitination of specific lysine residues located in the cytoplasmic C-

terminus [29]. The ubiquitin ligase Nedd4-2 has been identified as a mediator of EAAT2 

endocytosis [92]. The activation of protein kinase C (PKC) promotes the phosphorylation of 

Nedd4-2, its association with EAAT2 and the subsequent ubiquitination of the transporter [24]. 

Importantly, a ubiquitination/de-ubiquitination cycle enables a reversal translocation of EAAT2 

from the recycling endosomes back to the plasma membrane. Therefore, a strict regulation of this 

bidirectional trafficking is crucial to guarantee an appropriate exposure of EAAT2 at the cell 

surface [29, 47]. Interference with EAAT2 trafficking has been often associated with the re-routing 

of the transporter to the cellular degradative systems [69, 76, 84, 87]. 

 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder clinically 

characterized by severe motor disability and cognitive impairment [2]. The pathological hallmarks 

of PD include the selective loss of dopaminergic neurons in the Substantia Nigra pars compacta 

(SNpc) that project to the dorsal striatum, the presence of Lewy Bodies in neuronal and glial cells, 

as well as signs of extended neuroinflammation [33, 72, 73]. Despite decades of research, the 
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mechanisms underlying the selective degeneration of dopaminergic neurons in PD remain unclear 

[16]. Recent hypotheses support the idea that chronic, subtle dysfunctions, both at cellular and non-

cellular levels, proceed years before the clinical symptoms and the dopaminergic death [80]. 

Perturbation of glutamate homeostasis is one of the earliest events in the pathophysiology of PD 

and contributes to the exacerbation of later clinical impairments [20, 35, 39, 58, 90]. In addition, 

deficits in glutamate transporters have been consistently reported upon acute neurotoxin injection in 

rodents [9, 10, 92] as well as in genetic models of PD [12, 31, 39], and selective ablation of nigral 

astrocytic Glt-1 expression induces a parkinsonian-like phenotype in mice [93].  

 

Monogenic mutations with Mendelian transmission have been identified in about 10 % of 

PD cases [36], and mutations in the leucine-rich repeat kinase 2 (LRRK2) account for up to 40 % of 

familial PD forms. Specifically, the most common LRRK2 p.G2019S mutation leads to the 

expression of a hyperactive form of the LRRK2 kinase, and also appears in approximately 1 % of 

apparently sporadic PD cases, with much higher prevalence in specific ethnic groups [81]. Although 

LRRK2 G2019S animal models do not show clear signs of neurodegeneration, aberrant cortico-

striatal glutamatergic neurotransmission has been observed, thus comprising a valuable model 

system to study the early stages of the disease [44, 83, 86].  

 

Here, we report that the PD-linked LRRK2 G2019S mutation decreases the functionality of 

EAAT2 in astrocytes by impairing its recycling to the plasma membrane. Overall, our results point 

to glutamatergic dysregulation as a key pathological event in PD.   
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Materials and methods 

 

Human samples 

Post-mortem human Basal ganglia (caudate and putamen) lysates in RIPA buffer containing 

protease and phosphatase inhibitors (Roche) derived from 4 LRRK2 G2019S-linked patients and 10 

age-matched controls were obtained from Queen Square Brain Bank (London, UK). Post-mortem 

human brains were collected under human tissue authority license n° 12198. Limited sample 

demographics are listed in Table 1. 

 

Animals 

C57Bl/6J Lrrk2 wild-type (WT) and Lrrk2 G2019S knock-in mice were used. Lrrk2 G2019S 

knock-in mice were obtained from Prof. Michele Morari and Novartis Institutes for BioMedical 

Research, Novartis Pharma AG (Basel, Switzerland) [43]. Housing and handling of mice were done 

in compliance with national guidelines. All procedures performed in mice were approved by the 

Ethical Committee of the University of Padova and the Italian Ministry of Health (license 

1041/2016, 200/2019 and 105/2019). All procedures performed in Xenopus laevis were approved 

and experiments carried out according to Ethical Committee of the University of Insubria (license 

no. 02_15) and the Italian Ministry of Health (1011/2015). 

 

Immunoblotting 

Human basal ganglia samples as well as dissected striata derived from Lrrk2 WT and Lrrk2 

G2019S knock-in mice were lysed in radioimmunoprecipitation assay buffer (RIPA buffer; 20mM 

Tris-HCl pH 7.5, 150mM NaCl, 1mM EDTA, 2.5mM sodium pyrophosphate, 1mM β-

glycerophosphate, 1mM sodium orthovanadate) containing 1 % protease inhibitor cocktail (Sigma-

Aldrich). Protein concentration was measured using the Pierce® BCA Protein Assay Kit following 

manufacturer’s instructions (Thermo Scientific). Protein samples (25 µg) were resolved by 

electrophoresis on pre-cast 4–20 % tris-glycine polyacrylamide gels (Biorad) and transferred to 

polyvinylidenedifluoride (PVDF) membranes using a semi-dry Biorad transfer machine (Trans-

Blot® Turbo TM Transfer System) with the 1X Transfer Buffer (BioRad) at 25 V for 20 min. 

Membranes were incubated in Tris-buffered saline plus 0.1 % Tween (TBS-T) plus 5 % skimmed 

milk for 1 h at room temperature (RT), and then incubated overnight with primary antibodies 

diluted in TBS-T plus 5 % skimmed milk. The following primary antibodies were used: guinea pig 

anti-glutamate transporter (Glt-1/EAAT2; AB1783, EMD Millipore, 1:500), mouse anti-GAPDH 
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(CSB-MA000195, Cusabio, 1:3000), mouse anti-β-actin (A1978, Sigma-Aldrich, 1:10000), mouse 

anti-HSP70 (H5147; Sigma Aldrich, 1:5000), rabbit anti-glial fibrillary acidic protein (GFAP; 

Z0334, Dako 1:20000/1:100000), rabbit anti-glutamine synthetase (GS; GTX109121, GENETEX, 

1:1000) and rabbit anti-Tyrosine Hydroxylase (TH; AB152, EMD Millipore, 1:1000). Membranes 

were subsequently rinsed and incubated for 1 h at RT with the appropriate HorseRadish-Peroxidase 

(HRP)-conjugated secondary antibodies (Invitrogen). The visualization of the signal was conducted 

using Immobilon® Forte Western HRP Substrate (Millipore) and the VWR® Imager Chemi 

Premium. Images were acquired and processed with  ImageJ software to quantify total intensity of 

each single band.  

 

Human basal ganglia immunofluorescence and immunohistochemistry analysis 

Paraffin embedded sections (8 µm) from human brain areas were cut using a microtome 

(Thermo Scientific). To remove paraffin wax, 8 µm-slices were washed in xylene and rehydrated in 

100 % ethanol. Slices were treated for 15 min with a quenching solution containing 50 mM NH4Cl 

in phosphate buffer saline (PBS) for immunofluorescence analysis, or 100 % methanol and 3 % 

H2O2 for immunohistochemistry studies. Slices were then washed in TBS-T and incubated at 90° C 

for 15 min with a citrate buffer (10 mM Sodium Citrate and 0.1M citric acid dissolved in distilled 

water; pH 7.0) to perform epitope retrieval. Subsequently, slices were saturated for 1 h at RT in a 

blocking solution containing 1 % bovine serum albumin (BSA), 15 % goat serum, 0.25 % gelatin, 

0.20 % glycine and 0.5 % Triton. Slices were then incubated overnight at 4 °C with the following 

primary antibodies diluted in blocking solution: guinea pig anti-EAAT2 (1:200) and/or rabbit anti-

GFAP (1:400). The following day, slices were washed in TBS-T and incubated for 1 h at RT with a 

mixture of the following secondary antibodies diluted 1:200 in blocking solution: anti-guinea pig 

Alexa Fluor 488 (Life Technologies) and anti-rabbit Alexa Fluor 568 (Life Technologies) 

fluorophores. Upon washes in TBS-T, slices were incubated for 5 min with Hoechst (1:10000; 

Invitrogen) to visualize the nuclei and mounted with Mowiol (Calbiochem).  

For immunohistochemistry analysis, sections processed with rabbit anti-GFAP were 

incubated for 1 h at RT using secondary HRP-conjugated anti-rabbit antibody (1:200). Slices were 

then washed and developed for 2-3 min using 3,3′-diaminobenzidine (DAB) staining kit (Abcam; 

#ab64238;). Nuclei were counterstained using Haematoxylin (MHS32-Sigma) for 5 min. Finally, 

sections were dehydrated in graded ethanol (70%, 90% and 100%), transferred in xylene and 

mounted using a Eukitt Mounting resin (Kirsker Biotech). 
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Plasmids  

The pCMV-hEAAT2 plasmid encoding the human excitatory amino acid transporter type 2 

(EAAT2) was a gift from Susan Amara (Addgene plasmid # 32814; http://n2t.net/addgene:32814; 

RRID:Addgene_32814). The cDNA was subcloned into pcDNA3 between KpnI and XbaI 

restriction sites and under the T7 promoter for expression in Xenopus laevis oocytes. The pDESTN-

SF-TAP LRRK2 plasmids encoding the human WT and G2019S variant were described in [4]. The 

pCMV6-mGLT-1 (Myc-DDK-tagged) plasmid encoding the mouse glial high affinity glutamate 

transporter member 2 (Slc1a2), transcript variant 1, was purchased from OriGene Technologies Inc 

(Cat. MR226166). For the pEGFP-rat Glt1 plasmid, the 99-1820 bp fragment of the Rat Glt-1 

plasmid (GenBankTM accession number X67857.1) was subcloned between the EcoRI and Xba 

restriction sites of pEGFP vector (Clontech). GFP-Rab4, GFP-Rab11 and GFP-Lamp1 plasmids 

were generated as previously described [27, 64]. 

 

Electrophysiological recordings in Xenopus laevis oocytes 

pcDNA3_hEAAT2 and pDESTN-SF-TAP-LRRK2 WT and G2019S plasmid vectors were 

linearized by HindIII and SmaI, respectively. Corresponding cRNAs were transcribed in vitro and 

capped using T7 RNA polymerase. Oocytes were obtained by laparotomy from adult female 

Xenopus laevis (Envigo, San Pietro al Natisone, Italy). Frogs were anesthetized by immersion in 

MS222 1 g/L solution in tap water adjusted at final pH 7.5 with bicarbonate. After the treatment 

with an antiseptic agent (povidone-iodine 0.5 %), the frog abdomen was incised, and the portions of 

the ovary removed. Oocytes were treated with 1 mg/mL collagenase IA (Sigma Collagenase from 

Clostridium histolyticum) in calcium-free ND96 (96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM 4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES); pH 7.6) for at least 1 h at 18 °C. 

Healthy and full grown oocytes were selected and manually separated in NDE solution (ND96 plus 

2.5 mM pyruvate, 0.05 mg/mL gentamicin sulphate and 1.8 mM CaCl2). After 24 h, healthy looking 

stage V and VI oocytes were collected and co-injection of cRNA EAAT2 (25 ng) + cRNA LRRK2 

WT (25 ng) or cRNA EAAT2 (25 ng) + LRRK2 G2019S (25 ng) was carried out using a manual 

microinjection system (Drummond Scientific Company, Broomall, PA, USA). Oocytes were 

subsequently incubated at 18 °C for 2-3 days in NDE solution [6]. Transport currents (I) were 

recorded from voltage-clamped oocytes using two microelectrodes filled with 3 M KCl (Oocyte 

Clamp OC-725C, Warner Instruments, Hamden, CT, USA). Bath electrodes were connected to the 

experimental oocyte chamber via agar bridges (3 % agar in 3 M KCl). The external control solution 

had the following composition: 98 mM NaCl, 1 mM MgCl2, 1.8 mM CaCl2, 5 mM HEPES, 
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adjusted to pH 7.6 with NaOH. Signals were filtered at 0.1 kHz and sampled at 200 Hz or 0.5 kHz 

and at 1 kHz. Transport-associated currents were calculated by subtracting the traces in the absence 

of substrate from those in its presence. To measure the apparent affinity for glutamate (the 

concentration of glutamate that yields one-half of the maximal transport current), oocytes were 

exposed to different neurotransmitter concentrations (10 µM, 25 µM, 100 µM, 500 µM, 1 mM). 

Clampex and Clampfit 10.7 (Molecular Devices) were used to run the experiments, acquire and 

analyse the data.  

 

Immunodetection in Xenopus laevis oocytes 

Injected oocytes were fixed in ice-cold 4 % paraformaldehyde (PFA) in PBS pH 7.5, for 15 

min at 4 °C. Oocytes were subsequently washed using ND96 in mild agitation (5 min at RT, three 

times), included in Polyfreeze tissue freezing medium (Polysciences, Eppelheim) and frozen in 

liquid nitrogen. Oocyte cryosections (10 µm thickness) were obtained with a cryostat (Leica 

Biosystems) and preserved at -20 °C. Before use, oocyte slices were washed in PBS for 10 min at 

RT and incubated in blocking solution (2% BSA (w/v), 0.1 % Tween in PBS) for 45 min. Slices 

were then incubated overnight at 4 °C with the primary antibody guinea pig anti-EAAT2 (1:200) 

diluted in blocking solution. The following day, oocyte sections were washed in PBS and incubated 

with the secondary antibody anti-guinea pig Alexa Fluor 488 fluorophore diluted 1:200 in blocking 

buffer for 1 h. Sections were washed and mounted using Mowiol. Images were acquired at 8-bit 

intensity resolution over 1024x1024 pixel on a Leica SP5 confocal microscope using a HC PL 

FLUOTAR 40x/0.70 oil objective. Using ImageJ, EAAT2 the integrated fluorescence density 

(IntDen, area x mean fluorescence) was measured by defining a ROI (8 x 10-3 mm2 area). All 

quantifications were applied at the animal pole of the oocytes. 

 

Free-floating mouse brain slice immunofluorescence 

Mice were anesthetized with xylazine (Rompun®) and ketamine (Zoletil®) and 

transcardially perfused with physiological solution (0.9 % NaCl in PBS) followed by ice-cold 4% 

PFA dissolved in PBS at pH 7.4. Brains were post-fixed at 4 °C for 18 h in 4 % PFA and then 

moved in two different solutions of sucrose (20 % and 30 % sucrose in PBS) for 18 h each. Coronal 

striatal sections (30 µm thickness) were sliced using a vibratome (Campden Instruments Ltd.). 

Slices were stored at 4 °C in a solution containing 18 % sucrose, 0.01 % NaN3 dissolved in PBS. 

Before staining, slices were rinsed in PBS and treated with 50 mM NH4Cl dissolved in PBS for 15 

min at RT to quench intrinsic autofluorescence. Sections were then washed in PBS followed by 
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permeabilization and saturation for 1 h at RT in a blocking solution containing 2 % BSA, 15 % goat 

serum, 0.25 % gelatin, 0.2 % glycine and 0.5 % Triton.  Slices were then incubated overnight with 

primary antibodies diluted in blocking solution. The following primary antibodies were used: 

guinea pig anti-Glt-1 (1:200) and rabbit anti-GFAP (1:400). The following day, slices were washed 

and incubated for 1 h at RT with the appropriate secondary antibodies diluted in blocking solution: 

anti-guinea pig Alexa Fluor 488 and anti-rabbit Alexa Fluor 568 fluorophores. Upon incubation, 

slices were washed with PBS and nuclei were counterstained with Hoechst 1:10000 and mounted 

on a glass microscope slide (ThermoFisher) using Mowiol. 

Images were acquired at 8-bit intensity resolution over 1024x1024 pixel on a Leica SP5 

confocal microscope using a HC PL FLUOTAR 40x/0.70 oil objective. Using ImageJ, the 

integrated density (IntDen, area x mean fluorescence) of GFAP signal upon setting scale and 

threshold were measured. The number of GFAP+ cells was manually counted using the same 

software.   

 

Gliosome purification  

Glial perisynaptic processes (gliosomes, [7, 57, 74]) derived from 4 month old Lrrk2 WT 

and Lrrk2 G2019S mouse striata were used. Gliosomes were prepared as previously described [59]. 

Briefly, striata were homogenized in 0.32 M sucrose, buffered at pH 7.4 with Tris-HCl, using a 

glass-teflon tissue grinder (clearance 0.25 mm – Potter-Elvehjem VWR International). The 

homogenate was centrifuged (5 min, 1000g) to remove nuclei and debris, and the supernatant was 

gently layered on a discontinuous Percoll gradient (2 %, 6 %, 10 %, and 20 % v/v in Tris-buffered 

0.32 M sucrose; Sigma-Aldrich). After centrifugation at 33500g for 5 min, the layer between 2 % 

and 6 % Percoll (gliosomal fraction) was collected and washed with a physiological medium having 

the following composition: 140 mM NaCl, 3 mM KCl, 1.2 mM MgSO4, 1.2 mM NaH2PO4, 5 mM 

NaHCO3, 1.2 mM CaCl2, 10 mM HEPES, 10 mM glucose, pH 7.4, and centrifuged at 20000g for 

15 min. The pellet was resuspended in physiological medium. All the above procedures were 

conducted at 4 °C. Protein concentration was measured using the Pierce® BCA Protein Assay Kit 

following manufacturer’s instructions. 

 

Glutamate uptake assay in gliosomes 

Glutamate uptake was measured in striatal gliosomes derived from Lrrk2 WT and Lrrk2 

G2019S mice as previously described [52]. Briefly, aliquots of the gliosomal suspensions (500 µl, 

corresponding to 10-15 µg protein per sample) were incubated for 10 min at 37 °C in the presence 
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of 10 µM 2-amino-5,6,7,8-tetrahydro-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-4H-

chromene-3-carbonitrile (UCPH-101; Abcam 120309, UK), a specific excitatory amino acid 

transporter 1 (EAAT1/Glast) inhibitor [17]. Then, 20 µl of a solution of [3H]D-Aspartate ([3H]D-

Asp; specific activity: 16.5 Ci/mmol, Perkin Elmer Italia, Milan, Italy) and non-radioactive D-Asp 

(Sigma Aldrich, USA) was added to each sample to obtain the final concentrations of 0.03, 0.1, 1, 

3, 30 and 100 µM. Incubation was continued for further 2 min.  Gliosomal samples were exposed to 

the above [3H]D-Asp concentrations for 2 min at 0–4°C, in the presence of 50 µM of the broad 

spectrum glutamate transporter blocker DL-threo-beta-benzyloxyaspartate (DL-TBOA; Tocris 

Bioscience, Bristol, UK; [71]), to determine the non-specific binding to gliosome membranes. After 

the 2-min exposure to [3H]D-Asp, uptake was blocked by rapid vacuum filtration (GF-B filters, 

Millipore, Billerica, MA) and filters were washed three times with 5 ml of physiological medium to 

remove the excess of radioactivity. Radioactivity was determined by liquid scintillation counting. 

The specific uptake was calculated by subtracting non-specific binding from the total filter 

radioactivity.  

 

Liquid-chromatography mass spectrometry (LC-MS) analysis 

Endogenous Glt-1 was immunoprecipitated from homogenized of WT and Lrrk2 G2019S 

mouse striata using 5 µg of a rabbit anti-Glt-1 antibody (Abcam; ab205248) in RIPA buffer (1.5 mg 

of total protein each). Magnetic beads (Protein A/G Magnetic Beads, BioTool) (50 µl) were used to 

pre-clear and precipitate the transporter. Beads were then washed three times using 1 ml of RIPA 

buffer and proteins loaded on pre-cast 4–20 % tris-glycine polyacrylamide gels (Biorad). Gel bands 

were excised, cut into small pieces and destained with a solution of 60 % NH4HCO3 200 mM/40 % 

acetonitrile (ACN) at 37 °C. Disulfide bridges were reduced with 2 mM Tris (2-

carboxyethyl)phosphine hydrochloride (TCEP) in 50 mM NH4HCO3 at 56 °C for 1 h, and cysteine 

residues were alkylated with 4 mM methyl methanethiosulfonate (MMTS) with 50 mM NH4HCO3 

in the dark at RT for 45 min. Gel samples were washed twice with 50 mM NH4HCO3 and ACN 

alternatively and vacuum-dried. Samples were incubated with 12.5 ng/µl trypsin (Sequencing Grade 

Modified Trypsin, Promega) in 50 mM (NH4)2HCO3 and protein digestion was carried out 

overnight at 37 °C. Peptides were extracted with three changes of 50 % ACN, 0.1 % formic acid 

(FA). Samples were vacuum-dried and stored at −20 °C. Samples were analyzed using a LTQ 

Orbitrap XL mass spectrometer (Thermo Fisher Scientific) coupled to a HPLC Ultimate 3000 

(Dionex - Thermo Fisher Scientific) through a nanospray source (NSI), as described in Battisti et al. 

2021 [3]. Samples were resuspended in 30 µl of 3 % ACN/0.1 % FA and each sample was acquired 
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twice.  Raw data files were analyzed with MaxQuant [11] software (v. 1.5.1.2) interfaced with 

Andromeda search engine. Protein search was performed in the mouse section of the UniProt 

database (Mus musculus, version 2020-09-30, 55494 entries). Trypsin was set as an enzyme, 

methylthio-cysteine and oxidized methionine were set as fixed and variable modifications, 

respectively. A minimum of two peptides was required for protein identification, and a false 

discovery rate (FDR) of 0.01, both at the peptide and protein level, was used to filter the results. To 

estimate the relative protein abundance within samples, the intensity values given by the software 

were used. The two interactome datasets were compared to highlight significant differences in the 

protein abundances. Common and unique Glt-1 binders between the Lrrk2 WT and G2019S genetic 

environments were identified performing a Z-test on the logarithmic values of the IP/CTRL ratios 

and taking into account only proteins with p < 0.05 and FC > 3.5. Gene Ontology (GO) terms were 

employed to identify discrete functional enrichments in order to extract information about novel 

networks of interactors in relationship to the different subcellular localization of the transporter. 

G:profiler (https://biit.cs.ut.ee/gprofiler/gost) was used for enrichment analysis. Glt-1-related 

protein networks in Lrrk2 G2019S pathogenic background were ranked based on the fold-change 

affinity over the control (>3.5).  

 

Primary striatal astrocytes 

Mouse primary striatal astrocytes were obtained from postnatal animals between day 1 and 

day 3 as described in [75]. Brains were removed from their skull and placed in a dish      containing 

cold Dulbecco’s Phosphate Buffered Saline (DPBS, Biowest). Olfactory bulbs and cortices were 

removed under an optic microscope and striata were transferred to a separate dish containing cold 

DPBS. After the dissection, Basal Medium Eagle (BME, Biowest), supplemented with 10 % Fetal 

Bovine Serum (FBS, Corning), 100 U/ml Penicillin + 100 µg/ml Streptomycin (Pen-Strep; Life 

Technologies), was added to the tissues. Striata were then sifted through a 70-µm cell strainer 

(Sarstedt) using a syringe plunger. The cell suspension was centrifuged (300 x g, 15 min) and the 

pellet was washed twice with 25 ml of supplemented medium. Cells were seeded at a density of 

5x106 cells/10 ml in cell culture T75 flasks. The culture medium was changed after seven days and 

again after an additional 3-4 days. When cell confluency reached about 80 %, microglia were 

detached by shaking the flask (800 rpm) for 2 h at RT. After shaking, the medium containing 

microglia was replaced with fresh medium. Cells were maintained in BME supplemented with 10 % 

FBS and Pen-Strep at 37 °C in a controlled 5 % CO2 atmosphere. After 14 days, astrocytes were 

used for the experiments.  
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Cell transfection  

Astrocytes were seeded at a density of 1x105 cells on 12 mm glass coverslips (VWR) coated 

with poly-L-lysine. Once 80 % of confluency was reached, cells were transfected using 

Lipofectamine 2000 (Thermo Scientific) (1:3 DNA/Lipofectamine ratio). For single transfection 

experiments, 1 µg Myc-DDK-tagged-GLT-1 plasmid was used per each well; for double 

transfection experiments, 0.5 µg Myc-DDK-tagged-GLT-1 was combined with either 0.5 µg GFP-

Rab4, GFP-Rab11 or GFP-Lamp1 plasmids. For TIRFM experiments, astrocytes were seeded at a 

density of 4x105 cells in 24 mm glass coverslips (VWR) coated with poly-L-lysine. Once at 80 % 

confluence, cells were transfected with 2.5 µg GFP-GLT-1 plasmid using Lipofectamine 3000 

(Invitrogen) (1:2 DNA/Lipofectamine ratio). All experiments were carried out 48 hours after 

transfection. 

 

Immunostaining of cultured astrocytes  

Cells were fixed using 4 % PFA for 20 min at RT and washed in PBS. Astrocytes were 

subsequently permeabilized for 20 min in PBS containing 0.1 % Triton and blocked for 1 h at RT in 

blocking solution containing 5 % FBS in PBS. For experiments with endogenous Glt-1, astrocytes 

were incubated with the guinea pig anti-Glt1 (1:200) primary antibody diluted in blocking solution. 

To stain transfected GFP-Glt-1, astrocytes were incubated with rabbit anti-Glt1 (1:100)  primary 

antibody [60], whereas transfected Flag-Glt-1 cells were incubated overnight with a mouse anti-

Flag® primary antibody (1:200-Sigma Aldrich; #F1804) that recognized the DKK sequence. Co-

stainings were performed with a rabbit (1:400) or mouse anti-GFAP (Sigma Aldrich, Cat. 

SAB5600060-RM246) or a rat anti-Lamp1 (1:300-Abcam; #ab25245) antibody diluted in blocking 

solution, respectively. The next day, cells were incubated for 1 h at RT with a mixture of anti-

guinea pig Alexa Fluor 488 and anti-rabbit Alexa Fluor 568 or 544 secondary antibodies, or with a 

mixture of anti-mouse Alexa Fluor 568 (1:200) and anti-rat Alexa Fluor 633 in blocking solution. 

Nuclei were counterstained for 5 min with Hoechst (1:10000), and after washing, coverslips were 

mounted using Mowiol.  

 

Fluorescence microscopy techniques 

GFP-Glt-1 transfected astrocytes were imaged by Total internal reflection fluorescence 

microscopy (TIRFM). TIRFM was achieved with a Carl Zeiss inverted microscope equipped with 

an Argon laser at 37 °C using a 100×1.45 numerical aperture (NA) oil immersion objective. Green 
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fluorescence was excited using the 488�nm laser line and imaged through a band�pass filter 

(Zeiss) onto a Retiga SRV CCD camera. Images (12 bit, 696x520 pixel) were recorded with the 

same acquisition parameters (laser power, exposure time, binning) [13]. After setting the threshold, 

the mean intensity of the GFP signal in three randomly selected regions of interest (ROIs) was 

measured using ImageJ. Data were expressed as fold changes over GFP-Glt-1 intensity signal 

measured in Lrrk2 WT animals. 

Flag-Glt-1 transfected astrocytes were imaged at 8-bit intensity resolution over 1920x1440 

pixel using a Leica 5000B microscope HC PL FLUOTAR 40x/0.75 dry objective. Three ROIs/cell 

were defined and the number of Glt-1 positive clusters (diameter > 1 µm) were counted manually 

using ImageJ.   

Co-transfected Flag-Glt-1 astrocytes were imaged at 8-bit intensity resolution over 

2048x2048 pixel, using a Leica SP5 confocal microscope and a HC PL FLUOTAR 40x/0.70 oil 

objective. After setting the threshold, ROIs were identified as the area of Lamp1, Rab11 and Rab4 

and visualized in the green channel (GFP) or in the far red for the endogenous staining of Lamp1. 

Lamp1, Rab11 and Rab4 IntDen were calculated for each ROI. The same ROIs were then 

transferred to Glt-1 fluorescence channel (Red) and the IntDen was determined as a measure of Glt-

1 co-localization. For the characterization of the recycling compartment, the number of GFP-Rab4-

positive dots as well as the area of Rab4-positive vesicles were measured using ImageJ. 

 

Transmission electron microscopy analysis  

Primary striatal astrocytes from Lrrk2 WT and Lrrk2 G2019S mice were seeded in 35 mm 

dishes containing a 14 mm Gridded Coverslip (MatTek, Life Science) and co-transfected with Flag-

Glt-1 and GFP-Rab4. After 48 h of transfection, cells were fixed using 4 % PFA dissolved in PBS 

and GFP-Rab4 was imaged on a Leica SP5 confocal microscope. Subsequently, cells were 

incubated in glutaraldehyde 2.5 % dissolved in 0.1 M sodium cacodylate buffer for 1 h at 4 °C and 

post-fixed in 1 % osmium tetroxide plus potassium ferrocyanide 1 % in 0.1 M sodium cacodylate 

buffer for 1 hour at 4 °C. Finally, cells were embedded in the epoxy resin (Epoxy Embedding 

Medium kit- Sigma Aldrich) and 70 nm-ultrathin sections were obtained using an Ultrotome V 

(LKB) ultramicrotome, before being processed using a Tecnai G2 transmission electron microscope 

(TEM) operating at 100 kV. To identify Rab4-positive structures by TEM, confocal and electron 

images were overlaid using nucleus shape to improve cell relocation. The diameter and area of 

endosomal-like structures were measured using ImageJ. 
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Pharmacological treatments 

The following compounds were used: LRRK2 kinase inhibitor rel-3-[6-[(2R,6S)-2,6-

Dimethyl-4-morpholinyl]-4-pyrimidyl]-5-[(1-methylcyclopropyl)oxy]-1H-indazole (MLi-2; 200 

nM, 90 min application for the experiments on transfected cells; 120 min application for 

electrophysiological recordings in oocytes, Tocris; Cat. #5756) [18, 41]; dibutyryl cAMP (dbcaMP; 

500 µM; 10 days, ChemCruz; #B0218) [94]; PKC activator phorbol 12-myristate 13-acetate (TPA; 

400 nM, 20 min, Sigma Aldrich; Cat. #SLBX8889) [94] ; PKC inhibitor Go 6976 (10 µM, 1, 10 

and 90 min, Selleckchem) [28, 88]; recycling inhibitor monensin (35 µM, 40 min; Sigma Aldrich; 

Cat. #M5273) [47]; proteasome inhibitor MG132 (20 µM, 8 hours; Sigma Aldrich; Cat. 

#M5273;[69]); vacuolar H+-ATPase inhibitor bafilomycin A1 (Baf A1; 100 nM, 60 min, 

Selleck.EU; Cat. #S1413;[61]). For the TIRFM study as well as for the investigation of Glt-1 

recycling kinetics, MLi-2 was acutely applied to Lrrk2 G2019S astrocytes 90 min prior to further 

pharmacological manipulations. 

 

Statistical analysis 

Statistical analyses were performed in Prism 7 (GraphPad). Data are expressed as median 

with interquartile range. Gaussian distribution was assessed by D'Agostino & Pearson omnibus and 

Shapiro-Wilk normality tests. Data including three or more conditions were analyzed by one-way 

ANOVA test followed by Tukey's multiple comparisons test (Gaussian distribution) or Kruskal-

Wallis test (non-Gaussian distribution) followed by Dunn's multiple comparisons test. Statistical 

analysis on data including two independent groups was performed with the Unpaired t-test 

(Gaussian distribution) or Mann-Withney test (non-Gaussian distribution). A Paired t-test (Gaussian 

distribution) was applied for the comparison of co-injected EAAT2+LRRK2 G2019S oocytes before 

and after MLi-2 application. Levels of significance were defined as *, $, #,  p ≤ 0.05; **, $$, ##, 

p ≤ 0.01; ***, $$$, ### p ≤ 0.001. 

 

Table 1-  

Cases Sex (F/M) Age PMD (hours) 

LRRK2 G2019S 1 F 72 24.55 

LRRK2 G2019S 2 F 84 32.2 

LRRK2 G2019S 3 F 81 15 

LRRK2 G2019S 4 F 80 44.4 
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Healthy Control 1 M 71 42.3 

Healthy Control 2 F 82 55 

Healthy Control 3 M 83 35.4 

Healthy Control 4 F 80 66.2 

Healthy Control 5 M 69 49.3 

Healthy Control 6 F 85 37 

Healthy Control 7 M 93 112 

Healthy Control 8 F 91 98.5 

Healthy Control 9 M 87 36 

Healthy Control 10 F 68 41.5 

 

 

 

Supplementary Materials and Methods 

 

Quantitative Polymerase Chain Reaction (qPCR) 

Total RNA was extracted from mice striata or from primary striatal astrocytes with the Total 

RNA Purification kit (NORGEN Biotek) and quantified by absorbance in a NanoDrop 2000c UV-

Vis spectrophotometer (ThermoFisher Scientific). cDNA was synthesized with the All-in-One Cdna 

Synthesis SuperMix (Bimake) following manufacturer’s instructions. Gene expression was 

quantified by qPCR in real-time PCR reactions with Sybr Green technology in a CFX96 Touch 

Real-Time PCR Detection System (Bio-Rad). 30 ng cDNA were used in iTaq Universal SYBR 

Green Supermix (Bio-Rad) at the following conditions: stage 1: 95 °C, 5 min; stage 2: 39 x (95 °C, 

15 s; 60 °C, 30 s).  

The primers were as follows: mSLC1A2 fw: GGTGGAAAGCCGGGACGTGGATTA; 

mSLC1A2 rev: GCTTGGGCATATTGTTGGCACCCT; SLC1A3 fw: 

ATCCGGGAGGAGATGGTGCCCGT; SLC1A3 rev: AGGATGCCCAGAGGCGCATACCACA; 

ACTIN fw: TACCACCATGTACCCAGGCATT; ACTIN rev: 

ACTCATCGTACTCCTGCTTGCTGA; mGAPDH fw: GAGAGTGTTTCCTCGTCCCG; 

mGAPDH rev: ACTGTGCCGTTGAATTTGCC; TRANSFERRIN RECEPTOR fw 

TATAAGCTTTGGGTGGGAGGCA; TRANSFERRIN RECEPTOR rev 

AGCAAGGCTAAACCGGGTGTATGA;   
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Primers for Slc1a2, Slc1a3, β-Actin and Transferrin were purchased from Sigma Aldrich 

while primers for Gapdh were purchased from Metabion International AG. The quantification of the 

gene      relative expression was carried out by the Delta-Delta Ct method [42] by normalizing to the 

reference genes Gapdh, β-Actin and Transferrin receptor. A dissociation curve was built in the 60-

95 °C range to confirm the specificity of the amplification product.  
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Results 

 

Severe deficits in EAAT2 levels and increased gliosis in the post-mortem basal ganglia of LRRK2 

G2019S PD patients  

To investigate the role of EAAT2 in the pathophysiology of LRRK2-PD, we first examined 

the presence of the glutamate transporter protein in the basal ganglia of LRRK2 G2019S PD 

patients and age-matched controls by western blot (Fig.1a). Consistent with previous reports, the 

EAAT2 antibody recognized multiple bands corresponding to the monomeric (60 KDa), and 

multimeric, SDS-resistant (180 KDa) conformations [25, 49, 96]. An additional 250 KDa band was 

detected which is compatible with EAAT2 multimers [26, 79] (Fig.1a). We determined the total 

amount of the transporter by combining the densitometry of the three bands (Fig.1b), and also 

quantified the three bands separately (Supplementary Fig.1 a-c), and in all cases normalized to the 

housekeeping protein GAPDH. We observed that EAAT2 protein was nearly absent in the basal 

ganglia of LRRK2 G2019S PD patients as compared to healthy controls (Fig.1b; LRRK2 G2019S 

PD patient cases vs age-matched controls; p=0.004), and this difference affected both the 

multimeric and monomeric fractions (Supplementary Fig. 1; LRRK2 G2019S PD patients vs age-

matched controls: a, p=0.0160; b, p=0.0114; c, p=0.0168). Astrocytes are responsible for 80-90% of 

the EAAT2 present [23]. Therefore, to determine whether the decreased expression of EAAT2 was 

due to a lower number of astrocytes in LRRK2 G2019S PD patients, we assessed the amount of the 

cytosolic marker glutamine synthetase (GS), since its expression is restricted to astrocytes and does 

not depend on their activation status (Fig.1a). GS expression levels in the basal ganglia were 

comparable between LRRK2 G2019S PD patients and age-matched controls (Fig.1c; LRRK2 

G2019S PD patients vs controls, p=0.227). However, expression levels of GFAP (a marker for 

astrocyte activation) were significantly increased in the basal ganglia of LRRK2 G2019S PD 

patients as shown in Fig.1d-f (d, LRRK2 G2019S PD patients vs age-matched controls; p=0.044).  

Moreover, immunohistochemical detection of GFAP-positive cells showed that astrocytes in the 

basal ganglia of LRRK2 G2019S PD patients were abundant (Fig. 1e-f, arrows) and adopted the 

typical morphology of hyperactive cells, with enlarged and densely stained cytoplasm (Fig. 1e-f, 

insets). Taken together, these data show a significant decrease in the expression of the glutamate 

transporter EAAT2 in the basal ganglia of LRRK2 G2019S PD patients and the reduction of 

EAAT2 is associated with increased astrogliosis.  
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Glutamate transporter expression and functionality are perturbed in the striatum of young Lrrk2 

G2019S mice 

To inquire whether deficits in glutamate transporter expression occur before dopaminergic 

degeneration, we compared the expression of Glt-1, the mouse equivalent of EAAT2, in the 

striatum of 4-month-old Lrrk2 WT and Lrrk2 G2019S knock-in mice. As previously reported, we 

confirmed the presence of two bands, corresponding to Glt-1 monomers (60 KDa) and Glt-1 

multimers (180 KDa), respectively (Fig. 2a) [25, 49, 96]. Lrrk2 G2019S mice presented a decrease 

in the total amount of Glt-1 as compared to Lrrk2 WT controls (Fig.2b, Lrrk2 WT vs G2019S; 

p=0.008). When analyzing the two bands separately, the lower Glt-1 band also showed a significant 

decrease in the Lrrk2 G2019S mice, even though levels of the higher band did not reach statistical 

significance (Supplementary Fig. 1d, Lrrk2 WT vs Lrrk2 G2019S; p=0.0175; Supplementary Fig. 

1e, Lrrk2 WT vs Lrrk2 G2019S; p=0.07).  

We next performed qPCR analyses to explore whether the decrease in Glt-1 protein levels 

was attributed to a decrease of its mRNA levels in the striatum. Importantly, no significant changes 

in mRNA levels between genotypes were detected for the two main glutamate transporters Glt-1 

(Supplementary Fig.1F, Lrrk2 WT vs Lrrk2 G2019S; p=0.99) or the glutamate/aspartate transporter 

(Glast), which is the second most important glutamate transporter expressed on astrocytic processes 

(Supplementary Fig.1f, Lrrk2 WT vs Lrrk2 G2019S; p=0.6575). Similar to what we observed in 

human samples, the protein levels of GS were comparable between the genotypes (Fig.2c, Lrrk2 

WT vs G2019S, p=0.1411), while there was an increase in the levels of GFAP (Fig.2d, Lrrk2 WT 

vs Lrrk2 G2019S; p<0.0001), suggesting enhanced gliosis in young Lrrk2 G2019S mice. 

Immunofluorescence imaging confirmed a reduction of Glt-1 staining in the striatum of Lrrk2 

G2019S mice compared to age-matched controls (Fig.2f). Quantifications of the integrated 

fluorescence intensity (IntDen) of GFAP (Fig.2g; Lrrk2 WT vs Lrrk2 G2019S, p=0.0001) and of 

the number of GFAP-positive astrocytes (Fig.2h; Lrrk2 WT vs Lrrk2 G2019S, p=0.1) further 

indicate that decreased Glt-1 levels correlate with an intense astrogliosis in Lrrk2 G2019S mice. 

Tyrosine Hydroxylase (TH) levels as quantified by western blot from the same mice revealed no 

signs of dopaminergic cell loss, indicating that the decrease in Glt-1 levels seems to precede 

neurodegenerative events (Fig.2e, Lrrk2 WT vs Lrrk2 G2019S, p=0.39).  

To dissect the Lrrk2-mediated effects on glial Glt-1 levels, we isolated primary striatal 

astrocytes from Lrrk2 WT and Lrrk2 G2019S mice. Astrocytes were treated with dbcAMP to 

stimulate endogenous Glt-1 expression [77]. Consistent with published data [68], qPCR analysis 

showed a more than 10-fold increase in Glt-1 mRNA levels upon dbcAMP treatment 
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(Supplementary Fig.1g). Staining of Glt-1 indicated that the transporter was diffusely expressed in 

Lrrk2 WT astrocytes, while Lrrk2 G2019S astrocytes displayed a less pronounced staining which 

appeared to be almost restricted to discrete dots (Fig. 2i, arrowheads).  

To evaluate whether the Glt-1 deficits and impaired Glt-1 localization may functionally 

affect glutamate re-uptake in astrocytes, we purified striatal mouse gliosomes from Lrrk2 WT and 

Lrrk2 G2019S mice. Gliosomes constitute pure subcellular ex-vivo preparations that resemble most 

of the molecular and functional features of astrocytes in vivo [59, 74]. [3H]D-Asp, a non-

metabolizable analogue of glutamate used to mimic the endogenous neurotransmitter [62], was 

applied to assess Glt-1 activity, and experiments were conducted in the presence of 10 µM UCPH-

101 to exclude [3H]D-Asp uptake by Glast. To calculate the Km and the Vmax of [3H]D-Asp uptake, 

radioactivity was determined in gliosomes in the presence of different concentrations of [3H]D-Asp. 

As shown in Fig. 2l, Lrrk2 G2019S-derived gliosomes displayed a lower Vmax of aspartate uptake as 

compared to age-matched Lrrk2 WT mice (Fig. 2l, Vmax [Lrrk2 WT]: 6.7±1.37 nmol/mg/2 min, 

Vmax [Lrrk2 G2019S]: 2.73±0.59 nmol/mg/2 min, p= 0.036), while no significant difference was 

registered in the Km values (Fig. 2l; Km [Lrrk2 WT] 2.56±0.16 mM, Km [Lrrk2 G2019S] 2.05±0.14 

mM, p=0.054). Altogether these findings show that, similar to what we observed with human 

samples, astrocytes from Lrrk2 G2019S mice present a reduced expression of Glt-1, which results 

in reduced glutamate uptake and is associated with increased gliosis.  

 

Human pathogenic G2019S LRRK2 mutation impacts on EAAT2 electrophysiological properties 

To confirm that the reduced glutamate uptake observed in Lrrk2 G2019S gliosomes also 

applies also to the human EEAT2 protein, we used Xenopus laevis oocytes, an excellent model 

system to study transport processes on a cellular level [89]. Human glutamate transporter EAAT2 

mRNA was co-injected with human LRRK2 WT or LRRK2 G2019S mRNA in oocytes, and two-

electrode voltage-clamp was performed to record the transport current elicited by glutamate through 

EAAT2 (Experimental design in Fig.3a). The inward transport associated-current (IEAAT2) obtained 

upon the application of glutamate to oocytes injected with LRRK2 G2019S mRNA was 

significantly reduced as compared to the one obtained from oocytes injected with LRRK2 WT 

mRNA (Fig. 3b; EAAT2+LRRK2 WT: mean amplitude 43±3 nA vs EAAT2+LRRK2 G2019S: 

mean amplitude 25±2 nA; p<0.0001). We also measured the maximal transport current (Imax) and 

the apparent affinity for glutamate (aKm). We found that the expression of LRRK2 G2019S mRNA 

significantly decreased the Imax but not the aKm of the transporter as compared to the WT 
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counterpart (Fig. 3c; EAAT2+LRRK2 G2019S, aKm: 51±27 µM, Imax: 28±3 nA vs 

EAAT2+LRRK2 WT, aKm: 89±32 µM, Imax: 52±5 nA; aKm, p =0.05; Imax, p<0.001).  

We next imaged EAAT2 in oocyte slices to understand the reduction of transport current 

observed in the presence of LRRK2 G2019S. Fluorescence images and integrated density (IntDen) 

quantification revealed that the transporter was mainly found at the plasma membrane in oocytes 

injected with LRRK2 WT, while it was sparsely localized upon pathogenic LRRK2 G2019S 

expression (Fig.3d-e, EAAT2+LRRK2 WT vs EAAT2+LRRK2 G2019S, p=0.001). Importantly, 

short-term incubation of LRRK2 G2019S-injected oocytes with MLi-2 (a potent and selective 

inhibitor of LRRK2 kinase activity) restored both the localization (Fig. 3d-e; EAAT2+LRRK2 

G2019S vs EAAT2+LRRK2 G2019S+MLi-2, p=0.0005) and the activity of the transporter (Fig. 3f; 

EAAT2+LRRK2 G2019S, mean amplitude 17±1 nA vs EAAT2+LRRK2 G2019S+MLi-2 mean 

amplitude 37±3 nA; p<0.0001; EAAT2+LRRK2 WT: mean amplitude 34±4 vs LRRK2 

G2019S+MLi-2; p=0.715). Together with our findings on mouse gliosomes, these observations 

suggest that the presence of pathogenic human LRRK2 G2019S does not alter the catalytic 

properties of the glutamate transporter. However, the mutation affects the amount of glutamate 

transporter functionally trafficked to/from the plasma membrane in a manner mediated by the 

kinase activity. 

 

LRRK2 G2019S influences Glt-1 interactome  

We next performed an unbiased protein-protein interaction screen to gain insights into the 

mechanism behind the mutant LRRK2-dependent Glt-1 mislocalization and reduced protein levels. 

Endogenous Glt-1 was immunoprecipitated from homogenized WT and Lrrk2 G2019S mouse 

striata as depicted in Fig. 4a. As negative control, only magnetic beads were incubated with WT and 

Lrrk2 G2019S solubilized brain extracts, respectively. Glt-1 interactors were revealed using liquid-

chromatography coupled with tandem mass spectrometry (LC-MS/MS) (Supplementary file 1). The 

two interactome datasets were compared to highlight significant differences in protein abundances 

(Supplementary file 2). Common and divergent Glt-1 binders between the Lrrk2 WT and G2019S 

genetic environments were identified upon filtering hits with fold-change >3.5 with respect to the 

relative control. As shown in figure 4, 40 interactors were present in both datasets, 14 were unique 

to Glt-1 immunoprecipitated from Lrrk2 WT background and 10 were unique to Lrrk2 G2019S 

background (Fig. 4b). Gene Ontology (GO) analysis was employed to identify discrete functional 

enrichments, and data relative to the Cellular Component (CC) biological domain were analyzed in 

detail (Supplementary file 3). In both datasets the transporter was in contact with membrane 
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domains (GO:0045121; GO:0098857), synaptic and vesicular components (GO:0045202; 

GO:0043232), cytoskeletal scaffolds (GO:0005856; GO:0005874) and mitochondrial elements 

(GO:0005743; GO:0031966; GO:0005740) (Fig.4c) as already reported in [25]. Among the GO 

terms that characterize the transporter in the Lrrk2 G2019S genotype, we observed several unique 

categories associated with internalized vesicles and clathrin-mediated endocytosis (GO:0030119; 

GO:0030128) (Fig.4c). Conversely, components of the plasma membrane region associated with 

sodium-potassium exchanging ATPase complexes were represented in the Lrrk2 WT genotype only 

(GO:0098796; GO:0098590; GO:0005890) (Fig.4c). Taken together, these data indicate that the 

pathogenic Lrrk2 G2019S mutation changes the interactome of endogenous striatal Glt-1 toward 

specific components of the endo-vesicular pathways.  

 

Glt-1 displays an altered localization in Lrrk2 G2019S astrocytes 

Having collected robust evidence that the G2019S mutation affects endogenous Glt-1 

cellular localization, we next employed primary striatal astrocytes acutely transfected with a GFP-

Glt-1 construct to examine transporter trafficking events. TIRFM imaging was performed to 

selectively visualize Glt-1 localization within thin regions of the plasma membrane [13]. We 

observed that GFP-Glt-1 localized in or immediately below the plasma membrane in Lrrk2 WT 

astrocytes, showing a sparse ‘patchy’ pattern (Fig.5a – WT inset). Although showing a similar 

membrane distribution, Glt-1 was less detectable on the cell surface of Lrrk2 G2019S astrocytes 

(Fig.5a – GS inset). Analysis based on the quantification of Glt-1 mean fluorescence using TIRFM 

confirmed a lower presence of Glt-1 at the plasma membrane of Lrrk2 G2019S astrocytes as 

compared to Lrrk2 WT astrocytes (Fig.5b, Lrrk2 WT vs Lrrk2 G2019S, p<0.0001).  

By imaging the total amount of GFP-Glt-1 using epifluorescence microscopy, we detected a 

clear accumulation of Glt-1 in round intracellular clusters along with the spotted membrane 

distribution in Lrrk2 G2019S astrocytes (Fig.5d). Glt-1 was present within two distinct populations 

of clusters, namely a larger cluster of ~1.8 µm diameter and a smaller cluster of ~0.8 µm 

(Supplementary Fig.2a-c). In contrast, a unique population of dots with an average diameter of 0.6 

µm was present in the Lrrk2 WT background, perhaps reflecting clusters in the plasma membrane 

(Supplementary Fig.2a-b). Using intracellular cluster formation as a readout (diameter>1µm), we 

detected a significant increase of Glt-1 clusters in Lrrk2 G2019S astrocytes compared to the Lrrk2 

WT genotype (Lrrk2 WT vs Lrrk2 G2019S, p<0.0001). Noteworthy, 90 min MLi-2 application 

restored the number of Glt-1-positive clusters to control values (Fig.5d,e; Lrrk2 G2019Svs Lrrk2 

G2019S+MLi-2, p=0.002; Lrrk2 G2019S+MLi-2 vs Lrrk2 WT, p>0.99). To investigate a possible 
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role for LRRK2 in PKC-mediated internalization of Glt-1, we used TPA, a phorbol ester that 

directly activates PKC, as well as the PKC inhibitor Go 6976 (Fig.5c). In agreement with published 

data [24, 94], the application of TPA enhanced Glt-1 intracellular clusters in Lrrk2 WT astrocytes 

(Fig.5 d-e; Lrrk2 WT vs Lrrk2 WT+TPA, p=0.009). Of note, the distribution of cluster diameters in 

this condition peaked ~1.9 µm, which is similar to that observed in Lrrk2 G2019S astrocytes 

(Supplementary Fig.2a-d). No significant changes were observed in the number of Glt-1-positive 

puncta in Lrrk2 G2019S astrocytes upon TPA treatment, suggesting that the majority of Glt-1 was 

localized to the intracellular compartment already under basal conditions (Fig.5 c-e; Lrrk2 G2019S 

vs Lrrk2 G2019+TPA, p>0.99). To unravel whether Lrrk2 acts upstream of PKC, we applied MLi-2 

to TPA-treated Lrrk2 WT astrocytes. Interestingly, the application of the inhibitor did not restore 

the number of Glt-1 clusters to basal values (Fig.5 d,e; Lrrk2 WT vs Lrrk2 WT+TPA+MLi-2, 

p<0.0001). Moreover, PKC inhibition using Go 6976 did not prevent Glt-1 clustering in Lrrk2 

G2019S astrocytes (Fig.5d,e; Lrrk2 G2019S vs Lrrk2 G2019S+Go 6976, p>0.99). These data 

demonstrate that Lrrk2 G2019S reduces Glt-1 localization at the plasma membrane in a PKC-

independent manner in primary astrocytes. Moreover, the correction of the pathogenic phenotype 

observed upon application of MLi-2, a potent and selective LRRK2 inhibitor, indicates that the 

Lrrk2 kinase activity is crucial for the relocation of Glt-1. 

 

Glt-1 is retained at the Rab4-positive compartment in Lrrk2 G2019S striatal astrocytes 

To determine the identity of the Glt-1 clusters, we co-transfected Lrrk2 WT and Lrrk2 

G2019S astrocytes with Flag-Glt-1 together with GFP-Lamp1 (lysosomal marker), GFP-Rab11 

(marker of slow-recycling endocytosis) or GFP-Rab4 (marker of fast-recycling endocytosis). 

Quantification analyses showed that there was no significant difference in the amount of Lamp1, 

Rab11 or Rab4 fluorescence between the two genotypes (Fig.6b, d, f; all comparisons p>0.05). We 

then quantified the co-localization of Glt-1 with the three markers. There were no significant 

changes in the amount of the transporter in the Lamp1- or Rab11-positive compartments in Lrrk2 

G2019S astrocytes as compared to Lrrk2 WT astrocytes (Fig. 6c,e; all comparisons p>0.05). 

However, there was a significant increase in the amount of Glt-1 co-localizing with the Rab4-

positive fast-recycling vesicles in Lrrk2 G2019S astrocytes as compared to control (Fig.6g, Lrrk2 

WT vs Lrrk2 G2019S, p=0.001). Interestingly, short-term application of MLi-2 reverted the Lrrk2 

G2019S-mediated pathogenic phenotype as shown by the loss of co-localization between the 

transporter and Rab4-positive vesicles (Fig. 6g, Lrrk2 G2019S vs Lrrk2 G2019S+MLi-2, p=0.001; 

Lrrk2 G2019S +MLi-2 vs Lrrk2 WT, p=0.98). Z-stacks orthogonal projections confirmed that Glt-1 
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co-localized with Rab4-positive vesicles in Lrrk2 G2019S primary astrocytes (Supplementary 

Fig.3a).  

Since pathogenic Lrrk2 did not influence the expression of Rab4 protein per se, we 

investigated the impact of the kinase on Rab4-positive vesicle morphology using both confocal 

fluorescence microscopy and TEM (Fig.6h,m). Fluorescence analysis demonstrated that the Lrrk2 

G2019S mutation did not alter the total amount of Rab4-positive vesicles (Fig. 6i, Lrrk2 WT vs 

Lrrk2 G2019S, p>0.05). Rather, the area of Rab4-positive fast recycling endosomes was 

significantly enhanced in the presence of the pathogenic Lrrk2 mutation (Fig. 6l, Lrrk2 WT vs 

Lrrk2 G2019S, p=0.0032). By overlapping fluorescence images with TEM ultrathin sections, we 

were able to identify and define the Rab4-positive recycling vesicles (Supplementary Fig.3b-

asterisks). Rab4-positive endosomes presented an irregular shaped vacuole (0.2-0.5 µm diameter) 

characterized by an electron-lucent lumen [19, 40]. TEM analysis confirmed that the Lrrk2 G2019S 

mutation markedly increased the area of Rab4-positive vesicles (Fig.6m-n; Lrrk2 WT vs Lrrk2 

G2019S, p>0.0001) as compared to controls. Overall, we show here that in Lrrk2 G2019S 

astrocytes the transporter is predominantly confined to defective, enlarged Rab4-positive recycling 

vesicles. Also in this case, the rescuing effect of MLi-2 suggests that the dysregulation of Lrrk2 

kinase activity is sufficient to impair Glt-1 trafficking.  

 

Lrrk2 G2019S perturbs Glt-1 recycling and favors its degradation 

We next examined whether Glt-1 accumulation in the Rab4-positive compartment in the 

Lrrk2 G2019S astrocytes was due to a delay in recycling. First, we applied the recycling inhibitor 

Monensin on primary striatal Lrrk2 WT and G2019S astrocytes and investigated the co-localization 

of Glt-1 with Rab4 (Fig. 7a). In untreated cells, Glt-1 accumulated in Rab4-positive recycling 

vesicles in the presence of the Lrrk2 pathogenic mutation as compared to controls (Fig.7b; untreated 

Lrrk2 WT vs untreated Lrrk2 G2019S, p=0.003). Monensin application induced a significant 

accumulation of Glt-1 in Rab4-positive vesicles in Lrrk2 WT cells (Fig. 7b; untreated Lrrk2 WT vs 

Lrrk2 WT+Monensin, p=0.001), thereby phenocopying the distribution of the transporter observed 

in untreated Lrrk2 G2019S astrocytes (Fig. 7b; Lrrk2 WT+Monensin vs untreated Lrrk2 G2019S, 

p>0.99). Conversely, Monensin treatment did not induce further Glt-1 accumulation in Rab4-

positive vesicles in the Lrrk2 G2019S astrocytes (Fig. 7b; untreated Lrrk2 G2019S vs Lrrk2 

G2019S+Monensin, p>0.99), suggesting that the transporter was almost completely incorporated in 

the fast-recycling compartment under basal conditions in in those cells.  
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We next studied the recycling kinetics by measuring Glt-1 localization in Rab4-positive 

vesicles after TPA-induced internalization. To isolate the unique contribution of the recycling 

pathway, the subsequent basal internalization was blocked using Go 6976. We again confirmed that 

under basal conditions Glt-1 accumulated as clusters in Rab4-positive vesicles in Lrrk2 G2019S but 

not in Lrrk2 WT astrocytes (Fig.7 c-d; Lrrk2 WT vs Lrrk2 G2019S, p=0.01), and that the 

application of MLi-2 reverted this phenotype (Fig.7c-d; Lrrk2 G2019S vs Lrrk2 G2019S+MLi-2, 

p=0.002; Lrrk2 G2019S+MLi-2 vs Lrrk2 WT, p= 0.79). Upon TPA stimulation, there was an 

overall increase of Glt-1 in Rab4-positive vesicles in Lrrk2 WT and Lrrk2 G2019S+MLi-2 

astrocytes, reaching values of Glt-1/Rab4 co-localization similar to those observed in Lrrk2 G2019S 

astrocytes (Fig.7 c-d; Lrrk2 WT+TPA vs Lrrk2 G2019S+TPA, p=0.63; Lrrk2 G2019S+TPA vs 

Lrrk2 G2019S+MLi-2+TPA, p=0.99; Lrrk2 WT+TPA vs Lrrk2 G2019S+MLi-2+TPA, p=0.70). 

Conversely, the amount of Glt-1 co-localizing with Rab4-positive vesicles in Lrrk2 G2019S 

astrocytes did not increase upon TPA stimulation (Fig.7 c-d). Both Lrrk2 WT and Lrrk2 

G2019S+MLi-2 astrocytes displayed a significant decrease of Glt-1 in Rab4-positive vesicles 

already 1 min after Go 6976 application (Fig.7c-d; Lrrk2 WT+ Go T1’ vs Lrrk2 G2019S+MLi-

2+Go T1’, p=0.88; Lrrk2 WT+ Go T1’ vs Lrrk2 WT, p=0.95; Lrrk2 G2019S+MLi-2+Go T1’ vs 

Lrrk2 G2019S+MLi-2, p>0.99). In contrast, Glt-1 was almost entirely retained in Rab4 vesicles in 

Lrrk2 G2019S astrocytes at this time point (Fig.7c-d; Lrrk2 WT+ Go T1’ vs Lrrk2 G2019S+Go 

T1’, p=0.01; Lrrk2 G2019S+MLi-2+Go T1’ vs Lrrk2 G2019S+Go T1’, p=0.007; Lrrk2 

G2019S+Go T1’ vs Lrrk2 G2019S, p=0.64). A most prominent effect was observed 10 min after 

Go 6976 application (Fig.7c-d; Lrrk2 WT+ Go T10’ vs Lrrk2 G2019S+Go T10’, p=0.03; Lrrk2 

G2019S+MLi-2+Go T10’ vs Lrrk2 G2019S+Go T10’, p=0.06; Lrrk2 WT+ Go T10’ vs Lrrk2 

G2019S+MLi-2+Go T10’, p=0.95; Lrrk2 WT+ Go T10’ vs Lrrk2 WT, p=0.39; Lrrk2 

G2019S+MLi-2+Go T10’ vs Lrrk2 G2019S+MLi-2, p=0.99). Although not reaching statistical 

significance, the overall amount of the transporter at the Rab4-positive organelles progressively 

decreased in the pathogenic LRRK2 astrocytes upon Go treatment (Fig.7c-d; Lrrk2 G2019S+ Go 

T10’ vs Lrrk2 G2019S, p=0.49). Of note, this phenomenon was not associated with a relocation of 

Glt-1 to the plasma membrane in the G2019S background (Fig.7c, arrowheads).  

Therefore, we examined whether Glt-1 incorporated into Rab4-positive vesicles was 

targeted for degradation in the Lrrk2 G2019S astrocytes. As Glt-1 can be degraded through both the 

proteasome [69, 87] and the lysosome [76, 92], we monitored the presence of Glt-1 in the fast 

recycling and lysosomal compartments in the presence of either MG132 or Bafilomycin to block 

proteasomal or lysosomal function, respectively [61, 69]. Lrrk2 WT and G2019S astrocytes were 
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co-transfected with Flag-Glt-1 and GFP-Rab4, and stained for the endogenous lysosomal protein 

Lamp1 to measure Glt-1 localization in the Rab4- and Lamp1-positive organelles (Fig.7e). Glt-1 

preferentially accumulated in the Rab4-positive rapid recycling compartment in the Lrrk2 G2019S 

astrocytes as compared to control cells (Fig.7f; Lrrk2 WT and Lrrk2 G2019S; p=0.02), whilst a 

comparably low distribution of Glt-1 to the lysosomal compartment was observed in both genotypes 

under basal conditions (Fig.7g Lrrk2 WT and Lrrk2 G2019S; p>0.99). Proteasome inhibition did 

not significantly enhance the fraction of Glt-1 co-localizing with the Rab4-positive compartment in 

Lrrk2 G2019S astrocytes (Fig.7f; Lrrk2 G2019S vs Lrrk2 G2019S+MG132; p=0.067), and 

promoted only a slight increase of Glt-1 localization in the Lamp1-positive compartment in Lrrk2 

G2019S astrocytes (Fig.7g; Lrrk2 G2019S vs Lrrk2 G2019S+MG132; p=0.038). In contrast, whilst 

lysosomal inhibition did not cause a significant increase of Glt-1 in the Rab4-positive compartment 

in Lrrk2 G2019S astrocytes (Fig.7f; Lrrk2 GS and Lrrk2 G2019S+Bafilomycin; p=0.11), it 

dramatically accentuated Glt-1 accumulation in the lysosomal vesicles in the Lrrk2 G2019S 

astrocytes (Fig.7e; Lrrk2 G2019S vs Lrrk2 G2019S+Bafilomycin; p=0.0001). These results indicate 

that pathogenic Lrrk2 profoundly perturbs Glt-1 recycling to the cell membrane, possibly associated 

with the re-routing of the transporter for lysosomal degradation.  
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Discussion 

 

In the present study, we explored the impact of the pathogenic G2019S LRRK2 variant on 

astrocyte-mediated glutamate homeostasis in the striatum. Our results show that the LRRK2 kinase 

activity participates in the regulation of the striatal astrocytic glutamate reuptake system by 

interfering with the recycling of EAAT2/Glt-1 to the plasma membrane.  

 

We reported that EAAT2 is nearly absent in post-mortem basal ganglia from Parkinson’s 

disease (PD) patients carrying the LRRK2 G2019S mutation. These results corroborate previous 

clinical data showing alterations in the glutamate content in the brain as well as in the plasma of 

sporadic PD patients [20, 30, 37, 58, 90]. Striatal EAAT2 downregulation correlated with increased 

expression of the reactive marker GFAP in basal ganglia glial cells of LRRK2-linked PD patients. 

Although impaired glutamate buffering is often found accompanied by astroglial reactivity and 

neuroinflammation in several disease models [32, 53, 95], conflicting results have been published in 

the context of PD patients. Enhanced GFAP reactivity has been clearly documented in Substantia 

Nigra pars compacta (SNpc) and olfactory bulbs [21, 48, 82]. However, one report suggested 

astrocytic atrophy (instead of reactivity) in PD brains, since low levels of astrocyte markers were 

observed in the SNpc and the striatum [82], and studies in human iPS-derived astrocytes from PD 

patients carrying the LRRK2 G2019S mutation suggested a similar mechanism [63]. Our study 

suggests absence of astrocyte degeneration or atrophy, since the levels of the cytosolic astrocyte 

marker GS were not perturbed in the context of disease. Accordingly, the presence of astrocyte 

reactivity has been reported in different transgenic mice overexpressing the LRRK2 G2019S kinase 

[34, 91]. 

 

Lrrk2 G2019S knockin mice display an evident phenotype characterized by a significant 

downregulation of striatal Glt-1 protein levels and extensive astrogliosis, which recapitulates the 

human disease in post-mortem basal ganglia. Thus, the knockin G2019S mouse is an outstanding 

model system to unravel the mechanism that links pathogenic Lrrk2 to transporter deficiencies. Glt-

1 deficits in mice appear without any nigral degeneration, indicating that Lrrk2-mediated glutamate 

transporter dysfunction in the striatum might anticipate dopaminergic cell loss. In agreement with 

the downregulation of Glt-1 protein, an enhanced glutamatergic cortico-striatal neurotransmission 

has been described in this animal model [83, 86]. These findings support the notion that striatal 
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glutamatergic imbalance and correlated glutamate-induced excitotoxicity intervene in PD 

pathophysiology. 

 

LRRK2 is highly expressed in glial cells and plays a relevant role in astrocyte physiology 

both in human and mouse [5, 38, 51]. In this context, we specifically dissected the contribution of 

the pathogenic Lrrk2 mutation on Glt-1 functionality in astrocytes at endogenous levels in cultured 

cells as well as in pure subcellular astrocytic ex vivo preparations. In primary striatal cells, we 

confirmed a reduced level of the transporter, in agreement with our observations in human and 

murine striatal lysates. These observations fit with the functional analysis carried out on isolated 

mouse striatal gliosomes, which reveal a decreased ability of the transporter to reuptake glutamate. 

By comparing the kinetic values, we find that Lrrk2 G2019S impinges on Glt-1 transport velocity 

without affecting substrate affinity. Similarly, the expression of human LRRK2 G2019S induces a 

decrease of the EAAT2 transport current without modifying the biophysical properties of the 

transporter in Xenopus oocytes. Therefore, the EAAT2/Glt-1 functional impairment can be ascribed 

to a reduced localization of the transporter at the plasma membrane mediated by LRRK2. 

Importantly, the LRRK2 G2019S effects on EAAT2 are restored upon acute inhibition of the 

G2019S kinase activity by MLi-2, indicating that pathogenic LRRK2 impairs proper EAAT2 

homeostasis. 

 

Endogenous Glt-1 interacts with partially different protein environments in the two 

backgrounds as revealed by mass spectrometry data. On one hand, striatal Glt-1 

immunoprecipitated from Lrrk2 WT mice mainly interacts with membrane proteins. In agreement 

with previous findings, we identified the Na+-K+ pump as a Glt-1 interactor in a Lrrk2 WT 

background, confirming that Glt-1 and Na+-K+-ATPases are part of the same macromolecular 

complex and operate as a functional unit to regulate physiological glutamatergic neurotransmission 

[66]. On the other hand, Glt-1 almost exclusively interacts with intracellular proteins in presence of 

the G2019S mutation. Among those proteins, we identified proteins involved in the endo-vesicular 

pathway, suggesting a different subcellular compartmentalization of the transporter in the presence 

of the Lrrk2 G2019S mutation.  

 

It has been consistently reported that Glt-1 continuously exchanges between diffuse and 

spotted localization at the surface, shaping synaptic transmission [1, 56]. Moreover, Glt-1 

undergoes basal PKC-mediated endocytosis and intracellular cluster formation in astrocytic 
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processes to regulate glutamate uptake activity [94]. In our system, only the amount of the 

transporter, but not the spotted distribution at the plasma membrane, was affected by pathogenic 

Lrrk2. Conversely, Lrrk2 G2019S astrocytes exhibited the presence of large intracellular Glt-1 

clusters resembling, in terms of dimension, those found upon pharmacological stimulation of PKC-

mediated endocytosis of Glt-1.  However, our data exclude the involvement of Lrrk2 in the PKC-

mediated internalization pathway. Indeed, the inhibition of Lrrk2 kinase activity was not able to 

revert the PKC-induced clusterization in control astrocytes, and PKC inhibition failed to reduce Glt-

1 clusters in G2019S astrocytes. PKC activation was also not able to induce a further increase in 

Glt-1 clusters in Lrrk2 G2019S astrocytes, suggesting that almost all of the transporter is 

internalized in the pathogenic Lrrk2 background. 

 

In agreement with multiple reports suggesting a role for Lrrk2 in endocytic recycling events 

([22, 64], biorXiv, doi: 10.1101/2020.07.27.219501), we here demonstrate that Lrrk2 operates in 

Glt-1 recycling to the plasma membrane. In the LRRK2 G2019S astrocytes, Glt-1 is preferentially 

engulfed in fast-recycling endosomes, which are recognized by overexpression of the marker Rab4. 

Pharmacological Lrrk2 inhibition reduces the amount of Glt-1 co-localizing with the Rab4-positive 

marker and promotes Glt-1 redistribution to the plasma membrane, which allows for the functional 

recovery of the transporter as assessed by electrophysiological recordings in oocytes. By combining 

confocal and TEM ultrastructural analysis, we show that the Lrrk2 G2019S mutation profoundly 

affects the architecture of the fast-recycling Rab4-positive organelles in astrocytes, promoting an 

enlargement of the area of these vesicles. In this regard, our group recently reported a loss of 

function of Annexin A2 (AnxA2) in Lrrk2 G2019S astrocytes [75]. AnxA2 is a protein involved in 

sorting endosome maturation and recycling endosome formation [15, 54, 75]. Although further 

studies are warranted, AnxA2 deficits may be at least in part responsible for the enlarged size of the 

Rab4-positive endosomal recycling structures reported here. 

 

The role of Lrrk2 in Glt-1 recycling was further dissected by pharmacological approaches. 

The accumulation of Glt-1 in the Rab4-positive compartment observed in Lrrk2 G2019S astrocytes 

was phenocopied by blocking the recycling of Glt-1 in control astrocytes. In Lrrk2 G2019S 

astrocytes, the same treatment did not induce further increases in Glt-1 co-localization with Rab4 

vesicles, confirming that almost the totality of the transporter is incorporated in this subcellular 

compartment under basal conditions. Moreover, our observations on the kinetics of the process 

confirm that when internalized, Glt-1 is re-routed to early endosomes, as reported in [29]. While 
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Glt-1 repopulates the plasma membrane in Lrrk2 wild-type astrocytes, Glt-1 is basally captured and 

persists in the Rab4 compartment in the pathogenic Lrrk2 context. In addition, a tendential decrease 

in the amount of Glt-1 colocalizing with the Rab4-positive marker not associated with plasma 

membrane re-localization indicates that the persistent delay in Glt-1 recycling might promote the 

degradation of the protein. Accordingly, blockade of the degradative systems in the pathogenic 

Lrrk2 background promoted an increase in the amount of Glt-1 colocalizing with a Lamp1-positive 

compartment upon both proteasomal and, especially, lysosomal inhibition.  

 

In conclusion, our work reveals that the Lrrk2 G2019S mutation profoundly affects Glt-1 

recycling to the plasma membrane by impinging on the early endosomal fast recycling compartment 

in striatal astrocytes. Although additional mechanistic investigations are needed, we propose that 

the cellular degradative system may eventually promote Glt-1 turnover by sensing the overload of 

the transporter in the Rab4-positive compartment (Fig. 7h). In this manner, a chronic, subtle 

LRRK2-mediated impairment of the recycling machinery in brain cells might cause a progressive 

depletion of Glt-1 with a consequent reduction of extracellular glutamate clearance. 

 

In a broader context, our work supports a novel pathogenic mechanism by which the nigro-

striatal synapses might be affected at the early stage of the neurodegenerative process. Indeed, the 

LRRK2-mediated impairment of the astrocytic glutamate reuptake capacity could induce a 

premature striatal glutamate accumulation, anticipating subsequent irreversible consequences on the 

integrity of dopaminergic connections. 
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Figure 1 

 

 
 

Fig.1 EAAT2 levels are decreased in human LRRK2 G2019S brains.  

a) Western blot analysis of human LRRK2 G2019S basal ganglia lysates and healthy controls using 

anti-EAAT2, anti-GFAP, anti-GS; b-d) Relative quantification of band intensity was performed 

using ImageJ and normalized to the housekeeping protein GAPDH (n=10 age-matched control 

samples and n=4 LRRK2 G2019S basal ganglia samples); e) Representative double-labeling images 

for EAAT2 (green) and GFAP (red) in LRRK2 G2019S human basal ganglia and age-matched 

control; scale bar 50 µm, insets 20 µm; f) Representative images of DAB-immunostaining for 

GFAP in  LRRK2 G2019S  human striatum and age-matched control; scale bar 25 µm, insets 10 

µm. Statistical analysis in b was performed using Mann-Whitney test and in c-d using Unpaired T-

test.   
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Figure 2 

 
 

Fig.2 Glutamate transporter is downregulated in the striatum of Lrrk2 G2019S mice.  

a) Western blot analysis of Lrrk2 WT and Lrrk2 G2019S striatal lysates using anti-Glt-1, anti-

GFAP, anti-TH antibodies and anti-GS; b-e) Relative quantification of band intensity was 

performed using ImageJ and normalized to β-actin (n=7 striatal samples for both Lrrk2 WT and 

G2019S 4-months old mice); f) Representative confocal double-labeling images for Glt-1 (green) 

and GFAP (red) in Lrrk2 WT and G2019S striatal slices; scale bar 50 µm, insets 20 µm; g-h) 
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Quantification of GFAP IntDen and GFAP+ cells in the dorsal striatum of Lrrk2 WT and G2019S 

mice, three different fields per animal were collected, n=3 animals for each genotype; i) 

Representative confocal images of the cellular distribution (arrowheads) of the endogenous Glt-1 in 

primary striatal astrocytes derived from Lrrk2 WT and Lrrk2 G2019S mice treated with dbcAMP 

(500 µM) for ten days; bar 20 µm; l) Striatal gliosomes from Lrrk2 WT and Lrrk2 G2019S 4-month 

old mice were exposed for 2 min at 37 °C to increasing concentration of [3H]D-Asp (0.03, 0.1, 1, 3, 

30 and 100 µM) in the presence of 10 µM UCPH to exclude [3H]D-Asp uptake by Glast. The 

specific [3H]D-Asp uptake is expressed as nmol/mg protein/2 min; the kinetic parameters Vmax and 

Km were obtained by fitting data with the Michaelis-Menten equation (n=4 independent 

experiments for each group). Statistical analysis in b-e and l was performed using Unpaired T-test; 

statistical analysis in g-h was performed using Mann-Whitney test.  
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Figure 3 

 
 

 

Fig. 3 LRRK2 G2019S alters EAAT2 electrophysiological properties. 

a) Schematic outline of the experimental setup. Oocytes were co-injected with mRNA of EAAT2 

and human LRRK2 (WT or G2019S) and glutamate transport associated-currents were recorded 

using the two-electrode voltage-clamp technique; b) The bar graph represents current amplitudes 

elicited in oocytes co-expressing EAAT2 and LRRK2 WT (n=79, 12 frogs) or G2019S (n=122, 12 

frogs). Glutamate application was at 1 mM and the holding potential at −60 mV; c) Transport-
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associated currents in oocytes co-expressing EAAT2 and LRRK2 WT or G2019S as a function of 

glutamate concentration. The kinetic parameters Imax and aKm were obtained by fitting data with the 

Michaelis-Menten equation (n=6; 2 frogs); d) Representative bright field (left column) or 

fluorescence (middle column, merge on the right column) images of oocyte slices co-expressing 

EAAT2 (green) and LRRK2 WT or G2019S, with or without 90 min MLi-2 (200 nM) treatment, 

scale bar 20 µm. Representative traces of the recorded transport current in all the three groups are 

shown on the right; e) Quantitative analysis of the IntDen of the EAAT2 signal at the oocyte 

membrane was performed in three different fields for each oocyte, n=3 independent oocytes for 

each group; f) The bar graph represents current amplitudes elicited in oocytes co-expressing 

EAAT2 and LRRK2 WT (n=18, 6 frogs), G2019S (n=22, 6 frogs) or G2019S+MLi-2 (n=22, 6 

frogs). Statistical analysis in b was performed using Mann-Whitney test, in f using Kruskal-Wallis 

test followed by Dunn's multiple comparisons test. Statistical analysis in g was performed using 

Unpaired T-test to compare EAAT2+LRRK2 WT to EAAT2+G2019S injected oocytes and with 

Paired T-test to compare EAAT2+G2019S oocytes before and after LRRK2 inhibition.  
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Figure 4 

 
 

Fig.4. Screening of Glt-1 protein-protein interactions. 

a) Striatal Glt-1 immunoprecipitated from Lrrk2 WT and G2019S brains was resolved by 

immunoblotting. Anti-HSP70 was applied to normalize for protein content; b) Venn diagram 

summary of interacting proteins, colored for different background (grey for Lrrk2 WT, light blue 

for Lrrk2 G2019S, dark blue for Lrrk2 WT and G2019S shared interacting proteins); c) Selected 

GO term enrichments from CC categories using gProfiler were plotted using -log(Padj) values. 
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Figure 5 

 
 

Fig.5. Astroglial Glt-1 is mislocalized in the presence of Lrrk2 G2019S mutation. 

a) Representative TIRFM images of Glt-1 localization in Lrrk2 WT and Lrrk2 G2019S astrocytes 

transfected with GFP-Glt1 (gray) and stained with GFAP (cyan). Scale bar 20 µm; b) Quantification 

of the GFP-Glt-1 mean fluorescence performed in TIRFM images (n = 25 cells from 2 independent 

astrocyte cultures derived from Lrrk2 WT and G2019S were considered for the analysis); c) 

Schematic representation of TPA and Go 6976 effects on PKC activity; d) Representative 

epifluorescence images of Glt-1 intracellular clusters in Lrrk2 WT and Lrrk2 G2019S astrocytes 

transfected with Flag-Glt-1 (green) and stained with GFAP (cyan) under basal condition and after 

pharmacological treatment; Scale bar 20 µm, insets 5 µm; e) Quantification of the number of Glt-1-

positive clusters per cell under basal condition and after pharmacological treatment using Lrrk2 

inhibitor MLi-2 (90 min), the PKC activator TPA (20 min), the co-application of TPA and Mli-2 
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and the application of the PKC inhibitor Go 6976 (Go; 90 min). Number of independent cell 

cultures used: Lrrk2 WT (n = 6), Lrrk2 G2019S (n = 6), Lrrk2 G2019S+MLi-2 (n = 4), Lrrk2 

WT+TPA (n=3), Lrrk2 WT+TPA+MLI-2 (n=3) and Lrrk2 G2019S+Go 6976 (n=3). Three cells 

analyzed for each independent cell cultures. Statistical analysis in b was performed using One-way 

ANOVA test followed by Tukey's multiple comparisons test. Statistical analysis in e was performed 

using Kruskal-Wallis test followed by Dunn's multiple comparisons test ($ vs Lrrk2 WT).  

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455053doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455053


	
	
	
	

Figure 6 
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Fig.6 Lrrk2 G2019S enhances Glt-1 accumulation in Rab4-positive organelles. 

a) Representative z-stack confocal images of primary astrocytes from Lrrk2 WT and Lrrk2 G2019S 

mice transfected with Flag-Glt-1 and GFP-Lamp1, GFP-Rab11 or GFP-Rab4 under basal 

conditions or upon treatment with MLi-2 inhibitor.  Insets show Lamp1-, Rab11- or Rab4-positive 

area and the localization of Glt-1 in the indicated ROIs. Scale bars: 20 µm; insets 5 µm; b-c) 

Quantitative analysis of Lamp1 IntDen and Glt-1 IntDen in Lamp1 compartment; d-e) Quantitative 

analysis of Rab11 IntDen and Glt-1 IntDen in Rab11 compartment; f-g) Quantitative analysis of 

Rab4 IntDen and Glt-1 IntDen in Rab4 compartment; Number of independent cell cultures used 

Lrrk2 WT (n = 4), Lrrk2 G2019S (n = 4) and Lrrk2 G2019S +MLi-2 (n = 3). h) Representative 

confocal microscopy images of Lrrk2 WT and G2019S primary striatal astrocytes transfected with 

GFP-Rab4 and Flag-Glt-1. Scale bars: 2 µm; i-l) Quantification of Rab4-positive vesicle number 

and area. Number of independent cell cultures used Lrrk2 WT (n = 4), Lrrk2 G2019S (n = 4); m) 

Representative TEM images of Lrrk2 WT and G2019S endosomal-like structures in primary striatal 

astrocytes transfected with GFP-Rab4 and Flag-Glt-1 (top: scale bars: 5 µm; bottom: scale bars: 500 

nm); n) Quantification of the area of endosomal-like structures (n=5 independent astrocytes 

analyzed for each group, ten independent fields were analyzed for quantification). Statistical 

analysis in b-g was performed using One-way ANOVA test followed by Tukey's multiple 

comparison test. Statistical analysis in i-l-n was performed using Unpaired t-tests; Mann-Whitney 

test.  
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Figure 7 
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Fig.7 G2019S pathogenic Lrrk2 mutation impacts on Glt-1 recycling and turnover.  

a) Representative confocal images of primary striatal Lrrk2 WT and G2019S astrocytes under basal 

conditions and treated with the recycling blocker Monensin (35 µM, 40 min). Insets show the Rab4-

positive area and the localization of Glt-1 in the indicated ROIs. Scale bars: 20 µm; insets 5 µm; b) 

Quantitative analysis of Glt-1 IntDen in Rab4-positive compartment; number of independent cell 

cultures used Lrrk2 WT (n = 2), Lrrk2 WT+Monensin (n = 2), Lrrk2 G2019S (n = 2) and Lrrk2 

G2019S +Monensin (n = 2); c) Representative z-stack confocal images of primary Lrrk2 WT and 

G2019S (with or without MLi-2) striatal astrocytes transfected with Flag-Glt-1 (red) and GFP-Rab4 

(green). The insets show Rab4-positive area and the localization of Glt-1 in these ROIs; scale bar 20 

µm; insets 5 µm; d) Quantification of Glt-1 IntDen in Rab4 compartment in the four selected 

experimental time points. n=2 independent astrocyte cultures were considered for the analysis; e) 

Representative z-stack confocal images of primary striatal Lrrk2 WT and G2019S astrocytes 

transfected with GFP-Rab4 and Flag-Glt-1 (red) and labeled for endogenous Lamp1 (far red, 

pseudocolored in blue). Insets show Rab4 and Lamp1-positve area and the localization of Glt-1 in 

these ROIs. Scale bar 20 µm; insets 5 µm; f) Quantification of Glt-1 IntDen in the Rab4-positive 

vesicles under basal conditions or upon MG132 or Bafilomycin application; n=2 independent 

astrocyte cultures were considered for the analysis. g) Quantification of Glt-1 IntDen in the 

endogenous Lamp1-positive structures under basal conditions or upon MG132 or Bafilomycin 

application; n=2 independent astrocyte cultures were considered for the analysis. h) Schematic 

representation of Glt-1 trafficking in Lrrk2 WT and Lrrk2 G2019S astrocytes. Statistical analysis in 

a was performed using Kruskal-Wallis test followed by Dunn's multiple comparisons, in b using 

One-way ANOVA test followed by Tukey's multiple comparisons test (* Lrrk2 WT vs Lrrk2 

G2019S, ## Lrrk2 G2019S vs Lrrk2 G2019S+MLi-2). Statistical analysis in d-e was performed 

using Kruskal-Wallis test followed by Dunn's multiple comparisons test. 
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Supplementary 1 

 
Supplementary 1 

a-c) Western blot quantification of the monomeric fractions (60 KDa) as well as of the multimeric 

fractions (180 KDa and 250 KDa) of EAAT2 in LRRK2 G2019S PD patients (n=4) compared to 

healthy controls (n=10); d-e) Quantification of the 60 KDa and 180 KDa Glt-1 bands in Lrrk2 

G2019S and Lrrk2 WT mice; n=7 animals for each genotype; f) qPCR analysis of Glt-1 and Glast 

mRNA in the striatum of Lrrk2 WT and Lrrk2 G2019S mice; n=12 animals for each genotype; g) 

qPCR analysis of Glt-1 mRNA in primary Lrrk2 WT striatal astrocytes treated with or without 

dbcAMP for 10 days; n=2 independent cell cultures. Statistical analysis was performed in a-c and f 

using Unpaired T-test and in d-e using Mann-Whitney test.  
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Supplementary2

 
Supplementary 2 

a) Representative epifluorescence images of Glt-1 clusters in Flag-Glt-1 transfected primary striatal 

astrocytes from Lrrk2 WT (untreated or treated with TPA) and from Lrrk2 G2019S astrocytes.  

Scale bars 5 µm; insets 1 µm. b) Frequency distribution of Glt-1 cluster diameter in untreated Lrrk2 

WT (grey bars); c) Frequency distribution of Glt-1 cluster diameter in Lrrk2 G2019S (blue bars); d) 

Frequency distribution of Glt-1 cluster diameter in Lrrk2 WT treated with TPA (d; red bars); n=5 

independent astrocytes analyzed for each group.  
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Supplementary 3 

 
Supplementary 3 

a) Orthogonal z-stack projections of Lrrk2 G2019S astrocytes co-transfected with Flag-Glt-1 (red) 

and Lamp1-GFP, Rab11-GFP or Rab4-GFP (green). Scale bar 20 µm. b) Representative confocal 

(left panel), electron microscopy (middle panel) and merge (right panel) image of a Lrrk2 WT 

primary astrocyte transfected with Rab4-GFP (green). The image reveals the co-localization of 

early endosomal structures identified by transmission microscopy with the GFP-Rab4-positive 

vesicles identified by confocal microscopy; scale bar: 1 µm.  
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